2 * DECnet An implementation of the DECnet protocol suite for the LINUX
3 * operating system. DECnet is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * DECnet Neighbour Functions (Adjacency Database and
9 * Author: Steve Whitehouse <SteveW@ACM.org>
13 * Steve Whitehouse : Fixed router listing routine
14 * Steve Whitehouse : Added error_report functions
15 * Steve Whitehouse : Added default router detection
16 * Steve Whitehouse : Hop counts in outgoing messages
17 * Steve Whitehouse : Fixed src/dst in outgoing messages so
18 * forwarding now stands a good chance of
20 * Steve Whitehouse : Fixed neighbour states (for now anyway).
21 * Steve Whitehouse : Made error_report functions dummies. This
22 * is not the right place to return skbs.
23 * Steve Whitehouse : Convert to seq_file
27 #include <linux/net.h>
28 #include <linux/module.h>
29 #include <linux/socket.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_ether.h>
32 #include <linux/init.h>
33 #include <linux/proc_fs.h>
34 #include <linux/string.h>
35 #include <linux/netfilter_decnet.h>
36 #include <linux/spinlock.h>
37 #include <linux/seq_file.h>
38 #include <linux/rcupdate.h>
39 #include <linux/jhash.h>
40 #include <asm/atomic.h>
41 #include <net/neighbour.h>
45 #include <net/dn_dev.h>
46 #include <net/dn_neigh.h>
47 #include <net/dn_route.h>
49 static u32
dn_neigh_hash(const void *pkey
, const struct net_device
*dev
);
50 static int dn_neigh_construct(struct neighbour
*);
51 static void dn_long_error_report(struct neighbour
*, struct sk_buff
*);
52 static void dn_short_error_report(struct neighbour
*, struct sk_buff
*);
53 static int dn_long_output(struct sk_buff
*);
54 static int dn_short_output(struct sk_buff
*);
55 static int dn_phase3_output(struct sk_buff
*);
59 * For talking to broadcast devices: Ethernet & PPP
61 static struct neigh_ops dn_long_ops
= {
63 .error_report
= dn_long_error_report
,
64 .output
= dn_long_output
,
65 .connected_output
= dn_long_output
,
66 .hh_output
= dev_queue_xmit
,
67 .queue_xmit
= dev_queue_xmit
,
71 * For talking to pointopoint and multidrop devices: DDCMP and X.25
73 static struct neigh_ops dn_short_ops
= {
75 .error_report
= dn_short_error_report
,
76 .output
= dn_short_output
,
77 .connected_output
= dn_short_output
,
78 .hh_output
= dev_queue_xmit
,
79 .queue_xmit
= dev_queue_xmit
,
83 * For talking to DECnet phase III nodes
85 static struct neigh_ops dn_phase3_ops
= {
87 .error_report
= dn_short_error_report
, /* Can use short version here */
88 .output
= dn_phase3_output
,
89 .connected_output
= dn_phase3_output
,
90 .hh_output
= dev_queue_xmit
,
91 .queue_xmit
= dev_queue_xmit
94 struct neigh_table dn_neigh_table
= {
96 .entry_size
= sizeof(struct dn_neigh
),
97 .key_len
= sizeof(__le16
),
98 .hash
= dn_neigh_hash
,
99 .constructor
= dn_neigh_construct
,
100 .id
= "dn_neigh_cache",
102 .tbl
