fs: use kmem_cache_zalloc instead
[pv_ops_mirror.git] / fs / super.c
blobfc8ebedc6bed1aa901e24ebf8e34fd397cc6361e
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h> /* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h> /* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <asm/uaccess.h>
43 void get_filesystem(struct file_system_type *fs);
44 void put_filesystem(struct file_system_type *fs);
45 struct file_system_type *get_fs_type(const char *name);
47 LIST_HEAD(super_blocks);
48 DEFINE_SPINLOCK(sb_lock);
50 /**
51 * alloc_super - create new superblock
52 * @type: filesystem type superblock should belong to
54 * Allocates and initializes a new &struct super_block. alloc_super()
55 * returns a pointer new superblock or %NULL if allocation had failed.
57 static struct super_block *alloc_super(struct file_system_type *type)
59 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
60 static struct super_operations default_op;
62 if (s) {
63 if (security_sb_alloc(s)) {
64 kfree(s);
65 s = NULL;
66 goto out;
68 INIT_LIST_HEAD(&s->s_dirty);
69 INIT_LIST_HEAD(&s->s_io);
70 INIT_LIST_HEAD(&s->s_files);
71 INIT_LIST_HEAD(&s->s_instances);
72 INIT_HLIST_HEAD(&s->s_anon);
73 INIT_LIST_HEAD(&s->s_inodes);
74 init_rwsem(&s->s_umount);
75 mutex_init(&s->s_lock);
76 lockdep_set_class(&s->s_umount, &type->s_umount_key);
78 * The locking rules for s_lock are up to the
79 * filesystem. For example ext3fs has different
80 * lock ordering than usbfs:
82 lockdep_set_class(&s->s_lock, &type->s_lock_key);
83 down_write(&s->s_umount);
84 s->s_count = S_BIAS;
85 atomic_set(&s->s_active, 1);
86 mutex_init(&s->s_vfs_rename_mutex);
87 mutex_init(&s->s_dquot.dqio_mutex);
88 mutex_init(&s->s_dquot.dqonoff_mutex);
89 init_rwsem(&s->s_dquot.dqptr_sem);
90 init_waitqueue_head(&s->s_wait_unfrozen);
91 s->s_maxbytes = MAX_NON_LFS;
92 s->dq_op = sb_dquot_ops;
93 s->s_qcop = sb_quotactl_ops;
94 s->s_op = &default_op;
95 s->s_time_gran = 1000000000;
97 out:
98 return s;
102 * destroy_super - frees a superblock
103 * @s: superblock to free
105 * Frees a superblock.
107 static inline void destroy_super(struct super_block *s)
109 security_sb_free(s);
110 kfree(s->s_subtype);
111 kfree(s);
114 /* Superblock refcounting */
117 * Drop a superblock's refcount. Returns non-zero if the superblock was
118 * destroyed. The caller must hold sb_lock.
120 int __put_super(struct super_block *sb)
122 int ret = 0;
124 if (!--sb->s_count) {
125 destroy_super(sb);
126 ret = 1;
128 return ret;
132 * Drop a superblock's refcount.
133 * Returns non-zero if the superblock is about to be destroyed and
134 * at least is already removed from super_blocks list, so if we are
135 * making a loop through super blocks then we need to restart.
136 * The caller must hold sb_lock.
138 int __put_super_and_need_restart(struct super_block *sb)
140 /* check for race with generic_shutdown_super() */
141 if (list_empty(&sb->s_list)) {
142 /* super block is removed, need to restart... */
143 __put_super(sb);
144 return 1;
146 /* can't be the last, since s_list is still in use */
147 sb->s_count--;
148 BUG_ON(sb->s_count == 0);
149 return 0;
153 * put_super - drop a temporary reference to superblock
154 * @sb: superblock in question
156 * Drops a temporary reference, frees superblock if there's no
157 * references left.
159 static void put_super(struct super_block *sb)
161 spin_lock(&sb_lock);
162 __put_super(sb);
163 spin_unlock(&sb_lock);
168 * deactivate_super - drop an active reference to superblock
169 * @s: superblock to deactivate
171 * Drops an active reference to superblock, acquiring a temprory one if
172 * there is no active references left. In that case we lock superblock,
173 * tell fs driver to shut it down and drop the temporary reference we
174 * had just acquired.
