Pull bugzilla-9429 into release branch
[pv_ops_mirror.git] / drivers / net / e1000e / netdev.c
blob4fd2e23720b69f080569b9c9a789ba2b8fcb7964
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
47 #include "e1000.h"
49 #define DRV_VERSION "0.2.0"
50 char e1000e_driver_name[] = "e1000e";
51 const char e1000e_driver_version[] = DRV_VERSION;
53 static const struct e1000_info *e1000_info_tbl[] = {
54 [board_82571] = &e1000_82571_info,
55 [board_82572] = &e1000_82572_info,
56 [board_82573] = &e1000_82573_info,
57 [board_80003es2lan] = &e1000_es2_info,
58 [board_ich8lan] = &e1000_ich8_info,
59 [board_ich9lan] = &e1000_ich9_info,
62 #ifdef DEBUG
63 /**
64 * e1000_get_hw_dev_name - return device name string
65 * used by hardware layer to print debugging information
66 **/
67 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
69 return hw->adapter->netdev->name;
71 #endif
73 /**
74 * e1000_desc_unused - calculate if we have unused descriptors
75 **/
76 static int e1000_desc_unused(struct e1000_ring *ring)
78 if (ring->next_to_clean > ring->next_to_use)
79 return ring->next_to_clean - ring->next_to_use - 1;
81 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
84 /**
85 * e1000_receive_skb - helper function to handle rx indications
86 * @adapter: board private structure
87 * @status: descriptor status field as written by hardware
88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89 * @skb: pointer to sk_buff to be indicated to stack
90 **/
91 static void e1000_receive_skb(struct e1000_adapter *adapter,
92 struct net_device *netdev,
93 struct sk_buff *skb,
94 u8 status, u16 vlan)
96 skb->protocol = eth_type_trans(skb, netdev);
98 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100 le16_to_cpu(vlan) &
101 E1000_RXD_SPC_VLAN_MASK);
102 else
103 netif_receive_skb(skb);
105 netdev->last_rx = jiffies;
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
141 /* IP fragment with UDP payload */
142 /* Hardware complements the payload checksum, so we undo it
143 * and then put the value in host order for further stack use.
145 csum = ntohl(csum ^ 0xFFFF);
146 skb->csum = csum;
147 skb->ip_summed = CHECKSUM_COMPLETE;
149 adapter->hw_csum_good++;
153 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154 * @adapter: address of board private structure
156 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
157 int cleaned_count)
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 struct e1000_ring *rx_ring = adapter->rx_ring;
162 struct e1000_rx_desc *rx_desc;
163 struct e1000_buffer *buffer_info;
164 struct sk_buff *skb;
165 unsigned int i;
166 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
168 i = rx_ring->next_to_use;
169 buffer_info = &rx_ring->buffer_info[i];
171 while (cleaned_count--) {
172 skb = buffer_info->skb;
173 if (skb) {
174 skb_trim(skb, 0);
175 goto map_skb;
178 skb = netdev_alloc_skb(netdev, bufsz);
179 if (!skb) {
180 /* Better luck next round */
181 adapter->alloc_rx_buff_failed++;
182 break;
185 /* Make buffer alignment 2 beyond a 16 byte boundary
186 * this will result in a 16 byte aligned IP header after
187 * the 14 byte MAC header is removed
189 skb_reserve(skb, NET_IP_ALIGN);
191 buffer_info->skb = skb;
192 map_skb:
193 buffer_info->dma = pci_map_single(pdev, skb->data,
194 adapter->rx_buffer_len,
195 PCI_DMA_FROMDEVICE);
196 if (pci_dma_mapping_error(buffer_info->dma)) {
197 dev_err(&pdev->dev, "RX DMA map failed\n");
198 adapter->rx_dma_failed++;
199 break;
202 rx_desc = E1000_RX_DESC(*rx_ring, i);
203 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
205 i++;
206 if (i == rx_ring->count)
207 i = 0;
208 buffer_info = &rx_ring->buffer_info[i];
211 if (rx_ring->next_to_use != i) {
212 rx_ring->next_to_use = i;
213 if (i-- == 0)
214 i = (rx_ring->count - 1);
216 /* Force memory writes to complete before letting h/w
217 * know there are new descriptors to fetch. (Only
218 * applicable for weak-ordered memory model archs,
219 * such as IA-64). */
220 wmb();
221 writel(i, adapter->hw.hw_addr + rx_ring->tail);
226 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227 * @adapter: address of board private structure
229 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
230 int cleaned_count)
232 struct net_device *netdev = adapter->netdev;
233 struct pci_dev *pdev = adapter->pdev;
234 union e1000_rx_desc_packet_split *rx_desc;
235 struct e1000_ring *rx_ring = adapter->rx_ring;
236 struct e1000_buffer *buffer_info;
237 struct e1000_ps_page *ps_page;
238 struct sk_buff *skb;
239 unsigned int i, j;
241 i = rx_ring->next_to_use;
242 buffer_info = &rx_ring->buffer_info[i];
244 while (cleaned_count--) {
245 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
247 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
248 ps_page = &buffer_info->ps_pages[j];
249 if (j >= adapter->rx_ps_pages) {
250 /* all unused desc entries get hw null ptr */
251 rx_desc->read.buffer_addr[j+1] = ~0;
252 continue;
254 if (!ps_page->page) {
255 ps_page->page = alloc_page(GFP_ATOMIC);
256 if (!ps_page->page) {
257 adapter->alloc_rx_buff_failed++;
258 goto no_buffers;
260 ps_page->dma = pci_map_page(pdev,
261 ps_page->page,
262 0, PAGE_SIZE,
263 PCI_DMA_FROMDEVICE);
264 if (pci_dma_mapping_error(ps_page->dma)) {
265 dev_err(&adapter->pdev->dev,
266 "RX DMA page map failed\n");
267 adapter->rx_dma_failed++;
268 goto no_buffers;
272 * Refresh the desc even if buffer_addrs
273 * didn't change because each write-back
274 * erases this info.
276 rx_desc->read.buffer_addr[j+1] =
277 cpu_to_le64(ps_page->dma);
280 skb = netdev_alloc_skb(netdev,
281 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
283 if (!skb) {
284 adapter->alloc_rx_buff_failed++;
285 break;
288 /* Make buffer alignment 2 beyond a 16 byte boundary
289 * this will result in a 16 byte aligned IP header after
290 * the 14 byte MAC header is removed
292 skb_reserve(skb, NET_IP_ALIGN);
294 buffer_info->skb = skb;
295 buffer_info->dma = pci_map_single(pdev, skb->data,
296 adapter->rx_ps_bsize0,
297 PCI_DMA_FROMDEVICE);
298 if (pci_dma_mapping_error(buffer_info->dma)) {
299 dev_err(&pdev->dev, "RX DMA map failed\n");
300 adapter->rx_dma_failed++;
301 /* cleanup skb */
302 dev_kfree_skb_any(skb);
303 buffer_info->skb = NULL;
304 break;
307 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
309 i++;
310 if (i == rx_ring->count)
311 i = 0;
312 buffer_info = &rx_ring->buffer_info[i];
315 no_buffers:
316 if (rx_ring->next_to_use != i) {
317 rx_ring->next_to_use = i;
319 if (!(i--))
320 i = (rx_ring->count - 1);
322 /* Force memory writes to complete before letting h/w
323 * know there are new descriptors to fetch. (Only
324 * applicable for weak-ordered memory model archs,
325 * such as IA-64). */
326 wmb();
327 /* Hardware increments by 16 bytes, but packet split
328 * descriptors are 32 bytes...so we increment tail
329 * twice as much.
331 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
336 * e1000_clean_rx_irq - Send received data up the network stack; legacy
337 * @adapter: board private structure
339 * the return value indicates whether actual cleaning was done, there
340 * is no guarantee that everything was cleaned
342 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
343 int *work_done, int work_to_do)
345 struct net_device *netdev = adapter->netdev;
346 struct pci_dev *pdev = adapter->pdev;
347 struct e1000_ring *rx_ring = adapter->rx_ring;
348 struct e1000_rx_desc *rx_desc, *next_rxd;
349 struct e1000_buffer *buffer_info, *next_buffer;
350 u32 length;
351 unsigned int i;
352 int cleaned_count = 0;
353 bool cleaned = 0;
354 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
356 i = rx_ring->next_to_clean;
357 rx_desc = E1000_RX_DESC(*rx_ring, i);
358 buffer_info = &rx_ring->buffer_info[i];
360 while (rx_desc->status & E1000_RXD_STAT_DD) {
361 struct sk_buff *skb;
362 u8 status;
364 if (*work_done >= work_to_do)
365 break;
366 (*work_done)++;
368 status = rx_desc->status;
369 skb = buffer_info->skb;
370 buffer_info->skb = NULL;
372 prefetch(skb->data - NET_IP_ALIGN);
374 i++;
375 if (i == rx_ring->count)
376 i = 0;
377 next_rxd = E1000_RX_DESC(*rx_ring, i);
378 prefetch(next_rxd);
380 next_buffer = &rx_ring->buffer_info[i];
382 cleaned = 1;
383 cleaned_count++;
384 pci_unmap_single(pdev,
385 buffer_info->dma,
386 adapter->rx_buffer_len,
387 PCI_DMA_FROMDEVICE);
388 buffer_info->dma = 0;
390 length = le16_to_cpu(rx_desc->length);
392 /* !EOP means multiple descriptors were used to store a single
393 * packet, also make sure the frame isn't just CRC only */
394 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
395 /* All receives must fit into a single buffer */
396 ndev_dbg(netdev, "%s: Receive packet consumed "
397 "multiple buffers\n", netdev->name);
398 /* recycle */
399 buffer_info->skb = skb;
400 goto next_desc;
403 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
404 /* recycle */
405 buffer_info->skb = skb;
406 goto next_desc;
409 total_rx_bytes += length;
410 total_rx_packets++;
412 /* code added for copybreak, this should improve
413 * performance for small packets with large amounts
414 * of reassembly being done in the stack */
415 if (length < copybreak) {
416 struct sk_buff *new_skb =
417 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
418 if (new_skb) {
419 skb_reserve(new_skb, NET_IP_ALIGN);
420 memcpy(new_skb->data - NET_IP_ALIGN,
421 skb->data - NET_IP_ALIGN,
422 length + NET_IP_ALIGN);
423 /* save the skb in buffer_info as good */
424 buffer_info->skb = skb;
425 skb = new_skb;
427 /* else just continue with the old one */
429 /* end copybreak code */
430 skb_put(skb, length);
432 /* Receive Checksum Offload */
433 e1000_rx_checksum(adapter,
434 (u32)(status) |
435 ((u32)(rx_desc->errors) << 24),
436 le16_to_cpu(rx_desc->csum), skb);
438 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
440 next_desc:
441 rx_desc->status = 0;
443 /* return some buffers to hardware, one at a time is too slow */
444 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
445 adapter->alloc_rx_buf(adapter, cleaned_count);
446 cleaned_count = 0;
449 /* use prefetched values */
450 rx_desc = next_rxd;
451 buffer_info = next_buffer;
453 rx_ring->next_to_clean = i;
455 cleaned_count = e1000_desc_unused(rx_ring);
456 if (cleaned_count)
457 adapter->alloc_rx_buf(adapter, cleaned_count);
459 adapter->total_rx_packets += total_rx_packets;
460 adapter->total_rx_bytes += total_rx_bytes;
461 return cleaned;
464 static void e1000_put_txbuf(struct e1000_adapter *adapter,
465 struct e1000_buffer *buffer_info)
467 if (buffer_info->dma) {
468 pci_unmap_page(adapter->pdev, buffer_info->dma,
469 buffer_info->length, PCI_DMA_TODEVICE);
470 buffer_info->dma = 0;
472 if (buffer_info->skb) {
473 dev_kfree_skb_any(buffer_info->skb);
474 buffer_info->skb = NULL;
478 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
480 struct e1000_ring *tx_ring = adapter->tx_ring;
481 unsigned int i = tx_ring->next_to_clean;
482 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
483 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
484 struct net_device *netdev = adapter->netdev;
486 /* detected Tx unit hang */
487 ndev_err(netdev,
488 "Detected Tx Unit Hang:\n"
489 " TDH <%x>\n"
490 " TDT <%x>\n"
491 " next_to_use <%x>\n"
492 " next_to_clean <%x>\n"
493 "buffer_info[next_to_clean]:\n"
494 " time_stamp <%lx>\n"
495 " next_to_watch <%x>\n"
496 " jiffies <%lx>\n"
497 " next_to_watch.status <%x>\n",
498 readl(adapter->hw.hw_addr + tx_ring->head),
499 readl(adapter->hw.hw_addr + tx_ring->tail),
500 tx_ring->next_to_use,
501 tx_ring->next_to_clean,
502 tx_ring->buffer_info[eop].time_stamp,
503 eop,
504 jiffies,
505 eop_desc->upper.fields.status);
509 * e1000_clean_tx_irq - Reclaim resources after transmit completes
510 * @adapter: board private structure
512 * the return value indicates whether actual cleaning was done, there
513 * is no guarantee that everything was cleaned
515 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
517 struct net_device *netdev = adapter->netdev;
518 struct e1000_hw *hw = &adapter->hw;
519 struct e1000_ring *tx_ring = adapter->tx_ring;
520 struct e1000_tx_desc *tx_desc, *eop_desc;
521 struct e1000_buffer *buffer_info;
522 unsigned int i, eop;
523 unsigned int count = 0;
524 bool cleaned = 0;
525 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
527 i = tx_ring->next_to_clean;
528 eop = tx_ring->buffer_info[i].next_to_watch;
529 eop_desc = E1000_TX_DESC(*tx_ring, eop);
531 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
532 for (cleaned = 0; !cleaned; ) {
533 tx_desc = E1000_TX_DESC(*tx_ring, i);
534 buffer_info = &tx_ring->buffer_info[i];
535 cleaned = (i == eop);
537 if (cleaned) {
538 struct sk_buff *skb = buffer_info->skb;
539 unsigned int segs, bytecount;
540 segs = skb_shinfo(skb)->gso_segs ?: 1;
541 /* multiply data chunks by size of headers */
542 bytecount = ((segs - 1) * skb_headlen(skb)) +
543 skb->len;
544 total_tx_packets += segs;
545 total_tx_bytes += bytecount;
548 e1000_put_txbuf(adapter, buffer_info);
549 tx_desc->upper.data = 0;
551 i++;
552 if (i == tx_ring->count)
553 i = 0;
556 eop = tx_ring->buffer_info[i].next_to_watch;
557 eop_desc = E1000_TX_DESC(*tx_ring, eop);
558 #define E1000_TX_WEIGHT 64
559 /* weight of a sort for tx, to avoid endless transmit cleanup */
560 if (count++ == E1000_TX_WEIGHT)
561 break;
564 tx_ring->next_to_clean = i;
566 #define TX_WAKE_THRESHOLD 32
567 if (cleaned && netif_carrier_ok(netdev) &&
568 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
569 /* Make sure that anybody stopping the queue after this
570 * sees the new next_to_clean.
