1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G-2 10/100 Network Connection
31 * 82562GT 10/100 Network Connection
32 * 82562GT-2 10/100 Network Connection
33 * 82562V 10/100 Network Connection
34 * 82562V-2 10/100 Network Connection
35 * 82566DC-2 Gigabit Network Connection
36 * 82566DC Gigabit Network Connection
37 * 82566DM-2 Gigabit Network Connection
38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection
41 * 82567LM Gigabit Network Connection
42 * 82567LF Gigabit Network Connection
43 * 82567LM-2 Gigabit Network Connection
44 * 82567LF-2 Gigabit Network Connection
45 * 82567V-2 Gigabit Network Connection
46 * 82562GT-3 10/100 Network Connection
49 #include <linux/netdevice.h>
50 #include <linux/ethtool.h>
51 #include <linux/delay.h>
52 #include <linux/pci.h>
56 #define ICH_FLASH_GFPREG 0x0000
57 #define ICH_FLASH_HSFSTS 0x0004
58 #define ICH_FLASH_HSFCTL 0x0006
59 #define ICH_FLASH_FADDR 0x0008
60 #define ICH_FLASH_FDATA0 0x0010
62 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
63 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
64 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
65 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
66 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
68 #define ICH_CYCLE_READ 0
69 #define ICH_CYCLE_WRITE 2
70 #define ICH_CYCLE_ERASE 3
72 #define FLASH_GFPREG_BASE_MASK 0x1FFF
73 #define FLASH_SECTOR_ADDR_SHIFT 12
75 #define ICH_FLASH_SEG_SIZE_256 256
76 #define ICH_FLASH_SEG_SIZE_4K 4096
77 #define ICH_FLASH_SEG_SIZE_8K 8192
78 #define ICH_FLASH_SEG_SIZE_64K 65536
81 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
83 #define E1000_ICH_MNG_IAMT_MODE 0x2
85 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
86 (ID_LED_DEF1_OFF2 << 8) | \
87 (ID_LED_DEF1_ON2 << 4) | \
90 #define E1000_ICH_NVM_SIG_WORD 0x13
91 #define E1000_ICH_NVM_SIG_MASK 0xC000
93 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
95 #define E1000_FEXTNVM_SW_CONFIG 1
96 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
98 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
100 #define E1000_ICH_RAR_ENTRIES 7
102 #define PHY_PAGE_SHIFT 5
103 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
104 ((reg) & MAX_PHY_REG_ADDRESS))
105 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
106 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
108 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
109 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
110 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
112 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
113 /* Offset 04h HSFSTS */
114 union ich8_hws_flash_status
{
116 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
117 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
118 u16 dael
:1; /* bit 2 Direct Access error Log */
119 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
120 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
121 u16 reserved1
:2; /* bit 13:6 Reserved */
122 u16 reserved2
:6; /* bit 13:6 Reserved */
123 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
124 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
129 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
130 /* Offset 06h FLCTL */
131 union ich8_hws_flash_ctrl
{
132 struct ich8_hsflctl
{
133 u16 flcgo
:1; /* 0 Flash Cycle Go */
134 u16 flcycle
:2; /* 2:1 Flash Cycle */
135 u16 reserved
:5; /* 7:3 Reserved */
136 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
137 u16 flockdn
:6; /* 15:10 Reserved */
142 /* ICH Flash Region Access Permissions */
143 union ich8_hws_flash_regacc
{
145 u32 grra
:8; /* 0:7 GbE region Read Access */
146 u32 grwa
:8; /* 8:15 GbE region Write Access */
147 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
148 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
153 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
154 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
155 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
156 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
);
157 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
158 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
159 u32 offset
, u8 byte
);
160 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
162 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
164 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
165 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
167 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
169 return readw(hw
->flash_address
+ reg
);
172 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
174 return readl(hw
->flash_address
+ reg
);
177 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
179 writew(val
, hw
->flash_address
+ reg
);
182 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
184 writel(val
, hw
->flash_address
+ reg
);
187 #define er16flash(reg) __er16flash(hw, (reg))
188 #define er32flash(reg) __er32flash(hw, (reg))
189 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
190 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
193 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
194 * @hw: pointer to the HW structure
196 * Initialize family-specific PHY parameters and function pointers.