176 void deactivate_super(struct super_block *s)
178 struct file_system_type *fs = s->s_type;
179 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
180 s->s_count -= S_BIAS-1;
181 spin_unlock(&sb_lock);
182 DQUOT_OFF(s);
183 down_write(&s->s_umount);
184 fs->kill_sb(s);
185 put_filesystem(fs);
186 put_super(s);
190 EXPORT_SYMBOL(deactivate_super);
193 * grab_super - acquire an active reference
194 * @s: reference we are trying to make active
196 * Tries to acquire an active reference. grab_super() is used when we
197 * had just found a superblock in super_blocks or fs_type->fs_supers
198 * and want to turn it into a full-blown active reference. grab_super()
199 * is called with sb_lock held and drops it. Returns 1 in case of
200 * success, 0 if we had failed (superblock contents was already dead or
201 * dying when grab_super() had been called).
203 static int grab_super(struct super_block *s) __releases(sb_lock)
205 s->s_count++;
206 spin_unlock(&sb_lock);
207 down_write(&s->s_umount);
208 if (s->s_root) {
209 spin_lock(&sb_lock);
210 if (s->s_count > S_BIAS) {
211 atomic_inc(&s->s_active);
212 s->s_count--;
213 spin_unlock(&sb_lock);
214 return 1;
216 spin_unlock(&sb_lock);
218 up_write(&s->s_umount);
219 put_super(s);
220 yield();
221 return 0;
225 * Superblock locking. We really ought to get rid of these two.
227 void lock_super(struct super_block * sb)
229 get_fs_excl();
230 mutex_lock(&sb->s_lock);
233 void unlock_super(struct super_block * sb)
235 put_fs_excl();
236 mutex_unlock(&sb->s_lock);
239 EXPORT_SYMBOL(lock_super);
240 EXPORT_SYMBOL(unlock_super);
243 * Write out and wait upon all dirty data associated with this
244 * superblock. Filesystem data as well as the underlying block
245 * device. Takes the superblock lock. Requires a second blkdev
246 * flush by the caller to complete the operation.
248 void __fsync_super(struct super_block *sb)
250 sync_inodes_sb(sb, 0);
251 DQUOT_SYNC(sb);
252 lock_super(sb);
253 if (sb->s_dirt && sb->s_op->write_super)
254 sb->s_op->write_super(sb);
255 unlock_super(sb);
256 if (sb->s_op->sync_fs)
257 sb->s_op->sync_fs(sb, 1);
258 sync_blockdev(sb->s_bdev);
259 sync_inodes_sb(sb, 1);
263 * Write out and wait upon all dirty data associated with this
264 * superblock. Filesystem data as well as the underlying block
265 * device. Takes the superblock lock.
267 int fsync_super(struct super_block *sb)
269 __fsync_super(sb);
270 return sync_blockdev(sb->s_bdev);
274 * generic_shutdown_super - common helper for ->kill_sb()
275 * @sb: superblock to kill
277 * generic_shutdown_super() does all fs-independent work on superblock
278 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
279 * that need destruction out of superblock, call generic_shutdown_super()
280 * and release aforementioned objects. Note: dentries and inodes _are_
281 * taken care of and do not need specific handling.
283 * Upon calling this function, the filesystem may no longer alter or
284 * rearrange the set of dentries belonging to this super_block, nor may it
285 * change the attachments of dentries to inodes.