572 smp_mb();
574 if (netif_queue_stopped(netdev) &&
575 !(test_bit(__E1000_DOWN, &adapter->state))) {
576 netif_wake_queue(netdev);
577 ++adapter->restart_queue;
581 if (adapter->detect_tx_hung) {
582 /* Detect a transmit hang in hardware, this serializes the
583 * check with the clearing of time_stamp and movement of i */
584 adapter->detect_tx_hung = 0;
585 if (tx_ring->buffer_info[eop].dma &&
586 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
587 + (adapter->tx_timeout_factor * HZ))
588 && !(er32(STATUS) &
589 E1000_STATUS_TXOFF)) {
590 e1000_print_tx_hang(adapter);
591 netif_stop_queue(netdev);
594 adapter->total_tx_bytes += total_tx_bytes;
595 adapter->total_tx_packets += total_tx_packets;
596 return cleaned;
600 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
601 * @adapter: board private structure
603 * the return value indicates whether actual cleaning was done, there
604 * is no guarantee that everything was cleaned
606 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
607 int *work_done, int work_to_do)
609 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
610 struct net_device *netdev = adapter->netdev;
611 struct pci_dev *pdev = adapter->pdev;
612 struct e1000_ring *rx_ring = adapter->rx_ring;
613 struct e1000_buffer *buffer_info, *next_buffer;
614 struct e1000_ps_page *ps_page;
615 struct sk_buff *skb;
616 unsigned int i, j;
617 u32 length, staterr;
618 int cleaned_count = 0;
619 bool cleaned = 0;
620 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
622 i = rx_ring->next_to_clean;
623 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
624 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
625 buffer_info = &rx_ring->buffer_info[i];
627 while (staterr & E1000_RXD_STAT_DD) {
628 if (*work_done >= work_to_do)
629 break;
630 (*work_done)++;
631 skb = buffer_info->skb;
633 /* in the packet split case this is header only */
634 prefetch(skb->data - NET_IP_ALIGN);
636 i++;
637 if (i == rx_ring->count)
638 i = 0;
639 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
640 prefetch(next_rxd);
642 next_buffer = &rx_ring->buffer_info[i];
644 cleaned = 1;
645 cleaned_count++;
646 pci_unmap_single(pdev, buffer_info->dma,
647 adapter->rx_ps_bsize0,
648 PCI_DMA_FROMDEVICE);
649 buffer_info->dma = 0;
651 if (!(staterr & E1000_RXD_STAT_EOP)) {
652 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
653 "up the full packet\n", netdev->name);
654 dev_kfree_skb_irq(skb);
655 goto next_desc;
658 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
659 dev_kfree_skb_irq(skb);
660 goto next_desc;
663 length = le16_to_cpu(rx_desc->wb.middle.length0);
665 if (!length) {
666 ndev_dbg(netdev, "%s: Last part of the packet spanning"
667 " multiple descriptors\n", netdev->name);
668 dev_kfree_skb_irq(skb);
669 goto next_desc;
672 /* Good Receive */
673 skb_put(skb, length);
676 /* this looks ugly, but it seems compiler issues make it
677 more efficient than reusing j */
678 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
680 /* page alloc/put takes too long and effects small packet
681 * throughput, so unsplit small packets and save the alloc/put*/
682 if (l1 && (l1 <= copybreak) &&
683 ((length + l1) <= adapter->rx_ps_bsize0)) {
684 u8 *vaddr;
686 ps_page = &buffer_info->ps_pages[0];
688 /* there is no documentation about how to call
689 * kmap_atomic, so we can't hold the mapping
690 * very long */
691 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
692 PAGE_SIZE, PCI_DMA_FROMDEVICE);
693 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
694 memcpy(skb_tail_pointer(skb), vaddr, l1);
695 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
696 pci_dma_sync_single_for_device(pdev, ps_page->dma,
697 PAGE_SIZE, PCI_DMA_FROMDEVICE);
699 skb_put(skb, l1);
700 goto copydone;
701 } /* if */
704 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
705 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
706 if (!length)
707 break;
709 ps_page = &buffer_info->ps_pages[j];
710 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
711 PCI_DMA_FROMDEVICE);
712 ps_page->dma = 0;
713 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
714 ps_page->page = NULL;
715 skb->len += length;
716 skb->data_len += length;
717 skb->truesize += length;
720 copydone:
721 total_rx_bytes += skb->len;
722 total_rx_packets++;
724 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
725 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
727 if (rx_desc->wb.upper.header_status &
728 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
729 adapter->rx_hdr_split++;
731 e1000_receive_skb(adapter, netdev, skb,
732 staterr, rx_desc->wb.middle.vlan);
734 next_desc:
735 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
736 buffer_info->skb = NULL;
738 /* return some buffers to hardware, one at a time is too slow */
739 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
740 adapter->alloc_rx_buf(adapter, cleaned_count);
741 cleaned_count = 0;
744 /* use prefetched values */
745 rx_desc = next_rxd;
746 buffer_info = next_buffer;
748 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
750 rx_ring->next_to_clean = i;
752 cleaned_count = e1000_desc_unused(rx_ring);
753 if (cleaned_count)
754 adapter->alloc_rx_buf(adapter, cleaned_count);
756 adapter->total_rx_packets += total_rx_packets;
757 adapter->total_rx_bytes += total_rx_bytes;
758 return cleaned;
762 * e1000_clean_rx_ring - Free Rx Buffers per Queue
763 * @adapter: board private structure
765 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
767 struct e1000_ring *rx_ring = adapter->rx_ring;
768 struct e1000_buffer *buffer_info;
769 struct e1000_ps_page *ps_page;
770 struct pci_dev *pdev = adapter->pdev;
771 unsigned int i, j;
773 /* Free all the Rx ring sk_buffs */
774 for (i = 0; i < rx_ring->count; i++) {
775 buffer_info = &rx_ring->buffer_info[i];
776 if (buffer_info->dma) {
777 if (adapter->clean_rx == e1000_clean_rx_irq)
778 pci_unmap_single(pdev, buffer_info->dma,
779 adapter->rx_buffer_len,
780 PCI_DMA_FROMDEVICE);
781 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
782 pci_unmap_single(pdev, buffer_info->dma,
783 adapter->rx_ps_bsize0,
784 PCI_DMA_FROMDEVICE);
785 buffer_info->dma = 0;
788 if (buffer_info->skb) {
789 dev_kfree_skb(buffer_info->skb);
790 buffer_info->skb = NULL;
793 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
794 ps_page = &buffer_info->ps_pages[j];
795 if (!ps_page->page)
796 break;
797 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
798 PCI_DMA_FROMDEVICE);
799 ps_page->dma = 0;
800 put_page(ps_page->page);
801 ps_page->page = NULL;
805 /* there also may be some cached data from a chained receive */
806 if (rx_ring->rx_skb_top) {
807 dev_kfree_skb(rx_ring->rx_skb_top);
808 rx_ring->rx_skb_top = NULL;
811 /* Zero out the descriptor ring */
812 memset(rx_ring->desc, 0, rx_ring->size);
814 rx_ring->next_to_clean = 0;
815 rx_ring->next_to_use = 0;
817 writel(0, adapter->hw.hw_addr + rx_ring->head);
818 writel(0, adapter->hw.hw_addr + rx_ring->tail);
822 * e1000_intr_msi - Interrupt Handler
823 * @irq: interrupt number
824 * @data: pointer to a network interface device structure
826 static irqreturn_t e1000_intr_msi(int irq, void *data)
828 struct net_device *netdev = data;
829 struct e1000_adapter *adapter = netdev_priv(netdev);
830 struct e1000_hw *hw = &adapter->hw;
831 u32 icr = er32(ICR);
833 /* read ICR disables interrupts using IAM, so keep up with our
834 * enable/disable accounting */
835 atomic_inc(&adapter->irq_sem);
837 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
838 hw->mac.get_link_status = 1;
839 /* ICH8 workaround-- Call gig speed drop workaround on cable
840 * disconnect (LSC) before accessing any PHY registers */
841 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
842 (!(er32(STATUS) & E1000_STATUS_LU)))
843 e1000e_gig_downshift_workaround_ich8lan(hw);
845 /* 80003ES2LAN workaround-- For packet buffer work-around on
846 * link down event; disable receives here in the ISR and reset
847 * adapter in watchdog */
848 if (netif_carrier_ok(netdev) &&
849 adapter->flags & FLAG_RX_NEEDS_RESTART) {
850 /* disable receives */
851 u32 rctl = er32(RCTL);
852 ew32(RCTL, rctl & ~E1000_RCTL_EN);
854 /* guard against interrupt when we're going down */
855 if (!test_bit(__E1000_DOWN, &adapter->state))
856 mod_timer(&adapter->watchdog_timer, jiffies + 1);
859 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
860 adapter->total_tx_bytes = 0;
861 adapter->total_tx_packets = 0;
862 adapter->total_rx_bytes = 0;
863 adapter->total_rx_packets = 0;
864 __netif_rx_schedule(netdev, &adapter->napi);
865 } else {
866 atomic_dec(&adapter->irq_sem);
869 return IRQ_HANDLED;
873 * e1000_intr - Interrupt Handler
874 * @irq: interrupt number
875 * @data: pointer to a network interface device structure
877 static irqreturn_t e1000_intr(int irq, void *data)
879 struct net_device *netdev = data;
880 struct e1000_adapter *adapter = netdev_priv(netdev);
881 struct e1000_hw *hw = &adapter->hw;
883 u32 rctl, icr = er32(ICR);
884 if (!icr)
885 return IRQ_NONE; /* Not our interrupt */
887 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
888 * not set, then the adapter didn't send an interrupt */
889 if (!(icr & E1000_ICR_INT_ASSERTED))
890 return IRQ_NONE;
892 /* Interrupt Auto-Mask...upon reading ICR,
893 * interrupts are masked. No need for the
894 * IMC write, but it does mean we should
895 * account for it ASAP. */
896 atomic_inc(&adapter->irq_sem);
898 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
899 hw->mac.get_link_status = 1;
900 /* ICH8 workaround-- Call gig speed drop workaround on cable
901 * disconnect (LSC) before accessing any PHY registers */
902 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
903 (!(er32(STATUS) & E1000_STATUS_LU)))
904 e1000e_gig_downshift_workaround_ich8lan(hw);
906 /* 80003ES2LAN workaround--
907 * For packet buffer work-around on link down event;
908 * disable receives here in the ISR and
909 * reset adapter in watchdog
911 if (netif_carrier_ok(netdev) &&
912 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
913 /* disable receives */
914 rctl = er32(RCTL);
915 ew32(RCTL, rctl & ~E1000_RCTL_EN);
917 /* guard against interrupt when we're going down */
918 if (!test_bit(__E1000_DOWN, &adapter->state))
919 mod_timer(&adapter->watchdog_timer, jiffies + 1);
922 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
923 adapter->total_tx_bytes = 0;
924 adapter->total_tx_packets = 0;
925 adapter->total_rx_bytes = 0;
926 adapter->total_rx_packets = 0;
927 __netif_rx_schedule(netdev, &adapter->napi);
928 } else {
929 atomic_dec(&adapter->irq_sem);
932 return IRQ_HANDLED;
935 static int e1000_request_irq(struct e1000_adapter *adapter)
937 struct net_device *netdev = adapter->netdev;
938 void (*handler) = &e1000_intr;
939 int irq_flags = IRQF_SHARED;
940 int err;
942 err = pci_enable_msi(adapter->pdev);
943 if (err) {
944 ndev_warn(netdev,
945 "Unable to allocate MSI interrupt Error: %d\n", err);
946 } else {
947 adapter->flags |= FLAG_MSI_ENABLED;
948 handler = &e1000_intr_msi;
949 irq_flags = 0;
952 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
953 netdev);
954 if (err) {
955 if (adapter->flags & FLAG_MSI_ENABLED)
956 pci_disable_msi(adapter->pdev);
957 ndev_err(netdev,
958 "Unable to allocate interrupt Error: %d\n", err);
961 return err;
964 static void e1000_free_irq(struct e1000_adapter *adapter)
966 struct net_device *netdev = adapter->netdev;
968 free_irq(adapter->pdev->irq, netdev);
969 if (adapter->flags & FLAG_MSI_ENABLED) {
970 pci_disable_msi(adapter->pdev);
971 adapter->flags &= ~FLAG_MSI_ENABLED;
976 * e1000_irq_disable - Mask off interrupt generation on the NIC
978 static void e1000_irq_disable(struct e1000_adapter *adapter)
980 struct e1000_hw *hw = &adapter->hw;
982 atomic_inc(&adapter->irq_sem);
983 ew32(IMC, ~0);
984 e1e_flush();
985 synchronize_irq(adapter->pdev->irq);
989 * e1000_irq_enable - Enable default interrupt generation settings
991 static void e1000_irq_enable(struct e1000_adapter *adapter)
993 struct e1000_hw *hw = &adapter->hw;
995 if (atomic_dec_and_test(&adapter->irq_sem)) {
996 ew32(IMS, IMS_ENABLE_MASK);
997 e1e_flush();
1002 * e1000_get_hw_control - get control of the h/w from f/w
1003 * @adapter: address of board private structure
1005 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1006 * For ASF and Pass Through versions of f/w this means that
1007 * the driver is loaded. For AMT version (only with 82573)
1008 * of the f/w this means that the network i/f is open.
1010 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1012 struct e1000_hw *hw = &adapter->hw;
1013 u32 ctrl_ext;
1014 u32 swsm;
1016 /* Let firmware know the driver has taken over */
1017 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1018 swsm = er32(SWSM);
1019 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1020 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1021 ctrl_ext = er32(CTRL_EXT);
1022 ew32(CTRL_EXT,
1023 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1028 * e1000_release_hw_control - release control of the h/w to f/w
1029 * @adapter: address of board private structure
1031 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1032 * For ASF and Pass Through versions of f/w this means that the
1033 * driver is no longer loaded. For AMT version (only with 82573) i
1034 * of the f/w this means that the network i/f is closed.
