1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
39 char stat_string
[ETH_GSTRING_LEN
];
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats
[] = {
47 { "rx_packets", E1000_STAT(stats
.gprc
) },
48 { "tx_packets", E1000_STAT(stats
.gptc
) },
49 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
50 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
51 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
52 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
53 { "rx_multicast", E1000_STAT(stats
.mprc
) },
54 { "tx_multicast", E1000_STAT(stats
.mptc
) },
55 { "rx_errors", E1000_STAT(net_stats
.rx_errors
) },
56 { "tx_errors", E1000_STAT(net_stats
.tx_errors
) },
57 { "tx_dropped", E1000_STAT(net_stats
.tx_dropped
) },
58 { "multicast", E1000_STAT(stats
.mprc
) },
59 { "collisions", E1000_STAT(stats
.colc
) },
60 { "rx_length_errors", E1000_STAT(net_stats
.rx_length_errors
) },
61 { "rx_over_errors", E1000_STAT(net_stats
.rx_over_errors
) },
62 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
63 { "rx_frame_errors", E1000_STAT(net_stats
.rx_frame_errors
) },
64 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
65 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
66 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
67 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
68 { "tx_fifo_errors", E1000_STAT(net_stats
.tx_fifo_errors
) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats
.tx_heartbeat_errors
) },
70 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
71 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
72 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
73 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
74 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
76 { "tx_restart_queue", E1000_STAT(restart_queue
) },
77 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
78 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
79 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
80 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
82 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
83 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
84 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
85 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
86 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split
) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
91 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
92 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
93 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed
) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed
) },
98 #define E1000_GLOBAL_STATS_LEN \
99 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
100 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
101 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
102 "Register test (offline)", "Eeprom test (offline)",
103 "Interrupt test (offline)", "Loopback test (offline)",
104 "Link test (on/offline)"
106 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
108 static int e1000_get_settings(struct net_device
*netdev
,
109 struct ethtool_cmd
*ecmd
)
111 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
112 struct e1000_hw
*hw
= &adapter
->hw
;
115 if (hw
->media_type
== e1000_media_type_copper
) {
117 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
118 SUPPORTED_10baseT_Full
|
119 SUPPORTED_100baseT_Half
|
120 SUPPORTED_100baseT_Full
|
121 SUPPORTED_1000baseT_Full
|
124 if (hw
->phy
.type
== e1000_phy_ife
)
125 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
126 ecmd
->advertising
= ADVERTISED_TP
;
128 if (hw
->mac
.autoneg
== 1) {
129 ecmd
->advertising
|= ADVERTISED_Autoneg
;
130 /* the e1000 autoneg seems to match ethtool nicely */
131 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
134 ecmd
->port
= PORT_TP
;
135 ecmd
->phy_address
= hw
->phy
.addr
;
136 ecmd
->transceiver
= XCVR_INTERNAL
;
139 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
143 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
147 ecmd
->port
= PORT_FIBRE
;
148 ecmd
->transceiver
= XCVR_EXTERNAL
;
151 status
= er32(STATUS
);
152 if (status
& E1000_STATUS_LU
) {
153 if (status
& E1000_STATUS_SPEED_1000
)
155 else if (status
& E1000_STATUS_SPEED_100
)
160 if (status
& E1000_STATUS_FD
)
161 ecmd
->duplex
= DUPLEX_FULL
;
163 ecmd
->duplex
= DUPLEX_HALF
;
169 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
170 hw
->mac
.autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
174 static u32
e1000_get_link(struct net_device
*netdev
)
176 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
177 struct e1000_hw
*hw
= &adapter
->hw
;
180 status
= er32(STATUS
);
181 return (status
& E1000_STATUS_LU
);
184 static int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
186 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
190 /* Fiber NICs only allow 1000 gbps Full duplex */
191 if ((adapter
->hw
.media_type
== e1000_media_type_fiber
) &&
192 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
193 ndev_err(adapter
->netdev
, "Unsupported Speed/Duplex "
199 case SPEED_10
+ DUPLEX_HALF
:
200 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
202 case SPEED_10
+ DUPLEX_FULL
:
203 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
205 case SPEED_100
+ DUPLEX_HALF
:
206 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
208 case SPEED_100
+ DUPLEX_FULL
:
209 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
211 case SPEED_1000
+ DUPLEX_FULL
:
213 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
215 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
217 ndev_err(adapter
->netdev
, "Unsupported Speed/Duplex "
224 static int e1000_set_settings(struct net_device
*netdev
,
225 struct ethtool_cmd
*ecmd
)
227 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
228 struct e1000_hw
*hw
= &adapter
->hw
;
230 /* When SoL/IDER sessions are active, autoneg/speed/duplex
231 * cannot be changed */
232 if (e1000_check_reset_block(hw
)) {
233 ndev_err(netdev
, "Cannot change link "
234 "characteristics when SoL/IDER is active.\n");
238 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
241 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
243 if (hw
->media_type
== e1000_media_type_fiber
)
244 hw
->phy
.autoneg_advertised
= ADVERTISED_1000baseT_Full
|
248 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