287 void generic_shutdown_super(struct super_block *sb)
289 const struct super_operations *sop = sb->s_op;
291 if (sb->s_root) {
292 shrink_dcache_for_umount(sb);
293 fsync_super(sb);
294 lock_super(sb);
295 sb->s_flags &= ~MS_ACTIVE;
296 /* bad name - it should be evict_inodes() */
297 invalidate_inodes(sb);
298 lock_kernel();
300 if (sop->write_super && sb->s_dirt)
301 sop->write_super(sb);
302 if (sop->put_super)
303 sop->put_super(sb);
305 /* Forget any remaining inodes */
306 if (invalidate_inodes(sb)) {
307 printk("VFS: Busy inodes after unmount of %s. "
308 "Self-destruct in 5 seconds. Have a nice day...\n",
309 sb->s_id);
312 unlock_kernel();
313 unlock_super(sb);
315 spin_lock(&sb_lock);
316 /* should be initialized for __put_super_and_need_restart() */
317 list_del_init(&sb->s_list);
318 list_del(&sb->s_instances);
319 spin_unlock(&sb_lock);
320 up_write(&sb->s_umount);
323 EXPORT_SYMBOL(generic_shutdown_super);
326 * sget - find or create a superblock
327 * @type: filesystem type superblock should belong to
328 * @test: comparison callback
329 * @set: setup callback
330 * @data: argument to each of them
332 struct super_block *sget(struct file_system_type *type,
333 int (*test)(struct super_block *,void *),
334 int (*set)(struct super_block *,void *),
335 void *data)
337 struct super_block *s = NULL;
338 struct list_head *p;
339 int err;
341 retry:
342 spin_lock(&sb_lock);
343 if (test) list_for_each(p, &type->fs_supers) {
344 struct super_block *old;
345 old = list_entry(p, struct super_block, s_instances);
346 if (!test(old, data))
347 continue;
348 if (!grab_super(old))
349 goto retry;
350 if (s)
351 destroy_super(s);
352 return old;
354 if (!s) {
355 spin_unlock(&sb_lock);
356 s = alloc_super(type);
357 if (!s)
358 return ERR_PTR(-ENOMEM);
359 goto retry;
362 err = set(s, data);
363 if (err) {
364 spin_unlock(&sb_lock);
365 destroy_super(s);
366 return ERR_PTR(err);
368 s->s_type = type;
369 strlcpy(s->s_id, type->name, sizeof(s->s_id));
370 list_add_tail(&s->s_list, &super_blocks);
371 list_add(&s->s_instances, &type->fs_supers);
372 spin_unlock(&sb_lock);
373 get_filesystem(type);
374 return s;
377 EXPORT_SYMBOL(sget);
379 void drop_super(struct super_block *sb)
381 up_read(&sb->s_umount);
382 put_super(sb);
385 EXPORT_SYMBOL(drop_super);
387 static inline void write_super(struct super_block *sb)
389 lock_super(sb);
390 if (sb->s_root && sb->s_dirt)
391 if (sb->s_op->write_super)
392 sb->s_op->write_super(sb);
393 unlock_super(sb);
397 * Note: check the dirty flag before waiting, so we don't
398 * hold up the sync while mounting a device. (The newly
399 * mounted device won't need syncing.)
401 void sync_supers(void)
403 struct super_block *sb;
405 spin_lock(&sb_lock);
406 restart:
407 list_for_each_entry(sb, &super_blocks, s_list) {
408 if (sb->s_dirt) {
409 sb->s_count++;
410 spin_unlock(&sb_lock);
411 down_read(&sb->s_umount);
412 write_super(sb);
413 up_read(&sb->s_umount);
414 spin_lock(&sb_lock);
415 if (__put_super_and_need_restart(sb))
416 goto restart;
419 spin_unlock(&sb_lock);
423 * Call the ->sync_fs super_op against all filesytems which are r/w and
424 * which implement it.
426 * This operation is careful to avoid the livelock which could easily happen
427 * if two or more filesystems are being continuously dirtied. s_need_sync_fs
428 * is used only here. We set it against all filesystems and then clear it as
429 * we sync them. So redirtied filesystems are skipped.
431 * But if process A is currently running sync_filesytems and then process B
432 * calls sync_filesystems as well, process B will set all the s_need_sync_fs
433 * flags again, which will cause process A to resync everything. Fix that with
434 * a local mutex.
436 * (Fabian) Avoid sync_fs with clean fs & wait mode 0
438 void sync_filesystems(int wait)
440 struct super_block *sb;
441 static DEFINE_MUTEX(mutex);
443 mutex_lock(&mutex); /* Could be down_interruptible */
444 spin_lock(&sb_lock);
445 list_for_each_entry(sb, &super_blocks, s_list) {
446 if (!sb->s_op->sync_fs)
447 continue;
448 if (sb->s_flags & MS_RDONLY)
449 continue;
450 sb->s_need_sync_fs = 1;
453 restart:
454 list_for_each_entry(sb, &super_blocks, s_list) {
455 if (!sb->s_need_sync_fs)
456 continue;
457 sb->s_need_sync_fs = 0;
458 if (sb->s_flags & MS_RDONLY)
459 continue; /* hm. Was remounted r/o meanwhile */
460 sb->s_count++;
461 spin_unlock(&sb_lock);
462 down_read(&sb->s_umount);
463 if (sb->s_root && (wait || sb->s_dirt))
464 sb->s_op->sync_fs(sb, wait);
465 up_read(&sb->s_umount);
466 /* restart only when sb is no longer on the list */
467 spin_lock(&sb_lock);
468 if (__put_super_and_need_restart(sb))
469 goto restart;
471 spin_unlock(&sb_lock);
472 mutex_unlock(&mutex);
476 * get_super - get the superblock of a device
477 * @bdev: device to get the superblock for
479 * Scans the superblock list and finds the superblock of the file system
480 * mounted on the device given. %NULL is returned if no match is found.
