2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
5 * (C) 2000 Red Hat. GPL'd
7 * $Id: cfi_cmdset_0020.c,v 1.22 2005/11/07 11:14:22 gleixner Exp $
9 * 10/10/2000 Nicolas Pitre <nico@cam.org>
10 * - completely revamped method functions so they are aware and
11 * independent of the flash geometry (buswidth, interleave, etc.)
12 * - scalability vs code size is completely set at compile-time
13 * (see include/linux/mtd/cfi.h for selection)
14 * - optimized write buffer method
15 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
16 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
17 * (command set 0x0020)
18 * - added a writev function
19 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
20 * - Plugged memory leak in cfi_staa_writev().
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
29 #include <asm/byteorder.h>
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/cfi.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/compatmac.h>
41 static int cfi_staa_read(struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
42 static int cfi_staa_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
43 static int cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
44 unsigned long count
, loff_t to
, size_t *retlen
);
45 static int cfi_staa_erase_varsize(struct mtd_info
*, struct erase_info
*);
46 static void cfi_staa_sync (struct mtd_info
*);
47 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
);
48 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
);
49 static int cfi_staa_suspend (struct mtd_info
*);
50 static void cfi_staa_resume (struct mtd_info
*);
52 static void cfi_staa_destroy(struct mtd_info
*);
54 struct mtd_info
*cfi_cmdset_0020(struct map_info
*, int);
56 static struct mtd_info
*cfi_staa_setup (struct map_info
*);
58 static struct mtd_chip_driver cfi_staa_chipdrv
= {
59 .probe
= NULL
, /* Not usable directly */
60 .destroy
= cfi_staa_destroy
,
61 .name
= "cfi_cmdset_0020",
65 /* #define DEBUG_LOCK_BITS */
66 //#define DEBUG_CFI_FEATURES
68 #ifdef DEBUG_CFI_FEATURES
69 static void cfi_tell_features(struct cfi_pri_intelext
*extp
)
72 printk(" Feature/Command Support: %4.4X\n", extp
->FeatureSupport
);
73 printk(" - Chip Erase: %s\n", extp
->FeatureSupport
&1?"supported":"unsupported");
74 printk(" - Suspend Erase: %s\n", extp
->FeatureSupport
&2?"supported":"unsupported");
75 printk(" - Suspend Program: %s\n", extp
->FeatureSupport
&4?"supported":"unsupported");
76 printk(" - Legacy Lock/Unlock: %s\n", extp
->FeatureSupport
&8?"supported":"unsupported");
77 printk(" - Queued Erase: %s\n", extp
->FeatureSupport
&16?"supported":"unsupported");
78 printk(" - Instant block lock: %s\n", extp
->FeatureSupport
&32?"supported":"unsupported");
79 printk(" - Protection Bits: %s\n", extp
->FeatureSupport
&64?"supported":"unsupported");
80 printk(" - Page-mode read: %s\n", extp
->FeatureSupport
&128?"supported":"unsupported");
81 printk(" - Synchronous read: %s\n", extp
->FeatureSupport
&256?"supported":"unsupported");
82 for (i
=9; i
<32; i
++) {
83 if (extp
->FeatureSupport
& (1<<i
))
84 printk(" - Unknown Bit %X: supported\n", i
);
87 printk(" Supported functions after Suspend: %2.2X\n", extp
->SuspendCmdSupport
);
88 printk(" - Program after Erase Suspend: %s\n", extp
->SuspendCmdSupport
&1?"supported":"unsupported");
90 if (extp
->SuspendCmdSupport
& (1<<i
))
91 printk(" - Unknown Bit %X: supported\n", i
);
94 printk(" Block Status Register Mask: %4.4X\n", extp
->BlkStatusRegMask
);
95 printk(" - Lock Bit Active: %s\n", extp
->BlkStatusRegMask
&1?"yes":"no");
96 printk(" - Valid Bit Active: %s\n", extp
->BlkStatusRegMask
&2?"yes":"no");
97 for (i
=2; i
<16; i
++) {
98 if (extp
->BlkStatusRegMask
& (1<<i
))
99 printk(" - Unknown Bit %X Active: yes\n",i
);
102 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
103 extp
->VccOptimal
>> 8, extp
->VccOptimal
& 0xf);
104 if (extp
->VppOptimal
)
105 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
106 extp
->VppOptimal
>> 8, extp
->VppOptimal
& 0xf);
110 /* This routine is made available to other mtd code via
111 * inter_module_register. It must only be accessed through
112 * inter_module_get which will bump the use count of this module. The
113 * addresses passed back in cfi are valid as long as the use count of
114 * this module is non-zero, i.e. between inter_module_get and
115 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