198 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
200 struct e1000_phy_info
*phy
= &hw
->phy
;
205 phy
->reset_delay_us
= 100;
208 * We may need to do this twice - once for IGP and if that fails,
209 * we'll set BM func pointers and try again
211 ret_val
= e1000e_determine_phy_address(hw
);
213 hw
->phy
.ops
.write_phy_reg
= e1000e_write_phy_reg_bm
;
214 hw
->phy
.ops
.read_phy_reg
= e1000e_read_phy_reg_bm
;
215 ret_val
= e1000e_determine_phy_address(hw
);
221 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
224 ret_val
= e1000e_get_phy_id(hw
);
231 case IGP03E1000_E_PHY_ID
:
232 phy
->type
= e1000_phy_igp_3
;
233 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
236 case IFE_PLUS_E_PHY_ID
:
238 phy
->type
= e1000_phy_ife
;
239 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
241 case BME1000_E_PHY_ID
:
242 phy
->type
= e1000_phy_bm
;
243 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
244 hw
->phy
.ops
.read_phy_reg
= e1000e_read_phy_reg_bm
;
245 hw
->phy
.ops
.write_phy_reg
= e1000e_write_phy_reg_bm
;
246 hw
->phy
.ops
.commit_phy
= e1000e_phy_sw_reset
;
249 return -E1000_ERR_PHY
;
257 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
258 * @hw: pointer to the HW structure
260 * Initialize family-specific NVM parameters and function
263 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
265 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
266 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
268 u32 sector_base_addr
;
272 /* Can't read flash registers if the register set isn't mapped. */
273 if (!hw
->flash_address
) {
274 hw_dbg(hw
, "ERROR: Flash registers not mapped\n");
275 return -E1000_ERR_CONFIG
;
278 nvm
->type
= e1000_nvm_flash_sw
;
280 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
283 * sector_X_addr is a "sector"-aligned address (4096 bytes)
284 * Add 1 to sector_end_addr since this sector is included in
287 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
288 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
290 /* flash_base_addr is byte-aligned */
291 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
294 * find total size of the NVM, then cut in half since the total
295 * size represents two separate NVM banks.
297 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
298 << FLASH_SECTOR_ADDR_SHIFT
;
299 nvm
->flash_bank_size
/= 2;
300 /* Adjust to word count */
301 nvm
->flash_bank_size
/= sizeof(u16
);
303 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
305 /* Clear shadow ram */
306 for (i
= 0; i
< nvm
->word_size
; i
++) {
307 dev_spec
->shadow_ram
[i
].modified
= 0;
308 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
315 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
316 * @hw: pointer to the HW structure
318 * Initialize family-specific MAC parameters and function
321 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
323 struct e1000_hw
*hw
= &adapter
->hw
;
324 struct e1000_mac_info
*mac
= &hw
->mac
;
326 /* Set media type function pointer */
327 hw
->phy
.media_type
= e1000_media_type_copper
;
329 /* Set mta register count */
330 mac
->mta_reg_count
= 32;
331 /* Set rar entry count */
332 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
333 if (mac
->type
== e1000_ich8lan
)
334 mac
->rar_entry_count
--;
335 /* Set if manageability features are enabled. */
336 mac
->arc_subsystem_valid
= 1;
338 /* Enable PCS Lock-loss workaround for ICH8 */
339 if (mac
->type
== e1000_ich8lan
)
340 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, 1);
345 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
347 struct e1000_hw
*hw
= &adapter
->hw
;
350 rc
= e1000_init_mac_params_ich8lan(adapter
);
354 rc
= e1000_init_nvm_params_ich8lan(hw
);
358 rc
= e1000_init_phy_params_ich8lan(hw
);
362 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
363 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
364 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
370 * e1000_acquire_swflag_ich8lan - Acquire software control flag
371 * @hw: pointer to the HW structure
373 * Acquires the software control flag for performing NVM and PHY
374 * operations. This is a function pointer entry point only called by
375 * read/write routines for the PHY and NVM parts.
377 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
380 u32 timeout
= PHY_CFG_TIMEOUT
;
383 extcnf_ctrl
= er32(EXTCNF_CTRL
);
384 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
385 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
387 extcnf_ctrl
= er32(EXTCNF_CTRL
);
388 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
395 hw_dbg(hw
, "FW or HW has locked the resource for too long.\n");
396 return -E1000_ERR_CONFIG
;
403 * e1000_release_swflag_ich8lan - Release software control flag
404 * @hw: pointer to the HW structure
406 * Releases the software control flag for performing NVM and PHY operations.
407 * This is a function pointer entry point only called by read/write
408 * routines for the PHY and NVM parts.
410 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
414 extcnf_ctrl
= er32(EXTCNF_CTRL
);
415 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
416 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
420 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
421 * @hw: pointer to the HW structure
423 * Checks if firmware is blocking the reset of the PHY.
