2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
18 static const int cfq_quantum
= 4; /* max queue in one round of service */
19 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
20 static const int cfq_back_max
= 16 * 1024; /* maximum backwards seek, in KiB */
21 static const int cfq_back_penalty
= 2; /* penalty of a backwards seek */
23 static const int cfq_slice_sync
= HZ
/ 10;
24 static int cfq_slice_async
= HZ
/ 25;
25 static const int cfq_slice_async_rq
= 2;
26 static int cfq_slice_idle
= HZ
/ 125;
29 * grace period before allowing idle class to get disk access
31 #define CFQ_IDLE_GRACE (HZ / 10)
34 * below this threshold, we consider thinktime immediate
36 #define CFQ_MIN_TT (2)
38 #define CFQ_SLICE_SCALE (5)
40 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
41 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
43 static struct kmem_cache
*cfq_pool
;
44 static struct kmem_cache
*cfq_ioc_pool
;
46 static DEFINE_PER_CPU(unsigned long, ioc_count
);
47 static struct completion
*ioc_gone
;
49 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
50 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
56 #define sample_valid(samples) ((samples) > 80)
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
68 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
71 * Per block device queue structure
74 request_queue_t
*queue
;
77 * rr list of queues with requests and the count of them
79 struct cfq_rb_root service_tree
;
80 unsigned int busy_queues
;
87 * idle window management
89 struct timer_list idle_slice_timer
;
90 struct work_struct unplug_work
;
92 struct cfq_queue
*active_queue
;
93 struct cfq_io_context
*active_cic
;
95 struct cfq_queue
*async_cfqq
[IOPRIO_BE_NR
];
97 struct timer_list idle_class_timer
;
99 sector_t last_position
;
100 unsigned long last_end_request
;
103 * tunables, see top of file
105 unsigned int cfq_quantum
;
106 unsigned int cfq_fifo_expire
[2];
107 unsigned int cfq_back_penalty
;
108 unsigned int cfq_back_max
;
109 unsigned int cfq_slice
[2];
110 unsigned int cfq_slice_async_rq
;
111 unsigned int cfq_slice_idle
;
113 struct list_head cic_list
;
115 sector_t new_seek_mean
;
120 * Per process-grouping structure
123 /* reference count */
125 /* parent cfq_data */
126 struct cfq_data
*cfqd
;
127 /* service_tree member */
128 struct rb_node rb_node
;
129 /* service_tree key */
130 unsigned long rb_key
;
131 /* sorted list of pending requests */
132 struct rb_root sort_list
;
133 /* if fifo isn't expired, next request to serve */
134 struct request
*next_rq
;
135 /* requests queued in sort_list */
137 /* currently allocated requests */
139 /* pending metadata requests */
141 /* fifo list of requests in sort_list */
142 struct list_head fifo
;
144 unsigned long slice_end
;
147 /* number of requests that are on the dispatch list or inside driver */
150 /* io prio of this group */
151 unsigned short ioprio
, org_ioprio
;
152 unsigned short ioprio_class
, org_ioprio_class
;
154 /* various state flags, see below */
157 sector_t last_request_pos
;
160 enum cfqq_state_flags
{
161 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
162 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
163 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
164 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
165 CFQ_CFQQ_FLAG_must_dispatch
, /* must dispatch, even if expired */
166 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
167 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
168 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
169 CFQ_CFQQ_FLAG_queue_new
, /* queue never been serviced */
170 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
171 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
174 #define CFQ_CFQQ_FNS(name) \
175 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
177 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
179 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
181 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
183 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
185 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
189 CFQ_CFQQ_FNS(wait_request
);
190 CFQ_CFQQ_FNS(must_alloc
);
191 CFQ_CFQQ_FNS(must_alloc_slice
);
192 CFQ_CFQQ_FNS(must_dispatch
);
193 CFQ_CFQQ_FNS(fifo_expire
);
194 CFQ_CFQQ_FNS(idle_window
);
195 CFQ_CFQQ_FNS(prio_changed
);
196 CFQ_CFQQ_FNS(queue_new
);
197 CFQ_CFQQ_FNS(slice_new
);
201 static void cfq_dispatch_insert(request_queue_t
*, struct request
*);
202 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
203 struct task_struct
*, gfp_t
);
204 static struct cfq_io_context
*cfq_cic_rb_lookup(struct cfq_data
*,
205 struct io_context
*);
207 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
210 return cic
->cfqq
[!!is_sync
];
213 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
214 struct cfq_queue
*cfqq
, int is_sync
)
216 cic
->cfqq
[!!is_sync
] = cfqq
;
220 * We regard a request as SYNC, if it's either a read or has the SYNC bit
221 * set (in which case it could also be direct WRITE).
223 static inline int cfq_bio_sync(struct bio
*bio
)
225 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
232 * scheduler run of queue, if there are requests pending and no one in the
233 * driver that will restart queueing
235 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
237 if (cfqd
->busy_queues
)
238 kblockd_schedule_work(&cfqd
->unplug_work
);
241 static int cfq_queue_empty(request_queue_t
*q
)
243 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
245 return !cfqd
->busy_queues
;
249 * Scale schedule slice based on io priority. Use the sync time slice only
250 * if a queue is marked sync and has sync io queued. A sync queue with async
251 * io only, should not get full sync slice length.
253 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
256 const int base_slice
= cfqd
->cfq_slice
[sync
];
258 WARN_ON(prio
>= IOPRIO_BE_NR
);
260 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
264 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
266 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
270 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
272 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
276 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
277 * isn't valid until the first request from the dispatch is activated
278 * and the slice time set.
280 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
282 if (cfq_cfqq_slice_new(cfqq
))
284 if (time_before(jiffies
, cfqq
->slice_end
))
291 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
292 * We choose the request that is closest to the head right now. Distance
293 * behind the head is penalized and only allowed to a certain extent.
