PM: add /sys/power documentation to Documentation/ABI
[pv_ops_mirror.git] / drivers / mmc / au1xmmc.c
blobfb606165af3bb823ed5886fe2875faf545ac13fc
1 /*
2 * linux/drivers/mmc/au1xmmc.c - AU1XX0 MMC driver
4 * Copyright (c) 2005, Advanced Micro Devices, Inc.
6 * Developed with help from the 2.4.30 MMC AU1XXX controller including
7 * the following copyright notices:
8 * Copyright (c) 2003-2004 Embedded Edge, LLC.
9 * Portions Copyright (C) 2002 Embedix, Inc
10 * Copyright 2002 Hewlett-Packard Company
12 * 2.6 version of this driver inspired by:
13 * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
14 * All Rights Reserved.
15 * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
16 * All Rights Reserved.
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License version 2 as
21 * published by the Free Software Foundation.
24 /* Why is a timer used to detect insert events?
26 * From the AU1100 MMC application guide:
27 * If the Au1100-based design is intended to support both MultiMediaCards
28 * and 1- or 4-data bit SecureDigital cards, then the solution is to
29 * connect a weak (560KOhm) pull-up resistor to connector pin 1.
30 * In doing so, a MMC card never enters SPI-mode communications,
31 * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
32 * (the low to high transition will not occur).
34 * So we use the timer to check the status manually.
37 #include <linux/module.h>
38 #include <linux/init.h>
39 #include <linux/platform_device.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/dma-mapping.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/protocol.h>
46 #include <asm/io.h>
47 #include <asm/mach-au1x00/au1000.h>
48 #include <asm/mach-au1x00/au1xxx_dbdma.h>
49 #include <asm/mach-au1x00/au1100_mmc.h>
50 #include <asm/scatterlist.h>
52 #include <au1xxx.h>
53 #include "au1xmmc.h"
55 #define DRIVER_NAME "au1xxx-mmc"
57 /* Set this to enable special debugging macros */
59 #ifdef DEBUG
60 #define DBG(fmt, idx, args...) printk("au1xx(%d): DEBUG: " fmt, idx, ##args)
61 #else
62 #define DBG(fmt, idx, args...)
63 #endif
65 const struct {
66 u32 iobase;
67 u32 tx_devid, rx_devid;
68 u16 bcsrpwr;
69 u16 bcsrstatus;
70 u16 wpstatus;
71 } au1xmmc_card_table[] = {
72 { SD0_BASE, DSCR_CMD0_SDMS_TX0, DSCR_CMD0_SDMS_RX0,
73 BCSR_BOARD_SD0PWR, BCSR_INT_SD0INSERT, BCSR_STATUS_SD0WP },
74 #ifndef CONFIG_MIPS_DB1200
75 { SD1_BASE, DSCR_CMD0_SDMS_TX1, DSCR_CMD0_SDMS_RX1,
76 BCSR_BOARD_DS1PWR, BCSR_INT_SD1INSERT, BCSR_STATUS_SD1WP }
77 #endif
80 #define AU1XMMC_CONTROLLER_COUNT \
81 (sizeof(au1xmmc_card_table) / sizeof(au1xmmc_card_table[0]))
83 /* This array stores pointers for the hosts (used by the IRQ handler) */
84 struct au1xmmc_host *au1xmmc_hosts[AU1XMMC_CONTROLLER_COUNT];
85 static int dma = 1;
87 #ifdef MODULE
88 module_param(dma, bool, 0);
89 MODULE_PARM_DESC(dma, "Use DMA engine for data transfers (0 = disabled)");
90 #endif
92 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
94 u32 val = au_readl(HOST_CONFIG(host));
95 val |= mask;
96 au_writel(val, HOST_CONFIG(host));
97 au_sync();
100 static inline void FLUSH_FIFO(struct au1xmmc_host *host)
102 u32 val = au_readl(HOST_CONFIG2(host));
104 au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
105 au_sync_delay(1);
107 /* SEND_STOP will turn off clock control - this re-enables it */
108 val &= ~SD_CONFIG2_DF;
110 au_writel(val, HOST_CONFIG2(host));
111 au_sync();
114 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
116 u32 val = au_readl(HOST_CONFIG(host));
117 val &= ~mask;
118 au_writel(val, HOST_CONFIG(host));
119 au_sync();
122 static inline void SEND_STOP(struct au1xmmc_host *host)
125 /* We know the value of CONFIG2, so avoid a read we don't need */
126 u32 mask = SD_CONFIG2_EN;