117 struct mtd_info
*cfi_cmdset_0020(struct map_info
*map
, int primary
)
119 struct cfi_private
*cfi
= map
->fldrv_priv
;
124 * It's a real CFI chip, not one for which the probe
125 * routine faked a CFI structure. So we read the feature
128 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
129 struct cfi_pri_intelext
*extp
;
131 extp
= (struct cfi_pri_intelext
*)cfi_read_pri(map
, adr
, sizeof(*extp
), "ST Microelectronics");
135 if (extp
->MajorVersion
!= '1' ||
136 (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '3')) {
137 printk(KERN_ERR
" Unknown ST Microelectronics"
138 " Extended Query version %c.%c.\n",
139 extp
->MajorVersion
, extp
->MinorVersion
);
144 /* Do some byteswapping if necessary */
145 extp
->FeatureSupport
= cfi32_to_cpu(extp
->FeatureSupport
);
146 extp
->BlkStatusRegMask
= cfi32_to_cpu(extp
->BlkStatusRegMask
);
148 #ifdef DEBUG_CFI_FEATURES
149 /* Tell the user about it in lots of lovely detail */
150 cfi_tell_features(extp
);
153 /* Install our own private info structure */
154 cfi
->cmdset_priv
= extp
;
157 for (i
=0; i
< cfi
->numchips
; i
++) {
158 cfi
->chips
[i
].word_write_time
= 128;
159 cfi
->chips
[i
].buffer_write_time
= 128;
160 cfi
->chips
[i
].erase_time
= 1024;
161 cfi
->chips
[i
].ref_point_counter
= 0;
162 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
165 return cfi_staa_setup(map
);
167 EXPORT_SYMBOL_GPL(cfi_cmdset_0020
);
169 static struct mtd_info
*cfi_staa_setup(struct map_info
*map
)
171 struct cfi_private
*cfi
= map
->fldrv_priv
;
172 struct mtd_info
*mtd
;
173 unsigned long offset
= 0;
175 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
177 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
178 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
181 printk(KERN_ERR
"Failed to allocate memory for MTD device\n");
182 kfree(cfi
->cmdset_priv
);
187 mtd
->type
= MTD_NORFLASH
;
188 mtd
->size
= devsize
* cfi
->numchips
;
190 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
191 mtd
->eraseregions
= kmalloc(sizeof(struct mtd_erase_region_info
)
192 * mtd
->numeraseregions
, GFP_KERNEL
);
193 if (!mtd
->eraseregions
) {
194 printk(KERN_ERR
"Failed to allocate memory for MTD erase region info\n");
195 kfree(cfi
->cmdset_priv
);
200 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
201 unsigned long ernum
, ersize
;
202 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
203 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
205 if (mtd
->erasesize
< ersize
) {
206 mtd
->erasesize
= ersize
;
208 for (j
=0; j
<cfi
->numchips
; j
++) {
209 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
210 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
211 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
213 offset
+= (ersize
* ernum
);
216 if (offset
!= devsize
) {
218 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
219 kfree(mtd
->eraseregions
);
220 kfree(cfi
->cmdset_priv
);
225 for (i
=0; i
<mtd
->numeraseregions
;i
++){
226 printk(KERN_DEBUG
"%d: offset=0x%x,size=0x%x,blocks=%d\n",
227 i
,mtd
->eraseregions
[i
].offset
,
228 mtd
->eraseregions
[i
].erasesize
,
229 mtd
->eraseregions
[i
].numblocks
);
232 /* Also select the correct geometry setup too */
233 mtd
->erase
= cfi_staa_erase_varsize
;
234 mtd
->read
= cfi_staa_read
;
235 mtd
->write
= cfi_staa_write_buffers
;
236 mtd
->writev
= cfi_staa_writev
;
237 mtd
->sync
= cfi_staa_sync
;
238 mtd
->lock
= cfi_staa_lock
;
239 mtd
->unlock
= cfi_staa_unlock
;
240 mtd
->suspend
= cfi_staa_suspend
;
241 mtd
->resume
= cfi_staa_resume
;
242 mtd
->flags
= MTD_CAP_NORFLASH
& ~MTD_BIT_WRITEABLE
;
243 mtd
->writesize
= 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
244 map
->fldrv
= &cfi_staa_chipdrv
;
245 __module_get(THIS_MODULE
);
246 mtd
->name
= map
->name
;
251 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
253 map_word status
, status_OK
;
255 DECLARE_WAITQUEUE(wait
, current
);
257 unsigned long cmd_addr
;
258 struct cfi_private
*cfi
= map
->fldrv_priv
;
262 /* Ensure cmd read/writes are aligned. */
263 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
265 /* Let's determine this according to the interleave only once */
266 status_OK
= CMD(0x80);
268 timeo
= jiffies
+ HZ
;
270 spin_lock_bh(chip
->mutex
);
272 /* Check that the chip's ready to talk to us.
273 * If it's in FL_ERASING state, suspend it and make it talk now.