483 struct super_block * get_super(struct block_device *bdev)
485 struct super_block *sb;
487 if (!bdev)
488 return NULL;
490 spin_lock(&sb_lock);
491 rescan:
492 list_for_each_entry(sb, &super_blocks, s_list) {
493 if (sb->s_bdev == bdev) {
494 sb->s_count++;
495 spin_unlock(&sb_lock);
496 down_read(&sb->s_umount);
497 if (sb->s_root)
498 return sb;
499 up_read(&sb->s_umount);
500 /* restart only when sb is no longer on the list */
501 spin_lock(&sb_lock);
502 if (__put_super_and_need_restart(sb))
503 goto rescan;
506 spin_unlock(&sb_lock);
507 return NULL;
510 EXPORT_SYMBOL(get_super);
512 struct super_block * user_get_super(dev_t dev)
514 struct super_block *sb;
516 spin_lock(&sb_lock);
517 rescan:
518 list_for_each_entry(sb, &super_blocks, s_list) {
519 if (sb->s_dev == dev) {
520 sb->s_count++;
521 spin_unlock(&sb_lock);
522 down_read(&sb->s_umount);
523 if (sb->s_root)
524 return sb;
525 up_read(&sb->s_umount);
526 /* restart only when sb is no longer on the list */
527 spin_lock(&sb_lock);
528 if (__put_super_and_need_restart(sb))
529 goto rescan;
532 spin_unlock(&sb_lock);
533 return NULL;
536 asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf)
538 struct super_block *s;
539 struct ustat tmp;
540 struct kstatfs sbuf;
541 int err = -EINVAL;
543 s = user_get_super(new_decode_dev(dev));
544 if (s == NULL)
545 goto out;
546 err = vfs_statfs(s->s_root, &sbuf);
547 drop_super(s);
548 if (err)
549 goto out;
551 memset(&tmp,0,sizeof(struct ustat));
552 tmp.f_tfree = sbuf.f_bfree;
553 tmp.f_tinode = sbuf.f_ffree;
555 err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
556 out:
557 return err;
561 * mark_files_ro
562 * @sb: superblock in question
564 * All files are marked read/only. We don't care about pending
565 * delete files so this should be used in 'force' mode only
568 static void mark_files_ro(struct super_block *sb)
570 struct file *f;
572 file_list_lock();
573 list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
574 if (S_ISREG(f->f_path.dentry->d_inode->i_mode) && file_count(f))
575 f->f_mode &= ~FMODE_WRITE;
577 file_list_unlock();
581 * do_remount_sb - asks filesystem to change mount options.
582 * @sb: superblock in question
583 * @flags: numeric part of options
584 * @data: the rest of options
585 * @force: whether or not to force the change
587 * Alters the mount options of a mounted file system.
589 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
591 int retval;
593 #ifdef CONFIG_BLOCK
594 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
595 return -EACCES;
596 #endif
597 if (flags & MS_RDONLY)
598 acct_auto_close(sb);
599 shrink_dcache_sb(sb);
600 fsync_super(sb);
602 /* If we are remounting RDONLY and current sb is read/write,
603 make sure there are no rw files opened */
604 if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
605 if (force)
606 mark_files_ro(sb);
607 else if (!fs_may_remount_ro(sb))
608 return -EBUSY;
611 if (sb->s_op->remount_fs) {
612 lock_super(sb);
613 retval = sb->s_op->remount_fs(sb, &flags, data);
614 unlock_super(sb);
615 if (retval)
616 return retval;
618 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
619 return 0;
622 static void do_emergency_remount(unsigned long foo)
624 struct super_block *sb;
626 spin_lock(&sb_lock);
627 list_for_each_entry(sb, &super_blocks, s_list) {
628 sb->s_count++;
629 spin_unlock(&sb_lock);
630 down_read(&sb->s_umount);
631 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
633 * ->remount_fs needs lock_kernel().