295 static struct request
*
296 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
298 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
299 unsigned long back_max
;
300 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
301 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
302 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
304 if (rq1
== NULL
|| rq1
== rq2
)
309 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
311 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
313 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
315 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
321 last
= cfqd
->last_position
;
324 * by definition, 1KiB is 2 sectors
326 back_max
= cfqd
->cfq_back_max
* 2;
329 * Strict one way elevator _except_ in the case where we allow
330 * short backward seeks which are biased as twice the cost of a
331 * similar forward seek.
335 else if (s1
+ back_max
>= last
)
336 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
338 wrap
|= CFQ_RQ1_WRAP
;
342 else if (s2
+ back_max
>= last
)
343 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
345 wrap
|= CFQ_RQ2_WRAP
;
347 /* Found required data */
350 * By doing switch() on the bit mask "wrap" we avoid having to
351 * check two variables for all permutations: --> faster!
354 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
370 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
373 * Since both rqs are wrapped,
374 * start with the one that's further behind head
375 * (--> only *one* back seek required),
376 * since back seek takes more time than forward.
386 * The below is leftmost cache rbtree addon
388 static struct rb_node
*cfq_rb_first(struct cfq_rb_root
*root
)
391 root
->left
= rb_first(&root
->rb
);
396 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
401 rb_erase(n
, &root
->rb
);
406 * would be nice to take fifo expire time into account as well
408 static struct request
*
409 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
410 struct request
*last
)
412 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
413 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
414 struct request
*next
= NULL
, *prev
= NULL
;
416 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
419 prev
= rb_entry_rq(rbprev
);
422 next
= rb_entry_rq(rbnext
);
424 rbnext
= rb_first(&cfqq
->sort_list
);
425 if (rbnext
&& rbnext
!= &last
->rb_node
)
426 next
= rb_entry_rq(rbnext
);
429 return cfq_choose_req(cfqd
, next
, prev
);
432 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
433 struct cfq_queue
*cfqq
)
436 * just an approximation, should be ok.
438 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
439 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
443 * The cfqd->service_tree holds all pending cfq_queue's that have
444 * requests waiting to be processed. It is sorted in the order that
445 * we will service the queues.
447 static void cfq_service_tree_add(struct cfq_data
*cfqd
,
448 struct cfq_queue
*cfqq
, int add_front
)
450 struct rb_node
**p
= &cfqd
->service_tree
.rb
.rb_node
;
451 struct rb_node
*parent
= NULL
;
452 unsigned long rb_key
;
456 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
457 rb_key
+= cfqq
->slice_resid
;
458 cfqq
->slice_resid
= 0;
462 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
464 * same position, nothing more to do
466 if (rb_key
== cfqq
->rb_key
)
469 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
474 struct cfq_queue
*__cfqq
;
478 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
481 * sort RT queues first, we always want to give
482 * preference to them. IDLE queues goes to the back.
483 * after that, sort on the next service time.
485 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
487 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
489 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
491 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
493 else if (rb_key
< __cfqq
->rb_key
)
498 if (n
== &(*p
)->rb_right
)
505 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
507 cfqq
->rb_key
= rb_key
;
508 rb_link_node(&cfqq
->rb_node
, parent
, p
);
509 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
513 * Update cfqq's position in the service tree.
515 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
518 * Resorting requires the cfqq to be on the RR list already.
520 if (cfq_cfqq_on_rr(cfqq
))
521 cfq_service_tree_add(cfqd
, cfqq
, 0);
525 * add to busy list of queues for service, trying to be fair in ordering
526 * the pending list according to last request service
529 cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
531 BUG_ON(cfq_cfqq_on_rr(cfqq
));
532 cfq_mark_cfqq_on_rr(cfqq
);
535 cfq_resort_rr_list(cfqd
, cfqq
);
539 * Called when the cfqq no longer has requests pending, remove it from
543 cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
545 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
546 cfq_clear_cfqq_on_rr(cfqq
);
548 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
549 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
551 BUG_ON(!cfqd
->busy_queues
);
556 * rb tree support functions
558 static inline void cfq_del_rq_rb(struct request
*rq
)
560 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
561 struct cfq_data
*cfqd
= cfqq
->cfqd
;
562 const int sync
= rq_is_sync(rq
);
564 BUG_ON(!cfqq
->queued
[sync
]);
565 cfqq
->queued
[sync
]--;
567 elv_rb_del(&cfqq
->sort_list
, rq
);
569 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
570 cfq_del_cfqq_rr(cfqd
, cfqq
);
573 static void cfq_add_rq_rb(struct request
*rq
)
575 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
576 struct cfq_data
*cfqd
= cfqq
->cfqd
;
577 struct request
*__alias
;
579 cfqq
->queued
[rq_is_sync(rq
)]++;
582 * looks a little odd, but the first insert might return an alias.
583 * if that happens, put the alias on the dispatch list
585 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
586 cfq_dispatch_insert(cfqd
->queue
, __alias
);
588 if (!cfq_cfqq_on_rr(cfqq
))
589 cfq_add_cfqq_rr(cfqd
, cfqq
);
592 * check if this request is a better next-serve candidate
594 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
595 BUG_ON(!cfqq
->next_rq
);
599 cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
601 elv_rb_del(&cfqq
->sort_list
, rq
);
602 cfqq
->queued
[rq_is_sync(rq
)]--;
606 static struct request
*
607 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
609 struct task_struct
*tsk
= current
;
610 struct cfq_io_context
*cic
;
611 struct cfq_queue
*cfqq
;
613 cic
= cfq_cic_rb_lookup(cfqd
, tsk
->io_context
);
617 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
619 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
621 return elv_rb_find(&cfqq
->sort_list
, sector
);
627 static void cfq_activate_request(request_queue_t
*q
, struct request
*rq
)
629 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
631 cfqd
->rq_in_driver
++;
634 * If the depth is larger 1, it really could be queueing. But lets
635 * make the mark a little higher - idling could still be good for
636 * low queueing, and a low queueing number could also just indicate
637 * a SCSI mid layer like behaviour where limit+1 is often seen.