275 switch (chip
->state
) {
277 if (!(((struct cfi_pri_intelext
*)cfi
->cmdset_priv
)->FeatureSupport
& 2))
278 goto sleep
; /* We don't support erase suspend */
280 map_write (map
, CMD(0xb0), cmd_addr
);
281 /* If the flash has finished erasing, then 'erase suspend'
282 * appears to make some (28F320) flash devices switch to
283 * 'read' mode. Make sure that we switch to 'read status'
284 * mode so we get the right data. --rmk
286 map_write(map
, CMD(0x70), cmd_addr
);
287 chip
->oldstate
= FL_ERASING
;
288 chip
->state
= FL_ERASE_SUSPENDING
;
289 // printk("Erase suspending at 0x%lx\n", cmd_addr);
291 status
= map_read(map
, cmd_addr
);
292 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
295 if (time_after(jiffies
, timeo
)) {
297 map_write(map
, CMD(0xd0), cmd_addr
);
298 /* make sure we're in 'read status' mode */
299 map_write(map
, CMD(0x70), cmd_addr
);
300 chip
->state
= FL_ERASING
;
301 spin_unlock_bh(chip
->mutex
);
302 printk(KERN_ERR
"Chip not ready after erase "
303 "suspended: status = 0x%lx\n", status
.x
[0]);
307 spin_unlock_bh(chip
->mutex
);
309 spin_lock_bh(chip
->mutex
);
313 map_write(map
, CMD(0xff), cmd_addr
);
314 chip
->state
= FL_READY
;
327 map_write(map
, CMD(0x70), cmd_addr
);
328 chip
->state
= FL_STATUS
;
331 status
= map_read(map
, cmd_addr
);
332 if (map_word_andequal(map
, status
, status_OK
, status_OK
)) {
333 map_write(map
, CMD(0xff), cmd_addr
);
334 chip
->state
= FL_READY
;
338 /* Urgh. Chip not yet ready to talk to us. */
339 if (time_after(jiffies
, timeo
)) {
340 spin_unlock_bh(chip
->mutex
);
341 printk(KERN_ERR
"waiting for chip to be ready timed out in read. WSM status = %lx\n", status
.x
[0]);
345 /* Latency issues. Drop the lock, wait a while and retry */
346 spin_unlock_bh(chip
->mutex
);
352 /* Stick ourselves on a wait queue to be woken when
353 someone changes the status */
354 set_current_state(TASK_UNINTERRUPTIBLE
);
355 add_wait_queue(&chip
->wq
, &wait
);
356 spin_unlock_bh(chip
->mutex
);
358 remove_wait_queue(&chip
->wq
, &wait
);
359 timeo
= jiffies
+ HZ
;
363 map_copy_from(map
, buf
, adr
, len
);
366 chip
->state
= chip
->oldstate
;
367 /* What if one interleaved chip has finished and the
368 other hasn't? The old code would leave the finished
369 one in READY mode. That's bad, and caused -EROFS
370 errors to be returned from do_erase_oneblock because
371 that's the only bit it checked for at the time.
372 As the state machine appears to explicitly allow
373 sending the 0x70 (Read Status) command to an erasing
374 chip and expecting it to be ignored, that's what we
376 map_write(map
, CMD(0xd0), cmd_addr
);
377 map_write(map
, CMD(0x70), cmd_addr
);
381 spin_unlock_bh(chip
->mutex
);
385 static int cfi_staa_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
387 struct map_info
*map
= mtd
->priv
;
388 struct cfi_private
*cfi
= map
->fldrv_priv
;
393 /* ofs: offset within the first chip that the first read should start */
394 chipnum
= (from
>> cfi
->chipshift
);
395 ofs
= from
- (chipnum
<< cfi
->chipshift
);
400 unsigned long thislen
;
402 if (chipnum
>= cfi
->numchips
)
405 if ((len
+ ofs
-1) >> cfi
->chipshift
)
406 thislen
= (1<<cfi
->chipshift
) - ofs
;
410 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
424 static inline int do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
425 unsigned long adr
, const u_char
*buf
, int len
)
427 struct cfi_private
*cfi
= map
->fldrv_priv
;
428 map_word status
, status_OK
;
429 unsigned long cmd_adr
, timeo
;
430 DECLARE_WAITQUEUE(wait
, current
);
433 /* M58LW064A requires bus alignment for buffer wriets -- saw */
434 if (adr
& (map_bankwidth(map
)-1))
437 wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
439 cmd_adr
= adr
& ~(wbufsize
-1);
441 /* Let's determine this according to the interleave only once */
442 status_OK
= CMD(0x80);
444 timeo
= jiffies
+ HZ
;
447 #ifdef DEBUG_CFI_FEATURES
448 printk("%s: chip->state[%d]\n", __FUNCTION__
, chip
->state
);
450 spin_lock_bh(chip
->mutex
);
452 /* Check that the chip's ready to talk to us.
453 * Later, we can actually think about interrupting it
454 * if it's in FL_ERASING state.
455 * Not just yet, though.