1037 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1039 struct e1000_hw *hw = &adapter->hw;
1040 u32 ctrl_ext;
1041 u32 swsm;
1043 /* Let firmware taken over control of h/w */
1044 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1045 swsm = er32(SWSM);
1046 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1047 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1048 ctrl_ext = er32(CTRL_EXT);
1049 ew32(CTRL_EXT,
1050 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1054 static void e1000_release_manageability(struct e1000_adapter *adapter)
1056 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
1057 struct e1000_hw *hw = &adapter->hw;
1059 u32 manc = er32(MANC);
1061 /* re-enable hardware interception of ARP */
1062 manc |= E1000_MANC_ARP_EN;
1063 manc &= ~E1000_MANC_EN_MNG2HOST;
1065 /* don't explicitly have to mess with MANC2H since
1066 * MANC has an enable disable that gates MANC2H */
1067 ew32(MANC, manc);
1072 * @e1000_alloc_ring - allocate memory for a ring structure
1074 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1075 struct e1000_ring *ring)
1077 struct pci_dev *pdev = adapter->pdev;
1079 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1080 GFP_KERNEL);
1081 if (!ring->desc)
1082 return -ENOMEM;
1084 return 0;
1088 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1089 * @adapter: board private structure
1091 * Return 0 on success, negative on failure
1093 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1095 struct e1000_ring *tx_ring = adapter->tx_ring;
1096 int err = -ENOMEM, size;
1098 size = sizeof(struct e1000_buffer) * tx_ring->count;
1099 tx_ring->buffer_info = vmalloc(size);
1100 if (!tx_ring->buffer_info)
1101 goto err;
1102 memset(tx_ring->buffer_info, 0, size);
1104 /* round up to nearest 4K */
1105 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1106 tx_ring->size = ALIGN(tx_ring->size, 4096);
1108 err = e1000_alloc_ring_dma(adapter, tx_ring);
1109 if (err)
1110 goto err;
1112 tx_ring->next_to_use = 0;
1113 tx_ring->next_to_clean = 0;
1114 spin_lock_init(&adapter->tx_queue_lock);
1116 return 0;
1117 err:
1118 vfree(tx_ring->buffer_info);
1119 ndev_err(adapter->netdev,
1120 "Unable to allocate memory for the transmit descriptor ring\n");
1121 return err;
1125 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1126 * @adapter: board private structure
1128 * Returns 0 on success, negative on failure
1130 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1132 struct e1000_ring *rx_ring = adapter->rx_ring;
1133 struct e1000_buffer *buffer_info;
1134 int i, size, desc_len, err = -ENOMEM;
1136 size = sizeof(struct e1000_buffer) * rx_ring->count;
1137 rx_ring->buffer_info = vmalloc(size);
1138 if (!rx_ring->buffer_info)
1139 goto err;
1140 memset(rx_ring->buffer_info, 0, size);
1142 for (i = 0; i < rx_ring->count; i++) {
1143 buffer_info = &rx_ring->buffer_info[i];
1144 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1145 sizeof(struct e1000_ps_page),
1146 GFP_KERNEL);
1147 if (!buffer_info->ps_pages)
1148 goto err_pages;
1151 desc_len = sizeof(union e1000_rx_desc_packet_split);
1153 /* Round up to nearest 4K */
1154 rx_ring->size = rx_ring->count * desc_len;
1155 rx_ring->size = ALIGN(rx_ring->size, 4096);
1157 err = e1000_alloc_ring_dma(adapter, rx_ring);
1158 if (err)
1159 goto err_pages;
1161 rx_ring->next_to_clean = 0;
1162 rx_ring->next_to_use = 0;
1163 rx_ring->rx_skb_top = NULL;
1165 return 0;
1167 err_pages:
1168 for (i = 0; i < rx_ring->count; i++) {
1169 buffer_info = &rx_ring->buffer_info[i];
1170 kfree(buffer_info->ps_pages);
1172 err:
1173 vfree(rx_ring->buffer_info);
1174 ndev_err(adapter->netdev,
1175 "Unable to allocate memory for the transmit descriptor ring\n");
1176 return err;
1180 * e1000_clean_tx_ring - Free Tx Buffers
1181 * @adapter: board private structure
1183 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1185 struct e1000_ring *tx_ring = adapter->tx_ring;
1186 struct e1000_buffer *buffer_info;
1187 unsigned long size;
1188 unsigned int i;
1190 for (i = 0; i < tx_ring->count; i++) {
1191 buffer_info = &tx_ring->buffer_info[i];
1192 e1000_put_txbuf(adapter, buffer_info);
1195 size = sizeof(struct e1000_buffer) * tx_ring->count;
1196 memset(tx_ring->buffer_info, 0, size);
1198 memset(tx_ring->desc, 0, tx_ring->size);
1200 tx_ring->next_to_use = 0;
1201 tx_ring->next_to_clean = 0;
1203 writel(0, adapter->hw.hw_addr + tx_ring->head);
1204 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1208 * e1000e_free_tx_resources - Free Tx Resources per Queue
1209 * @adapter: board private structure
1211 * Free all transmit software resources
1213 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1215 struct pci_dev *pdev = adapter->pdev;
1216 struct e1000_ring *tx_ring = adapter->tx_ring;
1218 e1000_clean_tx_ring(adapter);
1220 vfree(tx_ring->buffer_info);
1221 tx_ring->buffer_info = NULL;
1223 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1224 tx_ring->dma);
1225 tx_ring->desc = NULL;
1229 * e1000e_free_rx_resources - Free Rx Resources
1230 * @adapter: board private structure
1232 * Free all receive software resources
1235 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1237 struct pci_dev *pdev = adapter->pdev;
1238 struct e1000_ring *rx_ring = adapter->rx_ring;
1239 int i;
1241 e1000_clean_rx_ring(adapter);
1243 for (i = 0; i < rx_ring->count; i++) {
1244 kfree(rx_ring->buffer_info[i].ps_pages);
1247 vfree(rx_ring->buffer_info);
1248 rx_ring->buffer_info = NULL;
1250 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1251 rx_ring->dma);
1252 rx_ring->desc = NULL;
1256 * e1000_update_itr - update the dynamic ITR value based on statistics
1257 * Stores a new ITR value based on packets and byte
1258 * counts during the last interrupt. The advantage of per interrupt
1259 * computation is faster updates and more accurate ITR for the current
1260 * traffic pattern. Constants in this function were computed
1261 * based on theoretical maximum wire speed and thresholds were set based
1262 * on testing data as well as attempting to minimize response time
1263 * while increasing bulk throughput.
1264 * this functionality is controlled by the InterruptThrottleRate module
1265 * parameter (see e1000_param.c)
1266 * @adapter: pointer to adapter
1267 * @itr_setting: current adapter->itr
1268 * @packets: the number of packets during this measurement interval
1269 * @bytes: the number of bytes during this measurement interval
1271 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1272 u16 itr_setting, int packets,
1273 int bytes)
1275 unsigned int retval = itr_setting;
1277 if (packets == 0)
1278 goto update_itr_done;
1280 switch (itr_setting) {
1281 case lowest_latency:
1282 /* handle TSO and jumbo frames */
1283 if (bytes/packets > 8000)
1284 retval = bulk_latency;
1285 else if ((packets < 5) && (bytes > 512)) {
1286 retval = low_latency;
1288 break;
1289 case low_latency: /* 50 usec aka 20000 ints/s */
1290 if (bytes > 10000) {
1291 /* this if handles the TSO accounting */
1292 if (bytes/packets > 8000) {
1293 retval = bulk_latency;
1294 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1295 retval = bulk_latency;
1296 } else if ((packets > 35)) {
1297 retval = lowest_latency;
1299 } else if (bytes/packets > 2000) {
1300 retval = bulk_latency;
1301 } else if (packets <= 2 && bytes < 512) {
1302 retval = lowest_latency;
1304 break;
1305 case bulk_latency: /* 250 usec aka 4000 ints/s */
1306 if (bytes > 25000) {
1307 if (packets > 35) {
1308 retval = low_latency;
1310 } else if (bytes < 6000) {
1311 retval = low_latency;
1313 break;
1316 update_itr_done:
1317 return retval;
1320 static void e1000_set_itr(struct e1000_adapter *adapter)
1322 struct e1000_hw *hw = &adapter->hw;
1323 u16 current_itr;
1324 u32 new_itr = adapter->itr;
1326 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1327 if (adapter->link_speed != SPEED_1000) {
1328 current_itr = 0;
1329 new_itr = 4000;
1330 goto set_itr_now;
1333 adapter->tx_itr = e1000_update_itr(adapter,
1334 adapter->tx_itr,
1335 adapter->total_tx_packets,
1336 adapter->total_tx_bytes);
1337 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1338 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1339 adapter->tx_itr = low_latency;
1341 adapter->rx_itr = e1000_update_itr(adapter,
1342 adapter->rx_itr,
1343 adapter->total_rx_packets,
1344 adapter->total_rx_bytes);
1345 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1346 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1347 adapter->rx_itr = low_latency;
1349 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1351 switch (current_itr) {
1352 /* counts and packets in update_itr are dependent on these numbers */
1353 case lowest_latency:
1354 new_itr = 70000;
1355 break;
1356 case low_latency:
1357 new_itr = 20000; /* aka hwitr = ~200 */
1358 break;
1359 case bulk_latency:
1360 new_itr = 4000;
1361 break;
1362 default:
1363 break;
1366 set_itr_now:
1367 if (new_itr != adapter->itr) {
1368 /* this attempts to bias the interrupt rate towards Bulk
1369 * by adding intermediate steps when interrupt rate is
1370 * increasing */
1371 new_itr = new_itr > adapter->itr ?
1372 min(adapter->itr + (new_itr >> 2), new_itr) :
1373 new_itr;
1374 adapter->itr = new_itr;
1375 ew32(ITR, 1000000000 / (new_itr * 256));
1380 * e1000_clean - NAPI Rx polling callback
1381 * @adapter: board private structure
1383 static int e1000_clean(struct napi_struct *napi, int budget)
1385 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1386 struct net_device *poll_dev = adapter->netdev;
1387 int tx_cleaned = 0, work_done = 0;
1389 /* Must NOT use netdev_priv macro here. */
1390 adapter = poll_dev->priv;
1392 /* Keep link state information with original netdev */
1393 if (!netif_carrier_ok(poll_dev))
1394 goto quit_polling;
1396 /* e1000_clean is called per-cpu. This lock protects
1397 * tx_ring from being cleaned by multiple cpus
1398 * simultaneously. A failure obtaining the lock means
1399 * tx_ring is currently being cleaned anyway. */
1400 if (spin_trylock(&adapter->tx_queue_lock)) {
1401 tx_cleaned = e1000_clean_tx_irq(adapter);
1402 spin_unlock(&adapter->tx_queue_lock);
1405 adapter->clean_rx(adapter, &work_done, budget);
1407 /* If no Tx and not enough Rx work done, exit the polling mode */
1408 if ((!tx_cleaned && (work_done < budget)) ||
1409 !netif_running(poll_dev)) {
1410 quit_polling:
1411 if (adapter->itr_setting & 3)
1412 e1000_set_itr(adapter);
1413 netif_rx_complete(poll_dev, napi);
1414 e1000_irq_enable(adapter);
1417 return work_done;
1420 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1422 struct e1000_adapter *adapter = netdev_priv(netdev);
1423 struct e1000_hw *hw = &adapter->hw;
1424 u32 vfta, index;
1426 /* don't update vlan cookie if already programmed */
1427 if ((adapter->hw.mng_cookie.status &
1428 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1429 (vid == adapter->mng_vlan_id))
1430 return;
1431 /* add VID to filter table */
1432 index = (vid >> 5) & 0x7F;
1433 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1434 vfta |= (1 << (vid & 0x1F));
1435 e1000e_write_vfta(hw, index, vfta);
1438 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1440 struct e1000_adapter *adapter = netdev_priv(netdev);
1441 struct e1000_hw *hw = &adapter->hw;
1442 u32 vfta, index;
1444 e1000_irq_disable(adapter);
1445 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1446 e1000_irq_enable(adapter);
1448 if ((adapter->hw.mng_cookie.status &
1449 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1450 (vid == adapter->mng_vlan_id)) {
1451 /* release control to f/w */
1452 e1000_release_hw_control(adapter);
1453 return;
1456 /* remove VID from filter table */
1457 index = (vid >> 5) & 0x7F;
1458 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1459 vfta &= ~(1 << (vid & 0x1F));
1460 e1000e_write_vfta(hw, index, vfta);
1463 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1465 struct net_device *netdev = adapter->netdev;
1466 u16 vid = adapter->hw.mng_cookie.vlan_id;
1467 u16 old_vid = adapter->mng_vlan_id;
1469 if (!adapter->vlgrp)
1470 return;
1472 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1473 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1474 if (adapter->hw.mng_cookie.status &
1475 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1476 e1000_vlan_rx_add_vid(netdev, vid);
1477 adapter->mng_vlan_id = vid;
1480 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1481 (vid != old_vid) &&
1482 !vlan_group_get_device(adapter->vlgrp, old_vid))
1483 e1000_vlan_rx_kill_vid(netdev, old_vid);
1484 } else {
1485 adapter->mng_vlan_id = vid;
1490 static void e1000_vlan_rx_register(struct net_device *netdev,
1491 struct vlan_group *grp)
1493 struct e1000_adapter *adapter = netdev_priv(netdev);
1494 struct e1000_hw *hw = &adapter->hw;
1495 u32 ctrl, rctl;
1497 e1000_irq_disable(adapter);
1498 adapter->vlgrp = grp;
1500 if (grp) {
1501 /* enable VLAN tag insert/strip */
1502 ctrl = er32(CTRL);
1503 ctrl |= E1000_CTRL_VME;
1504 ew32(CTRL, ctrl);
1506 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1507 /* enable VLAN receive filtering */
1508 rctl = er32(RCTL);
1509 rctl |= E1000_RCTL_VFE;
1510 rctl &= ~E1000_RCTL_CFIEN;
1511 ew32(RCTL, rctl);
1512 e1000_update_mng_vlan(adapter);
1514 } else {
1515 /* disable VLAN tag insert/strip */
1516 ctrl = er32(CTRL);
1517 ctrl &= ~E1000_CTRL_VME;
1518 ew32(CTRL, ctrl);
1520 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1521 /* disable VLAN filtering */
1522 rctl = er32(RCTL);
1523 rctl &= ~E1000_RCTL_VFE;
1524 ew32(RCTL, rctl);
1525 if (adapter->mng_vlan_id !=
1526 (u16)E1000_MNG_VLAN_NONE) {
1527 e1000_vlan_rx_kill_vid(netdev,
1528 adapter->mng_vlan_id);
1529 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1534 e1000_irq_enable(adapter);
1537 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1539 u16 vid;
1541 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1543 if (!adapter->vlgrp)
1544 return;
1546 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1547 if (!vlan_group_get_device(adapter->vlgrp, vid))
1548 continue;
1549 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1553 static void e1000_init_manageability(struct e1000_adapter *adapter)
1555 struct e1000_hw *hw = &adapter->hw;
1556 u32 manc, manc2h;
1558 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1559 return;
1561 manc = er32(MANC);
1563 /* disable hardware interception of ARP */
1564 manc &= ~(E1000_MANC_ARP_EN);
1566 /* enable receiving management packets to the host. this will probably
1567 * generate destination unreachable messages from the host OS, but
1568 * the packets will be handled on SMBUS */
1569 manc |= E1000_MANC_EN_MNG2HOST;
1570 manc2h = er32(MANC2H);
1571 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1572 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1573 manc2h |= E1000_MNG2HOST_PORT_623;
1574 manc2h |= E1000_MNG2HOST_PORT_664;
1575 ew32(MANC2H, manc2h);
1576 ew32(MANC, manc);
1580 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1581 * @adapter: board private structure
1583 * Configure the Tx unit of the MAC after a reset.