251 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
253 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
254 clear_bit(__E1000_RESETTING
, &adapter
->state
);
261 if (netif_running(adapter
->netdev
)) {
262 e1000e_down(adapter
);
265 e1000e_reset(adapter
);
268 clear_bit(__E1000_RESETTING
, &adapter
->state
);
272 static void e1000_get_pauseparam(struct net_device
*netdev
,
273 struct ethtool_pauseparam
*pause
)
275 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
276 struct e1000_hw
*hw
= &adapter
->hw
;
279 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
281 if (hw
->mac
.fc
== e1000_fc_rx_pause
) {
283 } else if (hw
->mac
.fc
== e1000_fc_tx_pause
) {
285 } else if (hw
->mac
.fc
== e1000_fc_full
) {
291 static int e1000_set_pauseparam(struct net_device
*netdev
,
292 struct ethtool_pauseparam
*pause
)
294 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
295 struct e1000_hw
*hw
= &adapter
->hw
;
298 adapter
->fc_autoneg
= pause
->autoneg
;
300 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
303 if (pause
->rx_pause
&& pause
->tx_pause
)
304 hw
->mac
.fc
= e1000_fc_full
;
305 else if (pause
->rx_pause
&& !pause
->tx_pause
)
306 hw
->mac
.fc
= e1000_fc_rx_pause
;
307 else if (!pause
->rx_pause
&& pause
->tx_pause
)
308 hw
->mac
.fc
= e1000_fc_tx_pause
;
309 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
310 hw
->mac
.fc
= e1000_fc_none
;
312 hw
->mac
.original_fc
= hw
->mac
.fc
;
314 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
315 hw
->mac
.fc
= e1000_fc_default
;
316 if (netif_running(adapter
->netdev
)) {
317 e1000e_down(adapter
);
320 e1000e_reset(adapter
);
323 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
324 hw
->mac
.ops
.setup_link(hw
) : e1000e_force_mac_fc(hw
));
327 clear_bit(__E1000_RESETTING
, &adapter
->state
);
331 static u32
e1000_get_rx_csum(struct net_device
*netdev
)
333 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
334 return (adapter
->flags
& FLAG_RX_CSUM_ENABLED
);
337 static int e1000_set_rx_csum(struct net_device
*netdev
, u32 data
)
339 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
342 adapter
->flags
|= FLAG_RX_CSUM_ENABLED
;
344 adapter
->flags
&= ~FLAG_RX_CSUM_ENABLED
;
346 if (netif_running(netdev
))
347 e1000e_reinit_locked(adapter
);
349 e1000e_reset(adapter
);
353 static u32
e1000_get_tx_csum(struct net_device
*netdev
)
355 return ((netdev
->features
& NETIF_F_HW_CSUM
) != 0);
358 static int e1000_set_tx_csum(struct net_device
*netdev
, u32 data
)
361 netdev
->features
|= NETIF_F_HW_CSUM
;
363 netdev
->features
&= ~NETIF_F_HW_CSUM
;
368 static int e1000_set_tso(struct net_device
*netdev
, u32 data
)
370 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
373 netdev
->features
|= NETIF_F_TSO
;
374 netdev
->features
|= NETIF_F_TSO6
;
376 netdev
->features
&= ~NETIF_F_TSO
;
377 netdev
->features
&= ~NETIF_F_TSO6
;
380 ndev_info(netdev
, "TSO is %s\n",
381 data
? "Enabled" : "Disabled");
382 adapter
->flags
|= FLAG_TSO_FORCE
;
386 static u32
e1000_get_msglevel(struct net_device
*netdev
)
388 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
389 return adapter
->msg_enable
;
392 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
394 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
395 adapter
->msg_enable
= data
;
398 static int e1000_get_regs_len(struct net_device
*netdev
)
400 #define E1000_REGS_LEN 32 /* overestimate */
401 return E1000_REGS_LEN
* sizeof(u32
);
404 static void e1000_get_regs(struct net_device
*netdev
,
405 struct ethtool_regs
*regs
, void *p
)
407 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
408 struct e1000_hw
*hw
= &adapter
->hw
;
413 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
415 pci_read_config_byte(adapter
->pdev
, PCI_REVISION_ID
, &revision_id
);
417 regs
->version
= (1 << 24) | (revision_id
<< 16) | adapter
->pdev
->device
;
419 regs_buff
[0] = er32(CTRL
);
420 regs_buff
[1] = er32(STATUS
);
422 regs_buff
[2] = er32(RCTL
);
423 regs_buff
[3] = er32(RDLEN
);
424 regs_buff
[4] = er32(RDH
);
425 regs_buff
[5] = er32(RDT
);
426 regs_buff
[6] = er32(RDTR
);
428 regs_buff
[7] = er32(TCTL
);
429 regs_buff
[8] = er32(TDLEN
);
430 regs_buff
[9] = er32(TDH
);
431 regs_buff
[10] = er32(TDT
);
432 regs_buff
[11] = er32(TIDV
);
434 regs_buff
[12] = adapter
->hw
.phy
.type
; /* PHY type (IGP=1, M88=0) */
435 if (hw
->phy
.type
== e1000_phy_m88
) {
436 e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
437 regs_buff
[13] = (u32
)phy_data
; /* cable length */
438 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
439 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
440 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
441 e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
442 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
443 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
444 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
445 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
446 /* phy receive errors */
447 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
448 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
450 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
451 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
452 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
453 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
456 static int e1000_get_eeprom_len(struct net_device
*netdev
)
458 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
459 return adapter
->hw
.nvm
.word_size
* 2;
462 static int e1000_get_eeprom(struct net_device
*netdev
,
463 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
465 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
466 struct e1000_hw
*hw
= &adapter
->hw
;
473 if (eeprom
->len
== 0)
476 eeprom
->magic
= adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16);
478 first_word
= eeprom
->offset
>> 1;
479 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
481 eeprom_buff
= kmalloc(sizeof(u16
) *
482 (last_word
- first_word
+ 1), GFP_KERNEL
);
486 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
487 ret_val
= e1000_read_nvm(hw
, first_word
,
488 last_word
- first_word
+ 1,
491 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
492 ret_val
= e1000_read_nvm(hw
, first_word
+ i
, 1,
499 /* Device's eeprom is always little-endian, word addressable */