457 switch (chip
->state
) {
463 map_write(map
, CMD(0x70), cmd_adr
);
464 chip
->state
= FL_STATUS
;
465 #ifdef DEBUG_CFI_FEATURES
466 printk("%s: 1 status[%x]\n", __FUNCTION__
, map_read(map
, cmd_adr
));
470 status
= map_read(map
, cmd_adr
);
471 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
473 /* Urgh. Chip not yet ready to talk to us. */
474 if (time_after(jiffies
, timeo
)) {
475 spin_unlock_bh(chip
->mutex
);
476 printk(KERN_ERR
"waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
477 status
.x
[0], map_read(map
, cmd_adr
).x
[0]);
481 /* Latency issues. Drop the lock, wait a while and retry */
482 spin_unlock_bh(chip
->mutex
);
487 /* Stick ourselves on a wait queue to be woken when
488 someone changes the status */
489 set_current_state(TASK_UNINTERRUPTIBLE
);
490 add_wait_queue(&chip
->wq
, &wait
);
491 spin_unlock_bh(chip
->mutex
);
493 remove_wait_queue(&chip
->wq
, &wait
);
494 timeo
= jiffies
+ HZ
;
499 map_write(map
, CMD(0xe8), cmd_adr
);
500 chip
->state
= FL_WRITING_TO_BUFFER
;
504 status
= map_read(map
, cmd_adr
);
505 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
508 spin_unlock_bh(chip
->mutex
);
510 spin_lock_bh(chip
->mutex
);
513 /* Argh. Not ready for write to buffer */
515 map_write(map
, CMD(0x70), cmd_adr
);
516 chip
->state
= FL_STATUS
;
517 spin_unlock_bh(chip
->mutex
);
518 printk(KERN_ERR
"Chip not ready for buffer write. Xstatus = %lx\n", status
.x
[0]);
523 /* Write length of data to come */
524 map_write(map
, CMD(len
/map_bankwidth(map
)-1), cmd_adr
);
528 z
+= map_bankwidth(map
), buf
+= map_bankwidth(map
)) {
530 d
= map_word_load(map
, buf
);
531 map_write(map
, d
, adr
+z
);
534 map_write(map
, CMD(0xd0), cmd_adr
);
535 chip
->state
= FL_WRITING
;
537 spin_unlock_bh(chip
->mutex
);
538 cfi_udelay(chip
->buffer_write_time
);
539 spin_lock_bh(chip
->mutex
);
541 timeo
= jiffies
+ (HZ
/2);
544 if (chip
->state
!= FL_WRITING
) {
545 /* Someone's suspended the write. Sleep */
546 set_current_state(TASK_UNINTERRUPTIBLE
);
547 add_wait_queue(&chip
->wq
, &wait
);
548 spin_unlock_bh(chip
->mutex
);
550 remove_wait_queue(&chip
->wq
, &wait
);
551 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
552 spin_lock_bh(chip
->mutex
);
556 status
= map_read(map
, cmd_adr
);
557 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
560 /* OK Still waiting */
561 if (time_after(jiffies
, timeo
)) {
563 map_write(map
, CMD(0x50), cmd_adr
);
564 /* put back into read status register mode */
565 map_write(map
, CMD(0x70), adr
);
566 chip
->state
= FL_STATUS
;
568 spin_unlock_bh(chip
->mutex
);
569 printk(KERN_ERR
"waiting for chip to be ready timed out in bufwrite\n");
573 /* Latency issues. Drop the lock, wait a while and retry */
574 spin_unlock_bh(chip
->mutex
);
577 spin_lock_bh(chip
->mutex
);
580 chip
->buffer_write_time
--;
581 if (!chip
->buffer_write_time
)
582 chip
->buffer_write_time
++;
585 chip
->buffer_write_time
++;
587 /* Done and happy. */
589 chip
->state
= FL_STATUS
;
591 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
592 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
593 #ifdef DEBUG_CFI_FEATURES
594 printk("%s: 2 status[%lx]\n", __FUNCTION__
, status
.x
[0]);
597 map_write(map
, CMD(0x50), cmd_adr
);
598 /* put back into read status register mode */
599 map_write(map
, CMD(0x70), adr
);
601 spin_unlock_bh(chip
->mutex
);
602 return map_word_bitsset(map
, status
, CMD(0x02)) ? -EROFS
: -EIO
;
605 spin_unlock_bh(chip
->mutex
);
610 static int cfi_staa_write_buffers (struct mtd_info
*mtd
, loff_t to
,
611 size_t len
, size_t *retlen
, const u_char
*buf
)
613 struct map_info
*map
= mtd
->priv
;
614 struct cfi_private
*cfi
= map
->fldrv_priv
;
615 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
624 chipnum
= to
>> cfi
->chipshift
;
625 ofs
= to
- (chipnum
<< cfi
->chipshift
);
627 #ifdef DEBUG_CFI_FEATURES
628 printk("%s: map_bankwidth(map)[%x]\n", __FUNCTION__
, map_bankwidth(map
));
629 printk("%s: chipnum[%x] wbufsize[%x]\n", __FUNCTION__
, chipnum
, wbufsize
);
630 printk("%s: ofs[%x] len[%x]\n", __FUNCTION__
, ofs
, len
);
633 /* Write buffer is worth it only if more than one word to write... */
635 /* We must not cross write block boundaries */
636 int size
= wbufsize
- (ofs
& (wbufsize
-1));
641 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
651 if (ofs
>> cfi
->chipshift
) {
654 if (chipnum
== cfi
->numchips
)
663 * Writev for ECC-Flashes is a little more complicated. We need to maintain
664 * a small buffer for this.