424 * This is a function pointer entry point only called by
427 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
433 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
437 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
438 * @hw: pointer to the HW structure
440 * Forces the speed and duplex settings of the PHY.
441 * This is a function pointer entry point only called by
442 * PHY setup routines.
444 static s32
e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw
*hw
)
446 struct e1000_phy_info
*phy
= &hw
->phy
;
451 if (phy
->type
!= e1000_phy_ife
) {
452 ret_val
= e1000e_phy_force_speed_duplex_igp(hw
);
456 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &data
);
460 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
462 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, data
);
466 /* Disable MDI-X support for 10/100 */
467 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
471 data
&= ~IFE_PMC_AUTO_MDIX
;
472 data
&= ~IFE_PMC_FORCE_MDIX
;
474 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
478 hw_dbg(hw
, "IFE PMC: %X\n", data
);
482 if (phy
->autoneg_wait_to_complete
) {
483 hw_dbg(hw
, "Waiting for forced speed/duplex link on IFE phy.\n");
485 ret_val
= e1000e_phy_has_link_generic(hw
,
493 hw_dbg(hw
, "Link taking longer than expected.\n");
496 ret_val
= e1000e_phy_has_link_generic(hw
,
508 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
509 * @hw: pointer to the HW structure
512 * This is a function pointer entry point called by drivers
513 * or other shared routines.
515 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
517 struct e1000_phy_info
*phy
= &hw
->phy
;
519 u32 data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
521 u16 loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
522 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
524 ret_val
= e1000e_phy_hw_reset_generic(hw
);
529 * Initialize the PHY from the NVM on ICH platforms. This
530 * is needed due to an issue where the NVM configuration is
531 * not properly autoloaded after power transitions.
532 * Therefore, after each PHY reset, we will load the
533 * configuration data out of the NVM manually.
535 if (hw
->mac
.type
== e1000_ich8lan
&& phy
->type
== e1000_phy_igp_3
) {
536 struct e1000_adapter
*adapter
= hw
->adapter
;
538 /* Check if SW needs configure the PHY */
539 if ((adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M_AMT
) ||
540 (adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M
))
541 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
543 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
545 data
= er32(FEXTNVM
);
546 if (!(data
& sw_cfg_mask
))
549 /* Wait for basic configuration completes before proceeding*/
552 data
&= E1000_STATUS_LAN_INIT_DONE
;
554 } while ((!data
) && --loop
);
557 * If basic configuration is incomplete before the above loop
558 * count reaches 0, loading the configuration from NVM will
559 * leave the PHY in a bad state possibly resulting in no link.
562 hw_dbg(hw
, "LAN_INIT_DONE not set, increase timeout\n");
565 /* Clear the Init Done bit for the next init event */
567 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
571 * Make sure HW does not configure LCD from PHY
572 * extended configuration before SW configuration
574 data
= er32(EXTCNF_CTRL
);
575 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
578 cnf_size
= er32(EXTCNF_SIZE
);
579 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
580 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
584 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
585 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
587 /* Configure LCD from extended configuration region. */
589 /* cnf_base_addr is in DWORD */
590 word_addr
= (u16
)(cnf_base_addr
<< 1);
592 for (i
= 0; i
< cnf_size
; i
++) {
593 ret_val
= e1000_read_nvm(hw
,
600 ret_val
= e1000_read_nvm(hw
,
601 (word_addr
+ i
* 2 + 1),
607 /* Save off the PHY page for future writes. */
608 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
613 reg_addr
|= phy_page
;
615 ret_val
= e1e_wphy(hw
, (u32
)reg_addr
, reg_data
);
625 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
626 * @hw: pointer to the HW structure
628 * Populates "phy" structure with various feature states.
629 * This function is only called by other family-specific
632 static s32
e1000_get_phy_info_ife_ich8lan(struct e1000_hw
*hw
)
634 struct e1000_phy_info
*phy
= &hw
->phy
;
639 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
644 hw_dbg(hw
, "Phy info is only valid if link is up\n");
645 return -E1000_ERR_CONFIG
;
648 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
651 phy
->polarity_correction
= (!(data
& IFE_PSC_AUTO_POLARITY_DISABLE
));
653 if (phy
->polarity_correction
) {
654 ret_val
= e1000_check_polarity_ife_ich8lan(hw
);
658 /* Polarity is forced */
659 phy
->cable_polarity
= (data
& IFE_PSC_FORCE_POLARITY
)
660 ? e1000_rev_polarity_reversed
661 : e1000_rev_polarity_normal
;
664 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
668 phy
->is_mdix
= (data
& IFE_PMC_MDIX_STATUS
);
670 /* The following parameters are undefined for 10/100 operation. */
671 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
672 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
673 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
679 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
680 * @hw: pointer to the HW structure
682 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
683 * This is a function pointer entry point called by drivers
684 * or other shared routines.