639 if (!cfqd
->hw_tag
&& cfqd
->rq_in_driver
> 4)
642 cfqd
->last_position
= rq
->hard_sector
+ rq
->hard_nr_sectors
;
645 static void cfq_deactivate_request(request_queue_t
*q
, struct request
*rq
)
647 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
649 WARN_ON(!cfqd
->rq_in_driver
);
650 cfqd
->rq_in_driver
--;
653 static void cfq_remove_request(struct request
*rq
)
655 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
657 if (cfqq
->next_rq
== rq
)
658 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
660 list_del_init(&rq
->queuelist
);
663 if (rq_is_meta(rq
)) {
664 WARN_ON(!cfqq
->meta_pending
);
665 cfqq
->meta_pending
--;
669 static int cfq_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
671 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
672 struct request
*__rq
;
674 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
675 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
677 return ELEVATOR_FRONT_MERGE
;
680 return ELEVATOR_NO_MERGE
;
683 static void cfq_merged_request(request_queue_t
*q
, struct request
*req
,
686 if (type
== ELEVATOR_FRONT_MERGE
) {
687 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
689 cfq_reposition_rq_rb(cfqq
, req
);
694 cfq_merged_requests(request_queue_t
*q
, struct request
*rq
,
695 struct request
*next
)
698 * reposition in fifo if next is older than rq
700 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
701 time_before(next
->start_time
, rq
->start_time
))
702 list_move(&rq
->queuelist
, &next
->queuelist
);
704 cfq_remove_request(next
);
707 static int cfq_allow_merge(request_queue_t
*q
, struct request
*rq
,
710 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
711 struct cfq_io_context
*cic
;
712 struct cfq_queue
*cfqq
;
715 * Disallow merge of a sync bio into an async request.
717 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
721 * Lookup the cfqq that this bio will be queued with. Allow
722 * merge only if rq is queued there.
724 cic
= cfq_cic_rb_lookup(cfqd
, current
->io_context
);
728 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
729 if (cfqq
== RQ_CFQQ(rq
))
736 __cfq_set_active_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
740 * stop potential idle class queues waiting service
742 del_timer(&cfqd
->idle_class_timer
);
745 cfq_clear_cfqq_must_alloc_slice(cfqq
);
746 cfq_clear_cfqq_fifo_expire(cfqq
);
747 cfq_mark_cfqq_slice_new(cfqq
);
748 cfq_clear_cfqq_queue_new(cfqq
);
751 cfqd
->active_queue
= cfqq
;
755 * current cfqq expired its slice (or was too idle), select new one
758 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
761 if (cfq_cfqq_wait_request(cfqq
))
762 del_timer(&cfqd
->idle_slice_timer
);
764 cfq_clear_cfqq_must_dispatch(cfqq
);
765 cfq_clear_cfqq_wait_request(cfqq
);
768 * store what was left of this slice, if the queue idled/timed out
770 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
))
771 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
773 cfq_resort_rr_list(cfqd
, cfqq
);
775 if (cfqq
== cfqd
->active_queue
)
776 cfqd
->active_queue
= NULL
;
778 if (cfqd
->active_cic
) {
779 put_io_context(cfqd
->active_cic
->ioc
);
780 cfqd
->active_cic
= NULL
;
784 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
786 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
789 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
793 * Get next queue for service. Unless we have a queue preemption,
794 * we'll simply select the first cfqq in the service tree.
796 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
798 struct cfq_queue
*cfqq
;
801 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
804 n
= cfq_rb_first(&cfqd
->service_tree
);
805 cfqq
= rb_entry(n
, struct cfq_queue
, rb_node
);
807 if (cfq_class_idle(cfqq
)) {
811 * if we have idle queues and no rt or be queues had
812 * pending requests, either allow immediate service if
813 * the grace period has passed or arm the idle grace
816 end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
817 if (time_before(jiffies
, end
)) {
818 mod_timer(&cfqd
->idle_class_timer
, end
);
827 * Get and set a new active queue for service.
829 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
831 struct cfq_queue
*cfqq
;
833 cfqq
= cfq_get_next_queue(cfqd
);
834 __cfq_set_active_queue(cfqd
, cfqq
);
838 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
841 if (rq
->sector
>= cfqd
->last_position
)
842 return rq
->sector
- cfqd
->last_position
;
844 return cfqd
->last_position
- rq
->sector
;
847 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
849 struct cfq_io_context
*cic
= cfqd
->active_cic
;
851 if (!sample_valid(cic
->seek_samples
))
854 return cfq_dist_from_last(cfqd
, rq
) <= cic
->seek_mean
;
857 static int cfq_close_cooperator(struct cfq_data
*cfq_data
,
858 struct cfq_queue
*cfqq
)
861 * We should notice if some of the queues are cooperating, eg
862 * working closely on the same area of the disk. In that case,
863 * we can group them together and don't waste time idling.
868 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
870 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
872 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
873 struct cfq_io_context
*cic
;
876 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
877 WARN_ON(cfq_cfqq_slice_new(cfqq
));
880 * idle is disabled, either manually or by past process history
882 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
886 * task has exited, don't wait
888 cic
= cfqd
->active_cic
;
889 if (!cic
|| !cic
->ioc
->task
)
893 * See if this prio level has a good candidate
895 if (cfq_close_cooperator(cfqd
, cfqq
) &&
896 (sample_valid(cic
->ttime_samples
) && cic
->ttime_mean
> 2))
899 cfq_mark_cfqq_must_dispatch(cfqq
);
900 cfq_mark_cfqq_wait_request(cfqq
);
903 * we don't want to idle for seeks, but we do want to allow
904 * fair distribution of slice time for a process doing back-to-back
905 * seeks. so allow a little bit of time for him to submit a new rq
907 sl
= cfqd
->cfq_slice_idle
;
908 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
909 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
911 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
915 * Move request from internal lists to the request queue dispatch list.
