2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 0.9
7 * Copyright (C) 1999 VA Linux Systems
8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Stephane Eranian <eranian@hpl.hp.com>
12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13 * Bjorn Helgaas <bjorn.helgaas@hp.com>
15 * All EFI Runtime Services are not implemented yet as EFI only
16 * supports physical mode addressing on SoftSDV. This is to be fixed
17 * in a future version. --drummond 1999-07-20
19 * Implemented EFI runtime services and virtual mode calls. --davidm
21 * Goutham Rao: <goutham.rao@intel.com>
22 * Skip non-WB memory and ignore empty memory ranges.
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/time.h>
30 #include <linux/efi.h>
31 #include <linux/kexec.h>
35 #include <asm/kregs.h>
36 #include <asm/meminit.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
43 extern efi_status_t
efi_call_phys (void *, ...);
47 static efi_runtime_services_t
*runtime
;
48 static unsigned long mem_limit
= ~0UL, max_addr
= ~0UL, min_addr
= 0UL;
50 #define efi_call_virt(f, args...) (*(f))(args)
52 #define STUB_GET_TIME(prefix, adjust_arg) \
54 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
56 struct ia64_fpreg fr[6]; \
57 efi_time_cap_t *atc = NULL; \
61 atc = adjust_arg(tc); \
62 ia64_save_scratch_fpregs(fr); \
63 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
64 adjust_arg(tm), atc); \
65 ia64_load_scratch_fpregs(fr); \
69 #define STUB_SET_TIME(prefix, adjust_arg) \
71 prefix##_set_time (efi_time_t *tm) \
73 struct ia64_fpreg fr[6]; \
76 ia64_save_scratch_fpregs(fr); \
77 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
79 ia64_load_scratch_fpregs(fr); \
83 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
85 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
88 struct ia64_fpreg fr[6]; \
91 ia64_save_scratch_fpregs(fr); \
92 ret = efi_call_##prefix( \
93 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
94 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
95 ia64_load_scratch_fpregs(fr); \
99 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
100 static efi_status_t \
101 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
103 struct ia64_fpreg fr[6]; \
104 efi_time_t *atm = NULL; \
108 atm = adjust_arg(tm); \
109 ia64_save_scratch_fpregs(fr); \
110 ret = efi_call_##prefix( \
111 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
113 ia64_load_scratch_fpregs(fr); \
117 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
118 static efi_status_t \
119 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
120 unsigned long *data_size, void *data) \
122 struct ia64_fpreg fr[6]; \
127 aattr = adjust_arg(attr); \
128 ia64_save_scratch_fpregs(fr); \
129 ret = efi_call_##prefix( \
130 (efi_get_variable_t *) __va(runtime->get_variable), \
131 adjust_arg(name), adjust_arg(vendor), aattr, \
132 adjust_arg(data_size), adjust_arg(data)); \
133 ia64_load_scratch_fpregs(fr); \
137 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
138 static efi_status_t \
139 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
140 efi_guid_t *vendor) \
142 struct ia64_fpreg fr[6]; \
145 ia64_save_scratch_fpregs(fr); \
146 ret = efi_call_##prefix( \
147 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
148 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
149 ia64_load_scratch_fpregs(fr); \
153 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
154 static efi_status_t \
155 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
156 unsigned long attr, unsigned long data_size, \
159 struct ia64_fpreg fr[6]; \
162 ia64_save_scratch_fpregs(fr); \
163 ret = efi_call_##prefix( \
164 (efi_set_variable_t *) __va(runtime->set_variable), \
165 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
167 ia64_load_scratch_fpregs(fr); \
171 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
172 static efi_status_t \
173 prefix##_get_next_high_mono_count (u32 *count) \
175 struct ia64_fpreg fr[6]; \
178 ia64_save_scratch_fpregs(fr); \
179 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
180 __va(runtime->get_next_high_mono_count), \