686 static s32
e1000_get_phy_info_ich8lan(struct e1000_hw
*hw
)
688 switch (hw
->phy
.type
) {
690 return e1000_get_phy_info_ife_ich8lan(hw
);
692 case e1000_phy_igp_3
:
694 return e1000e_get_phy_info_igp(hw
);
700 return -E1000_ERR_PHY_TYPE
;
704 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
705 * @hw: pointer to the HW structure
707 * Polarity is determined on the polarity reversal feature being enabled.
708 * This function is only called by other family-specific
711 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
)
713 struct e1000_phy_info
*phy
= &hw
->phy
;
715 u16 phy_data
, offset
, mask
;
718 * Polarity is determined based on the reversal feature being enabled.
720 if (phy
->polarity_correction
) {
721 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
722 mask
= IFE_PESC_POLARITY_REVERSED
;
724 offset
= IFE_PHY_SPECIAL_CONTROL
;
725 mask
= IFE_PSC_FORCE_POLARITY
;
728 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
731 phy
->cable_polarity
= (phy_data
& mask
)
732 ? e1000_rev_polarity_reversed
733 : e1000_rev_polarity_normal
;
739 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
740 * @hw: pointer to the HW structure
741 * @active: TRUE to enable LPLU, FALSE to disable
743 * Sets the LPLU D0 state according to the active flag. When
744 * activating LPLU this function also disables smart speed
745 * and vice versa. LPLU will not be activated unless the
746 * device autonegotiation advertisement meets standards of
747 * either 10 or 10/100 or 10/100/1000 at all duplexes.
748 * This is a function pointer entry point only called by
749 * PHY setup routines.
751 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
753 struct e1000_phy_info
*phy
= &hw
->phy
;
758 if (phy
->type
== e1000_phy_ife
)
761 phy_ctrl
= er32(PHY_CTRL
);
764 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
765 ew32(PHY_CTRL
, phy_ctrl
);
768 * Call gig speed drop workaround on LPLU before accessing
771 if ((hw
->mac
.type
== e1000_ich8lan
) &&
772 (hw
->phy
.type
== e1000_phy_igp_3
))
773 e1000e_gig_downshift_workaround_ich8lan(hw
);
775 /* When LPLU is enabled, we should disable SmartSpeed */
776 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
777 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
778 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
782 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
783 ew32(PHY_CTRL
, phy_ctrl
);
786 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
787 * during Dx states where the power conservation is most
788 * important. During driver activity we should enable
789 * SmartSpeed, so performance is maintained.
791 if (phy
->smart_speed
== e1000_smart_speed_on
) {
792 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
797 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
798 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
802 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
803 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
808 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
809 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
820 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
821 * @hw: pointer to the HW structure
822 * @active: TRUE to enable LPLU, FALSE to disable
824 * Sets the LPLU D3 state according to the active flag. When
825 * activating LPLU this function also disables smart speed
826 * and vice versa. LPLU will not be activated unless the
827 * device autonegotiation advertisement meets standards of
828 * either 10 or 10/100 or 10/100/1000 at all duplexes.
829 * This is a function pointer entry point only called by
830 * PHY setup routines.
832 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
834 struct e1000_phy_info
*phy
= &hw
->phy
;
839 phy_ctrl
= er32(PHY_CTRL
);
842 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
843 ew32(PHY_CTRL
, phy_ctrl
);
845 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
846 * during Dx states where the power conservation is most
847 * important. During driver activity we should enable
848 * SmartSpeed, so performance is maintained.
850 if (phy
->smart_speed
== e1000_smart_speed_on
) {
851 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
856 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
857 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
861 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
862 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
867 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
868 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
873 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
874 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
875 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
876 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
877 ew32(PHY_CTRL
, phy_ctrl
);
880 * Call gig speed drop workaround on LPLU before accessing
883 if ((hw
->mac
.type
== e1000_ich8lan
) &&
884 (hw
->phy
.type
== e1000_phy_igp_3
))
885 e1000e_gig_downshift_workaround_ich8lan(hw
);
887 /* When LPLU is enabled, we should disable SmartSpeed */
888 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
892 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
893 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
900 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
901 * @hw: pointer to the HW structure
902 * @offset: The offset (in bytes) of the word(s) to read.
903 * @words: Size of data to read in words
904 * @data: Pointer to the word(s) to read at offset.
906 * Reads a word(s) from the NVM using the flash access registers.