917 static void cfq_dispatch_insert(request_queue_t
*q
, struct request
*rq
)
919 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
920 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
922 cfq_remove_request(rq
);
924 elv_dispatch_sort(q
, rq
);
926 if (cfq_cfqq_sync(cfqq
))
931 * return expired entry, or NULL to just start from scratch in rbtree
933 static inline struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
935 struct cfq_data
*cfqd
= cfqq
->cfqd
;
939 if (cfq_cfqq_fifo_expire(cfqq
))
942 cfq_mark_cfqq_fifo_expire(cfqq
);
944 if (list_empty(&cfqq
->fifo
))
947 fifo
= cfq_cfqq_sync(cfqq
);
948 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
950 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
957 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
959 const int base_rq
= cfqd
->cfq_slice_async_rq
;
961 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
963 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
967 * Select a queue for service. If we have a current active queue,
968 * check whether to continue servicing it, or retrieve and set a new one.
970 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
972 struct cfq_queue
*cfqq
;
974 cfqq
= cfqd
->active_queue
;
979 * The active queue has run out of time, expire it and select new.
981 if (cfq_slice_used(cfqq
))
985 * The active queue has requests and isn't expired, allow it to
988 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
992 * No requests pending. If the active queue still has requests in
993 * flight or is idling for a new request, allow either of these
994 * conditions to happen (or time out) before selecting a new queue.
996 if (timer_pending(&cfqd
->idle_slice_timer
) ||
997 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1003 cfq_slice_expired(cfqd
, 0);
1005 cfqq
= cfq_set_active_queue(cfqd
);
1011 * Dispatch some requests from cfqq, moving them to the request queue
1015 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1020 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1026 * follow expired path, else get first next available
1028 if ((rq
= cfq_check_fifo(cfqq
)) == NULL
)
1032 * finally, insert request into driver dispatch list
1034 cfq_dispatch_insert(cfqd
->queue
, rq
);
1038 if (!cfqd
->active_cic
) {
1039 atomic_inc(&RQ_CIC(rq
)->ioc
->refcount
);
1040 cfqd
->active_cic
= RQ_CIC(rq
);
1043 if (RB_EMPTY_ROOT(&cfqq
->sort_list
))
1046 } while (dispatched
< max_dispatch
);
1049 * expire an async queue immediately if it has used up its slice. idle
1050 * queue always expire after 1 dispatch round.
1052 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1053 dispatched
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1054 cfq_class_idle(cfqq
))) {
1055 cfqq
->slice_end
= jiffies
+ 1;
1056 cfq_slice_expired(cfqd
, 0);
1062 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1066 while (cfqq
->next_rq
) {
1067 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1071 BUG_ON(!list_empty(&cfqq
->fifo
));
1076 * Drain our current requests. Used for barriers and when switching
1077 * io schedulers on-the-fly.
1079 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1084 while ((n
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
) {
1085 struct cfq_queue
*cfqq
= rb_entry(n
, struct cfq_queue
, rb_node
);
1087 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1090 cfq_slice_expired(cfqd
, 0);
1092 BUG_ON(cfqd
->busy_queues
);
1097 static int cfq_dispatch_requests(request_queue_t
*q
, int force
)
1099 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1100 struct cfq_queue
*cfqq
;
1103 if (!cfqd
->busy_queues
)
1106 if (unlikely(force
))
1107 return cfq_forced_dispatch(cfqd
);
1110 while ((cfqq
= cfq_select_queue(cfqd
)) != NULL
) {
1113 max_dispatch
= cfqd
->cfq_quantum
;
1114 if (cfq_class_idle(cfqq
))
1117 if (cfqq
->dispatched
>= max_dispatch
) {
1118 if (cfqd
->busy_queues
> 1)
1120 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1124 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1127 cfq_clear_cfqq_must_dispatch(cfqq
);
1128 cfq_clear_cfqq_wait_request(cfqq
);
1129 del_timer(&cfqd
->idle_slice_timer
);
1131 dispatched
+= __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1138 * task holds one reference to the queue, dropped when task exits. each rq
1139 * in-flight on this queue also holds a reference, dropped when rq is freed.
1141 * queue lock must be held here.
1143 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1145 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1147 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1149 if (!atomic_dec_and_test(&cfqq
->ref
))
1152 BUG_ON(rb_first(&cfqq
->sort_list
));
1153 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1154 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1156 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1157 __cfq_slice_expired(cfqd
, cfqq
, 0);
1158 cfq_schedule_dispatch(cfqd
);
1161 kmem_cache_free(cfq_pool
, cfqq
);
1164 static void cfq_free_io_context(struct io_context
*ioc
)
1166 struct cfq_io_context
*__cic
;
1170 ioc
->ioc_data
= NULL
;
1172 while ((n
= rb_first(&ioc
->cic_root
)) != NULL
) {
1173 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1174 rb_erase(&__cic
->rb_node
, &ioc
->cic_root
);
1175 kmem_cache_free(cfq_ioc_pool
, __cic
);
1179 elv_ioc_count_mod(ioc_count
, -freed
);
1181 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
))
1185 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1187 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1188 __cfq_slice_expired(cfqd
, cfqq
, 0);
1189 cfq_schedule_dispatch(cfqd
);
1192 cfq_put_queue(cfqq
);
1195 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1196 struct cfq_io_context
*cic
)
1198 list_del_init(&cic
->queue_list
);
1202 if (cic
->cfqq
[ASYNC
]) {
1203 cfq_exit_cfqq(cfqd
, cic
->cfqq
[ASYNC
]);
1204 cic
->cfqq
[ASYNC
] = NULL
;
1207 if (cic
->cfqq
[SYNC
]) {
1208 cfq_exit_cfqq(cfqd
, cic
->cfqq
[SYNC
]);
1209 cic
->cfqq
[SYNC
] = NULL
;
1213 static void cfq_exit_single_io_context(struct cfq_io_context
*cic
)
1215 struct cfq_data
*cfqd
= cic
->key
;
1218 request_queue_t
*q
= cfqd
->queue
;
1220 spin_lock_irq(q
->queue_lock
);
1221 __cfq_exit_single_io_context(cfqd
, cic
);
1222 spin_unlock_irq(q
->queue_lock
);
1227 * The process that ioc belongs to has exited, we need to clean up
1228 * and put the internal structures we have that belongs to that process.