635 * What lock protects sb->s_flags??
637 lock_kernel();
638 do_remount_sb(sb, MS_RDONLY, NULL, 1);
639 unlock_kernel();
641 drop_super(sb);
642 spin_lock(&sb_lock);
644 spin_unlock(&sb_lock);
645 printk("Emergency Remount complete\n");
648 void emergency_remount(void)
650 pdflush_operation(do_emergency_remount, 0);
654 * Unnamed block devices are dummy devices used by virtual
655 * filesystems which don't use real block-devices. -- jrs
658 static struct idr unnamed_dev_idr;
659 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
661 int set_anon_super(struct super_block *s, void *data)
663 int dev;
664 int error;
666 retry:
667 if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0)
668 return -ENOMEM;
669 spin_lock(&unnamed_dev_lock);
670 error = idr_get_new(&unnamed_dev_idr, NULL, &dev);
671 spin_unlock(&unnamed_dev_lock);
672 if (error == -EAGAIN)
673 /* We raced and lost with another CPU. */
674 goto retry;
675 else if (error)
676 return -EAGAIN;
678 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
679 spin_lock(&unnamed_dev_lock);
680 idr_remove(&unnamed_dev_idr, dev);
681 spin_unlock(&unnamed_dev_lock);
682 return -EMFILE;
684 s->s_dev = MKDEV(0, dev & MINORMASK);
685 return 0;
688 EXPORT_SYMBOL(set_anon_super);
690 void kill_anon_super(struct super_block *sb)
692 int slot = MINOR(sb->s_dev);
694 generic_shutdown_super(sb);
695 spin_lock(&unnamed_dev_lock);
696 idr_remove(&unnamed_dev_idr, slot);
697 spin_unlock(&unnamed_dev_lock);
700 EXPORT_SYMBOL(kill_anon_super);
702 void __init unnamed_dev_init(void)
704 idr_init(&unnamed_dev_idr);
707 void kill_litter_super(struct super_block *sb)
709 if (sb->s_root)
710 d_genocide(sb->s_root);
711 kill_anon_super(sb);
714 EXPORT_SYMBOL(kill_litter_super);
716 #ifdef CONFIG_BLOCK
717 static int set_bdev_super(struct super_block *s, void *data)
719 s->s_bdev = data;
720 s->s_dev = s->s_bdev->bd_dev;
721 return 0;
724 static int test_bdev_super(struct super_block *s, void *data)
726 return (void *)s->s_bdev == data;
729 int get_sb_bdev(struct file_system_type *fs_type,
730 int flags, const char *dev_name, void *data,
731 int (*fill_super)(struct super_block *, void *, int),
732 struct vfsmount *mnt)
734 struct block_device *bdev;
735 struct super_block *s;
736 int error = 0;
738 bdev = open_bdev_excl(dev_name, flags, fs_type);
739 if (IS_ERR(bdev))
740 return PTR_ERR(bdev);
743 * once the super is inserted into the list by sget, s_umount
744 * will protect the lockfs code from trying to start a snapshot
745 * while we are mounting
747 down(&bdev->bd_mount_sem);
748 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
749 up(&bdev->bd_mount_sem);
750 if (IS_ERR(s))
751 goto error_s;
753 if (s->s_root) {
754 if ((flags ^ s->s_flags) & MS_RDONLY) {
755 up_write(&s->s_umount);
756 deactivate_super(s);
757 error = -EBUSY;
758 goto error_bdev;
761 close_bdev_excl(bdev);
762 } else {
763 char b[BDEVNAME_SIZE];
765 s->s_flags = flags;
766 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
767 sb_set_blocksize(s, block_size(bdev));
768 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
769 if (error) {
770 up_write(&s->s_umount);
771 deactivate_super(s);
772 goto error;
775 s->s_flags |= MS_ACTIVE;
778 return simple_set_mnt(mnt, s);
780 error_s:
781 error = PTR_ERR(s);
782 error_bdev:
783 close_bdev_excl(bdev);
784 error:
785 return error;
788 EXPORT_SYMBOL(get_sb_bdev);
790 void kill_block_super(struct super_block *sb)
792 struct block_device *bdev = sb->s_bdev;