181 adjust_arg(count)); \
182 ia64_load_scratch_fpregs(fr); \
186 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
188 prefix##_reset_system (int reset_type, efi_status_t status, \
189 unsigned long data_size, efi_char16_t *data) \
191 struct ia64_fpreg fr[6]; \
192 efi_char16_t *adata = NULL; \
195 adata = adjust_arg(data); \
197 ia64_save_scratch_fpregs(fr); \
199 (efi_reset_system_t *) __va(runtime->reset_system), \
200 reset_type, status, data_size, adata); \
201 /* should not return, but just in case... */ \
202 ia64_load_scratch_fpregs(fr); \
205 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
207 STUB_GET_TIME(phys
, phys_ptr
)
208 STUB_SET_TIME(phys
, phys_ptr
)
209 STUB_GET_WAKEUP_TIME(phys
, phys_ptr
)
210 STUB_SET_WAKEUP_TIME(phys
, phys_ptr
)
211 STUB_GET_VARIABLE(phys
, phys_ptr
)
212 STUB_GET_NEXT_VARIABLE(phys
, phys_ptr
)
213 STUB_SET_VARIABLE(phys
, phys_ptr
)
214 STUB_GET_NEXT_HIGH_MONO_COUNT(phys
, phys_ptr
)
215 STUB_RESET_SYSTEM(phys
, phys_ptr
)
219 STUB_GET_TIME(virt
, id
)
220 STUB_SET_TIME(virt
, id
)
221 STUB_GET_WAKEUP_TIME(virt
, id
)
222 STUB_SET_WAKEUP_TIME(virt
, id
)
223 STUB_GET_VARIABLE(virt
, id
)
224 STUB_GET_NEXT_VARIABLE(virt
, id
)
225 STUB_SET_VARIABLE(virt
, id
)
226 STUB_GET_NEXT_HIGH_MONO_COUNT(virt
, id
)
227 STUB_RESET_SYSTEM(virt
, id
)
230 efi_gettimeofday (struct timespec
*ts
)
234 if ((*efi
.get_time
)(&tm
, NULL
) != EFI_SUCCESS
) {
235 memset(ts
, 0, sizeof(*ts
));
239 ts
->tv_sec
= mktime(tm
.year
, tm
.month
, tm
.day
,
240 tm
.hour
, tm
.minute
, tm
.second
);
241 ts
->tv_nsec
= tm
.nanosecond
;
245 is_memory_available (efi_memory_desc_t
*md
)
247 if (!(md
->attribute
& EFI_MEMORY_WB
))
251 case EFI_LOADER_CODE
:
252 case EFI_LOADER_DATA
:
253 case EFI_BOOT_SERVICES_CODE
:
254 case EFI_BOOT_SERVICES_DATA
:
255 case EFI_CONVENTIONAL_MEMORY
:
261 typedef struct kern_memdesc
{
267 static kern_memdesc_t
*kern_memmap
;
269 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
272 kmd_end(kern_memdesc_t
*kmd
)
274 return (kmd
->start
+ (kmd
->num_pages
<< EFI_PAGE_SHIFT
));
278 efi_md_end(efi_memory_desc_t
*md
)
280 return (md
->phys_addr
+ efi_md_size(md
));
284 efi_wb(efi_memory_desc_t
*md
)
286 return (md
->attribute
& EFI_MEMORY_WB
);
290 efi_uc(efi_memory_desc_t
*md
)
292 return (md
->attribute
& EFI_MEMORY_UC
);
296 walk (efi_freemem_callback_t callback
, void *arg
, u64 attr
)
299 u64 start
, end
, voff
;
301 voff
= (attr
== EFI_MEMORY_WB
) ? PAGE_OFFSET
: __IA64_UNCACHED_OFFSET
;
302 for (k
= kern_memmap
; k
->start
!= ~0UL; k
++) {
303 if (k
->attribute
!= attr
)
305 start
= PAGE_ALIGN(k
->start
);
306 end
= (k
->start
+ (k
->num_pages
<< EFI_PAGE_SHIFT
)) & PAGE_MASK
;
308 if ((*callback
)(start
+ voff
, end
+ voff
, arg
) < 0)
314 * Walk the EFI memory map and call CALLBACK once for each EFI memory
315 * descriptor that has memory that is available for OS use.
318 efi_memmap_walk (efi_freemem_callback_t callback
, void *arg
)
320 walk(callback
, arg
, EFI_MEMORY_WB
);
324 * Walk the EFI memory map and call CALLBACK once for each EFI memory
325 * descriptor that has memory that is available for uncached allocator.
328 efi_memmap_walk_uc (efi_freemem_callback_t callback
, void *arg
)
330 walk(callback
, arg
, EFI_MEMORY_UC
);
334 * Look for the PAL_CODE region reported by EFI and map it using an
335 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
336 * Abstraction Layer chapter 11 in ADAG
339 efi_get_pal_addr (void)
341 void *efi_map_start
, *efi_map_end
, *p
;
342 efi_memory_desc_t
*md
;
344 int pal_code_count
= 0;
347 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
348 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
349 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
351 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
353 if (md
->type
!= EFI_PAL_CODE
)
356 if (++pal_code_count
> 1) {
357 printk(KERN_ERR
"Too many EFI Pal Code memory ranges, "
358 "dropped @ %lx\n", md
->phys_addr
);
362 * The only ITLB entry in region 7 that is used is the one
363 * installed by __start(). That entry covers a 64MB range.