1230 static void cfq_exit_io_context(struct io_context
*ioc
)
1232 struct cfq_io_context
*__cic
;
1235 ioc
->ioc_data
= NULL
;
1238 * put the reference this task is holding to the various queues
1240 n
= rb_first(&ioc
->cic_root
);
1242 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1244 cfq_exit_single_io_context(__cic
);
1249 static struct cfq_io_context
*
1250 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1252 struct cfq_io_context
*cic
;
1254 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1257 cic
->last_end_request
= jiffies
;
1258 INIT_LIST_HEAD(&cic
->queue_list
);
1259 cic
->dtor
= cfq_free_io_context
;
1260 cic
->exit
= cfq_exit_io_context
;
1261 elv_ioc_count_inc(ioc_count
);
1267 static void cfq_init_prio_data(struct cfq_queue
*cfqq
)
1269 struct task_struct
*tsk
= current
;
1272 if (!cfq_cfqq_prio_changed(cfqq
))
1275 ioprio_class
= IOPRIO_PRIO_CLASS(tsk
->ioprio
);
1276 switch (ioprio_class
) {
1278 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1279 case IOPRIO_CLASS_NONE
:
1281 * no prio set, place us in the middle of the BE classes
1283 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1284 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1286 case IOPRIO_CLASS_RT
:
1287 cfqq
->ioprio
= task_ioprio(tsk
);
1288 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1290 case IOPRIO_CLASS_BE
:
1291 cfqq
->ioprio
= task_ioprio(tsk
);
1292 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1294 case IOPRIO_CLASS_IDLE
:
1295 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1297 cfq_clear_cfqq_idle_window(cfqq
);
1302 * keep track of original prio settings in case we have to temporarily
1303 * elevate the priority of this queue
1305 cfqq
->org_ioprio
= cfqq
->ioprio
;
1306 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1307 cfq_clear_cfqq_prio_changed(cfqq
);
1310 static inline void changed_ioprio(struct cfq_io_context
*cic
)
1312 struct cfq_data
*cfqd
= cic
->key
;
1313 struct cfq_queue
*cfqq
;
1314 unsigned long flags
;
1316 if (unlikely(!cfqd
))
1319 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1321 cfqq
= cic
->cfqq
[ASYNC
];
1323 struct cfq_queue
*new_cfqq
;
1324 new_cfqq
= cfq_get_queue(cfqd
, ASYNC
, cic
->ioc
->task
,
1327 cic
->cfqq
[ASYNC
] = new_cfqq
;
1328 cfq_put_queue(cfqq
);
1332 cfqq
= cic
->cfqq
[SYNC
];
1334 cfq_mark_cfqq_prio_changed(cfqq
);
1336 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1339 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1341 struct cfq_io_context
*cic
;
1344 ioc
->ioprio_changed
= 0;
1346 n
= rb_first(&ioc
->cic_root
);
1348 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1350 changed_ioprio(cic
);
1355 static struct cfq_queue
*
1356 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1357 struct task_struct
*tsk
, gfp_t gfp_mask
)
1359 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1360 struct cfq_io_context
*cic
;
1363 cic
= cfq_cic_rb_lookup(cfqd
, tsk
->io_context
);
1364 /* cic always exists here */
1365 cfqq
= cic_to_cfqq(cic
, is_sync
);
1371 } else if (gfp_mask
& __GFP_WAIT
) {
1373 * Inform the allocator of the fact that we will
1374 * just repeat this allocation if it fails, to allow
1375 * the allocator to do whatever it needs to attempt to
1378 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1379 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1380 gfp_mask
| __GFP_NOFAIL
| __GFP_ZERO
,
1382 spin_lock_irq(cfqd
->queue
->queue_lock
);
1385 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1386 gfp_mask
| __GFP_ZERO
,
1392 RB_CLEAR_NODE(&cfqq
->rb_node
);
1393 INIT_LIST_HEAD(&cfqq
->fifo
);
1395 atomic_set(&cfqq
->ref
, 0);
1399 cfq_mark_cfqq_idle_window(cfqq
);
1400 cfq_mark_cfqq_sync(cfqq
);
1403 cfq_mark_cfqq_prio_changed(cfqq
);
1404 cfq_mark_cfqq_queue_new(cfqq
);
1406 cfq_init_prio_data(cfqq
);
1410 kmem_cache_free(cfq_pool
, new_cfqq
);
1413 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1417 static struct cfq_queue
*
1418 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct task_struct
*tsk
,
1421 const int ioprio
= task_ioprio(tsk
);
1422 struct cfq_queue
*cfqq
= NULL
;
1425 cfqq
= cfqd
->async_cfqq
[ioprio
];
1427 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, tsk
, gfp_mask
);
1430 * pin the queue now that it's allocated, scheduler exit will prune it
1432 if (!is_sync
&& !cfqd
->async_cfqq
[ioprio
]) {
1433 atomic_inc(&cfqq
->ref
);
1434 cfqd
->async_cfqq
[ioprio
] = cfqq
;
1437 atomic_inc(&cfqq
->ref
);
1442 * We drop cfq io contexts lazily, so we may find a dead one.
1445 cfq_drop_dead_cic(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1447 WARN_ON(!list_empty(&cic
->queue_list
));
1449 if (ioc
->ioc_data
== cic
)
1450 ioc
->ioc_data
= NULL
;
1452 rb_erase(&cic
->rb_node
, &ioc
->cic_root
);
1453 kmem_cache_free(cfq_ioc_pool
, cic
);
1454 elv_ioc_count_dec(ioc_count
);
1457 static struct cfq_io_context
*
1458 cfq_cic_rb_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1461 struct cfq_io_context
*cic
;
1462 void *k
, *key
= cfqd
;
1468 * we maintain a last-hit cache, to avoid browsing over the tree
1470 cic
= ioc
->ioc_data
;
1471 if (cic
&& cic
->key
== cfqd
)
1475 n
= ioc
->cic_root
.rb_node
;
1477 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1478 /* ->key must be copied to avoid race with cfq_exit_queue() */
1481 cfq_drop_dead_cic(ioc
, cic
);
1490 ioc
->ioc_data
= cic
;
1499 cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1500 struct cfq_io_context
*cic
)
1503 struct rb_node
*parent
;
1504 struct cfq_io_context
*__cic
;
1505 unsigned long flags
;
1513 p
= &ioc
->cic_root
.rb_node
;
1516 __cic
= rb_entry(parent
, struct cfq_io_context
, rb_node
);
1517 /* ->key must be copied to avoid race with cfq_exit_queue() */
1520 cfq_drop_dead_cic(ioc
, __cic
);
1526 else if (cic
->key
> k
)
1527 p
= &(*p
)->rb_right
;
1532 rb_link_node(&cic
->rb_node
, parent
, p
);
1533 rb_insert_color(&cic
->rb_node
, &ioc
->cic_root
);
1535 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1536 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1537 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1541 * Setup general io context and cfq io context. There can be several cfq
1542 * io contexts per general io context, if this process is doing io to more
1543 * than one device managed by cfq.