500 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
501 le16_to_cpus(&eeprom_buff
[i
]);
503 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
509 static int e1000_set_eeprom(struct net_device
*netdev
,
510 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
512 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
513 struct e1000_hw
*hw
= &adapter
->hw
;
522 if (eeprom
->len
== 0)
525 if (eeprom
->magic
!= (adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16)))
528 max_len
= hw
->nvm
.word_size
* 2;
530 first_word
= eeprom
->offset
>> 1;
531 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
532 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
536 ptr
= (void *)eeprom_buff
;
538 if (eeprom
->offset
& 1) {
539 /* need read/modify/write of first changed EEPROM word */
540 /* only the second byte of the word is being modified */
541 ret_val
= e1000_read_nvm(hw
, first_word
, 1, &eeprom_buff
[0]);
544 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0))
545 /* need read/modify/write of last changed EEPROM word */
546 /* only the first byte of the word is being modified */
547 ret_val
= e1000_read_nvm(hw
, last_word
, 1,
548 &eeprom_buff
[last_word
- first_word
]);
550 /* Device's eeprom is always little-endian, word addressable */
551 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
552 le16_to_cpus(&eeprom_buff
[i
]);
554 memcpy(ptr
, bytes
, eeprom
->len
);
556 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
557 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
559 ret_val
= e1000_write_nvm(hw
, first_word
,
560 last_word
- first_word
+ 1, eeprom_buff
);
562 /* Update the checksum over the first part of the EEPROM if needed
563 * and flush shadow RAM for 82573 controllers */
564 if ((ret_val
== 0) && ((first_word
<= NVM_CHECKSUM_REG
) ||
565 (hw
->mac
.type
== e1000_82573
)))
566 e1000e_update_nvm_checksum(hw
);
572 static void e1000_get_drvinfo(struct net_device
*netdev
,
573 struct ethtool_drvinfo
*drvinfo
)
575 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
576 char firmware_version
[32];
579 strncpy(drvinfo
->driver
, e1000e_driver_name
, 32);
580 strncpy(drvinfo
->version
, e1000e_driver_version
, 32);
582 /* EEPROM image version # is reported as firmware version # for
583 * PCI-E controllers */
584 e1000_read_nvm(&adapter
->hw
, 5, 1, &eeprom_data
);
585 sprintf(firmware_version
, "%d.%d-%d",
586 (eeprom_data
& 0xF000) >> 12,
587 (eeprom_data
& 0x0FF0) >> 4,
588 eeprom_data
& 0x000F);
590 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
591 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
592 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
593 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
596 static void e1000_get_ringparam(struct net_device
*netdev
,
597 struct ethtool_ringparam
*ring
)
599 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
600 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
601 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
603 ring
->rx_max_pending
= E1000_MAX_RXD
;
604 ring
->tx_max_pending
= E1000_MAX_TXD
;
605 ring
->rx_mini_max_pending
= 0;
606 ring
->rx_jumbo_max_pending
= 0;
607 ring
->rx_pending
= rx_ring
->count
;
608 ring
->tx_pending
= tx_ring
->count
;
609 ring
->rx_mini_pending
= 0;
610 ring
->rx_jumbo_pending
= 0;
613 static int e1000_set_ringparam(struct net_device
*netdev
,
614 struct ethtool_ringparam
*ring
)
616 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
617 struct e1000_ring
*tx_ring
, *tx_old
;
618 struct e1000_ring
*rx_ring
, *rx_old
;
621 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
624 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
627 if (netif_running(adapter
->netdev
))
628 e1000e_down(adapter
);
630 tx_old
= adapter
->tx_ring
;
631 rx_old
= adapter
->rx_ring
;
634 tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
638 rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
642 adapter
->tx_ring
= tx_ring
;
643 adapter
->rx_ring
= rx_ring
;
645 rx_ring
->count
= max(ring
->rx_pending
, (u32
)E1000_MIN_RXD
);
646 rx_ring
->count
= min(rx_ring
->count
, (u32
)(E1000_MAX_RXD
));
647 rx_ring
->count
= ALIGN(rx_ring
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
649 tx_ring
->count
= max(ring
->tx_pending
, (u32
)E1000_MIN_TXD
);
650 tx_ring
->count
= min(tx_ring
->count
, (u32
)(E1000_MAX_TXD
));
651 tx_ring
->count
= ALIGN(tx_ring
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
653 if (netif_running(adapter
->netdev
)) {
654 /* Try to get new resources before deleting old */
655 err
= e1000e_setup_rx_resources(adapter
);
658 err
= e1000e_setup_tx_resources(adapter
);
662 /* save the new, restore the old in order to free it,
663 * then restore the new back again */
664 adapter
->rx_ring
= rx_old
;
665 adapter
->tx_ring
= tx_old
;
666 e1000e_free_rx_resources(adapter
);
667 e1000e_free_tx_resources(adapter
);
670 adapter
->rx_ring
= rx_ring
;
671 adapter
->tx_ring
= tx_ring
;
672 err
= e1000e_up(adapter
);
677 clear_bit(__E1000_RESETTING
, &adapter
->state
);
680 e1000e_free_rx_resources(adapter
);
682 adapter
->rx_ring
= rx_old
;
683 adapter
->tx_ring
= tx_old
;
690 clear_bit(__E1000_RESETTING
, &adapter
->state
);
694 #define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W)
695 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable) \
699 u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
700 for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) { \
701 E1000_WRITE_REG_ARRAY(hw, reg, offset, \
702 (_test[_pat] & writeable)); \
703 _value = E1000_READ_REG_ARRAY(hw, reg, offset); \
704 if (_value != (_test[_pat] & writeable & mask)) { \
705 ndev_err(netdev, "pattern test reg %04X " \
706 "failed: got 0x%08X expected 0x%08X\n", \
708 value, (_test[_pat] & writeable & mask)); \
715 #define REG_SET_AND_CHECK(R, M, W) \
718 __ew32(hw, R, W & M); \
719 _value = __er32(hw, R); \
720 if ((W & M) != (_value & M)) { \
721 ndev_err(netdev, "set/check reg %04X test failed: " \
722 "got 0x%08X expected 0x%08X\n", R, (_value & M), \
729 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
731 struct e1000_hw
*hw
= &adapter
->hw
;
732 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
733 struct net_device
*netdev
= adapter
->netdev
;
740 /* The status register is Read Only, so a write should fail.
741 * Some bits that get toggled are ignored.