128 WARN_ON(host->status != HOST_S_DATA);
129 host->status = HOST_S_STOP;
131 au_writel(mask | SD_CONFIG2_DF, HOST_CONFIG2(host));
132 au_sync();
134 /* Send the stop commmand */
135 au_writel(STOP_CMD, HOST_CMD(host));
138 static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
141 u32 val = au1xmmc_card_table[host->id].bcsrpwr;
143 bcsr->board &= ~val;
144 if (state) bcsr->board |= val;
146 au_sync_delay(1);
149 static inline int au1xmmc_card_inserted(struct au1xmmc_host *host)
151 return (bcsr->sig_status & au1xmmc_card_table[host->id].bcsrstatus)
152 ? 1 : 0;
155 static inline int au1xmmc_card_readonly(struct au1xmmc_host *host)
157 return (bcsr->status & au1xmmc_card_table[host->id].wpstatus)
158 ? 1 : 0;
161 static void au1xmmc_finish_request(struct au1xmmc_host *host)
164 struct mmc_request *mrq = host->mrq;
166 host->mrq = NULL;
167 host->flags &= HOST_F_ACTIVE;
169 host->dma.len = 0;
170 host->dma.dir = 0;
172 host->pio.index = 0;
173 host->pio.offset = 0;
174 host->pio.len = 0;
176 host->status = HOST_S_IDLE;
178 bcsr->disk_leds |= (1 << 8);
180 mmc_request_done(host->mmc, mrq);
183 static void au1xmmc_tasklet_finish(unsigned long param)
185 struct au1xmmc_host *host = (struct au1xmmc_host *) param;
186 au1xmmc_finish_request(host);
189 static int au1xmmc_send_command(struct au1xmmc_host *host, int wait,
190 struct mmc_command *cmd)
193 u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
195 switch (mmc_resp_type(cmd)) {
196 case MMC_RSP_R1:
197 mmccmd |= SD_CMD_RT_1;
198 break;
199 case MMC_RSP_R1B:
200 mmccmd |= SD_CMD_RT_1B;
201 break;
202 case MMC_RSP_R2:
203 mmccmd |= SD_CMD_RT_2;
204 break;
205 case MMC_RSP_R3:
206 mmccmd |= SD_CMD_RT_3;
207 break;
210 switch(cmd->opcode) {
211 case MMC_READ_SINGLE_BLOCK:
212 case SD_APP_SEND_SCR:
213 mmccmd |= SD_CMD_CT_2;
214 break;
215 case MMC_READ_MULTIPLE_BLOCK:
216 mmccmd |= SD_CMD_CT_4;
217 break;
218 case MMC_WRITE_BLOCK:
219 mmccmd |= SD_CMD_CT_1;
220 break;
222 case MMC_WRITE_MULTIPLE_BLOCK:
223 mmccmd |= SD_CMD_CT_3;
224 break;
225 case MMC_STOP_TRANSMISSION:
226 mmccmd |= SD_CMD_CT_7;
227 break;
230 au_writel(cmd->arg, HOST_CMDARG(host));
231 au_sync();
233 if (wait)
234 IRQ_OFF(host, SD_CONFIG_CR);
236 au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
237 au_sync();
239 /* Wait for the command to go on the line */
241 while(1) {
242 if (!(au_readl(HOST_CMD(host)) & SD_CMD_GO))
243 break;
246 /* Wait for the command to come back */
248 if (wait) {
249 u32 status = au_readl(HOST_STATUS(host));
251 while(!(status & SD_STATUS_CR))
252 status = au_readl(HOST_STATUS(host));
254 /* Clear the CR status */
255 au_writel(SD_STATUS_CR, HOST_STATUS(host));
257 IRQ_ON(host, SD_CONFIG_CR);
260 return MMC_ERR_NONE;
263 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
266 struct mmc_request *mrq = host->mrq;
267 struct mmc_data *data;
268 u32 crc;
270 WARN_ON(host->status != HOST_S_DATA && host->status != HOST_S_STOP);
272 if (host->mrq == NULL)
273 return;
275 data = mrq->cmd->data;
277 if (status == 0)
278 status = au_readl(HOST_STATUS(host));
280 /* The transaction is really over when the SD_STATUS_DB bit is clear */
282 while((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
283 status = au_readl(HOST_STATUS(host));
285 data->error = MMC_ERR_NONE;
286 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
288 /* Process any errors */
290 crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
291 if (host->flags & HOST_F_XMIT)
292 crc |= ((status & 0x07) == 0x02) ? 0 : 1;
294 if (crc)
295 data->error = MMC_ERR_BADCRC;
297 /* Clear the CRC bits */
298 au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
300 data->bytes_xfered = 0;
302 if (data->error == MMC_ERR_NONE) {