= &dn_neigh_table
,
103 .base_reachable_time
= 30 * HZ
,
104 .retrans_time
= 1 * HZ
,
105 .gc_staletime
= 60 * HZ
,
106 .reachable_time
= 30 * HZ
,
107 .delay_probe_time
= 5 * HZ
,
117 .gc_interval
= 30 * HZ
,
123 static u32
dn_neigh_hash(const void *pkey
, const struct net_device
*dev
)
125 return jhash_2words(*(__u16
*)pkey
, 0, dn_neigh_table
.hash_rnd
);
128 static int dn_neigh_construct(struct neighbour
*neigh
)
130 struct net_device
*dev
= neigh
->dev
;
131 struct dn_neigh
*dn
= (struct dn_neigh
*)neigh
;
132 struct dn_dev
*dn_db
;
133 struct neigh_parms
*parms
;
136 dn_db
= rcu_dereference(dev
->dn_ptr
);
142 parms
= dn_db
->neigh_parms
;
148 __neigh_parms_put(neigh
->parms
);
149 neigh
->parms
= neigh_parms_clone(parms
);
152 neigh
->ops
= &dn_long_ops
;
154 neigh
->ops
= &dn_short_ops
;
157 if (dn
->flags
& DN_NDFLAG_P3
)
158 neigh
->ops
= &dn_phase3_ops
;
160 neigh
->nud_state
= NUD_NOARP
;
161 neigh
->output
= neigh
->ops
->connected_output
;
163 if ((dev
->type
== ARPHRD_IPGRE
) || (dev
->flags
& IFF_POINTOPOINT
))
164 memcpy(neigh
->ha
, dev
->broadcast
, dev
->addr_len
);
165 else if ((dev
->type
== ARPHRD_ETHER
) || (dev
->type
== ARPHRD_LOOPBACK
))
166 dn_dn2eth(neigh
->ha
, dn
->addr
);
169 printk(KERN_DEBUG
"Trying to create neigh for hw %d\n", dev
->type
);
174 * Make an estimate of the remote block size by assuming that its
175 * two less then the device mtu, which it true for ethernet (and
176 * other things which support long format headers) since there is
177 * an extra length field (of 16 bits) which isn't part of the
178 * ethernet headers and which the DECnet specs won't admit is part
179 * of the DECnet routing headers either.
181 * If we over estimate here its no big deal, the NSP negotiations
182 * will prevent us from sending packets which are too large for the
183 * remote node to handle. In any case this figure is normally updated
184 * by a hello message in most cases.
186 dn
->blksize
= dev
->mtu
- 2;
191 static void dn_long_error_report(struct neighbour
*neigh
, struct sk_buff
*skb
)
193 printk(KERN_DEBUG
"dn_long_error_report: called\n");
198 static void dn_short_error_report(struct neighbour
*neigh
, struct sk_buff
*skb
)
200 printk(KERN_DEBUG
"dn_short_error_report: called\n");
204 static int dn_neigh_output_packet(struct sk_buff
*skb
)
206 struct dst_entry
*dst
= skb
->dst
;
207 struct dn_route
*rt
= (struct dn_route
*)dst
;
208 struct neighbour
*neigh
= dst
->neighbour
;
209 struct net_device
*dev
= neigh
->dev
;
210 char mac_addr
[ETH_ALEN
];
212 dn_dn2eth(mac_addr
, rt
->rt_local_src
);
213 if (!dev
->hard_header
|| dev
->hard_header(skb
, dev
, ntohs(skb
->protocol
), neigh
->ha
, mac_addr
, skb
->len
) >= 0)
214 return neigh
->ops
->queue_xmit(skb
);
217 printk(KERN_DEBUG
"dn_neigh_output_packet: oops, can't send packet\n");
223 static int dn_long_output(struct sk_buff