908 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
911 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
912 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
917 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
919 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
920 return -E1000_ERR_NVM
;
923 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
927 /* Start with the bank offset, then add the relative offset. */
928 act_offset
= (er32(EECD
) & E1000_EECD_SEC1VAL
)
929 ? nvm
->flash_bank_size
931 act_offset
+= offset
;
933 for (i
= 0; i
< words
; i
++) {
934 if ((dev_spec
->shadow_ram
) &&
935 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
936 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
938 ret_val
= e1000_read_flash_word_ich8lan(hw
,
947 e1000_release_swflag_ich8lan(hw
);
953 * e1000_flash_cycle_init_ich8lan - Initialize flash
954 * @hw: pointer to the HW structure
956 * This function does initial flash setup so that a new read/write/erase cycle
959 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
961 union ich8_hws_flash_status hsfsts
;
962 s32 ret_val
= -E1000_ERR_NVM
;
965 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
967 /* Check if the flash descriptor is valid */
968 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
969 hw_dbg(hw
, "Flash descriptor invalid. "
970 "SW Sequencing must be used.");
971 return -E1000_ERR_NVM
;
974 /* Clear FCERR and DAEL in hw status by writing 1 */
975 hsfsts
.hsf_status
.flcerr
= 1;
976 hsfsts
.hsf_status
.dael
= 1;
978 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
981 * Either we should have a hardware SPI cycle in progress
982 * bit to check against, in order to start a new cycle or
983 * FDONE bit should be changed in the hardware so that it
984 * is 1 after hardware reset, which can then be used as an
985 * indication whether a cycle is in progress or has been
989 if (hsfsts
.hsf_status
.flcinprog
== 0) {
991 * There is no cycle running at present,
992 * so we can start a cycle
993 * Begin by setting Flash Cycle Done.
995 hsfsts
.hsf_status
.flcdone
= 1;
996 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1000 * otherwise poll for sometime so the current
1001 * cycle has a chance to end before giving up.
1003 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
1004 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
1005 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1013 * Successful in waiting for previous cycle to timeout,
1014 * now set the Flash Cycle Done.
1016 hsfsts
.hsf_status
.flcdone
= 1;
1017 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1019 hw_dbg(hw
, "Flash controller busy, cannot get access");
1027 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1028 * @hw: pointer to the HW structure
1029 * @timeout: maximum time to wait for completion
1031 * This function starts a flash cycle and waits for its completion.
1033 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
1035 union ich8_hws_flash_ctrl hsflctl
;
1036 union ich8_hws_flash_status hsfsts
;
1037 s32 ret_val
= -E1000_ERR_NVM
;
1040 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1041 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1042 hsflctl
.hsf_ctrl
.flcgo
= 1;
1043 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1045 /* wait till FDONE bit is set to 1 */
1047 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1048 if (hsfsts
.hsf_status
.flcdone
== 1)
1051 } while (i
++ < timeout
);
1053 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
1060 * e1000_read_flash_word_ich8lan - Read word from flash
1061 * @hw: pointer to the HW structure
1062 * @offset: offset to data location
1063 * @data: pointer to the location for storing the data
1065 * Reads the flash word at offset into data. Offset is converted
1066 * to bytes before read.
1068 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1071 /* Must convert offset into bytes. */
1074 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
1078 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1079 * @hw: pointer to the HW structure
1080 * @offset: The offset (in bytes) of the byte or word to read.
1081 * @size: Size of data to read, 1=byte 2=word
1082 * @data: Pointer to the word to store the value read.
1084 * Reads a byte or word from the NVM using the flash access registers.
1086 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1089 union ich8_hws_flash_status hsfsts
;
1090 union ich8_hws_flash_ctrl hsflctl
;
1091 u32 flash_linear_addr
;
1093 s32 ret_val
= -E1000_ERR_NVM
;
1096 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1097 return -E1000_ERR_NVM
;
1099 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1100 hw
->nvm
.flash_base_addr
;
1105 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1109 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1110 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1111 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
1112 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
1113 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1115 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1117 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1118 ICH_FLASH_READ_COMMAND_TIMEOUT
);
1121 * Check if FCERR is set to 1, if set to 1, clear it
1122 * and try the whole sequence a few more times, else
1123 * read in (shift in) the Flash Data0, the order is
1124 * least significant byte first msb to lsb
1127 flash_data
= er32flash(ICH_FLASH_FDATA0
);
1129 *data
= (u8
)(flash_data
& 0x000000FF);
1130 } else if (size
== 2) {
1131 *data
= (u16
)(flash_data
& 0x0000FFFF);
1136 * If we've gotten here, then things are probably
1137 * completely hosed, but if the error condition is
1138 * detected, it won't hurt to give it another try...