303 if (host->flags & HOST_F_DMA) {
304 u32 chan = DMA_CHANNEL(host);
306 chan_tab_t *c = *((chan_tab_t **) chan);
307 au1x_dma_chan_t *cp = c->chan_ptr;
308 data->bytes_xfered = cp->ddma_bytecnt;
310 else
311 data->bytes_xfered =
312 (data->blocks * data->blksz) -
313 host->pio.len;
316 au1xmmc_finish_request(host);
319 static void au1xmmc_tasklet_data(unsigned long param)
321 struct au1xmmc_host *host = (struct au1xmmc_host *) param;
323 u32 status = au_readl(HOST_STATUS(host));
324 au1xmmc_data_complete(host, status);
327 #define AU1XMMC_MAX_TRANSFER 8
329 static void au1xmmc_send_pio(struct au1xmmc_host *host)
332 struct mmc_data *data = 0;
333 int sg_len, max, count = 0;
334 unsigned char *sg_ptr;
335 u32 status = 0;
336 struct scatterlist *sg;
338 data = host->mrq->data;
340 if (!(host->flags & HOST_F_XMIT))
341 return;
343 /* This is the pointer to the data buffer */
344 sg = &data->sg[host->pio.index];
345 sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
347 /* This is the space left inside the buffer */
348 sg_len = data->sg[host->pio.index].length - host->pio.offset;
350 /* Check to if we need less then the size of the sg_buffer */
352 max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
353 if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER;
355 for(count = 0; count < max; count++ ) {
356 unsigned char val;
358 status = au_readl(HOST_STATUS(host));
360 if (!(status & SD_STATUS_TH))
361 break;
363 val = *sg_ptr++;
365 au_writel((unsigned long) val, HOST_TXPORT(host));
366 au_sync();
369 host->pio.len -= count;
370 host->pio.offset += count;
372 if (count == sg_len) {
373 host->pio.index++;
374 host->pio.offset = 0;
377 if (host->pio.len == 0) {
378 IRQ_OFF(host, SD_CONFIG_TH);
380 if (host->flags & HOST_F_STOP)
381 SEND_STOP(host);
383 tasklet_schedule(&host->data_task);
387 static void au1xmmc_receive_pio(struct au1xmmc_host *host)
390 struct mmc_data *data = 0;
391 int sg_len = 0, max = 0, count = 0;
392 unsigned char *sg_ptr = 0;
393 u32 status = 0;
394 struct scatterlist *sg;
396 data = host->mrq->data;
398 if (!(host->flags & HOST_F_RECV))
399 return;
401 max = host->pio.len;
403 if (host->pio.index < host->dma.len) {
404 sg = &data->sg[host->pio.index];
405 sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
407 /* This is the space left inside the buffer */
408 sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
410 /* Check to if we need less then the size of the sg_buffer */
411 if (sg_len < max) max = sg_len;
414 if (max > AU1XMMC_MAX_TRANSFER)
415 max = AU1XMMC_MAX_TRANSFER;
417 for(count = 0; count < max; count++ ) {
418 u32 val;
419 status = au_readl(HOST_STATUS(host));
421 if (!(status & SD_STATUS_NE))
422 break;
424 if (status & SD_STATUS_RC) {
425 DBG("RX CRC Error [%d + %d].\n", host->id,
426 host->pio.len, count);
427 break;
430 if (status & SD_STATUS_RO) {
431 DBG("RX Overrun [%d + %d]\n", host->id,
432 host->pio.len, count);
433 break;
435 else if (status & SD_STATUS_RU) {
436 DBG("RX Underrun [%d + %d]\n", host->id,
437 host->pio.len, count);
438 break;
441 val = au_readl(HOST_RXPORT(host));
443 if (sg_ptr)
444 *sg_ptr++ = (unsigned char) (val & 0xFF);
447 host->pio.len -= count;
448 host->pio.offset += count;
450 if (sg_len && count == sg_len) {
451 host->pio.index++;
452 host->pio.offset = 0;
455 if (host->pio.len == 0) {
456 //IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF);
457 IRQ_OFF(host, SD_CONFIG_NE);
459 if (host->flags & HOST_F_STOP)
460 SEND_STOP(host);
462 tasklet_schedule(&host->data_task);
466 /* static void au1xmmc_cmd_complete
467 This is called when a command has been completed - grab the response
468 and check for errors. Then start the data transfer if it is indicated.