*skb
)
225 struct dst_entry
*dst
= skb
->dst
;
226 struct neighbour
*neigh
= dst
->neighbour
;
227 struct net_device
*dev
= neigh
->dev
;
228 int headroom
= dev
->hard_header_len
+ sizeof(struct dn_long_packet
) + 3;
230 struct dn_long_packet
*lp
;
231 struct dn_skb_cb
*cb
= DN_SKB_CB(skb
);
234 if (skb_headroom(skb
) < headroom
) {
235 struct sk_buff
*skb2
= skb_realloc_headroom(skb
, headroom
);
238 printk(KERN_CRIT
"dn_long_output: no memory\n");
245 printk(KERN_INFO
"dn_long_output: Increasing headroom\n");
248 data
= skb_push(skb
, sizeof(struct dn_long_packet
) + 3);
249 lp
= (struct dn_long_packet
*)(data
+3);
251 *((__le16
*)data
) = dn_htons(skb
->len
- 2);
252 *(data
+ 2) = 1 | DN_RT_F_PF
; /* Padding */
254 lp
->msgflg
= DN_RT_PKT_LONG
|(cb
->rt_flags
&(DN_RT_F_IE
|DN_RT_F_RQR
|DN_RT_F_RTS
));
255 lp
->d_area
= lp
->d_subarea
= 0;
256 dn_dn2eth(lp
->d_id
, cb
->dst
);
257 lp
->s_area
= lp
->s_subarea
= 0;
258 dn_dn2eth(lp
->s_id
, cb
->src
);
260 lp
->visit_ct
= cb
->hops
& 0x3f;
264 skb_reset_network_header(skb
);
266 return NF_HOOK(PF_DECnet
, NF_DN_POST_ROUTING
, skb
, NULL
, neigh
->dev
, dn_neigh_output_packet
);
269 static int dn_short_output(struct sk_buff
*skb
)
271 struct dst_entry
*dst
= skb
->dst
;
272 struct neighbour
*neigh
= dst
->neighbour
;
273 struct net_device
*dev
= neigh
->dev
;
274 int headroom
= dev
->hard_header_len
+ sizeof(struct dn_short_packet
) + 2;
275 struct dn_short_packet
*sp
;
277 struct dn_skb_cb
*cb
= DN_SKB_CB(skb
);
280 if (skb_headroom(skb
) < headroom
) {
281 struct sk_buff
*skb2
= skb_realloc_headroom(skb
, headroom
);
284 printk(KERN_CRIT
"dn_short_output: no memory\n");
291 printk(KERN_INFO
"dn_short_output: Increasing headroom\n");
294 data
= skb_push(skb
, sizeof(struct dn_short_packet
) + 2);
295 *((__le16
*)data
) = dn_htons(skb
->len
- 2);
296 sp
= (struct dn_short_packet
*)(data
+2);
298 sp
->msgflg
= DN_RT_PKT_SHORT
|(cb
->rt_flags
&(DN_RT_F_RQR
|DN_RT_F_RTS
));
299 sp
->dstnode
= cb
->dst
;
300 sp
->srcnode
= cb
->src
;
301 sp
->forward
= cb
->hops
& 0x3f;
303 skb_reset_network_header(skb
);
305 return NF_HOOK(PF_DECnet
, NF_DN_POST_ROUTING
, skb
, NULL
, neigh
->dev
, dn_neigh_output_packet
);
309 * Phase 3 output is the same is short output, execpt that
310 * it clears the area bits before transmission.
312 static int dn_phase3_output(struct sk_buff
*skb
)
314 struct dst_entry
*dst
= skb
->dst
;
315 struct neighbour
*neigh
= dst
->neighbour
;
316 struct net_device
*dev
= neigh
->dev
;
317 int headroom
= dev
->hard_header_len
+ sizeof(struct dn_short_packet
) + 2;
318 struct dn_short_packet
*sp
;
320 struct dn_skb_cb
*cb
= DN_SKB_CB(skb
);
322 if (skb_headroom(skb
) < headroom
) {
323 struct sk_buff
*skb2
= skb_realloc_headroom(skb
, headroom
);
326 printk(KERN_CRIT
"dn_phase3_output: no memory\n");
333 printk(KERN_INFO