1545 static struct cfq_io_context
*
1546 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1548 struct io_context
*ioc
= NULL
;
1549 struct cfq_io_context
*cic
;
1551 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1553 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1557 cic
= cfq_cic_rb_lookup(cfqd
, ioc
);
1561 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1565 cfq_cic_link(cfqd
, ioc
, cic
);
1567 smp_read_barrier_depends();
1568 if (unlikely(ioc
->ioprio_changed
))
1569 cfq_ioc_set_ioprio(ioc
);
1573 put_io_context(ioc
);
1578 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1580 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1581 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1583 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1584 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1585 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1589 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1595 if (cic
->last_request_pos
< rq
->sector
)
1596 sdist
= rq
->sector
- cic
->last_request_pos
;
1598 sdist
= cic
->last_request_pos
- rq
->sector
;
1600 if (!cic
->seek_samples
) {
1601 cfqd
->new_seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1602 cfqd
->new_seek_mean
= cfqd
->new_seek_total
/ 256;
1606 * Don't allow the seek distance to get too large from the
1607 * odd fragment, pagein, etc
1609 if (cic
->seek_samples
<= 60) /* second&third seek */
1610 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1612 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1614 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1615 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1616 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1617 do_div(total
, cic
->seek_samples
);
1618 cic
->seek_mean
= (sector_t
)total
;
1622 * Disable idle window if the process thinks too long or seeks so much that
1626 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1627 struct cfq_io_context
*cic
)
1631 if (!cfq_cfqq_sync(cfqq
))
1634 enable_idle
= cfq_cfqq_idle_window(cfqq
);
1636 if (!cic
->ioc
->task
|| !cfqd
->cfq_slice_idle
||
1637 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1639 else if (sample_valid(cic
->ttime_samples
)) {
1640 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1647 cfq_mark_cfqq_idle_window(cfqq
);
1649 cfq_clear_cfqq_idle_window(cfqq
);
1653 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1654 * no or if we aren't sure, a 1 will cause a preempt.
1657 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1660 struct cfq_queue
*cfqq
;
1662 cfqq
= cfqd
->active_queue
;
1666 if (cfq_slice_used(cfqq
))
1669 if (cfq_class_idle(new_cfqq
))
1672 if (cfq_class_idle(cfqq
))
1676 * if the new request is sync, but the currently running queue is
1677 * not, let the sync request have priority.
1679 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
1683 * So both queues are sync. Let the new request get disk time if
1684 * it's a metadata request and the current queue is doing regular IO.
1686 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
1689 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
1693 * if this request is as-good as one we would expect from the
1694 * current cfqq, let it preempt
1696 if (cfq_rq_close(cfqd
, rq
))
1703 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1704 * let it have half of its nominal slice.
1706 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1708 cfq_slice_expired(cfqd
, 1);
1711 * Put the new queue at the front of the of the current list,
1712 * so we know that it will be selected next.
1714 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1716 cfq_service_tree_add(cfqd
, cfqq
, 1);
1718 cfqq
->slice_end
= 0;
1719 cfq_mark_cfqq_slice_new(cfqq
);
1723 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1724 * something we should do about it
1727 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1730 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1733 cfqq
->meta_pending
++;
1735 cfq_update_io_thinktime(cfqd
, cic
);
1736 cfq_update_io_seektime(cfqd
, cic
, rq
);
1737 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1739 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
1740 cfqq
->last_request_pos
= cic
->last_request_pos
;
1742 if (cfqq
== cfqd
->active_queue
) {
1744 * if we are waiting for a request for this queue, let it rip
1745 * immediately and flag that we must not expire this queue
1748 if (cfq_cfqq_wait_request(cfqq
)) {
1749 cfq_mark_cfqq_must_dispatch(cfqq
);
1750 del_timer(&cfqd
->idle_slice_timer
);
1751 blk_start_queueing(cfqd
->queue
);
1753 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
1755 * not the active queue - expire current slice if it is
1756 * idle and has expired it's mean thinktime or this new queue
1757 * has some old slice time left and is of higher priority
1759 cfq_preempt_queue(cfqd
, cfqq
);
1760 cfq_mark_cfqq_must_dispatch(cfqq
);
1761 blk_start_queueing(cfqd
->queue
);
1765 static void cfq_insert_request(request_queue_t
*q
, struct request
*rq
)
1767 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1768 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1770 cfq_init_prio_data(cfqq
);
1774 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1776 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
1779 static void cfq_completed_request(request_queue_t
*q
, struct request
*rq
)
1781 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1782 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1783 const int sync
= rq_is_sync(rq
);
1788 WARN_ON(!cfqd
->rq_in_driver
);
1789 WARN_ON(!cfqq
->dispatched
);
1790 cfqd
->rq_in_driver
--;
1793 if (cfq_cfqq_sync(cfqq
))
1794 cfqd
->sync_flight
--;
1796 if (!cfq_class_idle(cfqq
))
1797 cfqd
->last_end_request
= now
;
1800 RQ_CIC(rq
)->last_end_request
= now
;
1803 * If this is the active queue, check if it needs to be expired,
1804 * or if we want to idle in case it has no pending requests.