471 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
474 struct mmc_request *mrq = host->mrq;
475 struct mmc_command *cmd;
476 int trans;
478 if (!host->mrq)
479 return;
481 cmd = mrq->cmd;
482 cmd->error = MMC_ERR_NONE;
484 if (cmd->flags & MMC_RSP_PRESENT) {
485 if (cmd->flags & MMC_RSP_136) {
486 u32 r[4];
487 int i;
489 r[0] = au_readl(host->iobase + SD_RESP3);
490 r[1] = au_readl(host->iobase + SD_RESP2);
491 r[2] = au_readl(host->iobase + SD_RESP1);
492 r[3] = au_readl(host->iobase + SD_RESP0);
494 /* The CRC is omitted from the response, so really
495 * we only got 120 bytes, but the engine expects
496 * 128 bits, so we have to shift things up
499 for(i = 0; i < 4; i++) {
500 cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
501 if (i != 3)
502 cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
504 } else {
505 /* Techincally, we should be getting all 48 bits of
506 * the response (SD_RESP1 + SD_RESP2), but because
507 * our response omits the CRC, our data ends up
508 * being shifted 8 bits to the right. In this case,
509 * that means that the OSR data starts at bit 31,
510 * so we can just read RESP0 and return that
512 cmd->resp[0] = au_readl(host->iobase + SD_RESP0);
516 /* Figure out errors */
518 if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
519 cmd->error = MMC_ERR_BADCRC;
521 trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
523 if (!trans || cmd->error != MMC_ERR_NONE) {
525 IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA|SD_CONFIG_RF);
526 tasklet_schedule(&host->finish_task);
527 return;
530 host->status = HOST_S_DATA;
532 if (host->flags & HOST_F_DMA) {
533 u32 channel = DMA_CHANNEL(host);
535 /* Start the DMA as soon as the buffer gets something in it */
537 if (host->flags & HOST_F_RECV) {
538 u32 mask = SD_STATUS_DB | SD_STATUS_NE;
540 while((status & mask) != mask)
541 status = au_readl(HOST_STATUS(host));
544 au1xxx_dbdma_start(channel);
548 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
551 unsigned int pbus = get_au1x00_speed();
552 unsigned int divisor;
553 u32 config;
555 /* From databook:
556 divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1
559 pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2);
560 pbus /= 2;
562 divisor = ((pbus / rate) / 2) - 1;
564 config = au_readl(HOST_CONFIG(host));
566 config &= ~(SD_CONFIG_DIV);
567 config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
569 au_writel(config, HOST_CONFIG(host));
570 au_sync();
573 static int
574 au1xmmc_prepare_data(struct au1xmmc_host *host, struct mmc_data *data)
577 int datalen = data->blocks * data->blksz;
579 if (dma != 0)
580 host->flags |= HOST_F_DMA;
582 if (data->flags & MMC_DATA_READ)
583 host->flags |= HOST_F_RECV;
584 else
585 host->flags |= HOST_F_XMIT;
587 if (host->mrq->stop)
588 host->flags |= HOST_F_STOP;
590 host->dma.dir = DMA_BIDIRECTIONAL;
592 host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
593 data->sg_len, host->dma.dir);
595 if (host->dma.len == 0)
596 return MMC_ERR_TIMEOUT;
598 au_writel(data->blksz - 1, HOST_BLKSIZE(host));
600 if (host->flags & HOST_F_DMA) {
601 int i;
602 u32 channel = DMA_CHANNEL(host);
604 au1xxx_dbdma_stop(channel);
606 for(i = 0; i < host->dma.len; i++) {