1585 static void e1000_configure_tx(struct e1000_adapter *adapter)
1587 struct e1000_hw *hw = &adapter->hw;
1588 struct e1000_ring *tx_ring = adapter->tx_ring;
1589 u64 tdba;
1590 u32 tdlen, tctl, tipg, tarc;
1591 u32 ipgr1, ipgr2;
1593 /* Setup the HW Tx Head and Tail descriptor pointers */
1594 tdba = tx_ring->dma;
1595 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1596 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1597 ew32(TDBAH, (tdba >> 32));
1598 ew32(TDLEN, tdlen);
1599 ew32(TDH, 0);
1600 ew32(TDT, 0);
1601 tx_ring->head = E1000_TDH;
1602 tx_ring->tail = E1000_TDT;
1604 /* Set the default values for the Tx Inter Packet Gap timer */
1605 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1606 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1607 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1609 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1610 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1612 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1613 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1614 ew32(TIPG, tipg);
1616 /* Set the Tx Interrupt Delay register */
1617 ew32(TIDV, adapter->tx_int_delay);
1618 /* tx irq moderation */
1619 ew32(TADV, adapter->tx_abs_int_delay);
1621 /* Program the Transmit Control Register */
1622 tctl = er32(TCTL);
1623 tctl &= ~E1000_TCTL_CT;
1624 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1625 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1627 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1628 tarc = er32(TARC0);
1629 /* set the speed mode bit, we'll clear it if we're not at
1630 * gigabit link later */
1631 #define SPEED_MODE_BIT (1 << 21)
1632 tarc |= SPEED_MODE_BIT;
1633 ew32(TARC0, tarc);
1636 /* errata: program both queues to unweighted RR */
1637 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1638 tarc = er32(TARC0);
1639 tarc |= 1;
1640 ew32(TARC0, tarc);
1641 tarc = er32(TARC1);
1642 tarc |= 1;
1643 ew32(TARC1, tarc);
1646 e1000e_config_collision_dist(hw);
1648 /* Setup Transmit Descriptor Settings for eop descriptor */
1649 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1651 /* only set IDE if we are delaying interrupts using the timers */
1652 if (adapter->tx_int_delay)
1653 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1655 /* enable Report Status bit */
1656 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1658 ew32(TCTL, tctl);
1660 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1664 * e1000_setup_rctl - configure the receive control registers
1665 * @adapter: Board private structure
1667 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1668 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1669 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1671 struct e1000_hw *hw = &adapter->hw;
1672 u32 rctl, rfctl;
1673 u32 psrctl = 0;
1674 u32 pages = 0;
1676 /* Program MC offset vector base */
1677 rctl = er32(RCTL);
1678 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1679 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1680 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1681 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1683 /* Do not Store bad packets */
1684 rctl &= ~E1000_RCTL_SBP;
1686 /* Enable Long Packet receive */
1687 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1688 rctl &= ~E1000_RCTL_LPE;
1689 else
1690 rctl |= E1000_RCTL_LPE;
1692 /* Setup buffer sizes */
1693 rctl &= ~E1000_RCTL_SZ_4096;
1694 rctl |= E1000_RCTL_BSEX;
1695 switch (adapter->rx_buffer_len) {
1696 case 256:
1697 rctl |= E1000_RCTL_SZ_256;
1698 rctl &= ~E1000_RCTL_BSEX;
1699 break;
1700 case 512:
1701 rctl |= E1000_RCTL_SZ_512;
1702 rctl &= ~E1000_RCTL_BSEX;
1703 break;
1704 case 1024:
1705 rctl |= E1000_RCTL_SZ_1024;
1706 rctl &= ~E1000_RCTL_BSEX;
1707 break;
1708 case 2048:
1709 default:
1710 rctl |= E1000_RCTL_SZ_2048;
1711 rctl &= ~E1000_RCTL_BSEX;
1712 break;
1713 case 4096:
1714 rctl |= E1000_RCTL_SZ_4096;
1715 break;
1716 case 8192:
1717 rctl |= E1000_RCTL_SZ_8192;
1718 break;
1719 case 16384:
1720 rctl |= E1000_RCTL_SZ_16384;
1721 break;
1725 * 82571 and greater support packet-split where the protocol
1726 * header is placed in skb->data and the packet data is
1727 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1728 * In the case of a non-split, skb->data is linearly filled,
1729 * followed by the page buffers. Therefore, skb->data is
1730 * sized to hold the largest protocol header.
1732 * allocations using alloc_page take too long for regular MTU
1733 * so only enable packet split for jumbo frames
1735 * Using pages when the page size is greater than 16k wastes
1736 * a lot of memory, since we allocate 3 pages at all times
1737 * per packet.
1739 adapter->rx_ps_pages = 0;
1740 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1741 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1742 adapter->rx_ps_pages = pages;
1744 if (adapter->rx_ps_pages) {
1745 /* Configure extra packet-split registers */
1746 rfctl = er32(RFCTL);
1747 rfctl |= E1000_RFCTL_EXTEN;
1748 /* disable packet split support for IPv6 extension headers,
1749 * because some malformed IPv6 headers can hang the RX */
1750 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1751 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1753 ew32(RFCTL, rfctl);
1755 /* Enable Packet split descriptors */
1756 rctl |= E1000_RCTL_DTYP_PS;
1758 /* Enable hardware CRC frame stripping */
1759 rctl |= E1000_RCTL_SECRC;
1761 psrctl |= adapter->rx_ps_bsize0 >>
1762 E1000_PSRCTL_BSIZE0_SHIFT;
1764 switch (adapter->rx_ps_pages) {
1765 case 3:
1766 psrctl |= PAGE_SIZE <<
1767 E1000_PSRCTL_BSIZE3_SHIFT;
1768 case 2:
1769 psrctl |= PAGE_SIZE <<
1770 E1000_PSRCTL_BSIZE2_SHIFT;
1771 case 1:
1772 psrctl |= PAGE_SIZE >>
1773 E1000_PSRCTL_BSIZE1_SHIFT;
1774 break;
1777 ew32(PSRCTL, psrctl);
1780 ew32(RCTL, rctl);
1784 * e1000_configure_rx - Configure Receive Unit after Reset
1785 * @adapter: board private structure
1787 * Configure the Rx unit of the MAC after a reset.
1789 static void e1000_configure_rx(struct e1000_adapter *adapter)
1791 struct e1000_hw *hw = &adapter->hw;
1792 struct e1000_ring *rx_ring = adapter->rx_ring;
1793 u64 rdba;
1794 u32 rdlen, rctl, rxcsum, ctrl_ext;
1796 if (adapter->rx_ps_pages) {
1797 /* this is a 32 byte descriptor */
1798 rdlen = rx_ring->count *
1799 sizeof(union e1000_rx_desc_packet_split);
1800 adapter->clean_rx = e1000_clean_rx_irq_ps;
1801 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1802 } else {
1803 rdlen = rx_ring->count *
1804 sizeof(struct e1000_rx_desc);
1805 adapter->clean_rx = e1000_clean_rx_irq;
1806 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1809 /* disable receives while setting up the descriptors */
1810 rctl = er32(RCTL);
1811 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1812 e1e_flush();
1813 msleep(10);
1815 /* set the Receive Delay Timer Register */
1816 ew32(RDTR, adapter->rx_int_delay);
1818 /* irq moderation */
1819 ew32(RADV, adapter->rx_abs_int_delay);
1820 if (adapter->itr_setting != 0)
1821 ew32(ITR,
1822 1000000000 / (adapter->itr * 256));
1824 ctrl_ext = er32(CTRL_EXT);
1825 /* Reset delay timers after every interrupt */
1826 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1827 /* Auto-Mask interrupts upon ICR access */
1828 ctrl_ext |= E1000_CTRL_EXT_IAME;
1829 ew32(IAM, 0xffffffff);
1830 ew32(CTRL_EXT, ctrl_ext);
1831 e1e_flush();
1833 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1834 * the Base and Length of the Rx Descriptor Ring */
1835 rdba = rx_ring->dma;
1836 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
1837 ew32(RDBAH, (rdba >> 32));
1838 ew32(RDLEN, rdlen);
1839 ew32(RDH, 0);
1840 ew32(RDT, 0);
1841 rx_ring->head = E1000_RDH;
1842 rx_ring->tail = E1000_RDT;
1844 /* Enable Receive Checksum Offload for TCP and UDP */
1845 rxcsum = er32(RXCSUM);
1846 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
1847 rxcsum |= E1000_RXCSUM_TUOFL;
1849 /* IPv4 payload checksum for UDP fragments must be
1850 * used in conjunction with packet-split. */
1851 if (adapter->rx_ps_pages)
1852 rxcsum |= E1000_RXCSUM_IPPCSE;
1853 } else {
1854 rxcsum &= ~E1000_RXCSUM_TUOFL;
1855 /* no need to clear IPPCSE as it defaults to 0 */
1857 ew32(RXCSUM, rxcsum);
1859 /* Enable early receives on supported devices, only takes effect when
1860 * packet size is equal or larger than the specified value (in 8 byte
1861 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
1862 if ((adapter->flags & FLAG_HAS_ERT) &&
1863 (adapter->netdev->mtu > ETH_DATA_LEN))
1864 ew32(ERT, E1000_ERT_2048);
1866 /* Enable Receives */
1867 ew32(RCTL, rctl);
1871 * e1000_mc_addr_list_update - Update Multicast addresses
1872 * @hw: pointer to the HW structure
1873 * @mc_addr_list: array of multicast addresses to program
1874 * @mc_addr_count: number of multicast addresses to program
1875 * @rar_used_count: the first RAR register free to program
1876 * @rar_count: total number of supported Receive Address Registers
1878 * Updates the Receive Address Registers and Multicast Table Array.
1879 * The caller must have a packed mc_addr_list of multicast addresses.
1880 * The parameter rar_count will usually be hw->mac.rar_entry_count
1881 * unless there are workarounds that change this. Currently no func pointer
1882 * exists and all implementations are handled in the generic version of this
1883 * function.
1885 static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
1886 u32 mc_addr_count, u32 rar_used_count,
1887 u32 rar_count)
1889 hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
1890 rar_used_count, rar_count);
1894 * e1000_set_multi - Multicast and Promiscuous mode set
1895 * @netdev: network interface device structure
1897 * The set_multi entry point is called whenever the multicast address
1898 * list or the network interface flags are updated. This routine is
1899 * responsible for configuring the hardware for proper multicast,
1900 * promiscuous mode, and all-multi behavior.
1902 static void e1000_set_multi(struct net_device *netdev)
1904 struct e1000_adapter *adapter = netdev_priv(netdev);
1905 struct e1000_hw *hw = &adapter->hw;
1906 struct e1000_mac_info *mac = &hw->mac;
1907 struct dev_mc_list *mc_ptr;
1908 u8 *mta_list;
1909 u32 rctl;
1910 int i;
1912 /* Check for Promiscuous and All Multicast modes */
1914 rctl = er32(RCTL);
1916 if (netdev->flags & IFF_PROMISC) {
1917 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1918 } else if (netdev->flags & IFF_ALLMULTI) {
1919 rctl |= E1000_RCTL_MPE;
1920 rctl &= ~E1000_RCTL_UPE;
1921 } else {
1922 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1925 ew32(RCTL, rctl);
1927 if (netdev->mc_count) {
1928 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1929 if (!mta_list)
1930 return;
1932 /* prepare a packed array of only addresses. */
1933 mc_ptr = netdev->mc_list;
1935 for (i = 0; i < netdev->mc_count; i++) {
1936 if (!mc_ptr)
1937 break;
1938 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1939 ETH_ALEN);
1940 mc_ptr = mc_ptr->next;
1943 e1000_mc_addr_list_update(hw, mta_list, i, 1,
1944 mac->rar_entry_count);
1945 kfree(mta_list);
1946 } else {
1948 * if we're called from probe, we might not have
1949 * anything to do here, so clear out the list
1951 e1000_mc_addr_list_update(hw, NULL, 0, 1,
1952 mac->rar_entry_count);
1957 * e1000_configure - configure the hardware for RX and TX
1958 * @adapter: private board structure
1960 static void e1000_configure(struct e1000_adapter *adapter)
1962 e1000_set_multi(adapter->netdev);
1964 e1000_restore_vlan(adapter);
1965 e1000_init_manageability(adapter);
1967 e1000_configure_tx(adapter);
1968 e1000_setup_rctl(adapter);
1969 e1000_configure_rx(adapter);
1970 adapter->alloc_rx_buf(adapter,
1971 e1000_desc_unused(adapter->rx_ring));
1975 * e1000e_power_up_phy - restore link in case the phy was powered down
1976 * @adapter: address of board private structure
1978 * The phy may be powered down to save power and turn off link when the
1979 * driver is unloaded and wake on lan is not enabled (among others)
1980 * *** this routine MUST be followed by a call to e1000e_reset ***
1982 void e1000e_power_up_phy(struct e1000_adapter *adapter)
1984 u16 mii_reg = 0;
1986 /* Just clear the power down bit to wake the phy back up */
1987 if (adapter->hw.media_type == e1000_media_type_copper) {
1988 /* according to the manual, the phy will retain its
1989 * settings across a power-down/up cycle */
1990 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
1991 mii_reg &= ~MII_CR_POWER_DOWN;
1992 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
1995 adapter->hw.mac.ops.setup_link(&adapter->hw);
1999 * e1000_power_down_phy - Power down the PHY
2001 * Power down the PHY so no link is implied when interface is down
2002 * The PHY cannot be powered down is management or WoL is active
2004 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2006 struct e1000_hw *hw = &adapter->hw;
2007 u16 mii_reg;
2009 /* WoL is enabled */
2010 if (!adapter->wol)
2011 return;
2013 /* non-copper PHY? */
2014 if (adapter->hw.media_type != e1000_media_type_copper)
2015 return;
2017 /* reset is blocked because of a SoL/IDER session */
2018 if (e1000e_check_mng_mode(hw) ||
2019 e1000_check_reset_block(hw))
2020 return;
2022 /* managebility (AMT) is enabled */
2023 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2024 return;
2026 /* power down the PHY */
2027 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2028 mii_reg |= MII_CR_POWER_DOWN;
2029 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2030 mdelay(1);
2034 * e1000e_reset - bring the hardware into a known good state
2036 * This function boots the hardware and enables some settings that
2037 * require a configuration cycle of the hardware - those cannot be
2038 * set/changed during runtime. After reset the device needs to be
2039 * properly configured for rx, tx etc.
2041 void e1000e_reset(struct e1000_adapter *adapter)
2043 struct e1000_mac_info *mac = &adapter->hw.mac;
2044 struct e1000_hw *hw = &adapter->hw;
2045 u32 tx_space, min_tx_space, min_rx_space;
2046 u32 pba;
2047 u16 hwm;
2049 ew32(PBA, adapter->pba);
2051 if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
2052 /* To maintain wire speed transmits, the Tx FIFO should be
2053 * large enough to accommodate two full transmit packets,
2054 * rounded up to the next 1KB and expressed in KB. Likewise,
2055 * the Rx FIFO should be large enough to accommodate at least
2056 * one full receive packet and is similarly rounded up and
2057 * expressed in KB. */
2058 pba = er32(PBA);
2059 /* upper 16 bits has Tx packet buffer allocation size in KB */
2060 tx_space = pba >> 16;
2061 /* lower 16 bits has Rx packet buffer allocation size in KB */
2062 pba &= 0xffff;
2063 /* the tx fifo also stores 16 bytes of information about the tx
2064 * but don't include ethernet FCS because hardware appends it */
2065 min_tx_space = (mac->max_frame_size +
2066 sizeof(struct e1000_tx_desc) -
2067 ETH_FCS_LEN) * 2;
2068 min_tx_space = ALIGN(min_tx_space, 1024);
2069 min_tx_space >>= 10;
2070 /* software strips receive CRC, so leave room for it */
2071 min_rx_space = mac->max_frame_size;
2072 min_rx_space = ALIGN(min_rx_space, 1024);
2073 min_rx_space >>= 10;
2075 /* If current Tx allocation is less than the min Tx FIFO size,
2076 * and the min Tx FIFO size is less than the current Rx FIFO
2077 * allocation, take space away from current Rx allocation */
2078 if ((tx_space < min_tx_space) &&
2079 ((min_tx_space - tx_space) < pba)) {
2080 pba -= min_tx_space - tx_space;
2082 /* if short on rx space, rx wins and must trump tx
2083 * adjustment or use Early Receive if available */
2084 if ((pba < min_rx_space) &&
2085 (!(adapter->flags & FLAG_HAS_ERT)))
2086 /* ERT enabled in e1000_configure_rx */
2087 pba = min_rx_space;
2090 ew32(PBA, pba);
2094 /* flow control settings */
2095 /* The high water mark must be low enough to fit one full frame
2096 * (or the size used for early receive) above it in the Rx FIFO.