1806 if (cfqd
->active_queue
== cfqq
) {
1807 if (cfq_cfqq_slice_new(cfqq
)) {
1808 cfq_set_prio_slice(cfqd
, cfqq
);
1809 cfq_clear_cfqq_slice_new(cfqq
);
1811 if (cfq_slice_used(cfqq
))
1812 cfq_slice_expired(cfqd
, 1);
1813 else if (sync
&& RB_EMPTY_ROOT(&cfqq
->sort_list
))
1814 cfq_arm_slice_timer(cfqd
);
1817 if (!cfqd
->rq_in_driver
)
1818 cfq_schedule_dispatch(cfqd
);
1822 * we temporarily boost lower priority queues if they are holding fs exclusive
1823 * resources. they are boosted to normal prio (CLASS_BE/4)
1825 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
1827 if (has_fs_excl()) {
1829 * boost idle prio on transactions that would lock out other
1830 * users of the filesystem
1832 if (cfq_class_idle(cfqq
))
1833 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1834 if (cfqq
->ioprio
> IOPRIO_NORM
)
1835 cfqq
->ioprio
= IOPRIO_NORM
;
1838 * check if we need to unboost the queue
1840 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
1841 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
1842 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
1843 cfqq
->ioprio
= cfqq
->org_ioprio
;
1847 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
1849 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
1850 !cfq_cfqq_must_alloc_slice(cfqq
)) {
1851 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1852 return ELV_MQUEUE_MUST
;
1855 return ELV_MQUEUE_MAY
;
1858 static int cfq_may_queue(request_queue_t
*q
, int rw
)
1860 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1861 struct task_struct
*tsk
= current
;
1862 struct cfq_io_context
*cic
;
1863 struct cfq_queue
*cfqq
;
1866 * don't force setup of a queue from here, as a call to may_queue
1867 * does not necessarily imply that a request actually will be queued.
1868 * so just lookup a possibly existing queue, or return 'may queue'
1871 cic
= cfq_cic_rb_lookup(cfqd
, tsk
->io_context
);
1873 return ELV_MQUEUE_MAY
;
1875 cfqq
= cic_to_cfqq(cic
, rw
& REQ_RW_SYNC
);
1877 cfq_init_prio_data(cfqq
);
1878 cfq_prio_boost(cfqq
);
1880 return __cfq_may_queue(cfqq
);
1883 return ELV_MQUEUE_MAY
;
1887 * queue lock held here
1889 static void cfq_put_request(struct request
*rq
)
1891 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1894 const int rw
= rq_data_dir(rq
);
1896 BUG_ON(!cfqq
->allocated
[rw
]);
1897 cfqq
->allocated
[rw
]--;
1899 put_io_context(RQ_CIC(rq
)->ioc
);
1901 rq
->elevator_private
= NULL
;
1902 rq
->elevator_private2
= NULL
;
1904 cfq_put_queue(cfqq
);
1909 * Allocate cfq data structures associated with this request.
1912 cfq_set_request(request_queue_t
*q
, struct request
*rq
, gfp_t gfp_mask
)
1914 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1915 struct task_struct
*tsk
= current
;
1916 struct cfq_io_context
*cic
;
1917 const int rw
= rq_data_dir(rq
);
1918 const int is_sync
= rq_is_sync(rq
);
1919 struct cfq_queue
*cfqq
;
1920 unsigned long flags
;
1922 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1924 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
1926 spin_lock_irqsave(q
->queue_lock
, flags
);
1931 cfqq
= cic_to_cfqq(cic
, is_sync
);
1933 cfqq
= cfq_get_queue(cfqd
, is_sync
, tsk
, gfp_mask
);
1938 cic_set_cfqq(cic
, cfqq
, is_sync
);
1941 cfqq
->allocated
[rw
]++;
1942 cfq_clear_cfqq_must_alloc(cfqq
);
1943 atomic_inc(&cfqq
->ref
);
1945 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1947 rq
->elevator_private
= cic
;
1948 rq
->elevator_private2
= cfqq
;
1953 put_io_context(cic
->ioc
);
1955 cfq_schedule_dispatch(cfqd
);
1956 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1960 static void cfq_kick_queue(struct work_struct
*work
)
1962 struct cfq_data
*cfqd
=
1963 container_of(work
, struct cfq_data
, unplug_work
);
1964 request_queue_t
*q
= cfqd
->queue
;
1965 unsigned long flags
;
1967 spin_lock_irqsave(q
->queue_lock
, flags
);
1968 blk_start_queueing(q
);
1969 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1973 * Timer running if the active_queue is currently idling inside its time slice
1975 static void cfq_idle_slice_timer(unsigned long data
)
1977 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
1978 struct cfq_queue
*cfqq
;
1979 unsigned long flags
;
1982 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1984 if ((cfqq
= cfqd
->active_queue
) != NULL
) {
1990 if (cfq_slice_used(cfqq
))
1994 * only expire and reinvoke request handler, if there are
1995 * other queues with pending requests
1997 if (!cfqd
->busy_queues
)
2001 * not expired and it has a request pending, let it dispatch
2003 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2004 cfq_mark_cfqq_must_dispatch(cfqq
);
2009 cfq_slice_expired(cfqd
, timed_out
);
2011 cfq_schedule_dispatch(cfqd
);
2013 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2017 * Timer running if an idle class queue is waiting for service
2019 static void cfq_idle_class_timer(unsigned long data
)
2021 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2022 unsigned long flags
, end
;
2024 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2027 * race with a non-idle queue, reset timer
2029 end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
2030 if (!time_after_eq(jiffies
, end
))
2031 mod_timer(&cfqd
->idle_class_timer
, end
);
2033 cfq_schedule_dispatch(cfqd
);
2035 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2038 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2040 del_timer_sync(&cfqd
->idle_slice_timer
);
2041 del_timer_sync(&cfqd
->idle_class_timer
);
2042 blk_sync_queue(cfqd
->queue
);
2045 static void cfq_exit_queue(elevator_t
*e
)
2047 struct cfq_data
*cfqd
= e
->elevator_data
;
2048 request_queue_t
*q
= cfqd
->queue
;
2051 cfq_shutdown_timer_wq(cfqd
);
2053 spin_lock_irq(q
->queue_lock
);
2055 if (cfqd
->active_queue
)
2056 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2058 while (!list_empty(&cfqd
->cic_list
)) {