607 u32 ret = 0, flags = DDMA_FLAGS_NOIE;
608 struct scatterlist *sg = &data->sg[i];
609 int sg_len = sg->length;
611 int len = (datalen > sg_len) ? sg_len : datalen;
613 if (i == host->dma.len - 1)
614 flags = DDMA_FLAGS_IE;
616 if (host->flags & HOST_F_XMIT){
617 ret = au1xxx_dbdma_put_source_flags(channel,
618 (void *) (page_address(sg->page) +
619 sg->offset),
620 len, flags);
622 else {
623 ret = au1xxx_dbdma_put_dest_flags(channel,
624 (void *) (page_address(sg->page) +
625 sg->offset),
626 len, flags);
629 if (!ret)
630 goto dataerr;
632 datalen -= len;
635 else {
636 host->pio.index = 0;
637 host->pio.offset = 0;
638 host->pio.len = datalen;
640 if (host->flags & HOST_F_XMIT)
641 IRQ_ON(host, SD_CONFIG_TH);
642 else
643 IRQ_ON(host, SD_CONFIG_NE);
644 //IRQ_ON(host, SD_CONFIG_RA|SD_CONFIG_RF);
647 return MMC_ERR_NONE;
649 dataerr:
650 dma_unmap_sg(mmc_dev(host->mmc),data->sg,data->sg_len,host->dma.dir);
651 return MMC_ERR_TIMEOUT;
654 /* static void au1xmmc_request
655 This actually starts a command or data transaction
658 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
661 struct au1xmmc_host *host = mmc_priv(mmc);
662 int ret = MMC_ERR_NONE;
664 WARN_ON(irqs_disabled());
665 WARN_ON(host->status != HOST_S_IDLE);
667 host->mrq = mrq;
668 host->status = HOST_S_CMD;
670 bcsr->disk_leds &= ~(1 << 8);
672 if (mrq->data) {
673 FLUSH_FIFO(host);
674 ret = au1xmmc_prepare_data(host, mrq->data);
677 if (ret == MMC_ERR_NONE)
678 ret = au1xmmc_send_command(host, 0, mrq->cmd);
680 if (ret != MMC_ERR_NONE) {
681 mrq->cmd->error = ret;
682 au1xmmc_finish_request(host);
686 static void au1xmmc_reset_controller(struct au1xmmc_host *host)
689 /* Apply the clock */
690 au_writel(SD_ENABLE_CE, HOST_ENABLE(host));
691 au_sync_delay(1);
693 au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
694 au_sync_delay(5);
696 au_writel(~0, HOST_STATUS(host));
697 au_sync();
699 au_writel(0, HOST_BLKSIZE(host));
700 au_writel(0x001fffff, HOST_TIMEOUT(host));
701 au_sync();
703 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
704 au_sync();
706 au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
707 au_sync_delay(1);
709 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
710 au_sync();
712 /* Configure interrupts */
713 au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
714 au_sync();
718 static void au1xmmc_set_ios(struct mmc_host* mmc, struct mmc_ios* ios)
720 struct au1xmmc_host *host = mmc_priv(mmc);
722 if (ios->power_mode == MMC_POWER_OFF)
723 au1xmmc_set_power(host, 0);
724 else if (ios->power_mode == MMC_POWER_ON) {
725 au1xmmc_set_power(host, 1);
728 if (ios->clock && ios->clock != host->clock) {
729 au1xmmc_set_clock(host, ios->clock);
730 host->clock = ios->clock;
734 static void au1xmmc_dma_callback(int irq, void *dev_id, struct pt_regs *regs)
736 struct au1xmmc_host *host = (struct au1xmmc_host *) dev_id;
738 /* Avoid spurious interrupts */
740 if (!host->mrq)
741 return;
743 if (host->flags & HOST_F_STOP)
744 SEND_STOP(host);
746 tasklet_schedule(&host->data_task);
749 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
750 #define STATUS_DATA_IN (SD_STATUS_NE)
751 #define STATUS_DATA_OUT (SD_STATUS_TH)