744 /* there are several bits on newer hardware that are r/w */
747 case e1000_80003es2lan
:
760 before
= er32(STATUS
);
761 value
= (er32(STATUS
) & toggle
);
762 ew32(STATUS
, toggle
);
763 after
= er32(STATUS
) & toggle
;
764 if (value
!= after
) {
765 ndev_err(netdev
, "failed STATUS register test got: "
766 "0x%08X expected: 0x%08X\n", after
, value
);
770 /* restore previous status */
771 ew32(STATUS
, before
);
773 if ((mac
->type
!= e1000_ich8lan
) &&
774 (mac
->type
!= e1000_ich9lan
)) {
775 REG_PATTERN_TEST(E1000_FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
776 REG_PATTERN_TEST(E1000_FCAH
, 0x0000FFFF, 0xFFFFFFFF);
777 REG_PATTERN_TEST(E1000_FCT
, 0x0000FFFF, 0xFFFFFFFF);
778 REG_PATTERN_TEST(E1000_VET
, 0x0000FFFF, 0xFFFFFFFF);
781 REG_PATTERN_TEST(E1000_RDTR
, 0x0000FFFF, 0xFFFFFFFF);
782 REG_PATTERN_TEST(E1000_RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
783 REG_PATTERN_TEST(E1000_RDLEN
, 0x000FFF80, 0x000FFFFF);
784 REG_PATTERN_TEST(E1000_RDH
, 0x0000FFFF, 0x0000FFFF);
785 REG_PATTERN_TEST(E1000_RDT
, 0x0000FFFF, 0x0000FFFF);
786 REG_PATTERN_TEST(E1000_FCRTH
, 0x0000FFF8, 0x0000FFF8);
787 REG_PATTERN_TEST(E1000_FCTTV
, 0x0000FFFF, 0x0000FFFF);
788 REG_PATTERN_TEST(E1000_TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
789 REG_PATTERN_TEST(E1000_TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
790 REG_PATTERN_TEST(E1000_TDLEN
, 0x000FFF80, 0x000FFFFF);
792 REG_SET_AND_CHECK(E1000_RCTL
, 0xFFFFFFFF, 0x00000000);
794 before
= (((mac
->type
== e1000_ich8lan
) ||
795 (mac
->type
== e1000_ich9lan
)) ? 0x06C3B33E : 0x06DFB3FE);
796 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0x003FFFFB);
797 REG_SET_AND_CHECK(E1000_TCTL
, 0xFFFFFFFF, 0x00000000);
799 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0xFFFFFFFF);
800 REG_PATTERN_TEST(E1000_RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
801 if ((mac
->type
!= e1000_ich8lan
) &&
802 (mac
->type
!= e1000_ich9lan
))
803 REG_PATTERN_TEST(E1000_TXCW
, 0xC000FFFF, 0x0000FFFF);
804 REG_PATTERN_TEST(E1000_TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
805 REG_PATTERN_TEST(E1000_TIDV
, 0x0000FFFF, 0x0000FFFF);
806 for (i
= 0; i
< mac
->rar_entry_count
; i
++)
807 REG_PATTERN_TEST_ARRAY(E1000_RA
, ((i
<< 1) + 1),
808 0x8003FFFF, 0xFFFFFFFF);
810 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
811 REG_PATTERN_TEST_ARRAY(E1000_MTA
, i
, 0xFFFFFFFF, 0xFFFFFFFF);
817 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
824 /* Read and add up the contents of the EEPROM */
825 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
826 if ((e1000_read_nvm(&adapter
->hw
, i
, 1, &temp
)) < 0) {
833 /* If Checksum is not Correct return error else test passed */
834 if ((checksum
!= (u16
) NVM_SUM
) && !(*data
))
840 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
842 struct net_device
*netdev
= (struct net_device
*) data
;
843 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
844 struct e1000_hw
*hw
= &adapter
->hw
;
846 adapter
->test_icr
|= er32(ICR
);
851 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
853 struct net_device
*netdev
= adapter
->netdev
;
854 struct e1000_hw
*hw
= &adapter
->hw
;
857 u32 irq
= adapter
->pdev
->irq
;
862 /* NOTE: we don't test MSI interrupts here, yet */
863 /* Hook up test interrupt handler just for this test */
864 if (!request_irq(irq
, &e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
867 } else if (request_irq(irq
, &e1000_test_intr
, IRQF_SHARED
,
868 netdev
->name
, netdev
)) {
872 ndev_info(netdev
, "testing %s interrupt\n",
873 (shared_int
? "shared" : "unshared"));
875 /* Disable all the interrupts */
876 ew32(IMC
, 0xFFFFFFFF);
879 /* Test each interrupt */
880 for (i
= 0; i
< 10; i
++) {
882 if (((adapter
->hw
.mac
.type
== e1000_ich8lan
) ||
883 (adapter
->hw
.mac
.type
== e1000_ich9lan
)) && i
== 8)
886 /* Interrupt to test */
890 /* Disable the interrupt to be reported in
891 * the cause register and then force the same
892 * interrupt and see if one gets posted. If
893 * an interrupt was posted to the bus, the
896 adapter
->test_icr
= 0;
901 if (adapter
->test_icr
& mask
) {
907 /* Enable the interrupt to be reported in
908 * the cause register and then force the same
909 * interrupt and see if one gets posted. If
910 * an interrupt was not posted to the bus, the
913 adapter
->test_icr
= 0;
918 if (!(adapter
->test_icr
& mask
)) {
924 /* Disable the other interrupts to be reported in
925 * the cause register and then force the other
926 * interrupts and see if any get posted. If
927 * an interrupt was posted to the bus, the
930 adapter
->test_icr
= 0;
931 ew32(IMC
, ~mask
& 0x00007FFF);
932 ew32(ICS
, ~mask
& 0x00007FFF);
935 if (adapter
->test_icr
) {
942 /* Disable all the interrupts */
943 ew32(IMC
, 0xFFFFFFFF);
946 /* Unhook test interrupt handler */
947 free_irq(irq
, netdev
);
952 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
954 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
955 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
956 struct pci_dev
*pdev
= adapter
->pdev
;
959 if (tx_ring
->desc
&& tx_ring
->buffer_info
) {
960 for (i
= 0; i
< tx_ring
->count
; i
++) {
961 if (tx_ring
->buffer_info
[i
].dma
)
962 pci_unmap_single(pdev
,
963 tx_ring
->buffer_info
[i
].dma
,