2097 * Set it to the lower of:
2098 * - 90% of the Rx FIFO size, and
2099 * - the full Rx FIFO size minus the early receive size (for parts
2100 * with ERT support assuming ERT set to E1000_ERT_2048), or
2101 * - the full Rx FIFO size minus one full frame */
2102 if (adapter->flags & FLAG_HAS_ERT)
2103 hwm = min(((adapter->pba << 10) * 9 / 10),
2104 ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
2105 else
2106 hwm = min(((adapter->pba << 10) * 9 / 10),
2107 ((adapter->pba << 10) - mac->max_frame_size));
2109 mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
2110 mac->fc_low_water = mac->fc_high_water - 8;
2112 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2113 mac->fc_pause_time = 0xFFFF;
2114 else
2115 mac->fc_pause_time = E1000_FC_PAUSE_TIME;
2116 mac->fc = mac->original_fc;
2118 /* Allow time for pending master requests to run */
2119 mac->ops.reset_hw(hw);
2120 ew32(WUC, 0);
2122 if (mac->ops.init_hw(hw))
2123 ndev_err(adapter->netdev, "Hardware Error\n");
2125 e1000_update_mng_vlan(adapter);
2127 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2128 ew32(VET, ETH_P_8021Q);
2130 e1000e_reset_adaptive(hw);
2131 e1000_get_phy_info(hw);
2133 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2134 u16 phy_data = 0;
2135 /* speed up time to link by disabling smart power down, ignore
2136 * the return value of this function because there is nothing
2137 * different we would do if it failed */
2138 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2139 phy_data &= ~IGP02E1000_PM_SPD;
2140 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2143 e1000_release_manageability(adapter);
2146 int e1000e_up(struct e1000_adapter *adapter)
2148 struct e1000_hw *hw = &adapter->hw;
2150 /* hardware has been reset, we need to reload some things */
2151 e1000_configure(adapter);
2153 clear_bit(__E1000_DOWN, &adapter->state);
2155 napi_enable(&adapter->napi);
2156 e1000_irq_enable(adapter);
2158 /* fire a link change interrupt to start the watchdog */
2159 ew32(ICS, E1000_ICS_LSC);
2160 return 0;
2163 void e1000e_down(struct e1000_adapter *adapter)
2165 struct net_device *netdev = adapter->netdev;
2166 struct e1000_hw *hw = &adapter->hw;
2167 u32 tctl, rctl;
2169 /* signal that we're down so the interrupt handler does not
2170 * reschedule our watchdog timer */
2171 set_bit(__E1000_DOWN, &adapter->state);
2173 /* disable receives in the hardware */
2174 rctl = er32(RCTL);
2175 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2176 /* flush and sleep below */
2178 netif_stop_queue(netdev);
2180 /* disable transmits in the hardware */
2181 tctl = er32(TCTL);
2182 tctl &= ~E1000_TCTL_EN;
2183 ew32(TCTL, tctl);
2184 /* flush both disables and wait for them to finish */
2185 e1e_flush();
2186 msleep(10);
2188 napi_disable(&adapter->napi);
2189 e1000_irq_disable(adapter);
2191 del_timer_sync(&adapter->watchdog_timer);
2192 del_timer_sync(&adapter->phy_info_timer);
2194 netdev->tx_queue_len = adapter->tx_queue_len;
2195 netif_carrier_off(netdev);
2196 adapter->link_speed = 0;
2197 adapter->link_duplex = 0;
2199 e1000e_reset(adapter);
2200 e1000_clean_tx_ring(adapter);
2201 e1000_clean_rx_ring(adapter);
2204 * TODO: for power management, we could drop the link and
2205 * pci_disable_device here.
2209 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2211 might_sleep();
2212 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2213 msleep(1);
2214 e1000e_down(adapter);
2215 e1000e_up(adapter);
2216 clear_bit(__E1000_RESETTING, &adapter->state);
2220 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2221 * @adapter: board private structure to initialize
2223 * e1000_sw_init initializes the Adapter private data structure.
2224 * Fields are initialized based on PCI device information and
2225 * OS network device settings (MTU size).
2227 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2229 struct e1000_hw *hw = &adapter->hw;
2230 struct net_device *netdev = adapter->netdev;
2232 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2233 adapter->rx_ps_bsize0 = 128;
2234 hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2235 hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2237 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2238 if (!adapter->tx_ring)
2239 goto err;
2241 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2242 if (!adapter->rx_ring)
2243 goto err;
2245 spin_lock_init(&adapter->tx_queue_lock);
2247 /* Explicitly disable IRQ since the NIC can be in any state. */
2248 atomic_set(&adapter->irq_sem, 0);
2249 e1000_irq_disable(adapter);
2251 spin_lock_init(&adapter->stats_lock);
2253 set_bit(__E1000_DOWN, &adapter->state);
2254 return 0;
2256 err:
2257 ndev_err(netdev, "Unable to allocate memory for queues\n");
2258 kfree(adapter->rx_ring);
2259 kfree(adapter->tx_ring);
2260 return -ENOMEM;
2264 * e1000_open - Called when a network interface is made active
2265 * @netdev: network interface device structure
2267 * Returns 0 on success, negative value on failure
2269 * The open entry point is called when a network interface is made
2270 * active by the system (IFF_UP). At this point all resources needed
2271 * for transmit and receive operations are allocated, the interrupt
2272 * handler is registered with the OS, the watchdog timer is started,
2273 * and the stack is notified that the interface is ready.
2275 static int e1000_open(struct net_device *netdev)
2277 struct e1000_adapter *adapter = netdev_priv(netdev);
2278 struct e1000_hw *hw = &adapter->hw;
2279 int err;
2281 /* disallow open during test */
2282 if (test_bit(__E1000_TESTING, &adapter->state))
2283 return -EBUSY;
2285 /* allocate transmit descriptors */
2286 err = e1000e_setup_tx_resources(adapter);
2287 if (err)
2288 goto err_setup_tx;
2290 /* allocate receive descriptors */
2291 err = e1000e_setup_rx_resources(adapter);
2292 if (err)
2293 goto err_setup_rx;
2295 e1000e_power_up_phy(adapter);
2297 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2298 if ((adapter->hw.mng_cookie.status &
2299 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2300 e1000_update_mng_vlan(adapter);
2302 /* If AMT is enabled, let the firmware know that the network
2303 * interface is now open */
2304 if ((adapter->flags & FLAG_HAS_AMT) &&
2305 e1000e_check_mng_mode(&adapter->hw))
2306 e1000_get_hw_control(adapter);
2308 /* before we allocate an interrupt, we must be ready to handle it.
2309 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2310 * as soon as we call pci_request_irq, so we have to setup our
2311 * clean_rx handler before we do so. */
2312 e1000_configure(adapter);
2314 err = e1000_request_irq(adapter);
2315 if (err)
2316 goto err_req_irq;
2318 /* From here on the code is the same as e1000e_up() */
2319 clear_bit(__E1000_DOWN, &adapter->state);
2321 napi_enable(&adapter->napi);
2323 e1000_irq_enable(adapter);
2325 /* fire a link status change interrupt to start the watchdog */
2326 ew32(ICS, E1000_ICS_LSC);
2328 return 0;
2330 err_req_irq:
2331 e1000_release_hw_control(adapter);
2332 e1000_power_down_phy(adapter);
2333 e1000e_free_rx_resources(adapter);
2334 err_setup_rx:
2335 e1000e_free_tx_resources(adapter);
2336 err_setup_tx:
2337 e1000e_reset(adapter);
2339 return err;
2343 * e1000_close - Disables a network interface
2344 * @netdev: network interface device structure
2346 * Returns 0, this is not allowed to fail
2348 * The close entry point is called when an interface is de-activated
2349 * by the OS. The hardware is still under the drivers control, but
2350 * needs to be disabled. A global MAC reset is issued to stop the
2351 * hardware, and all transmit and receive resources are freed.
2353 static int e1000_close(struct net_device *netdev)
2355 struct e1000_adapter *adapter = netdev_priv(netdev);
2357 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2358 e1000e_down(adapter);
2359 e1000_power_down_phy(adapter);
2360 e1000_free_irq(adapter);
2362 e1000e_free_tx_resources(adapter);
2363 e1000e_free_rx_resources(adapter);
2365 /* kill manageability vlan ID if supported, but not if a vlan with
2366 * the same ID is registered on the host OS (let 8021q kill it) */
2367 if ((adapter->hw.mng_cookie.status &
2368 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2369 !(adapter->vlgrp &&
2370 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2371 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2373 /* If AMT is enabled, let the firmware know that the network
2374 * interface is now closed */
2375 if ((adapter->flags & FLAG_HAS_AMT) &&
2376 e1000e_check_mng_mode(&adapter->hw))
2377 e1000_release_hw_control(adapter);
2379 return 0;
2382 * e1000_set_mac - Change the Ethernet Address of the NIC
2383 * @netdev: network interface device structure
2384 * @p: pointer to an address structure
2386 * Returns 0 on success, negative on failure
2388 static int e1000_set_mac(struct net_device *netdev, void *p)
2390 struct e1000_adapter *adapter = netdev_priv(netdev);
2391 struct sockaddr *addr = p;
2393 if (!is_valid_ether_addr(addr->sa_data))
2394 return -EADDRNOTAVAIL;
2396 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2397 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2399 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2401 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2402 /* activate the work around */
2403 e1000e_set_laa_state_82571(&adapter->hw, 1);
2405 /* Hold a copy of the LAA in RAR[14] This is done so that
2406 * between the time RAR[0] gets clobbered and the time it
2407 * gets fixed (in e1000_watchdog), the actual LAA is in one
2408 * of the RARs and no incoming packets directed to this port
2409 * are dropped. Eventually the LAA will be in RAR[0] and
2410 * RAR[14] */
2411 e1000e_rar_set(&adapter->hw,
2412 adapter->hw.mac.addr,
2413 adapter->hw.mac.rar_entry_count - 1);
2416 return 0;
2419 /* Need to wait a few seconds after link up to get diagnostic information from
2420 * the phy */
2421 static void e1000_update_phy_info(unsigned long data)
2423 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2424 e1000_get_phy_info(&adapter->hw);
2428 * e1000e_update_stats - Update the board statistics counters
2429 * @adapter: board private structure
2431 void e1000e_update_stats(struct e1000_adapter *adapter)
2433 struct e1000_hw *hw = &adapter->hw;
2434 struct pci_dev *pdev = adapter->pdev;
2435 unsigned long irq_flags;
2436 u16 phy_tmp;
2438 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2441 * Prevent stats update while adapter is being reset, or if the pci
2442 * connection is down.
2444 if (adapter->link_speed == 0)
2445 return;
2446 if (pci_channel_offline(pdev))
2447 return;
2449 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2451 /* these counters are modified from e1000_adjust_tbi_stats,
2452 * called from the interrupt context, so they must only
2453 * be written while holding adapter->stats_lock
2456 adapter->stats.crcerrs += er32(CRCERRS);
2457 adapter->stats.gprc += er32(GPRC);
2458 adapter->stats.gorcl += er32(GORCL);
2459 adapter->stats.gorch += er32(GORCH);
2460 adapter->stats.bprc += er32(BPRC);
2461 adapter->stats.mprc += er32(MPRC);
2462 adapter->stats.roc += er32(ROC);
2464 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2465 adapter->stats.prc64 += er32(PRC64);
2466 adapter->stats.prc127 += er32(PRC127);
2467 adapter->stats.prc255 += er32(PRC255);
2468 adapter->stats.prc511 += er32(PRC511);
2469 adapter->stats.prc1023 += er32(PRC1023);
2470 adapter->stats.prc1522 += er32(PRC1522);
2471 adapter->stats.symerrs += er32(SYMERRS);
2472 adapter->stats.sec += er32(SEC);
2475 adapter->stats.mpc += er32(MPC);
2476 adapter->stats.scc += er32(SCC);
2477 adapter->stats.ecol += er32(ECOL);
2478 adapter->stats.mcc += er32(MCC);
2479 adapter->stats.latecol += er32(LATECOL);
2480 adapter->stats.dc += er32(DC);
2481 adapter->stats.rlec += er32(RLEC);
2482 adapter->stats.xonrxc += er32(XONRXC);
2483 adapter->stats.xontxc += er32(XONTXC);
2484 adapter->stats.xoffrxc += er32(XOFFRXC);
2485 adapter->stats.xofftxc += er32(XOFFTXC);
2486 adapter->stats.fcruc += er32(FCRUC);
2487 adapter->stats.gptc += er32(GPTC);
2488 adapter->stats.gotcl += er32(GOTCL);
2489 adapter->stats.gotch += er32(GOTCH);
2490 adapter->stats.rnbc += er32(RNBC);
2491 adapter->stats.ruc += er32(RUC);
2492 adapter->stats.rfc += er32(RFC);
2493 adapter->stats.rjc += er32(RJC);
2494 adapter->stats.torl += er32(TORL);
2495 adapter->stats.torh += er32(TORH);
2496 adapter->stats.totl += er32(TOTL);
2497 adapter->stats.toth += er32(TOTH);
2498 adapter->stats.tpr += er32(TPR);
2500 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2501 adapter->stats.ptc64 += er32(PTC64);
2502 adapter->stats.ptc127 += er32(PTC127);
2503 adapter->stats.ptc255 += er32(PTC255);
2504 adapter->stats.ptc511 += er32(PTC511);
2505 adapter->stats.ptc1023 += er32(PTC1023);
2506 adapter->stats.ptc1522 += er32(PTC1522);
2509 adapter->stats.mptc += er32(MPTC);
2510 adapter->stats.bptc += er32(BPTC);
2512 /* used for adaptive IFS */
2514 hw->mac.tx_packet_delta = er32(TPT);
2515 adapter->stats.tpt += hw->mac.tx_packet_delta;
2516 hw->mac.collision_delta = er32(COLC);
2517 adapter->stats.colc += hw->mac.collision_delta;
2519 adapter->stats.algnerrc += er32(ALGNERRC);
2520 adapter->stats.rxerrc += er32(RXERRC);
2521 adapter->stats.tncrs += er32(TNCRS);
2522 adapter->stats.cexterr += er32(CEXTERR);
2523 adapter->stats.tsctc += er32(TSCTC);
2524 adapter->stats.tsctfc += er32(TSCTFC);
2526 adapter->stats.iac += er32(IAC);
2528 if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
2529 adapter->stats.icrxoc += er32(ICRXOC);
2530 adapter->stats.icrxptc += er32(ICRXPTC);
2531 adapter->stats.icrxatc += er32(ICRXATC);
2532 adapter->stats.ictxptc += er32(ICTXPTC);
2533 adapter->stats.ictxatc += er32(ICTXATC);
2534 adapter->stats.ictxqec += er32(ICTXQEC);
2535 adapter->stats.ictxqmtc += er32(ICTXQMTC);
2536 adapter->stats.icrxdmtc += er32(ICRXDMTC);
2539 /* Fill out the OS statistics structure */
2540 adapter->net_stats.rx_packets = adapter->stats.gprc;
2541 adapter->net_stats.tx_packets = adapter->stats.gptc;
2542 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2543 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2544 adapter->net_stats.multicast = adapter->stats.mprc;
2545 adapter->net_stats.collisions = adapter->stats.colc;
2547 /* Rx Errors */
2549 /* RLEC on some newer hardware can be incorrect so build
2550 * our own version based on RUC and ROC */
2551 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2552 adapter->stats.crcerrs + adapter->stats.algnerrc +
2553 adapter->stats.ruc + adapter->stats.roc +
2554 adapter->stats.cexterr;
2555 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2556 adapter->stats.roc;
2557 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2558 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2559 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2561 /* Tx Errors */
2562 adapter->net_stats.tx_errors = adapter->stats.ecol +
2563 adapter->stats.latecol;
2564 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2565 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2566 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2568 /* Tx Dropped needs to be maintained elsewhere */
2570 /* Phy Stats */
2571 if (hw->media_type == e1000_media_type_copper) {
2572 if ((adapter->link_speed == SPEED_1000) &&
2573 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2574 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2575 adapter->phy_stats.idle_errors += phy_tmp;
2579 /* Management Stats */
2580 adapter->stats.mgptc += er32(MGTPTC);
2581 adapter->stats.mgprc += er32(MGTPRC);
2582 adapter->stats.mgpdc += er32(MGTPDC);
2584 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2587 static void e1000_print_link_info(struct e1000_adapter *adapter)
2589 struct net_device *netdev = adapter->netdev;
2590 struct e1000_hw *hw = &adapter->hw;
2591 u32 ctrl = er32(CTRL);
2593 ndev_info(netdev,
2594 "Link is Up %d Mbps %s, Flow Control: %s\n",
2595 adapter->link_speed,
2596 (adapter->link_duplex == FULL_DUPLEX) ?