794 generic_shutdown_super(sb);
795 sync_blockdev(bdev);
796 close_bdev_excl(bdev);
799 EXPORT_SYMBOL(kill_block_super);
800 #endif
802 int get_sb_nodev(struct file_system_type *fs_type,
803 int flags, void *data,
804 int (*fill_super)(struct super_block *, void *, int),
805 struct vfsmount *mnt)
807 int error;
808 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
810 if (IS_ERR(s))
811 return PTR_ERR(s);
813 s->s_flags = flags;
815 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
816 if (error) {
817 up_write(&s->s_umount);
818 deactivate_super(s);
819 return error;
821 s->s_flags |= MS_ACTIVE;
822 return simple_set_mnt(mnt, s);
825 EXPORT_SYMBOL(get_sb_nodev);
827 static int compare_single(struct super_block *s, void *p)
829 return 1;
832 int get_sb_single(struct file_system_type *fs_type,
833 int flags, void *data,
834 int (*fill_super)(struct super_block *, void *, int),
835 struct vfsmount *mnt)
837 struct super_block *s;
838 int error;
840 s = sget(fs_type, compare_single, set_anon_super, NULL);
841 if (IS_ERR(s))
842 return PTR_ERR(s);
843 if (!s->s_root) {
844 s->s_flags = flags;
845 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
846 if (error) {
847 up_write(&s->s_umount);
848 deactivate_super(s);
849 return error;
851 s->s_flags |= MS_ACTIVE;
853 do_remount_sb(s, flags, data, 0);
854 return simple_set_mnt(mnt, s);
857 EXPORT_SYMBOL(get_sb_single);
859 struct vfsmount *
860 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
862 struct vfsmount *mnt;
863 char *secdata = NULL;
864 int error;
866 if (!type)
867 return ERR_PTR(-ENODEV);
869 error = -ENOMEM;
870 mnt = alloc_vfsmnt(name);
871 if (!mnt)
872 goto out;
874 if (data) {
875 secdata = alloc_secdata();
876 if (!secdata)
877 goto out_mnt;
879 error = security_sb_copy_data(type, data, secdata);
880 if (error)
881 goto out_free_secdata;
884 error = type->get_sb(type, flags, name, data, mnt);
885 if (error < 0)
886 goto out_free_secdata;
887 BUG_ON(!mnt->mnt_sb);
889 error = security_sb_kern_mount(mnt->mnt_sb, secdata);
890 if (error)
891 goto out_sb;
893 mnt->mnt_mountpoint = mnt->mnt_root;
894 mnt->mnt_parent = mnt;
895 up_write(&mnt->mnt_sb->s_umount);
896 free_secdata(secdata);
897 return mnt;
898 out_sb:
899 dput(mnt->mnt_root);
900 up_write(&mnt->mnt_sb->s_umount);
901 deactivate_super(mnt->mnt_sb);
902 out_free_secdata:
903 free_secdata(secdata);
904 out_mnt:
905 free_vfsmnt(mnt);
906 out:
907 return ERR_PTR(error);
910 EXPORT_SYMBOL_GPL(vfs_kern_mount);
912 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
914 int err;
915 const char *subtype = strchr(fstype, '.');
916 if (subtype) {
917 subtype++;
918 err = -EINVAL;
919 if (!subtype[0])
920 goto err;
921 } else
922 subtype = "";
924 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
925 err = -ENOMEM;
926 if (!mnt->mnt_sb->s_subtype)
927 goto err;
928 return mnt;
930 err:
931 mntput(mnt);
932 return ERR_PTR(err);
935 struct vfsmount *
936 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
938 struct file_system_type *type = get_fs_type(fstype);
939 struct vfsmount *mnt;
940 if (!type)
941 return ERR_PTR(-ENODEV);
942 mnt = vfs_kern_mount(type, flags, name, data);
943 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
944 !mnt->mnt_sb->s_subtype)
945 mnt = fs_set_subtype(mnt, fstype);
946 put_filesystem(type);
947 return mnt;
950 struct vfsmount *kern_mount(struct file_system_type *type)
952 return vfs_kern_mount(type, 0, type->name, NULL);
955 EXPORT_SYMBOL(kern_mount);