"dn_phase3_output: Increasing headroom\n");
336 data
= skb_push(skb
, sizeof(struct dn_short_packet
) + 2);
337 *((__le16
*)data
) = dn_htons(skb
->len
- 2);
338 sp
= (struct dn_short_packet
*)(data
+ 2);
340 sp
->msgflg
= DN_RT_PKT_SHORT
|(cb
->rt_flags
&(DN_RT_F_RQR
|DN_RT_F_RTS
));
341 sp
->dstnode
= cb
->dst
& dn_htons(0x03ff);
342 sp
->srcnode
= cb
->src
& dn_htons(0x03ff);
343 sp
->forward
= cb
->hops
& 0x3f;
345 skb_reset_network_header(skb
);
347 return NF_HOOK(PF_DECnet
, NF_DN_POST_ROUTING
, skb
, NULL
, neigh
->dev
, dn_neigh_output_packet
);
351 * Unfortunately, the neighbour code uses the device in its hash
352 * function, so we don't get any advantage from it. This function
353 * basically does a neigh_lookup(), but without comparing the device
354 * field. This is required for the On-Ethernet cache
358 * Pointopoint link receives a hello message
360 void dn_neigh_pointopoint_hello(struct sk_buff
*skb
)
366 * Ethernet router hello message received
368 int dn_neigh_router_hello(struct sk_buff
*skb
)
370 struct rtnode_hello_message
*msg
= (struct rtnode_hello_message
*)skb
->data
;
372 struct neighbour
*neigh
;
374 struct dn_dev
*dn_db
;
377 src
= dn_eth2dn(msg
->id
);
379 neigh
= __neigh_lookup(&dn_neigh_table
, &src
, skb
->dev
, 1);
381 dn
= (struct dn_neigh
*)neigh
;
384 write_lock(&neigh
->lock
);
386 neigh
->used
= jiffies
;
387 dn_db
= (struct dn_dev
*)neigh
->dev
->dn_ptr
;
389 if (!(neigh
->nud_state
& NUD_PERMANENT
)) {
390 neigh
->updated
= jiffies
;
392 if (neigh
->dev
->type
== ARPHRD_ETHER
)
393 memcpy(neigh
->ha
, ð_hdr(skb
)->h_source
, ETH_ALEN
);
395 dn
->blksize
= dn_ntohs(msg
->blksize
);
396 dn
->priority
= msg
->priority
;
398 dn
->flags
&= ~DN_NDFLAG_P3
;
400 switch(msg
->iinfo
& DN_RT_INFO_TYPE
) {
401 case DN_RT_INFO_L1RT
:
402 dn
->flags
&=~DN_NDFLAG_R2
;
403 dn
->flags
|= DN_NDFLAG_R1
;
405 case DN_RT_INFO_L2RT
:
406 dn
->flags
|= DN_NDFLAG_R2
;
410 /* Only use routers in our area */
411 if ((dn_ntohs(src
)>>10) == (dn_ntohs((decnet_address
))>>10)) {
412 if (!dn_db
->router
) {
413 dn_db
->router
= neigh_clone(neigh
);
415 if (msg
->priority
> ((struct dn_neigh
*)dn_db
->router
)->priority
)
416 neigh_release(xchg(&dn_db
->router
, neigh_clone(neigh
)));
419 write_unlock(&neigh
->lock
);
420 neigh_release(neigh
);
428 * Endnode hello message received
430 int dn_neigh_endnode_hello(struct sk_buff
*skb
)
432 struct endnode_hello_message
*msg
= (struct endnode_hello_message
*)skb
->data
;
433 struct neighbour
*neigh
;
437 src
= dn_eth2dn(msg
->id
);
439 neigh
= __neigh_lookup(&dn_neigh_table
, &src
, skb
->dev
, 1);
441 dn
= (struct dn_neigh
*)neigh
;
444 write_lock(&neigh
->lock
);
446 neigh
->used
= jiffies
;
448 if (!(neigh
->nud_state
& NUD_PERMANENT
)) {
449 neigh
->updated
= jiffies
;
451 if (neigh
->dev
->type
== ARPHRD_ETHER
)
452 memcpy(neigh
->ha
, ð_hdr(skb
)->h_source
, ETH_ALEN