365 mask
= ~((1 << KERNEL_TR_PAGE_SHIFT
) - 1);
366 vaddr
= PAGE_OFFSET
+ md
->phys_addr
;
369 * We must check that the PAL mapping won't overlap with the
372 * PAL code is guaranteed to be aligned on a power of 2 between
373 * 4k and 256KB and that only one ITR is needed to map it. This
374 * implies that the PAL code is always aligned on its size,
375 * i.e., the closest matching page size supported by the TLB.
376 * Therefore PAL code is guaranteed never to cross a 64MB unless
377 * it is bigger than 64MB (very unlikely!). So for now the
378 * following test is enough to determine whether or not we need
379 * a dedicated ITR for the PAL code.
381 if ((vaddr
& mask
) == (KERNEL_START
& mask
)) {
382 printk(KERN_INFO
"%s: no need to install ITR for PAL code\n",
387 if (efi_md_size(md
) > IA64_GRANULE_SIZE
)
388 panic("Whoa! PAL code size bigger than a granule!");
391 mask
= ~((1 << IA64_GRANULE_SHIFT
) - 1);
393 printk(KERN_INFO
"CPU %d: mapping PAL code "
394 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
395 smp_processor_id(), md
->phys_addr
,
396 md
->phys_addr
+ efi_md_size(md
),
397 vaddr
& mask
, (vaddr
& mask
) + IA64_GRANULE_SIZE
);
399 return __va(md
->phys_addr
);
401 printk(KERN_WARNING
"%s: no PAL-code memory-descriptor found\n",
407 efi_map_pal_code (void)
409 void *pal_vaddr
= efi_get_pal_addr ();
416 * Cannot write to CRx with PSR.ic=1
418 psr
= ia64_clear_ic();
419 ia64_itr(0x1, IA64_TR_PALCODE
,
420 GRANULEROUNDDOWN((unsigned long) pal_vaddr
),
421 pte_val(pfn_pte(__pa(pal_vaddr
) >> PAGE_SHIFT
, PAGE_KERNEL
)),
423 ia64_set_psr(psr
); /* restore psr */
429 void *efi_map_start
, *efi_map_end
;
430 efi_config_table_t
*config_tables
;
433 char *cp
, vendor
[100] = "unknown";
437 * It's too early to be able to use the standard kernel command line
440 for (cp
= boot_command_line
; *cp
; ) {
441 if (memcmp(cp
, "mem=", 4) == 0) {
442 mem_limit
= memparse(cp
+ 4, &cp
);
443 } else if (memcmp(cp
, "max_addr=", 9) == 0) {
444 max_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
445 } else if (memcmp(cp
, "min_addr=", 9) == 0) {
446 min_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
448 while (*cp
!= ' ' && *cp
)
455 printk(KERN_INFO
"Ignoring memory below %luMB\n",
457 if (max_addr
!= ~0UL)
458 printk(KERN_INFO
"Ignoring memory above %luMB\n",
461 efi
.systab
= __va(ia64_boot_param
->efi_systab
);
464 * Verify the EFI Table
466 if (efi
.systab
== NULL
)
467 panic("Whoa! Can't find EFI system table.\n");
468 if (efi
.systab
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
)
469 panic("Whoa! EFI system table signature incorrect\n");
470 if ((efi
.systab
->hdr
.revision
>> 16) == 0)
471 printk(KERN_WARNING
"Warning: EFI system table version "
472 "%d.%02d, expected 1.00 or greater\n",
473 efi
.systab
->hdr
.revision
>> 16,
474 efi
.systab
->hdr
.revision
& 0xffff);
476 config_tables
= __va(efi
.systab
->tables
);
478 /* Show what we know for posterity */
479 c16
= __va(efi
.systab
->fw_vendor
);
481 for (i
= 0;i
< (int) sizeof(vendor
) - 1 && *c16
; ++i
)
486 printk(KERN_INFO
"EFI v%u.%.02u by %s:",
487 efi
.systab
->hdr
.revision
>> 16,
488 efi
.systab
->hdr
.revision