964 tx_ring
->buffer_info
[i
].length
,
966 if (tx_ring
->buffer_info
[i
].skb
)
967 dev_kfree_skb(tx_ring
->buffer_info
[i
].skb
);
971 if (rx_ring
->desc
&& rx_ring
->buffer_info
) {
972 for (i
= 0; i
< rx_ring
->count
; i
++) {
973 if (rx_ring
->buffer_info
[i
].dma
)
974 pci_unmap_single(pdev
,
975 rx_ring
->buffer_info
[i
].dma
,
976 2048, PCI_DMA_FROMDEVICE
);
977 if (rx_ring
->buffer_info
[i
].skb
)
978 dev_kfree_skb(rx_ring
->buffer_info
[i
].skb
);
983 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
985 tx_ring
->desc
= NULL
;
988 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
990 rx_ring
->desc
= NULL
;
993 kfree(tx_ring
->buffer_info
);
994 tx_ring
->buffer_info
= NULL
;
995 kfree(rx_ring
->buffer_info
);
996 rx_ring
->buffer_info
= NULL
;
999 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1001 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1002 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1003 struct pci_dev
*pdev
= adapter
->pdev
;
1004 struct e1000_hw
*hw
= &adapter
->hw
;
1010 /* Setup Tx descriptor ring and Tx buffers */
1012 if (!tx_ring
->count
)
1013 tx_ring
->count
= E1000_DEFAULT_TXD
;
1015 size
= tx_ring
->count
* sizeof(struct e1000_buffer
);
1016 tx_ring
->buffer_info
= kmalloc(size
, GFP_KERNEL
);
1017 if (!tx_ring
->buffer_info
) {
1021 memset(tx_ring
->buffer_info
, 0, size
);
1023 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1024 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1025 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
1026 &tx_ring
->dma
, GFP_KERNEL
);
1027 if (!tx_ring
->desc
) {
1031 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1032 tx_ring
->next_to_use
= 0;
1033 tx_ring
->next_to_clean
= 0;
1036 ((u64
) tx_ring
->dma
& 0x00000000FFFFFFFF));
1037 ew32(TDBAH
, ((u64
) tx_ring
->dma
>> 32));
1039 tx_ring
->count
* sizeof(struct e1000_tx_desc
));
1043 E1000_TCTL_PSP
| E1000_TCTL_EN
|
1044 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1045 E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1047 for (i
= 0; i
< tx_ring
->count
; i
++) {
1048 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1049 struct sk_buff
*skb
;
1050 unsigned int skb_size
= 1024;
1052 skb
= alloc_skb(skb_size
, GFP_KERNEL
);
1057 skb_put(skb
, skb_size
);
1058 tx_ring
->buffer_info
[i
].skb
= skb
;
1059 tx_ring
->buffer_info
[i
].length
= skb
->len
;
1060 tx_ring
->buffer_info
[i
].dma
=
1061 pci_map_single(pdev
, skb
->data
, skb
->len
,
1063 if (pci_dma_mapping_error(tx_ring
->buffer_info
[i
].dma
)) {
1067 tx_desc
->buffer_addr
= cpu_to_le64(
1068 tx_ring
->buffer_info
[i
].dma
);
1069 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1070 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1071 E1000_TXD_CMD_IFCS
|
1073 tx_desc
->upper
.data
= 0;
1076 /* Setup Rx descriptor ring and Rx buffers */
1078 if (!rx_ring
->count
)
1079 rx_ring
->count
= E1000_DEFAULT_RXD
;
1081 size
= rx_ring
->count
* sizeof(struct e1000_buffer
);
1082 rx_ring
->buffer_info
= kmalloc(size
, GFP_KERNEL
);
1083 if (!rx_ring
->buffer_info
) {
1087 memset(rx_ring
->buffer_info
, 0, size
);
1089 rx_ring
->size
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
1090 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
1091 &rx_ring
->dma
, GFP_KERNEL
);
1092 if (!rx_ring
->desc
) {
1096 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1097 rx_ring
->next_to_use
= 0;
1098 rx_ring
->next_to_clean
= 0;
1101 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1102 ew32(RDBAL
, ((u64
) rx_ring
->dma
& 0xFFFFFFFF));
1103 ew32(RDBAH
, ((u64
) rx_ring
->dma
>> 32));
1104 ew32(RDLEN
, rx_ring
->size
);
1107 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1108 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1109 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1112 for (i
= 0; i
< rx_ring
->count
; i
++) {
1113 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1114 struct sk_buff
*skb
;
1116 skb
= alloc_skb(2048 + NET_IP_ALIGN
, GFP_KERNEL
);
1121 skb_reserve(skb
, NET_IP_ALIGN
);
1122 rx_ring
->buffer_info
[i
].skb
= skb
;
1123 rx_ring
->buffer_info
[i
].dma
=
1124 pci_map_single(pdev
, skb
->data
, 2048,
1125 PCI_DMA_FROMDEVICE
);
1126 if (pci_dma_mapping_error(rx_ring
->buffer_info
[i
].dma
)) {
1130 rx_desc
->buffer_addr
=
1131 cpu_to_le64(rx_ring
->buffer_info
[i
].dma
);
1132 memset(skb
->data
, 0x00, skb
->len
);
1138 e1000_free_desc_rings(adapter
);
1142 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1144 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1145 e1e_wphy(&adapter
->hw
, 29, 0x001F);
1146 e1e_wphy(&adapter
->hw
, 30, 0x8FFC);
1147 e1e_wphy(&adapter
->hw
, 29, 0x001A);
1148 e1e_wphy(&adapter
->hw
, 30, 0x8FF0);
1151 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1153 struct e1000_hw
*hw
= &adapter
->hw
;
1157 adapter
->hw
.mac
.autoneg
= 0;
1159 if (adapter
->hw
.phy
.type
== e1000_phy_m88
) {
1160 /* Auto-MDI/MDIX Off */
1161 e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1162 /* reset to update Auto-MDI/MDIX */
1163 e1e_wphy(hw
, PHY_CONTROL
, 0x9140);
1165 e1e_wphy(hw
, PHY_CONTROL
, 0x8140);
1166 } else if (adapter
->hw
.phy
.type
== e1000_phy_gg82563
)
1167 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x1CC);
1169 ctrl_reg
= er32(CTRL
);