2597 "Full Duplex" : "Half Duplex",
2598 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2599 "RX/TX" :
2600 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2601 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2605 * e1000_watchdog - Timer Call-back
2606 * @data: pointer to adapter cast into an unsigned long
2608 static void e1000_watchdog(unsigned long data)
2610 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2612 /* Do the rest outside of interrupt context */
2613 schedule_work(&adapter->watchdog_task);
2615 /* TODO: make this use queue_delayed_work() */
2618 static void e1000_watchdog_task(struct work_struct *work)
2620 struct e1000_adapter *adapter = container_of(work,
2621 struct e1000_adapter, watchdog_task);
2623 struct net_device *netdev = adapter->netdev;
2624 struct e1000_mac_info *mac = &adapter->hw.mac;
2625 struct e1000_ring *tx_ring = adapter->tx_ring;
2626 struct e1000_hw *hw = &adapter->hw;
2627 u32 link, tctl;
2628 s32 ret_val;
2629 int tx_pending = 0;
2631 if ((netif_carrier_ok(netdev)) &&
2632 (er32(STATUS) & E1000_STATUS_LU))
2633 goto link_up;
2635 ret_val = mac->ops.check_for_link(hw);
2636 if ((ret_val == E1000_ERR_PHY) &&
2637 (adapter->hw.phy.type == e1000_phy_igp_3) &&
2638 (er32(CTRL) &
2639 E1000_PHY_CTRL_GBE_DISABLE)) {
2640 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2641 ndev_info(netdev,
2642 "Gigabit has been disabled, downgrading speed\n");
2645 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2646 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2647 e1000_update_mng_vlan(adapter);
2649 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2650 !(er32(TXCW) & E1000_TXCW_ANE))
2651 link = adapter->hw.mac.serdes_has_link;
2652 else
2653 link = er32(STATUS) & E1000_STATUS_LU;
2655 if (link) {
2656 if (!netif_carrier_ok(netdev)) {
2657 bool txb2b = 1;
2658 mac->ops.get_link_up_info(&adapter->hw,
2659 &adapter->link_speed,
2660 &adapter->link_duplex);
2661 e1000_print_link_info(adapter);
2662 /* tweak tx_queue_len according to speed/duplex
2663 * and adjust the timeout factor */
2664 netdev->tx_queue_len = adapter->tx_queue_len;
2665 adapter->tx_timeout_factor = 1;
2666 switch (adapter->link_speed) {
2667 case SPEED_10:
2668 txb2b = 0;
2669 netdev->tx_queue_len = 10;
2670 adapter->tx_timeout_factor = 14;
2671 break;
2672 case SPEED_100:
2673 txb2b = 0;
2674 netdev->tx_queue_len = 100;
2675 /* maybe add some timeout factor ? */
2676 break;
2679 /* workaround: re-program speed mode bit after
2680 * link-up event */
2681 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2682 !txb2b) {
2683 u32 tarc0;
2684 tarc0 = er32(TARC0);
2685 tarc0 &= ~SPEED_MODE_BIT;
2686 ew32(TARC0, tarc0);
2689 /* disable TSO for pcie and 10/100 speeds, to avoid
2690 * some hardware issues */
2691 if (!(adapter->flags & FLAG_TSO_FORCE)) {
2692 switch (adapter->link_speed) {
2693 case SPEED_10:
2694 case SPEED_100:
2695 ndev_info(netdev,
2696 "10/100 speed: disabling TSO\n");
2697 netdev->features &= ~NETIF_F_TSO;
2698 netdev->features &= ~NETIF_F_TSO6;
2699 break;
2700 case SPEED_1000:
2701 netdev->features |= NETIF_F_TSO;
2702 netdev->features |= NETIF_F_TSO6;
2703 break;
2704 default:
2705 /* oops */
2706 break;
2710 /* enable transmits in the hardware, need to do this
2711 * after setting TARC0 */
2712 tctl = er32(TCTL);
2713 tctl |= E1000_TCTL_EN;
2714 ew32(TCTL, tctl);
2716 netif_carrier_on(netdev);
2717 netif_wake_queue(netdev);
2719 if (!test_bit(__E1000_DOWN, &adapter->state))
2720 mod_timer(&adapter->phy_info_timer,
2721 round_jiffies(jiffies + 2 * HZ));
2722 } else {
2723 /* make sure the receive unit is started */
2724 if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
2725 u32 rctl = er32(RCTL);
2726 ew32(RCTL, rctl |
2727 E1000_RCTL_EN);
2730 } else {
2731 if (netif_carrier_ok(netdev)) {
2732 adapter->link_speed = 0;
2733 adapter->link_duplex = 0;
2734 ndev_info(netdev, "Link is Down\n");
2735 netif_carrier_off(netdev);
2736 netif_stop_queue(netdev);
2737 if (!test_bit(__E1000_DOWN, &adapter->state))
2738 mod_timer(&adapter->phy_info_timer,
2739 round_jiffies(jiffies + 2 * HZ));
2741 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
2742 schedule_work(&adapter->reset_task);
2746 link_up:
2747 e1000e_update_stats(adapter);
2749 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2750 adapter->tpt_old = adapter->stats.tpt;
2751 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2752 adapter->colc_old = adapter->stats.colc;
2754 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2755 adapter->gorcl_old = adapter->stats.gorcl;
2756 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2757 adapter->gotcl_old = adapter->stats.gotcl;
2759 e1000e_update_adaptive(&adapter->hw);
2761 if (!netif_carrier_ok(netdev)) {
2762 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
2763 tx_ring->count);
2764 if (tx_pending) {
2765 /* We've lost link, so the controller stops DMA,
2766 * but we've got queued Tx work that's never going
2767 * to get done, so reset controller to flush Tx.
2768 * (Do the reset outside of interrupt context). */
2769 adapter->tx_timeout_count++;
2770 schedule_work(&adapter->reset_task);
2774 /* Cause software interrupt to ensure rx ring is cleaned */
2775 ew32(ICS, E1000_ICS_RXDMT0);
2777 /* Force detection of hung controller every watchdog period */
2778 adapter->detect_tx_hung = 1;
2780 /* With 82571 controllers, LAA may be overwritten due to controller
2781 * reset from the other port. Set the appropriate LAA in RAR[0] */
2782 if (e1000e_get_laa_state_82571(hw))
2783 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
2785 /* Reset the timer */
2786 if (!test_bit(__E1000_DOWN, &adapter->state))
2787 mod_timer(&adapter->watchdog_timer,
2788 round_jiffies(jiffies + 2 * HZ));
2791 #define E1000_TX_FLAGS_CSUM 0x00000001
2792 #define E1000_TX_FLAGS_VLAN 0x00000002
2793 #define E1000_TX_FLAGS_TSO 0x00000004
2794 #define E1000_TX_FLAGS_IPV4 0x00000008
2795 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2796 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2798 static int e1000_tso(struct e1000_adapter *adapter,
2799 struct sk_buff *skb)
2801 struct e1000_ring *tx_ring = adapter->tx_ring;
2802 struct e1000_context_desc *context_desc;
2803 struct e1000_buffer *buffer_info;
2804 unsigned int i;
2805 u32 cmd_length = 0;
2806 u16 ipcse = 0, tucse, mss;
2807 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2808 int err;
2810 if (skb_is_gso(skb)) {
2811 if (skb_header_cloned(skb)) {
2812 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2813 if (err)
2814 return err;
2817 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2818 mss = skb_shinfo(skb)->gso_size;
2819 if (skb->protocol == htons(ETH_P_IP)) {
2820 struct iphdr *iph = ip_hdr(skb);
2821 iph->tot_len = 0;
2822 iph->check = 0;
2823 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2824 iph->daddr, 0,
2825 IPPROTO_TCP,
2827 cmd_length = E1000_TXD_CMD_IP;
2828 ipcse = skb_transport_offset(skb) - 1;
2829 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2830 ipv6_hdr(skb)->payload_len = 0;
2831 tcp_hdr(skb)->check =
2832 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2833 &ipv6_hdr(skb)->daddr,
2834 0, IPPROTO_TCP, 0);
2835 ipcse = 0;
2837 ipcss = skb_network_offset(skb);
2838 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2839 tucss = skb_transport_offset(skb);
2840 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2841 tucse = 0;
2843 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2844 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2846 i = tx_ring->next_to_use;
2847 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2848 buffer_info = &tx_ring->buffer_info[i];
2850 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2851 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2852 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2853 context_desc->upper_setup.tcp_fields.tucss = tucss;
2854 context_desc->upper_setup.tcp_fields.tucso = tucso;
2855 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2856 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2857 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2858 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2860 buffer_info->time_stamp = jiffies;
2861 buffer_info->next_to_watch = i;
2863 i++;
2864 if (i == tx_ring->count)
2865 i = 0;
2866 tx_ring->next_to_use = i;
2868 return 1;
2871 return 0;
2874 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
2876 struct e1000_ring *tx_ring = adapter->tx_ring;
2877 struct e1000_context_desc *context_desc;
2878 struct e1000_buffer *buffer_info;
2879 unsigned int i;
2880 u8 css;
2882 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2883 css = skb_transport_offset(skb);
2885 i = tx_ring->next_to_use;
2886 buffer_info = &tx_ring->buffer_info[i];
2887 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2889 context_desc->lower_setup.ip_config = 0;
2890 context_desc->upper_setup.tcp_fields.tucss = css;
2891 context_desc->upper_setup.tcp_fields.tucso =
2892 css + skb->csum_offset;
2893 context_desc->upper_setup.tcp_fields.tucse = 0;
2894 context_desc->tcp_seg_setup.data = 0;
2895 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2897 buffer_info->time_stamp = jiffies;
2898 buffer_info->next_to_watch = i;
2900 i++;
2901 if (i == tx_ring->count)
2902 i = 0;
2903 tx_ring->next_to_use = i;
2905 return 1;
2908 return 0;
2911 #define E1000_MAX_PER_TXD 8192
2912 #define E1000_MAX_TXD_PWR 12
2914 static int e1000_tx_map(struct e1000_adapter *adapter,
2915 struct sk_buff *skb, unsigned int first,
2916 unsigned int max_per_txd, unsigned int nr_frags,
2917 unsigned int mss)
2919 struct e1000_ring *tx_ring = adapter->tx_ring;
2920 struct e1000_buffer *buffer_info;
2921 unsigned int len = skb->len - skb->data_len;
2922 unsigned int offset = 0, size, count = 0, i;
2923 unsigned int f;
2925 i = tx_ring->next_to_use;
2927 while (len) {
2928 buffer_info = &tx_ring->buffer_info[i];
2929 size = min(len, max_per_txd);
2931 /* Workaround for premature desc write-backs
2932 * in TSO mode. Append 4-byte sentinel desc */
2933 if (mss && !nr_frags && size == len && size > 8)
2934 size -= 4;
2936 buffer_info->length = size;
2937 /* set time_stamp *before* dma to help avoid a possible race */
2938 buffer_info->time_stamp = jiffies;
2939 buffer_info->dma =
2940 pci_map_single(adapter->pdev,
2941 skb->data + offset,
2942 size,
2943 PCI_DMA_TODEVICE);
2944 if (pci_dma_mapping_error(buffer_info->dma)) {
2945 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2946 adapter->tx_dma_failed++;
2947 return -1;
2949 buffer_info->next_to_watch = i;
2951 len -= size;
2952 offset += size;
2953 count++;
2954 i++;
2955 if (i == tx_ring->count)
2956 i = 0;
2959 for (f = 0; f < nr_frags; f++) {
2960 struct skb_frag_struct *frag;
2962 frag = &skb_shinfo(skb)->frags[f];
2963 len = frag->size;
2964 offset = frag->page_offset;
2966 while (len) {
2967 buffer_info = &tx_ring->buffer_info[i];
2968 size = min(len, max_per_txd);
2969 /* Workaround for premature desc write-backs
2970 * in TSO mode. Append 4-byte sentinel desc */
2971 if (mss && f == (nr_frags-1) && size == len && size > 8)
2972 size -= 4;
2974 buffer_info->length = size;
2975 buffer_info->time_stamp = jiffies;
2976 buffer_info->dma =
2977 pci_map_page(adapter->pdev,
2978 frag->page,
2979 offset,
2980 size,
2981 PCI_DMA_TODEVICE);
2982 if (pci_dma_mapping_error(buffer_info->dma)) {
2983 dev_err(&adapter->pdev->dev,
2984 "TX DMA page map failed\n");
2985 adapter->tx_dma_failed++;
2986 return -1;
2989 buffer_info->next_to_watch = i;
2991 len -= size;
2992 offset += size;
2993 count++;
2995 i++;
2996 if (i == tx_ring->count)
2997 i = 0;
3001 if (i == 0)
3002 i = tx_ring->count - 1;
3003 else
3004 i--;
3006 tx_ring->buffer_info[i].skb = skb;
3007 tx_ring->buffer_info[first].next_to_watch = i;
3009 return count;
3012 static void e1000_tx_queue(struct e1000_adapter *adapter,
3013 int tx_flags, int count)
3015 struct e1000_ring *tx_ring = adapter->tx_ring;
3016 struct e1000_tx_desc *tx_desc = NULL;
3017 struct e1000_buffer *buffer_info;
3018 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3019 unsigned int i;
3021 if (tx_flags & E1000_TX_FLAGS_TSO) {
3022 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3023 E1000_TXD_CMD_TSE;
3024 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3026 if (tx_flags & E1000_TX_FLAGS_IPV4)
3027 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3030 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3031 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3032 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3035 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3036 txd_lower |= E1000_TXD_CMD_VLE;
3037 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3040 i = tx_ring->next_to_use;
3042 while (count--) {
3043 buffer_info = &tx_ring->buffer_info[i];
3044 tx_desc = E1000_TX_DESC(*tx_ring, i);
3045 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3046 tx_desc->lower.data =
3047 cpu_to_le32(txd_lower | buffer_info->length);
3048 tx_desc->upper.data = cpu_to_le32(txd_upper);
3050 i++;
3051 if (i == tx_ring->count)
3052 i = 0;
3055 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3057 /* Force memory writes to complete before letting h/w
3058 * know there are new descriptors to fetch. (Only
3059 * applicable for weak-ordered memory model archs,
3060 * such as IA-64). */
3061 wmb();
3063 tx_ring->next_to_use = i;
3064 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3065 /* we need this if more than one processor can write to our tail
3066 * at a time, it synchronizes IO on IA64/Altix systems */
3067 mmiowb();
3070 #define MINIMUM_DHCP_PACKET_SIZE 282
3071 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3072 struct sk_buff *skb)
3074 struct e1000_hw *hw = &adapter->hw;
3075 u16 length, offset;
3077 if (vlan_tx_tag_present(skb)) {
3078 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3079 && (adapter->hw.mng_cookie.status &
3080 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3081 return 0;
3084 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3085 return 0;
3087 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3088 return 0;
3091 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3092 struct udphdr *udp;
3094 if (ip->protocol != IPPROTO_UDP)
3095 return 0;
3097 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3098 if (ntohs(udp->dest) != 67)
3099 return 0;
3101 offset = (u8 *)udp + 8 - skb->data;
3102 length = skb->len - offset;
3103 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3106 return 0;
3109 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3111 struct e1000_adapter *adapter = netdev_priv(netdev);
3113 netif_stop_queue(netdev);
3114 /* Herbert's original patch had:
3115 * smp_mb__after_netif_stop_queue();
3116 * but since that doesn't exist yet, just open code it. */
3117 smp_mb();
3119 /* We need to check again in a case another CPU has just
3120 * made room available. */
3121 if (e1000_desc_unused(adapter->tx_ring) < size)
3122 return -EBUSY;
3124 /* A reprieve! */
3125 netif_start_queue(netdev);
3126 ++adapter->restart_queue;
3127 return 0;
3130 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3132 struct e1000_adapter *adapter = netdev_priv(netdev);
3134 if (e1000_desc_unused(adapter->tx_ring) >= size)
3135 return 0;
3136 return __e1000_maybe_stop_tx(netdev, size);
3139 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3140 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3142 struct e1000_adapter *adapter = netdev_priv(netdev);
3143 struct e1000_ring *tx_ring = adapter->tx_ring;
3144 unsigned int first;
3145 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3146 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3147 unsigned int tx_flags = 0;
3148 unsigned int len = skb->len - skb->data_len;
3149 unsigned long irq_flags;
3150 unsigned int nr_frags;
3151 unsigned int mss;
3152 int count = 0;
3153 int tso;
3154 unsigned int f;
3156 if (test_bit(__E1000_DOWN, &adapter->state)) {
3157 dev_kfree_skb_any(skb);
3158 return NETDEV_TX_OK;
3161 if (skb->len <= 0) {
3162 dev_kfree_skb_any(skb);
3163 return NETDEV_TX_OK;
3166 mss = skb_shinfo(skb)->gso_size;
3167 /* The controller does a simple calculation to
3168 * make sure there is enough room in the FIFO before
3169 * initiating the DMA for each buffer. The calc is:
3170 * 4 = ceil(buffer len/mss). To make sure we don't
3171 * overrun the FIFO, adjust the max buffer len if mss
3172 * drops. */
3173 if (mss) {
3174 u8 hdr_len;
3175 max_per_txd = min(mss << 2, max_per_txd);
3176 max_txd_pwr = fls(max_per_txd) - 1;
3178 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3179 * points to just header, pull a few bytes of payload from
3180 * frags into skb->data */
3181 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3182 if (skb->data_len && (hdr_len == len)) {
3183 unsigned int pull_size;
3185 pull_size = min((unsigned int)4, skb->data_len);
3186 if (!__pskb_pull_tail(skb, pull_size)) {
3187 ndev_err(netdev,
3188 "__pskb_pull_tail failed.\n");
3189 dev_kfree_skb_any(skb);
3190 return NETDEV_TX_OK;
3192 len = skb->len - skb->data_len;
3196 /* reserve a descriptor for the offload context */
3197 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3198 count++;
3199 count++;
3201 count += TXD_USE_COUNT(len, max_txd_pwr);
3203 nr_frags = skb_shinfo(skb)->nr_frags;
3204 for (f = 0; f < nr_frags; f++)
3205 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3206 max_txd_pwr);
3208 if (adapter->hw.mac.tx_pkt_filtering)
3209 e1000_transfer_dhcp_info(adapter, skb);
3211 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3212 /* Collision - tell upper layer to requeue */
3213 return NETDEV_TX_LOCKED;
3215 /* need: count + 2 desc gap to keep tail from touching
3216 * head, otherwise try next time */
3217 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3218 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3219 return NETDEV_TX_BUSY;
3222 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3223 tx_flags |= E1000_TX_FLAGS_VLAN;
3224 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3227 first = tx_ring->next_to_use;
3229 tso = e1000_tso(adapter, skb);
3230 if (tso < 0) {
3231 dev_kfree_skb_any(skb);
3232 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3233 return NETDEV_TX_OK;
3236 if (tso)
3237 tx_flags |= E1000_TX_FLAGS_TSO;
3238 else if (e1000_tx_csum(adapter, skb))
3239 tx_flags |= E1000_TX_FLAGS_CSUM;
3241 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3242 * 82571 hardware supports TSO capabilities for IPv6 as well...