753 static irqreturn_t au1xmmc_irq(int irq, void *dev_id, struct pt_regs *regs)
756 u32 status;
757 int i, ret = 0;
759 disable_irq(AU1100_SD_IRQ);
761 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
762 struct au1xmmc_host * host = au1xmmc_hosts[i];
763 u32 handled = 1;
765 status = au_readl(HOST_STATUS(host));
767 if (host->mrq && (status & STATUS_TIMEOUT)) {
768 if (status & SD_STATUS_RAT)
769 host->mrq->cmd->error = MMC_ERR_TIMEOUT;
771 else if (status & SD_STATUS_DT)
772 host->mrq->data->error = MMC_ERR_TIMEOUT;
774 /* In PIO mode, interrupts might still be enabled */
775 IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
777 //IRQ_OFF(host, SD_CONFIG_TH|SD_CONFIG_RA|SD_CONFIG_RF);
778 tasklet_schedule(&host->finish_task);
780 #if 0
781 else if (status & SD_STATUS_DD) {
783 /* Sometimes we get a DD before a NE in PIO mode */
785 if (!(host->flags & HOST_F_DMA) &&
786 (status & SD_STATUS_NE))
787 au1xmmc_receive_pio(host);
788 else {
789 au1xmmc_data_complete(host, status);
790 //tasklet_schedule(&host->data_task);
793 #endif
794 else if (status & (SD_STATUS_CR)) {
795 if (host->status == HOST_S_CMD)
796 au1xmmc_cmd_complete(host,status);
798 else if (!(host->flags & HOST_F_DMA)) {
799 if ((host->flags & HOST_F_XMIT) &&
800 (status & STATUS_DATA_OUT))
801 au1xmmc_send_pio(host);
802 else if ((host->flags & HOST_F_RECV) &&
803 (status & STATUS_DATA_IN))
804 au1xmmc_receive_pio(host);
806 else if (status & 0x203FBC70) {
807 DBG("Unhandled status %8.8x\n", host->id, status);
808 handled = 0;
811 au_writel(status, HOST_STATUS(host));
812 au_sync();
814 ret |= handled;
817 enable_irq(AU1100_SD_IRQ);
818 return ret;
821 static void au1xmmc_poll_event(unsigned long arg)
823 struct au1xmmc_host *host = (struct au1xmmc_host *) arg;
825 int card = au1xmmc_card_inserted(host);
826 int controller = (host->flags & HOST_F_ACTIVE) ? 1 : 0;
828 if (card != controller) {
829 host->flags &= ~HOST_F_ACTIVE;
830 if (card) host->flags |= HOST_F_ACTIVE;
831 mmc_detect_change(host->mmc, 0);
834 if (host->mrq != NULL) {
835 u32 status = au_readl(HOST_STATUS(host));
836 DBG("PENDING - %8.8x\n", host->id, status);
839 mod_timer(&host->timer, jiffies + AU1XMMC_DETECT_TIMEOUT);
842 static dbdev_tab_t au1xmmc_mem_dbdev =
844 DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 8, 0x00000000, 0, 0
847 static void au1xmmc_init_dma(struct au1xmmc_host *host)
850 u32 rxchan, txchan;
852 int txid = au1xmmc_card_table[host->id].tx_devid;
853 int rxid = au1xmmc_card_table[host->id].rx_devid;
855 /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
856 of 8 bits. And since devices are shared, we need to create
857 our own to avoid freaking out other devices
860 int memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
862 txchan = au1xxx_dbdma_chan_alloc(memid, txid,
863 au1xmmc_dma_callback, (void *) host);
865 rxchan = au1xxx_dbdma_chan_alloc(rxid, memid,
866 au1xmmc_dma_callback, (void *) host);
868 au1xxx_dbdma_set_devwidth(txchan, 8);
869 au1xxx_dbdma_set_devwidth(rxchan, 8);
871 au1xxx_dbdma_ring_alloc(txchan, AU1XMMC_DESCRIPTOR_COUNT);
872 au1xxx_dbdma_ring_alloc(rxchan, AU1XMMC_DESCRIPTOR_COUNT);
874 host->tx_chan = txchan;
875 host->rx_chan = rxchan;