1171 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
1172 /* force 100, set loopback */
1173 e1e_wphy(hw
, PHY_CONTROL
, 0x6100);
1175 /* Now set up the MAC to the same speed/duplex as the PHY. */
1176 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1177 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1178 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1179 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1180 E1000_CTRL_FD
); /* Force Duplex to FULL */
1182 /* force 1000, set loopback */
1183 e1e_wphy(hw
, PHY_CONTROL
, 0x4140);
1185 /* Now set up the MAC to the same speed/duplex as the PHY. */
1186 ctrl_reg
= er32(CTRL
);
1187 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1188 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1189 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1190 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1191 E1000_CTRL_FD
); /* Force Duplex to FULL */
1194 if (adapter
->hw
.media_type
== e1000_media_type_copper
&&
1195 adapter
->hw
.phy
.type
== e1000_phy_m88
) {
1196 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1198 /* Set the ILOS bit on the fiber Nic if half duplex link is
1200 stat_reg
= er32(STATUS
);
1201 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1202 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1205 ew32(CTRL
, ctrl_reg
);
1207 /* Disable the receiver on the PHY so when a cable is plugged in, the
1208 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1210 if (adapter
->hw
.phy
.type
== e1000_phy_m88
)
1211 e1000_phy_disable_receiver(adapter
);
1218 static int e1000_set_82571_fiber_loopback(struct e1000_adapter
*adapter
)
1220 struct e1000_hw
*hw
= &adapter
->hw
;
1221 u32 ctrl
= er32(CTRL
);
1224 /* special requirements for 82571/82572 fiber adapters */
1226 /* jump through hoops to make sure link is up because serdes
1227 * link is hardwired up */
1228 ctrl
|= E1000_CTRL_SLU
;
1231 /* disable autoneg */
1236 link
= (er32(STATUS
) & E1000_STATUS_LU
);
1239 /* set invert loss of signal */
1241 ctrl
|= E1000_CTRL_ILOS
;
1245 /* special write to serdes control register to enable SerDes analog
1247 #define E1000_SERDES_LB_ON 0x410
1248 ew32(SCTL
, E1000_SERDES_LB_ON
);
1254 /* only call this for fiber/serdes connections to es2lan */
1255 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter
*adapter
)
1257 struct e1000_hw
*hw
= &adapter
->hw
;
1258 u32 ctrlext
= er32(CTRL_EXT
);
1259 u32 ctrl
= er32(CTRL
);
1261 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1262 on mac_type 80003es2lan) */
1263 adapter
->tx_fifo_head
= ctrlext
;
1265 /* clear the serdes mode bits, putting the device into mac loopback */
1266 ctrlext
&= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
1267 ew32(CTRL_EXT
, ctrlext
);
1269 /* force speed to 1000/FD, link up */
1270 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1271 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
|
1272 E1000_CTRL_SPD_1000
| E1000_CTRL_FD
);
1275 /* set mac loopback */
1277 ctrl
|= E1000_RCTL_LBM_MAC
;
1280 /* set testing mode parameters (no need to reset later) */
1281 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1282 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1284 (KMRNCTRLSTA_OPMODE
| KMRNCTRLSTA_OPMODE_1GB_FD_GMII
));
1289 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1291 struct e1000_hw
*hw
= &adapter
->hw
;
1294 if (hw
->media_type
== e1000_media_type_fiber
||
1295 hw
->media_type
== e1000_media_type_internal_serdes
) {
1296 switch (hw
->mac
.type
) {
1297 case e1000_80003es2lan
:
1298 return e1000_set_es2lan_mac_loopback(adapter
);
1302 return e1000_set_82571_fiber_loopback(adapter
);
1306 rctl
|= E1000_RCTL_LBM_TCVR
;
1310 } else if (hw
->media_type
== e1000_media_type_copper
) {
1311 return e1000_integrated_phy_loopback(adapter
);
1317 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1319 struct e1000_hw
*hw
= &adapter
->hw
;
1324 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1327 switch (hw
->mac
.type
) {
1328 case e1000_80003es2lan
:
1329 if (hw
->media_type
== e1000_media_type_fiber
||
1330 hw
->media_type
== e1000_media_type_internal_serdes
) {
1331 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1333 adapter
->tx_fifo_head
);
1334 adapter
->tx_fifo_head
= 0;
1339 if (hw
->media_type
== e1000_media_type_fiber
||
1340 hw
->media_type
== e1000_media_type_internal_serdes
) {
1341 #define E1000_SERDES_LB_OFF 0x400
1342 ew32(SCTL
, E1000_SERDES_LB_OFF
);
1348 hw
->mac
.autoneg
= 1;
1349 if (hw
->phy
.type
== e1000_phy_gg82563
)
1350 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x180);
1351 e1e_rphy(hw
, PHY_CONTROL
, &phy_reg
);
1352 if (phy_reg
& MII_CR_LOOPBACK
) {
1353 phy_reg
&= ~MII_CR_LOOPBACK
;
1354 e1e_wphy(hw
, PHY_CONTROL
, phy_reg
);
1355 e1000e_commit_phy(hw
);
1361 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1362 unsigned int frame_size
)
1364 memset(skb
->data
, 0xFF, frame_size
);
1366 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1367 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1368 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1371 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1372 unsigned int frame_size
)
1375 if (*(skb
->data
+ 3) == 0xFF)