3243 * no longer assume, we must. */
3244 if (skb->protocol == htons(ETH_P_IP))
3245 tx_flags |= E1000_TX_FLAGS_IPV4;
3247 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3248 if (count < 0) {
3249 /* handle pci_map_single() error in e1000_tx_map */
3250 dev_kfree_skb_any(skb);
3251 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3252 return NETDEV_TX_OK;
3255 e1000_tx_queue(adapter, tx_flags, count);
3257 netdev->trans_start = jiffies;
3259 /* Make sure there is space in the ring for the next send. */
3260 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3262 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3263 return NETDEV_TX_OK;
3267 * e1000_tx_timeout - Respond to a Tx Hang
3268 * @netdev: network interface device structure
3270 static void e1000_tx_timeout(struct net_device *netdev)
3272 struct e1000_adapter *adapter = netdev_priv(netdev);
3274 /* Do the reset outside of interrupt context */
3275 adapter->tx_timeout_count++;
3276 schedule_work(&adapter->reset_task);
3279 static void e1000_reset_task(struct work_struct *work)
3281 struct e1000_adapter *adapter;
3282 adapter = container_of(work, struct e1000_adapter, reset_task);
3284 e1000e_reinit_locked(adapter);
3288 * e1000_get_stats - Get System Network Statistics
3289 * @netdev: network interface device structure
3291 * Returns the address of the device statistics structure.
3292 * The statistics are actually updated from the timer callback.
3294 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3296 struct e1000_adapter *adapter = netdev_priv(netdev);
3298 /* only return the current stats */
3299 return &adapter->net_stats;
3303 * e1000_change_mtu - Change the Maximum Transfer Unit
3304 * @netdev: network interface device structure
3305 * @new_mtu: new value for maximum frame size
3307 * Returns 0 on success, negative on failure
3309 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3311 struct e1000_adapter *adapter = netdev_priv(netdev);
3312 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3314 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3315 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3316 ndev_err(netdev, "Invalid MTU setting\n");
3317 return -EINVAL;
3320 /* Jumbo frame size limits */
3321 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3322 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3323 ndev_err(netdev, "Jumbo Frames not supported.\n");
3324 return -EINVAL;
3326 if (adapter->hw.phy.type == e1000_phy_ife) {
3327 ndev_err(netdev, "Jumbo Frames not supported.\n");
3328 return -EINVAL;
3332 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3333 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3334 ndev_err(netdev, "MTU > 9216 not supported.\n");
3335 return -EINVAL;
3338 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3339 msleep(1);
3340 /* e1000e_down has a dependency on max_frame_size */
3341 adapter->hw.mac.max_frame_size = max_frame;
3342 if (netif_running(netdev))
3343 e1000e_down(adapter);
3345 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3346 * means we reserve 2 more, this pushes us to allocate from the next
3347 * larger slab size.
3348 * i.e. RXBUFFER_2048 --> size-4096 slab */
3350 if (max_frame <= 256)
3351 adapter->rx_buffer_len = 256;
3352 else if (max_frame <= 512)
3353 adapter->rx_buffer_len = 512;
3354 else if (max_frame <= 1024)
3355 adapter->rx_buffer_len = 1024;
3356 else if (max_frame <= 2048)
3357 adapter->rx_buffer_len = 2048;
3358 else
3359 adapter->rx_buffer_len = 4096;
3361 /* adjust allocation if LPE protects us, and we aren't using SBP */
3362 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3363 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3364 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3365 + ETH_FCS_LEN ;
3367 ndev_info(netdev, "changing MTU from %d to %d\n",
3368 netdev->mtu, new_mtu);
3369 netdev->mtu = new_mtu;
3371 if (netif_running(netdev))
3372 e1000e_up(adapter);
3373 else
3374 e1000e_reset(adapter);
3376 clear_bit(__E1000_RESETTING, &adapter->state);
3378 return 0;
3381 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3382 int cmd)
3384 struct e1000_adapter *adapter = netdev_priv(netdev);
3385 struct mii_ioctl_data *data = if_mii(ifr);
3386 unsigned long irq_flags;
3388 if (adapter->hw.media_type != e1000_media_type_copper)
3389 return -EOPNOTSUPP;
3391 switch (cmd) {
3392 case SIOCGMIIPHY:
3393 data->phy_id = adapter->hw.phy.addr;
3394 break;
3395 case SIOCGMIIREG:
3396 if (!capable(CAP_NET_ADMIN))
3397 return -EPERM;
3398 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3399 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
3400 &data->val_out)) {
3401 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3402 return -EIO;
3404 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3405 break;
3406 case SIOCSMIIREG:
3407 default:
3408 return -EOPNOTSUPP;
3410 return 0;
3413 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3415 switch (cmd) {
3416 case SIOCGMIIPHY:
3417 case SIOCGMIIREG:
3418 case SIOCSMIIREG:
3419 return e1000_mii_ioctl(netdev, ifr, cmd);
3420 default:
3421 return -EOPNOTSUPP;
3425 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3427 struct net_device *netdev = pci_get_drvdata(pdev);
3428 struct e1000_adapter *adapter = netdev_priv(netdev);
3429 struct e1000_hw *hw = &adapter->hw;
3430 u32 ctrl, ctrl_ext, rctl, status;
3431 u32 wufc = adapter->wol;
3432 int retval = 0;
3434 netif_device_detach(netdev);
3436 if (netif_running(netdev)) {
3437 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3438 e1000e_down(adapter);
3439 e1000_free_irq(adapter);
3442 retval = pci_save_state(pdev);
3443 if (retval)
3444 return retval;
3446 status = er32(STATUS);
3447 if (status & E1000_STATUS_LU)
3448 wufc &= ~E1000_WUFC_LNKC;
3450 if (wufc) {
3451 e1000_setup_rctl(adapter);
3452 e1000_set_multi(netdev);
3454 /* turn on all-multi mode if wake on multicast is enabled */
3455 if (wufc & E1000_WUFC_MC) {
3456 rctl = er32(RCTL);
3457 rctl |= E1000_RCTL_MPE;
3458 ew32(RCTL, rctl);
3461 ctrl = er32(CTRL);
3462 /* advertise wake from D3Cold */
3463 #define E1000_CTRL_ADVD3WUC 0x00100000
3464 /* phy power management enable */
3465 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3466 ctrl |= E1000_CTRL_ADVD3WUC |
3467 E1000_CTRL_EN_PHY_PWR_MGMT;
3468 ew32(CTRL, ctrl);
3470 if (adapter->hw.media_type == e1000_media_type_fiber ||
3471 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3472 /* keep the laser running in D3 */
3473 ctrl_ext = er32(CTRL_EXT);
3474 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3475 ew32(CTRL_EXT, ctrl_ext);
3478 /* Allow time for pending master requests to run */
3479 e1000e_disable_pcie_master(&adapter->hw);
3481 ew32(WUC, E1000_WUC_PME_EN);
3482 ew32(WUFC, wufc);
3483 pci_enable_wake(pdev, PCI_D3hot, 1);
3484 pci_enable_wake(pdev, PCI_D3cold, 1);
3485 } else {
3486 ew32(WUC, 0);
3487 ew32(WUFC, 0);
3488 pci_enable_wake(pdev, PCI_D3hot, 0);
3489 pci_enable_wake(pdev, PCI_D3cold, 0);
3492 e1000_release_manageability(adapter);
3494 /* make sure adapter isn't asleep if manageability is enabled */
3495 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3496 pci_enable_wake(pdev, PCI_D3hot, 1);
3497 pci_enable_wake(pdev, PCI_D3cold, 1);
3500 if (adapter->hw.phy.type == e1000_phy_igp_3)
3501 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3503 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3504 * would have already happened in close and is redundant. */
3505 e1000_release_hw_control(adapter);
3507 pci_disable_device(pdev);
3509 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3511 return 0;
3514 #ifdef CONFIG_PM
3515 static int e1000_resume(struct pci_dev *pdev)
3517 struct net_device *netdev = pci_get_drvdata(pdev);
3518 struct e1000_adapter *adapter = netdev_priv(netdev);
3519 struct e1000_hw *hw = &adapter->hw;
3520 u32 err;
3522 pci_set_power_state(pdev, PCI_D0);
3523 pci_restore_state(pdev);
3524 err = pci_enable_device(pdev);
3525 if (err) {
3526 dev_err(&pdev->dev,
3527 "Cannot enable PCI device from suspend\n");
3528 return err;
3531 pci_set_master(pdev);
3533 pci_enable_wake(pdev, PCI_D3hot, 0);
3534 pci_enable_wake(pdev, PCI_D3cold, 0);
3536 if (netif_running(netdev)) {
3537 err = e1000_request_irq(adapter);
3538 if (err)
3539 return err;
3542 e1000e_power_up_phy(adapter);
3543 e1000e_reset(adapter);
3544 ew32(WUS, ~0);
3546 e1000_init_manageability(adapter);
3548 if (netif_running(netdev))
3549 e1000e_up(adapter);
3551 netif_device_attach(netdev);
3553 /* If the controller has AMT, do not set DRV_LOAD until the interface
3554 * is up. For all other cases, let the f/w know that the h/w is now
3555 * under the control of the driver. */
3556 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3557 e1000_get_hw_control(adapter);
3559 return 0;
3561 #endif
3563 static void e1000_shutdown(struct pci_dev *pdev)
3565 e1000_suspend(pdev, PMSG_SUSPEND);
3568 #ifdef CONFIG_NET_POLL_CONTROLLER
3570 * Polling 'interrupt' - used by things like netconsole to send skbs
3571 * without having to re-enable interrupts. It's not called while
3572 * the interrupt routine is executing.
3574 static void e1000_netpoll(struct net_device *netdev)
3576 struct e1000_adapter *adapter = netdev_priv(netdev);
3578 disable_irq(adapter->pdev->irq);
3579 e1000_intr(adapter->pdev->irq, netdev);
3581 e1000_clean_tx_irq(adapter);
3583 enable_irq(adapter->pdev->irq);
3585 #endif
3588 * e1000_io_error_detected - called when PCI error is detected
3589 * @pdev: Pointer to PCI device
3590 * @state: The current pci connection state
3592 * This function is called after a PCI bus error affecting
3593 * this device has been detected.
3595 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3596 pci_channel_state_t state)
3598 struct net_device *netdev = pci_get_drvdata(pdev);
3599 struct e1000_adapter *adapter = netdev_priv(netdev);
3601 netif_device_detach(netdev);
3603 if (netif_running(netdev))
3604 e1000e_down(adapter);
3605 pci_disable_device(pdev);
3607 /* Request a slot slot reset. */
3608 return PCI_ERS_RESULT_NEED_RESET;
3612 * e1000_io_slot_reset - called after the pci bus has been reset.
3613 * @pdev: Pointer to PCI device
3615 * Restart the card from scratch, as if from a cold-boot. Implementation
3616 * resembles the first-half of the e1000_resume routine.
3618 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3620 struct net_device *netdev = pci_get_drvdata(pdev);
3621 struct e1000_adapter *adapter = netdev_priv(netdev);
3622 struct e1000_hw *hw = &adapter->hw;
3624 if (pci_enable_device(pdev)) {
3625 dev_err(&pdev->dev,
3626 "Cannot re-enable PCI device after reset.\n");
3627 return PCI_ERS_RESULT_DISCONNECT;
3629 pci_set_master(pdev);
3631 pci_enable_wake(pdev, PCI_D3hot, 0);
3632 pci_enable_wake(pdev, PCI_D3cold, 0);
3634 e1000e_reset(adapter);
3635 ew32(WUS, ~0);
3637 return PCI_ERS_RESULT_RECOVERED;
3641 * e1000_io_resume - called when traffic can start flowing again.
3642 * @pdev: Pointer to PCI device
3644 * This callback is called when the error recovery driver tells us that
3645 * its OK to resume normal operation. Implementation resembles the
3646 * second-half of the e1000_resume routine.