& 0xffff, vendor
);
490 efi
.mps
= EFI_INVALID_TABLE_ADDR
;
491 efi
.acpi
= EFI_INVALID_TABLE_ADDR
;
492 efi
.acpi20
= EFI_INVALID_TABLE_ADDR
;
493 efi
.smbios
= EFI_INVALID_TABLE_ADDR
;
494 efi
.sal_systab
= EFI_INVALID_TABLE_ADDR
;
495 efi
.boot_info
= EFI_INVALID_TABLE_ADDR
;
496 efi
.hcdp
= EFI_INVALID_TABLE_ADDR
;
497 efi
.uga
= EFI_INVALID_TABLE_ADDR
;
499 for (i
= 0; i
< (int) efi
.systab
->nr_tables
; i
++) {
500 if (efi_guidcmp(config_tables
[i
].guid
, MPS_TABLE_GUID
) == 0) {
501 efi
.mps
= config_tables
[i
].table
;
502 printk(" MPS=0x%lx", config_tables
[i
].table
);
503 } else if (efi_guidcmp(config_tables
[i
].guid
, ACPI_20_TABLE_GUID
) == 0) {
504 efi
.acpi20
= config_tables
[i
].table
;
505 printk(" ACPI 2.0=0x%lx", config_tables
[i
].table
);
506 } else if (efi_guidcmp(config_tables
[i
].guid
, ACPI_TABLE_GUID
) == 0) {
507 efi
.acpi
= config_tables
[i
].table
;
508 printk(" ACPI=0x%lx", config_tables
[i
].table
);
509 } else if (efi_guidcmp(config_tables
[i
].guid
, SMBIOS_TABLE_GUID
) == 0) {
510 efi
.smbios
= config_tables
[i
].table
;
511 printk(" SMBIOS=0x%lx", config_tables
[i
].table
);
512 } else if (efi_guidcmp(config_tables
[i
].guid
, SAL_SYSTEM_TABLE_GUID
) == 0) {
513 efi
.sal_systab
= config_tables
[i
].table
;
514 printk(" SALsystab=0x%lx", config_tables
[i
].table
);
515 } else if (efi_guidcmp(config_tables
[i
].guid
, HCDP_TABLE_GUID
) == 0) {
516 efi
.hcdp
= config_tables
[i
].table
;
517 printk(" HCDP=0x%lx", config_tables
[i
].table
);
522 runtime
= __va(efi
.systab
->runtime
);
523 efi
.get_time
= phys_get_time
;
524 efi
.set_time
= phys_set_time
;
525 efi
.get_wakeup_time
= phys_get_wakeup_time
;
526 efi
.set_wakeup_time
= phys_set_wakeup_time
;
527 efi
.get_variable
= phys_get_variable
;
528 efi
.get_next_variable
= phys_get_next_variable
;
529 efi
.set_variable
= phys_set_variable
;
530 efi
.get_next_high_mono_count
= phys_get_next_high_mono_count
;
531 efi
.reset_system
= phys_reset_system
;
533 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
534 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
535 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
538 /* print EFI memory map: */
540 efi_memory_desc_t
*md
;
543 for (i
= 0, p
= efi_map_start
; p
< efi_map_end
;
544 ++i
, p
+= efi_desc_size
)
550 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
552 if ((size
>> 40) > 0) {
555 } else if ((size
>> 30) > 0) {
558 } else if ((size
>> 20) > 0) {
566 printk("mem%02d: type=%2u, attr=0x%016lx, "
567 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
568 i
, md
->type
, md
->attribute
, md
->phys_addr
,
569 md
->phys_addr
+ efi_md_size(md
), size
, unit
);
575 efi_enter_virtual_mode();
579 efi_enter_virtual_mode (void)
581 void *efi_map_start
, *efi_map_end
, *p
;
582 efi_memory_desc_t
*md
;
586 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
587 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
588 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
590 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
592 if (md
->attribute
& EFI_MEMORY_RUNTIME
) {
594 * Some descriptors have multiple bits set, so the
595 * order of the tests is relevant.