665 * XXX: If the buffer size is not a multiple of 2, this will break
667 #define ECCBUF_SIZE (mtd->writesize)
668 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
669 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
671 cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
672 unsigned long count
, loff_t to
, size_t *retlen
)
675 size_t totlen
= 0, thislen
;
681 /* We should fall back to a general writev implementation.
682 * Until that is written, just break.
686 buffer
= kmalloc(ECCBUF_SIZE
, GFP_KERNEL
);
690 for (i
=0; i
<count
; i
++) {
691 size_t elem_len
= vecs
[i
].iov_len
;
692 void *elem_base
= vecs
[i
].iov_base
;
693 if (!elem_len
) /* FIXME: Might be unnecessary. Check that */
695 if (buflen
) { /* cut off head */
696 if (buflen
+ elem_len
< ECCBUF_SIZE
) { /* just accumulate */
697 memcpy(buffer
+buflen
, elem_base
, elem_len
);
701 memcpy(buffer
+buflen
, elem_base
, ECCBUF_SIZE
-buflen
);
702 ret
= mtd
->write(mtd
, to
, ECCBUF_SIZE
, &thislen
, buffer
);
704 if (ret
|| thislen
!= ECCBUF_SIZE
)
706 elem_len
-= thislen
-buflen
;
707 elem_base
+= thislen
-buflen
;
710 if (ECCBUF_DIV(elem_len
)) { /* write clean aligned data */
711 ret
= mtd
->write(mtd
, to
, ECCBUF_DIV(elem_len
), &thislen
, elem_base
);
713 if (ret
|| thislen
!= ECCBUF_DIV(elem_len
))
717 buflen
= ECCBUF_MOD(elem_len
); /* cut off tail */
719 memset(buffer
, 0xff, ECCBUF_SIZE
);
720 memcpy(buffer
, elem_base
+ thislen
, buflen
);
723 if (buflen
) { /* flush last page, even if not full */
724 /* This is sometimes intended behaviour, really */
725 ret
= mtd
->write(mtd
, to
, buflen
, &thislen
, buffer
);
727 if (ret
|| thislen
!= ECCBUF_SIZE
)
738 static inline int do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
740 struct cfi_private
*cfi
= map
->fldrv_priv
;
741 map_word status
, status_OK
;
744 DECLARE_WAITQUEUE(wait
, current
);
749 /* Let's determine this according to the interleave only once */
750 status_OK
= CMD(0x80);
752 timeo
= jiffies
+ HZ
;
754 spin_lock_bh(chip
->mutex
);
756 /* Check that the chip's ready to talk to us. */
757 switch (chip
->state
) {
761 map_write(map
, CMD(0x70), adr
);
762 chip
->state
= FL_STATUS
;
765 status
= map_read(map
, adr
);
766 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
769 /* Urgh. Chip not yet ready to talk to us. */
770 if (time_after(jiffies
, timeo
)) {
771 spin_unlock_bh(chip
->mutex
);
772 printk(KERN_ERR
"waiting for chip to be ready timed out in erase\n");
776 /* Latency issues. Drop the lock, wait a while and retry */
777 spin_unlock_bh(chip
->mutex
);
782 /* Stick ourselves on a wait queue to be woken when
783 someone changes the status */
784 set_current_state(TASK_UNINTERRUPTIBLE
);
785 add_wait_queue(&chip
->wq
, &wait
);
786 spin_unlock_bh(chip
->mutex
);
788 remove_wait_queue(&chip
->wq
, &wait
);
789 timeo
= jiffies
+ HZ
;
794 /* Clear the status register first */
795 map_write(map
, CMD(0x50), adr
);
798 map_write(map
, CMD(0x20), adr
);
799 map_write(map
, CMD(0xD0), adr
);
800 chip
->state
= FL_ERASING
;
802 spin_unlock_bh(chip
->mutex
);
804 spin_lock_bh(chip
->mutex
);
806 /* FIXME. Use a timer to check this, and return immediately. */
807 /* Once the state machine's known to be working I'll do that */
809 timeo
= jiffies
+ (HZ
*20);
811 if (chip
->state
!= FL_ERASING
) {
812 /* Someone's suspended the erase. Sleep */
813 set_current_state(TASK_UNINTERRUPTIBLE
);
814 add_wait_queue(&chip
->wq
, &wait
);
815 spin_unlock_bh(chip
->mutex
);
817 remove_wait_queue(&chip
->wq
, &wait
);
818 timeo
= jiffies
+ (HZ
*20); /* FIXME */
819 spin_lock_bh(chip
->mutex
);
823 status
= map_read(map
, adr
);
824 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
827 /* OK Still waiting */
828 if (time_after(jiffies
, timeo
)) {
829 map_write(map
, CMD(0x70), adr
);
830 chip
->state
= FL_STATUS
;
831 printk(KERN_ERR
"waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
833 spin_unlock_bh(chip
->mutex
);
837 /* Latency issues. Drop the lock, wait a while and retry */
838 spin_unlock_bh(chip