3648 static void e1000_io_resume(struct pci_dev *pdev)
3650 struct net_device *netdev = pci_get_drvdata(pdev);
3651 struct e1000_adapter *adapter = netdev_priv(netdev);
3653 e1000_init_manageability(adapter);
3655 if (netif_running(netdev)) {
3656 if (e1000e_up(adapter)) {
3657 dev_err(&pdev->dev,
3658 "can't bring device back up after reset\n");
3659 return;
3663 netif_device_attach(netdev);
3665 /* If the controller has AMT, do not set DRV_LOAD until the interface
3666 * is up. For all other cases, let the f/w know that the h/w is now
3667 * under the control of the driver. */
3668 if (!(adapter->flags & FLAG_HAS_AMT) ||
3669 !e1000e_check_mng_mode(&adapter->hw))
3670 e1000_get_hw_control(adapter);
3674 static void e1000_print_device_info(struct e1000_adapter *adapter)
3676 struct e1000_hw *hw = &adapter->hw;
3677 struct net_device *netdev = adapter->netdev;
3678 u32 part_num;
3680 /* print bus type/speed/width info */
3681 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3682 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3683 /* bus width */
3684 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3685 "Width x1"),
3686 /* MAC address */
3687 netdev->dev_addr[0], netdev->dev_addr[1],
3688 netdev->dev_addr[2], netdev->dev_addr[3],
3689 netdev->dev_addr[4], netdev->dev_addr[5]);
3690 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3691 (hw->phy.type == e1000_phy_ife)
3692 ? "10/100" : "1000");
3693 e1000e_read_part_num(hw, &part_num);
3694 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3695 hw->mac.type, hw->phy.type,
3696 (part_num >> 8), (part_num & 0xff));
3700 * e1000_probe - Device Initialization Routine
3701 * @pdev: PCI device information struct
3702 * @ent: entry in e1000_pci_tbl
3704 * Returns 0 on success, negative on failure
3706 * e1000_probe initializes an adapter identified by a pci_dev structure.
3707 * The OS initialization, configuring of the adapter private structure,
3708 * and a hardware reset occur.
3710 static int __devinit e1000_probe(struct pci_dev *pdev,
3711 const struct pci_device_id *ent)
3713 struct net_device *netdev;
3714 struct e1000_adapter *adapter;
3715 struct e1000_hw *hw;
3716 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3717 unsigned long mmio_start, mmio_len;
3718 unsigned long flash_start, flash_len;
3720 static int cards_found;
3721 int i, err, pci_using_dac;
3722 u16 eeprom_data = 0;
3723 u16 eeprom_apme_mask = E1000_EEPROM_APME;
3725 err = pci_enable_device(pdev);
3726 if (err)
3727 return err;
3729 pci_using_dac = 0;
3730 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
3731 if (!err) {
3732 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3733 if (!err)
3734 pci_using_dac = 1;
3735 } else {
3736 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3737 if (err) {
3738 err = pci_set_consistent_dma_mask(pdev,
3739 DMA_32BIT_MASK);
3740 if (err) {
3741 dev_err(&pdev->dev, "No usable DMA "
3742 "configuration, aborting\n");
3743 goto err_dma;
3748 err = pci_request_regions(pdev, e1000e_driver_name);
3749 if (err)
3750 goto err_pci_reg;
3752 pci_set_master(pdev);
3754 err = -ENOMEM;
3755 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
3756 if (!netdev)
3757 goto err_alloc_etherdev;
3759 SET_NETDEV_DEV(netdev, &pdev->dev);
3761 pci_set_drvdata(pdev, netdev);
3762 adapter = netdev_priv(netdev);
3763 hw = &adapter->hw;
3764 adapter->netdev = netdev;
3765 adapter->pdev = pdev;
3766 adapter->ei = ei;
3767 adapter->pba = ei->pba;
3768 adapter->flags = ei->flags;
3769 adapter->hw.adapter = adapter;
3770 adapter->hw.mac.type = ei->mac;
3771 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
3773 mmio_start = pci_resource_start(pdev, 0);
3774 mmio_len = pci_resource_len(pdev, 0);
3776 err = -EIO;
3777 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
3778 if (!adapter->hw.hw_addr)
3779 goto err_ioremap;
3781 if ((adapter->flags & FLAG_HAS_FLASH) &&
3782 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
3783 flash_start = pci_resource_start(pdev, 1);
3784 flash_len = pci_resource_len(pdev, 1);
3785 adapter->hw.flash_address = ioremap(flash_start, flash_len);
3786 if (!adapter->hw.flash_address)
3787 goto err_flashmap;
3790 /* construct the net_device struct */
3791 netdev->open = &e1000_open;
3792 netdev->stop = &e1000_close;
3793 netdev->hard_start_xmit = &e1000_xmit_frame;
3794 netdev->get_stats = &e1000_get_stats;
3795 netdev->set_multicast_list = &e1000_set_multi;
3796 netdev->set_mac_address = &e1000_set_mac;
3797 netdev->change_mtu = &e1000_change_mtu;
3798 netdev->do_ioctl = &e1000_ioctl;
3799 e1000e_set_ethtool_ops(netdev);
3800 netdev->tx_timeout = &e1000_tx_timeout;
3801 netdev->watchdog_timeo = 5 * HZ;
3802 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
3803 netdev->vlan_rx_register = e1000_vlan_rx_register;
3804 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
3805 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
3806 #ifdef CONFIG_NET_POLL_CONTROLLER
3807 netdev->poll_controller = e1000_netpoll;
3808 #endif
3809 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3811 netdev->mem_start = mmio_start;
3812 netdev->mem_end = mmio_start + mmio_len;
3814 adapter->bd_number = cards_found++;
3816 /* setup adapter struct */
3817 err = e1000_sw_init(adapter);
3818 if (err)
3819 goto err_sw_init;
3821 err = -EIO;
3823 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3824 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3825 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3827 err = ei->get_invariants(adapter);
3828 if (err)
3829 goto err_hw_init;
3831 hw->mac.ops.get_bus_info(&adapter->hw);
3833 adapter->hw.phy.wait_for_link = 0;
3835 /* Copper options */
3836 if (adapter->hw.media_type == e1000_media_type_copper) {
3837 adapter->hw.phy.mdix = AUTO_ALL_MODES;
3838 adapter->hw.phy.disable_polarity_correction = 0;
3839 adapter->hw.phy.ms_type = e1000_ms_hw_default;
3842 if (e1000_check_reset_block(&adapter->hw))
3843 ndev_info(netdev,
3844 "PHY reset is blocked due to SOL/IDER session.\n");
3846 netdev->features = NETIF_F_SG |
3847 NETIF_F_HW_CSUM |
3848 NETIF_F_HW_VLAN_TX |
3849 NETIF_F_HW_VLAN_RX;
3851 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3852 netdev->features |= NETIF_F_HW_VLAN_FILTER;
3854 netdev->features |= NETIF_F_TSO;
3855 netdev->features |= NETIF_F_TSO6;
3857 if (pci_using_dac)
3858 netdev->features |= NETIF_F_HIGHDMA;
3860 /* We should not be using LLTX anymore, but we are still TX faster with
3861 * it. */
3862 netdev->features |= NETIF_F_LLTX;
3864 if (e1000e_enable_mng_pass_thru(&adapter->hw))
3865 adapter->flags |= FLAG_MNG_PT_ENABLED;
3867 /* before reading the NVM, reset the controller to
3868 * put the device in a known good starting state */
3869 adapter->hw.mac.ops.reset_hw(&adapter->hw);
3872 * systems with ASPM and others may see the checksum fail on the first
3873 * attempt. Let's give it a few tries
3875 for (i = 0;; i++) {
3876 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
3877 break;
3878 if (i == 2) {
3879 ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
3880 err = -EIO;
3881 goto err_eeprom;
3885 /* copy the MAC address out of the NVM */
3886 if (e1000e_read_mac_addr(&adapter->hw))
3887 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
3889 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3890 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3892 if (!is_valid_ether_addr(netdev->perm_addr)) {
3893 ndev_err(netdev, "Invalid MAC Address: "
3894 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3895 netdev->perm_addr[0], netdev->perm_addr[1],
3896 netdev->perm_addr[2], netdev->perm_addr[3],
3897 netdev->perm_addr[4], netdev->perm_addr[5]);
3898 err = -EIO;
3899 goto err_eeprom;
3902 init_timer(&adapter->watchdog_timer);
3903 adapter->watchdog_timer.function = &e1000_watchdog;
3904 adapter->watchdog_timer.data = (unsigned long) adapter;
3906 init_timer(&adapter->phy_info_timer);
3907 adapter->phy_info_timer.function = &e1000_update_phy_info;
3908 adapter->phy_info_timer.data = (unsigned long) adapter;
3910 INIT_WORK(&adapter->reset_task, e1000_reset_task);
3911 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
3913 e1000e_check_options(adapter);
3915 /* Initialize link parameters. User can change them with ethtool */
3916 adapter->hw.mac.autoneg = 1;
3917 adapter->fc_autoneg = 1;
3918 adapter->hw.mac.original_fc = e1000_fc_default;
3919 adapter->hw.mac.fc = e1000_fc_default;
3920 adapter->hw.phy.autoneg_advertised = 0x2f;
3922 /* ring size defaults */
3923 adapter->rx_ring->count = 256;
3924 adapter->tx_ring->count = 256;
3927 * Initial Wake on LAN setting - If APM wake is enabled in
3928 * the EEPROM, enable the ACPI Magic Packet filter
3930 if (adapter->flags & FLAG_APME_IN_WUC) {
3931 /* APME bit in EEPROM is mapped to WUC.APME */
3932 eeprom_data = er32(WUC);
3933 eeprom_apme_mask = E1000_WUC_APME;
3934 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
3935 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
3936 (adapter->hw.bus.func == 1))
3937 e1000_read_nvm(&adapter->hw,
3938 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3939 else
3940 e1000_read_nvm(&adapter->hw,
3941 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3944 /* fetch WoL from EEPROM */
3945 if (eeprom_data & eeprom_apme_mask)
3946 adapter->eeprom_wol |= E1000_WUFC_MAG;
3949 * now that we have the eeprom settings, apply the special cases
3950 * where the eeprom may be wrong or the board simply won't support
3951 * wake on lan on a particular port
3953 if (!(adapter->flags & FLAG_HAS_WOL))
3954 adapter->eeprom_wol = 0;
3956 /* initialize the wol settings based on the eeprom settings */
3957 adapter->wol = adapter->eeprom_wol;
3959 /* reset the hardware with the new settings */
3960 e1000e_reset(adapter);
3962 /* If the controller has AMT, do not set DRV_LOAD until the interface
3963 * is up. For all other cases, let the f/w know that the h/w is now
3964 * under the control of the driver. */
3965 if (!(adapter->flags & FLAG_HAS_AMT) ||
3966 !e1000e_check_mng_mode(&adapter->hw))
3967 e1000_get_hw_control(adapter);
3969 /* tell the stack to leave us alone until e1000_open() is called */
3970 netif_carrier_off(netdev);
3971 netif_stop_queue(netdev);
3973 strcpy(netdev->name, "eth%d");
3974 err = register_netdev(netdev);
3975 if (err)
3976 goto err_register;
3978 e1000_print_device_info(adapter);
3980 return 0;
3982 err_register:
3983 err_hw_init:
3984 e1000_release_hw_control(adapter);
3985 err_eeprom:
3986 if (!e1000_check_reset_block(&adapter->hw))
3987 e1000_phy_hw_reset(&adapter->hw);
3989 if (adapter->hw.flash_address)
3990 iounmap(adapter->hw.flash_address);
3992 err_flashmap:
3993 kfree(adapter->tx_ring);
3994 kfree(adapter->rx_ring);
3995 err_sw_init:
3996 iounmap(adapter->hw.hw_addr);
3997 err_ioremap:
3998 free_netdev(netdev);
3999 err_alloc_etherdev:
4000 pci_release_regions(pdev);
4001 err_pci_reg:
4002 err_dma:
4003 pci_disable_device(pdev);
4004 return err;
4008 * e1000_remove - Device Removal Routine
4009 * @pdev: PCI device information struct
4011 * e1000_remove is called by the PCI subsystem to alert the driver
4012 * that it should release a PCI device. The could be caused by a
4013 * Hot-Plug event, or because the driver is going to be removed from
4014 * memory.
4016 static void __devexit e1000_remove(struct pci_dev *pdev)
4018 struct net_device *netdev = pci_get_drvdata(pdev);
4019 struct e1000_adapter *adapter = netdev_priv(netdev);
4021 /* flush_scheduled work may reschedule our watchdog task, so
4022 * explicitly disable watchdog tasks from being rescheduled */
4023 set_bit(__E1000_DOWN, &adapter->state);
4024 del_timer_sync(&adapter->watchdog_timer);
4025 del_timer_sync(&adapter->phy_info_timer);
4027 flush_scheduled_work();
4029 e1000_release_manageability(adapter);
4031 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4032 * would have already happened in close and is redundant. */
4033 e1000_release_hw_control(adapter);
4035 unregister_netdev(netdev);
4037 if (!e1000_check_reset_block(&adapter->hw))
4038 e1000_phy_hw_reset(&adapter->hw);
4040 kfree(adapter->tx_ring);
4041 kfree(adapter->rx_ring);
4043 iounmap(adapter->hw.hw_addr);
4044 if (adapter->hw.flash_address)
4045 iounmap(adapter->hw.flash_address);
4046 pci_release_regions(pdev);
4048 free_netdev(netdev);
4050 pci_disable_device(pdev);
4053 /* PCI Error Recovery (ERS) */
4054 static struct pci_error_handlers e1000_err_handler = {
4055 .error_detected = e1000_io_error_detected,
4056 .slot_reset = e1000_io_slot_reset,
4057 .resume = e1000_io_resume,
4060 static struct pci_device_id e1000_pci_tbl[] = {
4062 * Support for 82571/2/3, es2lan and ich8 will be phased in
4063 * stepwise.
4065 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4066 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4067 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4068 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4069 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4070 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4071 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4072 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4073 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4074 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4075 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4076 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4077 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4078 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4079 board_80003es2lan },
4080 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4081 board_80003es2lan },
4082 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4083 board_80003es2lan },
4084 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4085 board_80003es2lan },
4086 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4087 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4088 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4089 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4090 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4091 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4092 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4095 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4096 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4097 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4098 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4099 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4101 { } /* terminate list */
4103 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4105 /* PCI Device API Driver */
4106 static struct pci_driver e1000_driver = {
4107 .name = e1000e_driver_name,
4108 .id_table = e1000_pci_tbl,
4109 .probe = e1000_probe,
4110 .remove = __devexit_p(e1000_remove),
4111 #ifdef CONFIG_PM
4112 /* Power Managment Hooks */
4113 .suspend = e1000_suspend,
4114 .resume = e1000_resume,
4115 #endif
4116 .shutdown = e1000_shutdown,
4117 .err_handler = &e1000_err_handler
4121 * e1000_init_module - Driver Registration Routine
4123 * e1000_init_module is the first routine called when the driver is
4124 * loaded. All it does is register with the PCI subsystem.
4126 static int __init e1000_init_module(void)
4128 int ret;
4129 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4130 e1000e_driver_name, e1000e_driver_version);
4131 printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4132 e1000e_driver_name);
4133 ret = pci_register_driver(&e1000_driver);
4135 return ret;
4137 module_init(e1000_init_module);
4140 * e1000_exit_module - Driver Exit Cleanup Routine
4142 * e1000_exit_module is called just before the driver is removed
4143 * from memory.
4145 static void __exit e1000_exit_module(void)
4147 pci_unregister_driver(&e1000_driver);
4149 module_exit(e1000_exit_module);
4152 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4153 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4154 MODULE_LICENSE("GPL");
4155 MODULE_VERSION(DRV_VERSION);
4157 /* e1000_main.c */