597 if (md
->attribute
& EFI_MEMORY_WB
) {
598 md
->virt_addr
= (u64
) __va(md
->phys_addr
);
599 } else if (md
->attribute
& EFI_MEMORY_UC
) {
600 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
601 } else if (md
->attribute
& EFI_MEMORY_WC
) {
603 md
->virt_addr
= ia64_remap(md
->phys_addr
,
611 printk(KERN_INFO
"EFI_MEMORY_WC mapping\n");
612 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
614 } else if (md
->attribute
& EFI_MEMORY_WT
) {
616 md
->virt_addr
= ia64_remap(md
->phys_addr
,
624 printk(KERN_INFO
"EFI_MEMORY_WT mapping\n");
625 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
631 status
= efi_call_phys(__va(runtime
->set_virtual_address_map
),
632 ia64_boot_param
->efi_memmap_size
,
634 ia64_boot_param
->efi_memdesc_version
,
635 ia64_boot_param
->efi_memmap
);
636 if (status
!= EFI_SUCCESS
) {
637 printk(KERN_WARNING
"warning: unable to switch EFI into "
638 "virtual mode (status=%lu)\n", status
);
643 * Now that EFI is in virtual mode, we call the EFI functions more
646 efi
.get_time
= virt_get_time
;
647 efi
.set_time
= virt_set_time
;
648 efi
.get_wakeup_time
= virt_get_wakeup_time
;
649 efi
.set_wakeup_time
= virt_set_wakeup_time
;
650 efi
.get_variable
= virt_get_variable
;
651 efi
.get_next_variable
= virt_get_next_variable
;
652 efi
.set_variable
= virt_set_variable
;
653 efi
.get_next_high_mono_count
= virt_get_next_high_mono_count
;
654 efi
.reset_system
= virt_reset_system
;
658 * Walk the EFI memory map looking for the I/O port range. There can only be
659 * one entry of this type, other I/O port ranges should be described via ACPI.
662 efi_get_iobase (void)
664 void *efi_map_start
, *efi_map_end
, *p
;
665 efi_memory_desc_t
*md
;
668 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
669 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
670 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
672 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
674 if (md
->type
== EFI_MEMORY_MAPPED_IO_PORT_SPACE
) {
675 if (md
->attribute
& EFI_MEMORY_UC
)
676 return md
->phys_addr
;
682 static struct kern_memdesc
*
683 kern_memory_descriptor (unsigned long phys_addr
)
685 struct kern_memdesc
*md
;
687 for (md
= kern_memmap
; md
->start
!= ~0UL; md
++) {
688 if (phys_addr
- md
->start
< (md
->num_pages
<< EFI_PAGE_SHIFT
))
694 static efi_memory_desc_t
*
695 efi_memory_descriptor (unsigned long phys_addr
)
697 void *efi_map_start
, *efi_map_end
, *p
;
698 efi_memory_desc_t
*md
;
701 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
702 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
703 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
705 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
708 if (phys_addr
- md
->phys_addr
< efi_md_size(md
))
715 efi_memmap_intersects (unsigned long phys_addr
, unsigned long size
)
717 void *efi_map_start
, *efi_map_end
, *p
;
718 efi_memory_desc_t
*md
;
722 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
723 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
724 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
726 end
= phys_addr
+ size
;
728 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
730 if (md
->phys_addr
< end
&& efi_md_end(md
) > phys_addr
)
737 efi_mem_type (unsigned long phys_addr
)
739 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
747 efi_mem_attributes (unsigned long phys_addr
)
749 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
752 return md
->attribute
;
755 EXPORT_SYMBOL(efi_mem_attributes
);
758 efi_mem_attribute (unsigned long phys_addr
, unsigned long size
)
760 unsigned long end
= phys_addr
+ size
;
761 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
768 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
769 * the kernel that firmware needs this region mapped.
771 attr
= md
->attribute
& ~EFI_MEMORY_RUNTIME
;
773 unsigned long md_end
= efi_md_end(md
);
778 md
= efi_memory_descriptor(md_end
);
779 if (!md
|| (md
->attribute
& ~EFI_MEMORY_RUNTIME
) != attr
)
782 return 0; /* never reached */
786 kern_mem_attribute (unsigned long phys_addr
, unsigned long size
)
788 unsigned long end
= phys_addr
+ size
;
789 struct kern_memdesc
*md
;
793 * This is a hack for ioremap calls before we set up kern_memmap.
794 * Maybe we should do efi_memmap_init() earlier instead.
797 attr
= efi_mem_attribute(phys_addr
, size
);
798 if (attr
& EFI_MEMORY_WB
)
799 return EFI_MEMORY_WB
;
803 md
= kern_memory_descriptor(phys_addr
);
807 attr
= md
->attribute
;
809 unsigned long md_end
= kmd_end(md
);
814 md
= kern_memory_descriptor(md_end
);
815 if (!md
|| md
->attribute
!= attr
)
818 return 0; /* never reached */
820 EXPORT_SYMBOL(kern_mem_attribute
);
823 valid_phys_addr_range (unsigned long phys_addr
, unsigned long size
)
828 * /dev/mem reads and writes use copy_to_user(), which implicitly
829 * uses a granule-sized kernel identity mapping. It's really
830 * only safe to do this for regions in kern_memmap. For more
831 * details, see Documentation/ia64/aliasing.txt.