1139 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1141 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1142 if (hsfsts
.hsf_status
.flcerr
== 1) {
1143 /* Repeat for some time before giving up. */
1145 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
1146 hw_dbg(hw
, "Timeout error - flash cycle "
1147 "did not complete.");
1151 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1157 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1158 * @hw: pointer to the HW structure
1159 * @offset: The offset (in bytes) of the word(s) to write.
1160 * @words: Size of data to write in words
1161 * @data: Pointer to the word(s) to write at offset.
1163 * Writes a byte or word to the NVM using the flash access registers.
1165 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1168 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1169 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1173 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1175 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1176 return -E1000_ERR_NVM
;
1179 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1183 for (i
= 0; i
< words
; i
++) {
1184 dev_spec
->shadow_ram
[offset
+i
].modified
= 1;
1185 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
1188 e1000_release_swflag_ich8lan(hw
);
1194 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1195 * @hw: pointer to the HW structure
1197 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1198 * which writes the checksum to the shadow ram. The changes in the shadow
1199 * ram are then committed to the EEPROM by processing each bank at a time
1200 * checking for the modified bit and writing only the pending changes.
1201 * After a successful commit, the shadow ram is cleared and is ready for
1204 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1206 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1207 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1208 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
;
1212 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
1216 if (nvm
->type
!= e1000_nvm_flash_sw
)
1219 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1224 * We're writing to the opposite bank so if we're on bank 1,
1225 * write to bank 0 etc. We also need to erase the segment that
1226 * is going to be written
1228 if (!(er32(EECD
) & E1000_EECD_SEC1VAL
)) {
1229 new_bank_offset
= nvm
->flash_bank_size
;
1230 old_bank_offset
= 0;
1231 e1000_erase_flash_bank_ich8lan(hw
, 1);
1233 old_bank_offset
= nvm
->flash_bank_size
;
1234 new_bank_offset
= 0;
1235 e1000_erase_flash_bank_ich8lan(hw
, 0);
1238 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1240 * Determine whether to write the value stored
1241 * in the other NVM bank or a modified value stored
1244 if (dev_spec
->shadow_ram
[i
].modified
) {
1245 data
= dev_spec
->shadow_ram
[i
].value
;
1247 e1000_read_flash_word_ich8lan(hw
,
1248 i
+ old_bank_offset
,
1253 * If the word is 0x13, then make sure the signature bits
1254 * (15:14) are 11b until the commit has completed.
1255 * This will allow us to write 10b which indicates the
1256 * signature is valid. We want to do this after the write
1257 * has completed so that we don't mark the segment valid
1258 * while the write is still in progress
1260 if (i
== E1000_ICH_NVM_SIG_WORD
)
1261 data
|= E1000_ICH_NVM_SIG_MASK
;
1263 /* Convert offset to bytes. */
1264 act_offset
= (i
+ new_bank_offset
) << 1;
1267 /* Write the bytes to the new bank. */
1268 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1275 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1283 * Don't bother writing the segment valid bits if sector
1284 * programming failed.
1287 hw_dbg(hw
, "Flash commit failed.\n");
1288 e1000_release_swflag_ich8lan(hw
);
1293 * Finally validate the new segment by setting bit 15:14
1294 * to 10b in word 0x13 , this can be done without an
1295 * erase as well since these bits are 11 to start with
1296 * and we need to change bit 14 to 0b
1298 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
1299 e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
1301 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1305 e1000_release_swflag_ich8lan(hw
);
1310 * And invalidate the previously valid segment by setting
1311 * its signature word (0x13) high_byte to 0b. This can be
1312 * done without an erase because flash erase sets all bits
1313 * to 1's. We can write 1's to 0's without an erase
1315 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
1316 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
1318 e1000_release_swflag_ich8lan(hw
);
1322 /* Great! Everything worked, we can now clear the cached entries. */
1323 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1324 dev_spec
->shadow_ram
[i
].modified
= 0;
1325 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
1328 e1000_release_swflag_ich8lan(hw
);
1331 * Reload the EEPROM, or else modifications will not appear
1332 * until after the next adapter reset.
1334 e1000e_reload_nvm(hw
);
1341 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1342 * @hw: pointer to the HW structure
1344 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1345 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1346 * calculated, in which case we need to calculate the checksum and set bit 6.
1348 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1354 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1355 * needs to be fixed. This bit is an indication that the NVM
1356 * was prepared by OEM software and did not calculate the
1357 * checksum...a likely scenario.