1376 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1377 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF))
1382 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1384 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1385 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1386 struct pci_dev
*pdev
= adapter
->pdev
;
1387 struct e1000_hw
*hw
= &adapter
->hw
;
1394 ew32(RDT
, rx_ring
->count
- 1);
1396 /* Calculate the loop count based on the largest descriptor ring
1397 * The idea is to wrap the largest ring a number of times using 64
1398 * send/receive pairs during each loop
1401 if (rx_ring
->count
<= tx_ring
->count
)
1402 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1404 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1408 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1409 for (i
= 0; i
< 64; i
++) { /* send the packets */
1410 e1000_create_lbtest_frame(
1411 tx_ring
->buffer_info
[i
].skb
, 1024);
1412 pci_dma_sync_single_for_device(pdev
,
1413 tx_ring
->buffer_info
[k
].dma
,
1414 tx_ring
->buffer_info
[k
].length
,
1417 if (k
== tx_ring
->count
)
1422 time
= jiffies
; /* set the start time for the receive */
1424 do { /* receive the sent packets */
1425 pci_dma_sync_single_for_cpu(pdev
,
1426 rx_ring
->buffer_info
[l
].dma
, 2048,
1427 PCI_DMA_FROMDEVICE
);
1429 ret_val
= e1000_check_lbtest_frame(
1430 rx_ring
->buffer_info
[l
].skb
, 1024);
1434 if (l
== rx_ring
->count
)
1436 /* time + 20 msecs (200 msecs on 2.4) is more than
1437 * enough time to complete the receives, if it's
1438 * exceeded, break and error off
1440 } while ((good_cnt
< 64) && !time_after(jiffies
, time
+ 20));
1441 if (good_cnt
!= 64) {
1442 ret_val
= 13; /* ret_val is the same as mis-compare */
1445 if (jiffies
>= (time
+ 2)) {
1446 ret_val
= 14; /* error code for time out error */
1449 } /* end loop count loop */
1453 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1455 /* PHY loopback cannot be performed if SoL/IDER
1456 * sessions are active */
1457 if (e1000_check_reset_block(&adapter
->hw
)) {
1458 ndev_err(adapter
->netdev
, "Cannot do PHY loopback test "
1459 "when SoL/IDER is active.\n");
1464 *data
= e1000_setup_desc_rings(adapter
);
1468 *data
= e1000_setup_loopback_test(adapter
);
1472 *data
= e1000_run_loopback_test(adapter
);
1473 e1000_loopback_cleanup(adapter
);
1476 e1000_free_desc_rings(adapter
);
1481 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1483 struct e1000_hw
*hw
= &adapter
->hw
;
1486 if (hw
->media_type
== e1000_media_type_internal_serdes
) {
1488 hw
->mac
.serdes_has_link
= 0;
1490 /* On some blade server designs, link establishment
1491 * could take as long as 2-3 minutes */
1493 hw
->mac
.ops
.check_for_link(hw
);
1494 if (hw
->mac
.serdes_has_link
)
1497 } while (i
++ < 3750);
1501 hw
->mac
.ops
.check_for_link(hw
);
1502 if (hw
->mac
.autoneg
)
1505 if (!(er32(STATUS
) &
1512 static int e1000e_get_sset_count(struct net_device
*netdev
, int sset
)
1516 return E1000_TEST_LEN
;
1518 return E1000_STATS_LEN
;
1524 static void e1000_diag_test(struct net_device
*netdev
,
1525 struct ethtool_test
*eth_test
, u64
*data
)
1527 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1528 u16 autoneg_advertised
;
1529 u8 forced_speed_duplex
;
1531 bool if_running
= netif_running(netdev
);
1533 set_bit(__E1000_TESTING
, &adapter
->state
);
1534 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1537 /* save speed, duplex, autoneg settings */
1538 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1539 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1540 autoneg
= adapter
->hw
.mac
.autoneg
;
1542 ndev_info(netdev
, "offline testing starting\n");
1544 /* Link test performed before hardware reset so autoneg doesn't
1545 * interfere with test result */
1546 if (e1000_link_test(adapter
, &data
[4]))
1547 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1550 /* indicate we're in test mode */
1553 e1000e_reset(adapter
);
1555 if (e1000_reg_test(adapter
, &data
[0]))
1556 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1558 e1000e_reset(adapter
);
1559 if (e1000_eeprom_test(adapter
, &data
[1]))
1560 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1562 e1000e_reset(adapter
);
1563 if (e1000_intr_test(adapter
, &data
[2]))
1564 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1566 e1000e_reset(adapter
);
1567 /* make sure the phy is powered up */
1568 e1000e_power_up_phy(adapter
);
1569 if (e1000_loopback_test(adapter
, &data
[3]))
1570 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1572 /* restore speed, duplex, autoneg settings */
1573 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1574 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1575 adapter
->hw
.mac
.autoneg
= autoneg
;
1577 /* force this routine to wait until autoneg complete/timeout */
1578 adapter
->hw
.phy
.wait_for_link
= 1;
1579 e1000e_reset(adapter
);
1580 adapter
->hw
.phy
.wait_for_link
= 0;
1582 clear_bit(__E1000_TESTING
, &adapter
->state
);
1586 ndev_info(netdev
, "online testing starting\n");
1588 if (e1000_link_test(adapter
, &data
[4]))
1589 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1591 /* Online tests aren't run; pass by default */
1597 clear_bit(__E1000_TESTING
, &adapter
->state
);
1599 msleep_interruptible(4 * 1000);
1602 static void e1000_get_wol(struct net_device