833 attr
= kern_mem_attribute(phys_addr
, size
);
834 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
840 valid_mmap_phys_addr_range (unsigned long pfn
, unsigned long size
)
842 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
845 attr
= efi_mem_attribute(phys_addr
, size
);
848 * /dev/mem mmap uses normal user pages, so we don't need the entire
849 * granule, but the entire region we're mapping must support the same
852 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
856 * Intel firmware doesn't tell us about all the MMIO regions, so
857 * in general we have to allow mmap requests. But if EFI *does*
858 * tell us about anything inside this region, we should deny it.
859 * The user can always map a smaller region to avoid the overlap.
861 if (efi_memmap_intersects(phys_addr
, size
))
868 phys_mem_access_prot(struct file
*file
, unsigned long pfn
, unsigned long size
,
871 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
875 * For /dev/mem mmap, we use user mappings, but if the region is
876 * in kern_memmap (and hence may be covered by a kernel mapping),
877 * we must use the same attribute as the kernel mapping.
879 attr
= kern_mem_attribute(phys_addr
, size
);
880 if (attr
& EFI_MEMORY_WB
)
881 return pgprot_cacheable(vma_prot
);
882 else if (attr
& EFI_MEMORY_UC
)
883 return pgprot_noncached(vma_prot
);
886 * Some chipsets don't support UC access to memory. If
887 * WB is supported, we prefer that.
889 if (efi_mem_attribute(phys_addr
, size
) & EFI_MEMORY_WB
)
890 return pgprot_cacheable(vma_prot
);
892 return pgprot_noncached(vma_prot
);
896 efi_uart_console_only(void)
899 char *s
, name
[] = "ConOut";
900 efi_guid_t guid
= EFI_GLOBAL_VARIABLE_GUID
;
901 efi_char16_t
*utf16
, name_utf16
[32];
902 unsigned char data
[1024];
903 unsigned long size
= sizeof(data
);
904 struct efi_generic_dev_path
*hdr
, *end_addr
;
907 /* Convert to UTF-16 */
911 *utf16
++ = *s
++ & 0x7f;
914 status
= efi
.get_variable(name_utf16
, &guid
, NULL
, &size
, data
);
915 if (status
!= EFI_SUCCESS
) {
916 printk(KERN_ERR
"No EFI %s variable?\n", name
);
920 hdr
= (struct efi_generic_dev_path
*) data
;
921 end_addr
= (struct efi_generic_dev_path
*) ((u8
*) data
+ size
);
922 while (hdr
< end_addr
) {
923 if (hdr
->type
== EFI_DEV_MSG
&&
924 hdr
->sub_type
== EFI_DEV_MSG_UART
)
926 else if (hdr
->type
== EFI_DEV_END_PATH
||
927 hdr
->type
== EFI_DEV_END_PATH2
) {
930 if (hdr
->sub_type
== EFI_DEV_END_ENTIRE
)
934 hdr
= (struct efi_generic_dev_path
*)((u8
*) hdr
+ hdr
->length
);
936 printk(KERN_ERR
"Malformed %s value\n", name
);
941 * Look for the first granule aligned memory descriptor memory
942 * that is big enough to hold EFI memory map. Make sure this
943 * descriptor is atleast granule sized so it does not get trimmed
945 struct kern_memdesc
*
946 find_memmap_space (void)
948 u64 contig_low
=0, contig_high
=0;
950 void *efi_map_start
, *efi_map_end
, *p
, *q
;
951 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
952 u64 space_needed
, efi_desc_size
;
953 unsigned long total_mem
= 0;
955 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
956 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
957 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
960 * Worst case: we need 3 kernel descriptors for each efi descriptor
961 * (if every entry has a WB part in the middle, and UC head and tail),
962 * plus one for the end marker.