1359 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
1363 if ((data
& 0x40) == 0) {
1365 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
1368 ret_val
= e1000e_update_nvm_checksum(hw
);
1373 return e1000e_validate_nvm_checksum_generic(hw
);
1377 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1378 * @hw: pointer to the HW structure
1379 * @offset: The offset (in bytes) of the byte/word to read.
1380 * @size: Size of data to read, 1=byte 2=word
1381 * @data: The byte(s) to write to the NVM.
1383 * Writes one/two bytes to the NVM using the flash access registers.
1385 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1388 union ich8_hws_flash_status hsfsts
;
1389 union ich8_hws_flash_ctrl hsflctl
;
1390 u32 flash_linear_addr
;
1395 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
1396 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1397 return -E1000_ERR_NVM
;
1399 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1400 hw
->nvm
.flash_base_addr
;
1405 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1409 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1410 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1411 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
1412 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
1413 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1415 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1418 flash_data
= (u32
)data
& 0x00FF;
1420 flash_data
= (u32
)data
;
1422 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
1425 * check if FCERR is set to 1 , if set to 1, clear it
1426 * and try the whole sequence a few more times else done
1428 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1429 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
1434 * If we're here, then things are most likely
1435 * completely hosed, but if the error condition
1436 * is detected, it won't hurt to give it another
1437 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1439 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1440 if (hsfsts
.hsf_status
.flcerr
== 1)
1441 /* Repeat for some time before giving up. */
1443 if (hsfsts
.hsf_status
.flcdone
== 0) {
1444 hw_dbg(hw
, "Timeout error - flash cycle "
1445 "did not complete.");
1448 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1454 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1455 * @hw: pointer to the HW structure
1456 * @offset: The index of the byte to read.
1457 * @data: The byte to write to the NVM.
1459 * Writes a single byte to the NVM using the flash access registers.
1461 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1464 u16 word
= (u16
)data
;
1466 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
1470 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1471 * @hw: pointer to the HW structure
1472 * @offset: The offset of the byte to write.
1473 * @byte: The byte to write to the NVM.
1475 * Writes a single byte to the NVM using the flash access registers.
1476 * Goes through a retry algorithm before giving up.
1478 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
1479 u32 offset
, u8 byte
)
1482 u16 program_retries
;
1484 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1488 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
1489 hw_dbg(hw
, "Retrying Byte %2.2X at offset %u\n", byte
, offset
);
1491 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1495 if (program_retries
== 100)
1496 return -E1000_ERR_NVM
;
1502 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1503 * @hw: pointer to the HW structure
1504 * @bank: 0 for first bank, 1 for second bank, etc.
1506 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1507 * bank N is 4096 * N + flash_reg_addr.
1509 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
1511 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1512 union ich8_hws_flash_status hsfsts
;
1513 union ich8_hws_flash_ctrl hsflctl
;
1514 u32 flash_linear_addr
;
1515 /* bank size is in 16bit words - adjust to bytes */
1516 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
1523 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1526 * Determine HW Sector size: Read BERASE bits of hw flash status
1528 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1529 * consecutive sectors. The start index for the nth Hw sector
1530 * can be calculated as = bank * 4096 + n * 256
1531 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1532 * The start index for the nth Hw sector can be calculated
1534 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1535 * (ich9 only, otherwise error condition)
1536 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1538 switch (hsfsts
.hsf_status
.berasesz
) {
1540 /* Hw sector size 256 */
1541 sector_size
= ICH_FLASH_SEG_SIZE_256
;
1542 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
1545 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
1546 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_4K
;
1549 if (hw
->mac
.type
== e1000_ich9lan
) {
1550 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
1551 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_8K
;
1553 return -E1000_ERR_NVM
;
1557 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
1558 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_64K
;
1561 return -E1000_ERR_NVM
;
1564 /* Start with the base address, then add the sector offset. */
1565 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
1566 flash_linear_addr
+= (bank
) ? (sector_size
* iteration
) : 0;
1568 for (j
= 0; j
< iteration
; j
++) {
1571 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1576 * Write a value 11 (block Erase) in Flash
1577 * Cycle field in hw flash control
1579 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1580 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
1581 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1584 * Write the last 24 bits of an index within the
1585 * block into Flash Linear address field in Flash
1588 flash_linear_addr
+= (j
* sector_size
);
1589 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1591 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1592 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
1597 * Check if FCERR is set to 1. If 1,
1598 * clear it and try the whole sequence
1599 * a few more times else Done
1601 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1602 if (hsfsts
.hsf_status
.flcerr
== 1)
1603 /* repeat for some time before giving up */
1605 else if (hsfsts
.hsf_status
.flcdone
== 0)
1607 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
1614 * e1000_valid_led_default_ich8lan - Set the default LED settings
1615 * @hw: pointer to the HW structure
1616 * @data: Pointer to the LED settings
1618 * Reads the LED default settings from the NVM to data. If the NVM LED
1619 * settings is all 0's or F's, set the LED default to a valid LED default
1622 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
1626 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1628 hw_dbg(hw
, "NVM Read Error\n");
1632 if (*data
== ID_LED_RESERVED_0000
||
1633 *data
== ID_LED_RESERVED_FFFF
)
1634 *data
= ID_LED_DEFAULT_ICH8LAN
;
1640 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1641 * @hw: pointer to the HW structure
1643 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1644 * register, so the the bus width is hard coded.