*netdev
,
1603 struct ethtool_wolinfo
*wol
)
1605 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1610 if (!(adapter
->flags
& FLAG_HAS_WOL
))
1613 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1614 WAKE_BCAST
| WAKE_MAGIC
;
1616 /* apply any specific unsupported masks here */
1617 if (adapter
->flags
& FLAG_NO_WAKE_UCAST
) {
1618 wol
->supported
&= ~WAKE_UCAST
;
1620 if (adapter
->wol
& E1000_WUFC_EX
)
1621 ndev_err(netdev
, "Interface does not support "
1622 "directed (unicast) frame wake-up packets\n");
1625 if (adapter
->wol
& E1000_WUFC_EX
)
1626 wol
->wolopts
|= WAKE_UCAST
;
1627 if (adapter
->wol
& E1000_WUFC_MC
)
1628 wol
->wolopts
|= WAKE_MCAST
;
1629 if (adapter
->wol
& E1000_WUFC_BC
)
1630 wol
->wolopts
|= WAKE_BCAST
;
1631 if (adapter
->wol
& E1000_WUFC_MAG
)
1632 wol
->wolopts
|= WAKE_MAGIC
;
1635 static int e1000_set_wol(struct net_device
*netdev
,
1636 struct ethtool_wolinfo
*wol
)
1638 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1640 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1643 if (!(adapter
->flags
& FLAG_HAS_WOL
))
1644 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1646 /* these settings will always override what we currently have */
1649 if (wol
->wolopts
& WAKE_UCAST
)
1650 adapter
->wol
|= E1000_WUFC_EX
;
1651 if (wol
->wolopts
& WAKE_MCAST
)
1652 adapter
->wol
|= E1000_WUFC_MC
;
1653 if (wol
->wolopts
& WAKE_BCAST
)
1654 adapter
->wol
|= E1000_WUFC_BC
;
1655 if (wol
->wolopts
& WAKE_MAGIC
)
1656 adapter
->wol
|= E1000_WUFC_MAG
;
1661 /* toggle LED 4 times per second = 2 "blinks" per second */
1662 #define E1000_ID_INTERVAL (HZ/4)
1664 /* bit defines for adapter->led_status */
1665 #define E1000_LED_ON 0
1667 static void e1000_led_blink_callback(unsigned long data
)
1669 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1671 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1672 adapter
->hw
.mac
.ops
.led_off(&adapter
->hw
);
1674 adapter
->hw
.mac
.ops
.led_on(&adapter
->hw
);
1676 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1679 static int e1000_phys_id(struct net_device
*netdev
, u32 data
)
1681 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1686 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
1687 if (!adapter
->blink_timer
.function
) {
1688 init_timer(&adapter
->blink_timer
);
1689 adapter
->blink_timer
.function
=
1690 e1000_led_blink_callback
;
1691 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1693 mod_timer(&adapter
->blink_timer
, jiffies
);
1694 msleep_interruptible(data
* 1000);
1695 del_timer_sync(&adapter
->blink_timer
);
1696 e1e_wphy(&adapter
->hw
,
1697 IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1699 e1000e_blink_led(&adapter
->hw
);
1700 msleep_interruptible(data
* 1000);
1703 adapter
->hw
.mac
.ops
.led_off(&adapter
->hw
);
1704 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1705 adapter
->hw
.mac
.ops
.cleanup_led(&adapter
->hw
);
1710 static int e1000_nway_reset(struct net_device
*netdev
)
1712 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1713 if (netif_running(netdev
))
1714 e1000e_reinit_locked(adapter
);
1718 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1719 struct ethtool_stats
*stats
,
1722 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1725 e1000e_update_stats(adapter
);
1726 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1727 char *p
= (char *)adapter
+e1000_gstrings_stats
[i
].stat_offset
;
1728 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1729 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1733 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1739 switch (stringset
) {
1741 memcpy(data
, *e1000_gstrings_test
,
1742 E1000_TEST_LEN
*ETH_GSTRING_LEN
);
1745 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1746 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1748 p
+= ETH_GSTRING_LEN
;
1754 static const struct ethtool_ops e1000_ethtool_ops
= {
1755 .get_settings
= e1000_get_settings
,
1756 .set_settings
= e1000_set_settings
,
1757 .get_drvinfo
= e1000_get_drvinfo
,
1758 .get_regs_len
= e1000_get_regs_len
,
1759 .get_regs
= e1000_get_regs
,
1760 .get_wol
= e1000_get_wol
,
1761 .set_wol
= e1000_set_wol
,
1762 .get_msglevel
= e1000_get_msglevel
,
1763 .set_msglevel
= e1000_set_msglevel
,
1764 .nway_reset
= e1000_nway_reset
,
1765 .get_link
= e1000_get_link
,
1766 .get_eeprom_len
= e1000_get_eeprom_len
,
1767 .get_eeprom
= e1000_get_eeprom
,
1768 .set_eeprom
= e1000_set_eeprom
,
1769 .get_ringparam
= e1000_get_ringparam
,
1770 .set_ringparam
= e1000_set_ringparam
,
1771 .get_pauseparam
= e1000_get_pauseparam
,
1772 .set_pauseparam
= e1000_set_pauseparam
,
1773 .get_rx_csum
= e1000_get_rx_csum
,
1774 .set_rx_csum
= e1000_set_rx_csum
,
1775 .get_tx_csum
= e1000_get_tx_csum
,
1776 .set_tx_csum
= e1000_set_tx_csum
,
1777 .get_sg
= ethtool_op_get_sg
,
1778 .set_sg
= ethtool_op_set_sg
,
1779 .get_tso
= ethtool_op_get_tso
,
1780 .set_tso
= e1000_set_tso
,
1781 .self_test
= e1000_diag_test
,
1782 .get_strings
= e1000_get_strings
,
1783 .phys_id
= e1000_phys_id
,
1784 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1785 .get_sset_count
= e1000e_get_sset_count
,
1788 void e1000e_set_ethtool_ops(struct net_device
*netdev
)
1790 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);