->mutex
);
840 spin_lock_bh(chip
->mutex
);
846 /* We've broken this before. It doesn't hurt to be safe */
847 map_write(map
, CMD(0x70), adr
);
848 chip
->state
= FL_STATUS
;
849 status
= map_read(map
, adr
);
851 /* check for lock bit */
852 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
853 unsigned char chipstatus
= status
.x
[0];
854 if (!map_word_equal(map
, status
, CMD(chipstatus
))) {
856 for (w
=0; w
<map_words(map
); w
++) {
857 for (i
= 0; i
<cfi_interleave(cfi
); i
++) {
858 chipstatus
|= status
.x
[w
] >> (cfi
->device_type
* 8);
861 printk(KERN_WARNING
"Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
862 status
.x
[0], chipstatus
);
864 /* Reset the error bits */
865 map_write(map
, CMD(0x50), adr
);
866 map_write(map
, CMD(0x70), adr
);
868 if ((chipstatus
& 0x30) == 0x30) {
869 printk(KERN_NOTICE
"Chip reports improper command sequence: status 0x%x\n", chipstatus
);
871 } else if (chipstatus
& 0x02) {
872 /* Protection bit set */
874 } else if (chipstatus
& 0x8) {
876 printk(KERN_WARNING
"Chip reports voltage low on erase: status 0x%x\n", chipstatus
);
878 } else if (chipstatus
& 0x20) {
880 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr
, chipstatus
);
881 timeo
= jiffies
+ HZ
;
882 chip
->state
= FL_STATUS
;
883 spin_unlock_bh(chip
->mutex
);
886 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x\n", adr
, chipstatus
);
892 spin_unlock_bh(chip
->mutex
);
896 int cfi_staa_erase_varsize(struct mtd_info
*mtd
, struct erase_info
*instr
)
897 { struct map_info
*map
= mtd
->priv
;
898 struct cfi_private
*cfi
= map
->fldrv_priv
;
899 unsigned long adr
, len
;
900 int chipnum
, ret
= 0;
902 struct mtd_erase_region_info
*regions
= mtd
->eraseregions
;
904 if (instr
->addr
> mtd
->size
)
907 if ((instr
->len
+ instr
->addr
) > mtd
->size
)
910 /* Check that both start and end of the requested erase are
911 * aligned with the erasesize at the appropriate addresses.
916 /* Skip all erase regions which are ended before the start of
917 the requested erase. Actually, to save on the calculations,
918 we skip to the first erase region which starts after the
919 start of the requested erase, and then go back one.
922 while (i
< mtd
->numeraseregions
&& instr
->addr
>= regions
[i
].offset
)
926 /* OK, now i is pointing at the erase region in which this
927 erase request starts. Check the start of the requested
928 erase range is aligned with the erase size which is in
932 if (instr
->addr
& (regions
[i
].erasesize
-1))
935 /* Remember the erase region we start on */
938 /* Next, check that the end of the requested erase is aligned
939 * with the erase region at that address.
942 while (i
<mtd
->numeraseregions
&& (instr
->addr
+ instr
->len
) >= regions
[i
].offset
)
945 /* As before, drop back one to point at the region in which
946 the address actually falls
950 if ((instr
->addr
+ instr
->len
) & (regions
[i
].erasesize
-1))
953 chipnum
= instr
->addr
>> cfi
->chipshift
;
954 adr
= instr
->addr
- (chipnum
<< cfi
->chipshift
);
960 ret
= do_erase_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
965 adr
+= regions
[i
].erasesize
;
966 len
-= regions
[i
].erasesize
;
968 if (adr
% (1<< cfi
->chipshift
) == ((regions
[i
].offset
+ (regions
[i
].erasesize
* regions
[i
].numblocks
)) %( 1<< cfi
->chipshift
)))
971 if (adr
>> cfi
->chipshift
) {
975 if (chipnum
>= cfi
->numchips
)
980 instr
->state
= MTD_ERASE_DONE
;
981 mtd_erase_callback(instr
);
986 static void cfi_staa_sync (struct mtd_info
*mtd
)
988 struct map_info
*map
= mtd
->priv
;
989 struct cfi_private
*cfi
= map
->fldrv_priv
;
993 DECLARE_WAITQUEUE(wait
, current
);
995 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
996 chip
= &cfi
->chips
[i
];
999 spin_lock_bh(chip
->mutex
);
1001 switch(chip
->state
) {
1005 case FL_JEDEC_QUERY
:
1006 chip
->oldstate
= chip
->state
;
1007 chip
->state
= FL_SYNCING
;
1008 /* No need to wake_up() on this state change -
1009 * as the whole point is that nobody can do anything
1010 * with the chip now anyway.