);
453 dn
->flags
&= ~(DN_NDFLAG_R1
| DN_NDFLAG_R2
);
454 dn
->blksize
= dn_ntohs(msg
->blksize
);
458 write_unlock(&neigh
->lock
);
459 neigh_release(neigh
);
466 static char *dn_find_slot(char *base
, int max
, int priority
)
469 unsigned char *min
= NULL
;
471 base
+= 6; /* skip first id */
473 for(i
= 0; i
< max
; i
++) {
474 if (!min
|| (*base
< *min
))
476 base
+= 7; /* find next priority */
482 return (*min
< priority
) ? (min
- 6) : NULL
;
485 struct elist_cb_state
{
486 struct net_device
*dev
;
492 static void neigh_elist_cb(struct neighbour
*neigh
, void *_info
)
494 struct elist_cb_state
*s
= _info
;
497 if (neigh
->dev
!= s
->dev
)
500 dn
= (struct dn_neigh
*) neigh
;
501 if (!(dn
->flags
& (DN_NDFLAG_R1
|DN_NDFLAG_R2
)))
505 s
->rs
= dn_find_slot(s
->ptr
, s
->n
, dn
->priority
);
511 dn_dn2eth(s
->rs
, dn
->addr
);
513 *(s
->rs
) = neigh
->nud_state
& NUD_CONNECTED
? 0x80 : 0x0;
514 *(s
->rs
) |= dn
->priority
;
518 int dn_neigh_elist(struct net_device
*dev
, unsigned char *ptr
, int n
)
520 struct elist_cb_state state
;
528 neigh_for_each(&dn_neigh_table
, neigh_elist_cb
, &state
);
534 #ifdef CONFIG_PROC_FS
536 static inline void dn_neigh_format_entry(struct seq_file
*seq
,
539 struct dn_neigh
*dn
= (struct dn_neigh
*) n
;
540 char buf
[DN_ASCBUF_LEN
];
543 seq_printf(seq
, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
544 dn_addr2asc(dn_ntohs(dn
->addr
), buf
),
545 (dn
->flags
&DN_NDFLAG_R1
) ? "1" : "-",
546 (dn
->flags
&DN_NDFLAG_R2
) ? "2" : "-",
547 (dn
->flags
&DN_NDFLAG_P3
) ? "3" : "-",
549 atomic_read(&dn
->n
.refcnt
),
551 (dn
->n
.dev
) ? dn
->n
.dev
->name
: "?");
552 read_unlock(&n
->lock
);
555 static int dn_neigh_seq_show(struct seq_file
*seq
, void *v
)
557 if (v
== SEQ_START_TOKEN
) {
558 seq_puts(seq
, "Addr Flags State Use Blksize Dev\n");
560 dn_neigh_format_entry(seq
, v
);
566 static void *dn_neigh_seq_start(struct seq_file
*seq
, loff_t
*pos
)
568 return neigh_seq_start(seq
, pos
, &dn_neigh_table
,
569 NEIGH_SEQ_NEIGH_ONLY
);
572 static struct seq_operations dn_neigh_seq_ops
= {
573 .start
= dn_neigh_seq_start
,
574 .next
= neigh_seq_next
,
575 .stop
= neigh_seq_stop
,
576 .show
= dn_neigh_seq_show
,
579 static int dn_neigh_seq_open(struct inode
*inode
, struct file
*file
)
581 struct seq_file
*seq
;
583 struct neigh_seq_state
*s
= kzalloc(sizeof(*s
), GFP_KERNEL
);
588 rc
= seq_open(file
, &dn_neigh_seq_ops
);
592 seq
= file
->private_data
;
601 static const struct file_operations dn_neigh_seq_fops
= {
602 .owner
= THIS_MODULE
,
603 .open
= dn_neigh_seq_open
,
606 .release
= seq_release_private
,
611 void __init
dn_neigh_init(void)
613 neigh_table_init(&dn_neigh_table
);
614 proc_net_fops_create("decnet_neigh", S_IRUGO
, &dn_neigh_seq_fops
);
617 void __exit
dn_neigh_cleanup(void)
619 proc_net_remove("decnet_neigh");
620 neigh_table_clear(&dn_neigh_table
);