878 struct mmc_host_ops au1xmmc_ops = {
879 .request = au1xmmc_request,
880 .set_ios = au1xmmc_set_ios,
883 static int __devinit au1xmmc_probe(struct platform_device *pdev)
886 int i, ret = 0;
888 /* THe interrupt is shared among all controllers */
889 ret = request_irq(AU1100_SD_IRQ, au1xmmc_irq, IRQF_DISABLED, "MMC", 0);
891 if (ret) {
892 printk(DRIVER_NAME "ERROR: Couldn't get int %d: %d\n",
893 AU1100_SD_IRQ, ret);
894 return -ENXIO;
897 disable_irq(AU1100_SD_IRQ);
899 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
900 struct mmc_host *mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
901 struct au1xmmc_host *host = 0;
903 if (!mmc) {
904 printk(DRIVER_NAME "ERROR: no mem for host %d\n", i);
905 au1xmmc_hosts[i] = 0;
906 continue;
909 mmc->ops = &au1xmmc_ops;
911 mmc->f_min = 450000;
912 mmc->f_max = 24000000;
914 mmc->max_seg_size = AU1XMMC_DESCRIPTOR_SIZE;
915 mmc->max_phys_segs = AU1XMMC_DESCRIPTOR_COUNT;
917 mmc->ocr_avail = AU1XMMC_OCR;
919 host = mmc_priv(mmc);
920 host->mmc = mmc;
922 host->id = i;
923 host->iobase = au1xmmc_card_table[host->id].iobase;
924 host->clock = 0;
925 host->power_mode = MMC_POWER_OFF;
927 host->flags = au1xmmc_card_inserted(host) ? HOST_F_ACTIVE : 0;
928 host->status = HOST_S_IDLE;
930 init_timer(&host->timer);
932 host->timer.function = au1xmmc_poll_event;
933 host->timer.data = (unsigned long) host;
934 host->timer.expires = jiffies + AU1XMMC_DETECT_TIMEOUT;
936 tasklet_init(&host->data_task, au1xmmc_tasklet_data,
937 (unsigned long) host);
939 tasklet_init(&host->finish_task, au1xmmc_tasklet_finish,
940 (unsigned long) host);
942 spin_lock_init(&host->lock);
944 if (dma != 0)
945 au1xmmc_init_dma(host);
947 au1xmmc_reset_controller(host);
949 mmc_add_host(mmc);
950 au1xmmc_hosts[i] = host;
952 add_timer(&host->timer);
954 printk(KERN_INFO DRIVER_NAME ": MMC Controller %d set up at %8.8X (mode=%s)\n",
955 host->id, host->iobase, dma ? "dma" : "pio");
958 enable_irq(AU1100_SD_IRQ);
960 return 0;
963 static int __devexit au1xmmc_remove(struct platform_device *pdev)
966 int i;
968 disable_irq(AU1100_SD_IRQ);
970 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
971 struct au1xmmc_host *host = au1xmmc_hosts[i];
972 if (!host) continue;
974 tasklet_kill(&host->data_task);
975 tasklet_kill(&host->finish_task);
977 del_timer_sync(&host->timer);
978 au1xmmc_set_power(host, 0);
980 mmc_remove_host(host->mmc);
982 au1xxx_dbdma_chan_free(host->tx_chan);
983 au1xxx_dbdma_chan_free(host->rx_chan);
985 au_writel(0x0, HOST_ENABLE(host));
986 au_sync();
989 free_irq(AU1100_SD_IRQ, 0);
990 return 0;
993 static struct platform_driver au1xmmc_driver = {
994 .probe = au1xmmc_probe,
995 .remove = au1xmmc_remove,
996 .suspend = NULL,
997 .resume = NULL,
998 .driver = {
999 .name = DRIVER_NAME,
1003 static int __init au1xmmc_init(void)
1005 return platform_driver_register(&au1xmmc_driver);
1008 static void __exit au1xmmc_exit(void)
1010 platform_driver_unregister(&au1xmmc_driver);
1013 module_init(au1xmmc_init);
1014 module_exit(au1xmmc_exit);
1016 #ifdef MODULE
1017 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1018 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1019 MODULE_LICENSE("GPL");
1020 #endif