1013 spin_unlock_bh(chip
->mutex
);
1017 /* Not an idle state */
1018 add_wait_queue(&chip
->wq
, &wait
);
1020 spin_unlock_bh(chip
->mutex
);
1022 remove_wait_queue(&chip
->wq
, &wait
);
1028 /* Unlock the chips again */
1030 for (i
--; i
>=0; i
--) {
1031 chip
= &cfi
->chips
[i
];
1033 spin_lock_bh(chip
->mutex
);
1035 if (chip
->state
== FL_SYNCING
) {
1036 chip
->state
= chip
->oldstate
;
1039 spin_unlock_bh(chip
->mutex
);
1043 static inline int do_lock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1045 struct cfi_private
*cfi
= map
->fldrv_priv
;
1046 map_word status
, status_OK
;
1047 unsigned long timeo
= jiffies
+ HZ
;
1048 DECLARE_WAITQUEUE(wait
, current
);
1052 /* Let's determine this according to the interleave only once */
1053 status_OK
= CMD(0x80);
1055 timeo
= jiffies
+ HZ
;
1057 spin_lock_bh(chip
->mutex
);
1059 /* Check that the chip's ready to talk to us. */
1060 switch (chip
->state
) {
1062 case FL_JEDEC_QUERY
:
1064 map_write(map
, CMD(0x70), adr
);
1065 chip
->state
= FL_STATUS
;
1068 status
= map_read(map
, adr
);
1069 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1072 /* Urgh. Chip not yet ready to talk to us. */
1073 if (time_after(jiffies
, timeo
)) {
1074 spin_unlock_bh(chip
->mutex
);
1075 printk(KERN_ERR
"waiting for chip to be ready timed out in lock\n");
1079 /* Latency issues. Drop the lock, wait a while and retry */
1080 spin_unlock_bh(chip
->mutex
);
1085 /* Stick ourselves on a wait queue to be woken when
1086 someone changes the status */
1087 set_current_state(TASK_UNINTERRUPTIBLE
);
1088 add_wait_queue(&chip
->wq
, &wait
);
1089 spin_unlock_bh(chip
->mutex
);
1091 remove_wait_queue(&chip
->wq
, &wait
);
1092 timeo
= jiffies
+ HZ
;
1097 map_write(map
, CMD(0x60), adr
);
1098 map_write(map
, CMD(0x01), adr
);
1099 chip
->state
= FL_LOCKING
;
1101 spin_unlock_bh(chip
->mutex
);
1103 spin_lock_bh(chip
->mutex
);
1105 /* FIXME. Use a timer to check this, and return immediately. */
1106 /* Once the state machine's known to be working I'll do that */
1108 timeo
= jiffies
+ (HZ
*2);
1111 status
= map_read(map
, adr
);
1112 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1115 /* OK Still waiting */
1116 if (time_after(jiffies
, timeo
)) {
1117 map_write(map
, CMD(0x70), adr
);
1118 chip
->state
= FL_STATUS
;
1119 printk(KERN_ERR
"waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1121 spin_unlock_bh(chip
->mutex
);
1125 /* Latency issues. Drop the lock, wait a while and retry */
1126 spin_unlock_bh(chip
->mutex
);
1128 spin_lock_bh(chip
->mutex
);
1131 /* Done and happy. */
1132 chip
->state
= FL_STATUS
;
1135 spin_unlock_bh(chip
->mutex
);
1138 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
)
1140 struct map_info
*map
= mtd
->priv
;
1141 struct cfi_private
*cfi
= map
->fldrv_priv
;
1143 int chipnum
, ret
= 0;
1144 #ifdef DEBUG_LOCK_BITS
1145 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1148 if (ofs
& (mtd
->erasesize
- 1))
1151 if (len
& (mtd
->erasesize
-1))
1154 if ((len
+ ofs
) > mtd
->size
)
1157 chipnum
= ofs
>> cfi
->chipshift
;
1158 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1162 #ifdef DEBUG_LOCK_BITS
1163 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1164 printk("before lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1165 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1168 ret
= do_lock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1170 #ifdef DEBUG_LOCK_BITS
1171 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1172 printk("after lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1173 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1179 adr
+= mtd
->erasesize
;
1180 len
-= mtd
->erasesize
;
1182 if (adr
>> cfi
->chipshift
) {
1186 if (chipnum
>= cfi
->numchips
)
1192 static inline int do_unlock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1194 struct cfi_private
*cfi
= map
->fldrv_priv
;
1195 map_word status
, status_OK
;
1196 unsigned long timeo
= jiffies
+ HZ
;
1197 DECLARE_WAITQUEUE(wait
, current
);
1201 /* Let's determine this according to the interleave only once */
1202 status_OK
= CMD(0x80);
1204 timeo
= jiffies
+ HZ
;
1206 spin_lock_bh(chip
->mutex
);
1208 /* Check that the chip's ready to talk to us. */
1209 switch (chip
->state
) {
1211 case FL_JEDEC_QUERY
:
1213 map_write(map
, CMD(0x70), adr
);
1214 chip
->state
= FL_STATUS
;
1217 status