964 space_needed
= sizeof(kern_memdesc_t
) *
965 (3 * (ia64_boot_param
->efi_memmap_size
/efi_desc_size
) + 1);
967 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
972 if (pmd
== NULL
|| !efi_wb(pmd
) ||
973 efi_md_end(pmd
) != md
->phys_addr
) {
974 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
975 contig_high
= efi_md_end(md
);
976 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
977 q
+= efi_desc_size
) {
979 if (!efi_wb(check_md
))
981 if (contig_high
!= check_md
->phys_addr
)
983 contig_high
= efi_md_end(check_md
);
985 contig_high
= GRANULEROUNDDOWN(contig_high
);
987 if (!is_memory_available(md
) || md
->type
== EFI_LOADER_DATA
)
990 /* Round ends inward to granule boundaries */
991 as
= max(contig_low
, md
->phys_addr
);
992 ae
= min(contig_high
, efi_md_end(md
));
994 /* keep within max_addr= and min_addr= command line arg */
995 as
= max(as
, min_addr
);
996 ae
= min(ae
, max_addr
);
1000 /* avoid going over mem= command line arg */
1001 if (total_mem
+ (ae
- as
) > mem_limit
)
1002 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1007 if (ae
- as
> space_needed
)
1010 if (p
>= efi_map_end
)
1011 panic("Can't allocate space for kernel memory descriptors");
1017 * Walk the EFI memory map and gather all memory available for kernel
1018 * to use. We can allocate partial granules only if the unavailable
1019 * parts exist, and are WB.
1022 efi_memmap_init(unsigned long *s
, unsigned long *e
)
1024 struct kern_memdesc
*k
, *prev
= NULL
;
1025 u64 contig_low
=0, contig_high
=0;
1027 void *efi_map_start
, *efi_map_end
, *p
, *q
;
1028 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
1030 unsigned long total_mem
= 0;
1032 k
= kern_memmap
= find_memmap_space();
1034 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1035 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1036 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1038 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
1042 (md
->type
== EFI_CONVENTIONAL_MEMORY
||
1043 md
->type
== EFI_BOOT_SERVICES_DATA
)) {
1044 k
->attribute
= EFI_MEMORY_UC
;
1045 k
->start
= md
->phys_addr
;
1046 k
->num_pages
= md
->num_pages
;
1051 if (pmd
== NULL
|| !efi_wb(pmd
) ||
1052 efi_md_end(pmd
) != md
->phys_addr
) {
1053 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
1054 contig_high
= efi_md_end(md
);
1055 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
1056 q
+= efi_desc_size
) {
1058 if (!efi_wb(check_md
))
1060 if (contig_high
!= check_md
->phys_addr
)
1062 contig_high
= efi_md_end(check_md
);
1064 contig_high
= GRANULEROUNDDOWN(contig_high
);
1066 if (!is_memory_available(md
))
1069 #ifdef CONFIG_CRASH_DUMP
1070 /* saved_max_pfn should ignore max_addr= command line arg */
1071 if (saved_max_pfn
< (efi_md_end(md
) >> PAGE_SHIFT
))
1072 saved_max_pfn
= (efi_md_end(md
) >> PAGE_SHIFT
);
1075 * Round ends inward to granule boundaries
1076 * Give trimmings to uncached allocator
1078 if (md
->phys_addr
< contig_low
) {
1079 lim
= min(efi_md_end(md
), contig_low
);
1081 if (k
> kern_memmap
&&
1082 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1083 kmd_end(k
-1) == md
->phys_addr
) {
1085 (lim
- md
->phys_addr
)
1088 k
->attribute
= EFI_MEMORY_UC
;
1089 k
->start
= md
->phys_addr
;
1090 k
->num_pages
= (lim
- md
->phys_addr
)
1099 if (efi_md_end(md
) > contig_high
) {
1100 lim
= max(md
->phys_addr
, contig_high
);
1102 if (lim
== md
->phys_addr
&& k
> kern_memmap
&&
1103 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1104 kmd_end(k
-1) == md
->phys_addr
) {
1105 (k
-1)->num_pages
+= md
->num_pages
;
1107 k
->attribute
= EFI_MEMORY_UC
;
1109 k
->num_pages
= (efi_md_end(md
) - lim
)
1116 ae
= efi_md_end(md
);
1118 /* keep within max_addr= and min_addr= command line arg */
1119 as
= max(as
, min_addr
);
1120 ae
= min(ae
, max_addr
);
1124 /* avoid going over mem= command line arg */
1125 if (total_mem
+ (ae
- as
) > mem_limit
)
1126 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1130 if (prev
&& kmd_end(prev
) == md
->phys_addr