2059 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2060 struct cfq_io_context
,
2063 __cfq_exit_single_io_context(cfqd
, cic
);
2067 * Put the async queues
2069 for (i
= 0; i
< IOPRIO_BE_NR
; i
++)
2070 if (cfqd
->async_cfqq
[i
])
2071 cfq_put_queue(cfqd
->async_cfqq
[i
]);
2073 spin_unlock_irq(q
->queue_lock
);
2075 cfq_shutdown_timer_wq(cfqd
);
2080 static void *cfq_init_queue(request_queue_t
*q
)
2082 struct cfq_data
*cfqd
;
2084 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2088 cfqd
->service_tree
= CFQ_RB_ROOT
;
2089 INIT_LIST_HEAD(&cfqd
->cic_list
);
2093 init_timer(&cfqd
->idle_slice_timer
);
2094 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2095 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2097 init_timer(&cfqd
->idle_class_timer
);
2098 cfqd
->idle_class_timer
.function
= cfq_idle_class_timer
;
2099 cfqd
->idle_class_timer
.data
= (unsigned long) cfqd
;
2101 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2103 cfqd
->cfq_quantum
= cfq_quantum
;
2104 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2105 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2106 cfqd
->cfq_back_max
= cfq_back_max
;
2107 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2108 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2109 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2110 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2111 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2116 static void cfq_slab_kill(void)
2119 kmem_cache_destroy(cfq_pool
);
2121 kmem_cache_destroy(cfq_ioc_pool
);
2124 static int __init
cfq_slab_setup(void)
2126 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2130 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2141 * sysfs parts below -->
2144 cfq_var_show(unsigned int var
, char *page
)
2146 return sprintf(page
, "%d\n", var
);
2150 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2152 char *p
= (char *) page
;
2154 *var
= simple_strtoul(p
, &p
, 10);
2158 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2159 static ssize_t __FUNC(elevator_t *e, char *page) \
2161 struct cfq_data *cfqd = e->elevator_data; \
2162 unsigned int __data = __VAR; \
2164 __data = jiffies_to_msecs(__data); \
2165 return cfq_var_show(__data, (page)); \
2167 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2168 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2169 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2170 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2171 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2172 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2173 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2174 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2175 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2176 #undef SHOW_FUNCTION
2178 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2179 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2181 struct cfq_data *cfqd = e->elevator_data; \
2182 unsigned int __data; \
2183 int ret = cfq_var_store(&__data, (page), count); \
2184 if (__data < (MIN)) \
2186 else if (__data > (MAX)) \
2189 *(__PTR) = msecs_to_jiffies(__data); \
2191 *(__PTR) = __data; \
2194 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2195 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1, UINT_MAX
, 1);
2196 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1, UINT_MAX
, 1);
2197 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2198 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1, UINT_MAX
, 0);
2199 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2200 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2201 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2202 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1, UINT_MAX
, 0);
2203 #undef STORE_FUNCTION
2205 #define CFQ_ATTR(name) \
2206 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2208 static struct elv_fs_entry cfq_attrs
[] = {
2210 CFQ_ATTR(fifo_expire_sync
),
2211 CFQ_ATTR(fifo_expire_async
),
2212 CFQ_ATTR(back_seek_max
),
2213 CFQ_ATTR(back_seek_penalty
),
2214 CFQ_ATTR(slice_sync
),
2215 CFQ_ATTR(slice_async
),
2216 CFQ_ATTR(slice_async_rq
),
2217 CFQ_ATTR(slice_idle
),
2221 static struct elevator_type iosched_cfq
= {
2223 .elevator_merge_fn
= cfq_merge
,
2224 .elevator_merged_fn
= cfq_merged_request
,
2225 .elevator_merge_req_fn
= cfq_merged_requests
,
2226 .elevator_allow_merge_fn
= cfq_allow_merge
,
2227 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2228 .elevator_add_req_fn
= cfq_insert_request
,
2229 .elevator_activate_req_fn
= cfq_activate_request
,
2230 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2231 .elevator_queue_empty_fn
= cfq_queue_empty
,
2232 .elevator_completed_req_fn
= cfq_completed_request
,
2233 .elevator_former_req_fn
= elv_rb_former_request
,
2234 .elevator_latter_req_fn
= elv_rb_latter_request
,
2235 .elevator_set_req_fn
= cfq_set_request
,
2236 .elevator_put_req_fn
= cfq_put_request
,
2237 .elevator_may_queue_fn
= cfq_may_queue
,
2238 .elevator_init_fn
= cfq_init_queue
,
2239 .elevator_exit_fn
= cfq_exit_queue
,
2240 .trim
= cfq_free_io_context
,
2242 .elevator_attrs
= cfq_attrs
,
2243 .elevator_name
= "cfq",
2244 .elevator_owner
= THIS_MODULE
,
2247 static int __init
cfq_init(void)
2252 * could be 0 on HZ < 1000 setups
2254 if (!cfq_slice_async
)
2255 cfq_slice_async
= 1;
2256 if (!cfq_slice_idle
)
2259 if (cfq_slab_setup())
2262 ret
= elv_register(&iosched_cfq
);
2269 static void __exit
cfq_exit(void)
2271 DECLARE_COMPLETION_ONSTACK(all_gone
);
2272 elv_unregister(&iosched_cfq
);
2273 ioc_gone
= &all_gone
;
2274 /* ioc_gone's update must be visible before reading ioc_count */
2276 if (elv_ioc_count_read(ioc_count
))
2277 wait_for_completion(ioc_gone
);
2282 module_init(cfq_init
);
2283 module_exit(cfq_exit
);
2285 MODULE_AUTHOR("Jens Axboe");
2286 MODULE_LICENSE("GPL");
2287 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");