= map_read(map
, adr
);
1218 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1221 /* Urgh. Chip not yet ready to talk to us. */
1222 if (time_after(jiffies
, timeo
)) {
1223 spin_unlock_bh(chip
->mutex
);
1224 printk(KERN_ERR
"waiting for chip to be ready timed out in unlock\n");
1228 /* Latency issues. Drop the lock, wait a while and retry */
1229 spin_unlock_bh(chip
->mutex
);
1234 /* Stick ourselves on a wait queue to be woken when
1235 someone changes the status */
1236 set_current_state(TASK_UNINTERRUPTIBLE
);
1237 add_wait_queue(&chip
->wq
, &wait
);
1238 spin_unlock_bh(chip
->mutex
);
1240 remove_wait_queue(&chip
->wq
, &wait
);
1241 timeo
= jiffies
+ HZ
;
1246 map_write(map
, CMD(0x60), adr
);
1247 map_write(map
, CMD(0xD0), adr
);
1248 chip
->state
= FL_UNLOCKING
;
1250 spin_unlock_bh(chip
->mutex
);
1252 spin_lock_bh(chip
->mutex
);
1254 /* FIXME. Use a timer to check this, and return immediately. */
1255 /* Once the state machine's known to be working I'll do that */
1257 timeo
= jiffies
+ (HZ
*2);
1260 status
= map_read(map
, adr
);
1261 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1264 /* OK Still waiting */
1265 if (time_after(jiffies
, timeo
)) {
1266 map_write(map
, CMD(0x70), adr
);
1267 chip
->state
= FL_STATUS
;
1268 printk(KERN_ERR
"waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1270 spin_unlock_bh(chip
->mutex
);
1274 /* Latency issues. Drop the unlock, wait a while and retry */
1275 spin_unlock_bh(chip
->mutex
);
1277 spin_lock_bh(chip
->mutex
);
1280 /* Done and happy. */
1281 chip
->state
= FL_STATUS
;
1284 spin_unlock_bh(chip
->mutex
);
1287 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
)
1289 struct map_info
*map
= mtd
->priv
;
1290 struct cfi_private
*cfi
= map
->fldrv_priv
;
1292 int chipnum
, ret
= 0;
1293 #ifdef DEBUG_LOCK_BITS
1294 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1297 chipnum
= ofs
>> cfi
->chipshift
;
1298 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1300 #ifdef DEBUG_LOCK_BITS
1302 unsigned long temp_adr
= adr
;
1303 unsigned long temp_len
= len
;
1305 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1307 printk("before unlock %x: block status register is %x\n",temp_adr
,cfi_read_query(map
, temp_adr
+(2*ofs_factor
)));
1308 temp_adr
+= mtd
->erasesize
;
1309 temp_len
-= mtd
->erasesize
;
1311 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1315 ret
= do_unlock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1317 #ifdef DEBUG_LOCK_BITS
1318 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1319 printk("after unlock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1320 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1326 static int cfi_staa_suspend(struct mtd_info
*mtd
)
1328 struct map_info
*map
= mtd
->priv
;
1329 struct cfi_private
*cfi
= map
->fldrv_priv
;
1331 struct flchip
*chip
;
1334 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
1335 chip
= &cfi
->chips
[i
];
1337 spin_lock_bh(chip
->mutex
);
1339 switch(chip
->state
) {
1343 case FL_JEDEC_QUERY
:
1344 chip
->oldstate
= chip
->state
;
1345 chip
->state
= FL_PM_SUSPENDED
;
1346 /* No need to wake_up() on this state change -
1347 * as the whole point is that nobody can do anything
1348 * with the chip now anyway.
1350 case FL_PM_SUSPENDED
:
1357 spin_unlock_bh(chip
->mutex
);
1360 /* Unlock the chips again */
1363 for (i
--; i
>=0; i
--) {
1364 chip
= &cfi
->chips
[i
];
1366 spin_lock_bh(chip
->mutex
);
1368 if (chip
->state
== FL_PM_SUSPENDED
) {
1369 /* No need to force it into a known state here,
1370 because we're returning failure, and it didn't
1372 chip
->state
= chip
->oldstate
;
1375 spin_unlock_bh(chip
->mutex
);
1382 static void cfi_staa_resume(struct mtd_info
*mtd
)
1384 struct map_info
*map
= mtd
->priv
;
1385 struct cfi_private
*cfi
= map
->fldrv_priv
;
1387 struct flchip
*chip
;
1389 for (i
=0; i
<cfi
->numchips
; i
++) {
1391 chip
= &cfi
->chips
[i
];
1393 spin_lock_bh(chip
->mutex
);
1395 /* Go to known state. Chip may have been power cycled */
1396 if (chip
->state
== FL_PM_SUSPENDED
) {
1397 map_write(map
, CMD(0xFF), 0);
1398 chip
->state
= FL_READY
;
1402 spin_unlock_bh(chip
->mutex
);
1406 static void cfi_staa_destroy(struct mtd_info
*mtd
)
1408 struct map_info
*map
= mtd
->priv
;
1409 struct cfi_private
*cfi
= map
->fldrv_priv
;
1410 kfree(cfi
->cmdset_priv
);
1414 MODULE_LICENSE("GPL");