) {
1131 prev
->num_pages
+= (ae
- as
) >> EFI_PAGE_SHIFT
;
1132 total_mem
+= ae
- as
;
1135 k
->attribute
= EFI_MEMORY_WB
;
1137 k
->num_pages
= (ae
- as
) >> EFI_PAGE_SHIFT
;
1138 total_mem
+= ae
- as
;
1141 k
->start
= ~0L; /* end-marker */
1143 /* reserve the memory we are using for kern_memmap */
1144 *s
= (u64
)kern_memmap
;
1151 efi_initialize_iomem_resources(struct resource
*code_resource
,
1152 struct resource
*data_resource
,
1153 struct resource
*bss_resource
)
1155 struct resource
*res
;
1156 void *efi_map_start
, *efi_map_end
, *p
;
1157 efi_memory_desc_t
*md
;
1160 unsigned long flags
;
1162 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1163 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1164 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1168 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1171 if (md
->num_pages
== 0) /* should not happen */
1174 flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
1177 case EFI_MEMORY_MAPPED_IO
:
1178 case EFI_MEMORY_MAPPED_IO_PORT_SPACE
:
1181 case EFI_LOADER_CODE
:
1182 case EFI_LOADER_DATA
:
1183 case EFI_BOOT_SERVICES_DATA
:
1184 case EFI_BOOT_SERVICES_CODE
:
1185 case EFI_CONVENTIONAL_MEMORY
:
1186 if (md
->attribute
& EFI_MEMORY_WP
) {
1187 name
= "System ROM";
1188 flags
|= IORESOURCE_READONLY
;
1190 name
= "System RAM";
1194 case EFI_ACPI_MEMORY_NVS
:
1195 name
= "ACPI Non-volatile Storage";
1198 case EFI_UNUSABLE_MEMORY
:
1200 flags
|= IORESOURCE_DISABLED
;
1203 case EFI_RESERVED_TYPE
:
1204 case EFI_RUNTIME_SERVICES_CODE
:
1205 case EFI_RUNTIME_SERVICES_DATA
:
1206 case EFI_ACPI_RECLAIM_MEMORY
:
1212 if ((res
= kzalloc(sizeof(struct resource
),
1213 GFP_KERNEL
)) == NULL
) {
1215 "failed to allocate resource for iomem\n");
1220 res
->start
= md
->phys_addr
;
1221 res
->end
= md
->phys_addr
+ efi_md_size(md
) - 1;
1224 if (insert_resource(&iomem_resource
, res
) < 0)
1228 * We don't know which region contains
1229 * kernel data so we try it repeatedly and
1230 * let the resource manager test it.
1232 insert_resource(res
, code_resource
);
1233 insert_resource(res
, data_resource
);
1234 insert_resource(res
, bss_resource
);
1236 insert_resource(res
, &efi_memmap_res
);
1237 insert_resource(res
, &boot_param_res
);
1238 if (crashk_res
.end
> crashk_res
.start
)
1239 insert_resource(res
, &crashk_res
);
1246 /* find a block of memory aligned to 64M exclude reserved regions
1247 rsvd_regions are sorted
1249 unsigned long __init
1250 kdump_find_rsvd_region (unsigned long size
, struct rsvd_region
*r
, int n
)
1254 u64 alignment
= 1UL << _PAGE_SIZE_64M
;
1255 void *efi_map_start
, *efi_map_end
, *p
;
1256 efi_memory_desc_t
*md
;
1259 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1260 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1261 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1263 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1267 start
= ALIGN(md
->phys_addr
, alignment
);
1268 end
= efi_md_end(md
);
1269 for (i
= 0; i
< n
; i
++) {
1270 if (__pa(r
[i
].start
) >= start
&& __pa(r
[i
].end
) < end
) {
1271 if (__pa(r
[i
].start
) > start
+ size
)
1273 start
= ALIGN(__pa(r
[i
].end
), alignment
);
1275 __pa(r
[i
+1].start
) < start
+ size
)
1281 if (end
> start
+ size
)
1286 "Cannot reserve 0x%lx byte of memory for crashdump\n", size
);
1291 #ifdef CONFIG_PROC_VMCORE
1292 /* locate the size find a the descriptor at a certain address */
1293 unsigned long __init
1294 vmcore_find_descriptor_size (unsigned long address
)
1296 void *efi_map_start
, *efi_map_end
, *p
;
1297 efi_memory_desc_t
*md
;
1299 unsigned long ret
= 0;
1301 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1302 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1303 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1305 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1307 if (efi_wb(md
) && md
->type
== EFI_LOADER_DATA
1308 && md
->phys_addr
== address
) {
1309 ret
= efi_md_size(md
);
1315 printk(KERN_WARNING
"Cannot locate EFI vmcore descriptor\n");