1646 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
1648 struct e1000_bus_info
*bus
= &hw
->bus
;
1651 ret_val
= e1000e_get_bus_info_pcie(hw
);
1654 * ICH devices are "PCI Express"-ish. They have
1655 * a configuration space, but do not contain
1656 * PCI Express Capability registers, so bus width
1657 * must be hardcoded.
1659 if (bus
->width
== e1000_bus_width_unknown
)
1660 bus
->width
= e1000_bus_width_pcie_x1
;
1666 * e1000_reset_hw_ich8lan - Reset the hardware
1667 * @hw: pointer to the HW structure
1669 * Does a full reset of the hardware which includes a reset of the PHY and
1672 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
1678 * Prevent the PCI-E bus from sticking if there is no TLP connection
1679 * on the last TLP read/write transaction when MAC is reset.
1681 ret_val
= e1000e_disable_pcie_master(hw
);
1683 hw_dbg(hw
, "PCI-E Master disable polling has failed.\n");
1686 hw_dbg(hw
, "Masking off all interrupts\n");
1687 ew32(IMC
, 0xffffffff);
1690 * Disable the Transmit and Receive units. Then delay to allow
1691 * any pending transactions to complete before we hit the MAC
1692 * with the global reset.
1695 ew32(TCTL
, E1000_TCTL_PSP
);
1700 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1701 if (hw
->mac
.type
== e1000_ich8lan
) {
1702 /* Set Tx and Rx buffer allocation to 8k apiece. */
1703 ew32(PBA
, E1000_PBA_8K
);
1704 /* Set Packet Buffer Size to 16k. */
1705 ew32(PBS
, E1000_PBS_16K
);
1710 if (!e1000_check_reset_block(hw
)) {
1712 * PHY HW reset requires MAC CORE reset at the same
1713 * time to make sure the interface between MAC and the
1714 * external PHY is reset.
1716 ctrl
|= E1000_CTRL_PHY_RST
;
1718 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1719 hw_dbg(hw
, "Issuing a global reset to ich8lan");
1720 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
1723 ret_val
= e1000e_get_auto_rd_done(hw
);
1726 * When auto config read does not complete, do not
1727 * return with an error. This can happen in situations
1728 * where there is no eeprom and prevents getting link.
1730 hw_dbg(hw
, "Auto Read Done did not complete\n");
1733 ew32(IMC
, 0xffffffff);
1736 kab
= er32(KABGTXD
);
1737 kab
|= E1000_KABGTXD_BGSQLBIAS
;
1744 * e1000_init_hw_ich8lan - Initialize the hardware
1745 * @hw: pointer to the HW structure
1747 * Prepares the hardware for transmit and receive by doing the following:
1748 * - initialize hardware bits
1749 * - initialize LED identification
1750 * - setup receive address registers
1751 * - setup flow control
1752 * - setup transmit descriptors
1753 * - clear statistics
1755 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
1757 struct e1000_mac_info
*mac
= &hw
->mac
;
1758 u32 ctrl_ext
, txdctl
, snoop
;
1762 e1000_initialize_hw_bits_ich8lan(hw
);
1764 /* Initialize identification LED */
1765 ret_val
= e1000e_id_led_init(hw
);
1767 hw_dbg(hw
, "Error initializing identification LED\n");
1771 /* Setup the receive address. */
1772 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
1774 /* Zero out the Multicast HASH table */
1775 hw_dbg(hw
, "Zeroing the MTA\n");
1776 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1777 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1779 /* Setup link and flow control */
1780 ret_val
= e1000_setup_link_ich8lan(hw
);
1782 /* Set the transmit descriptor write-back policy for both queues */
1783 txdctl
= er32(TXDCTL(0));
1784 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
1785 E1000_TXDCTL_FULL_TX_DESC_WB
;
1786 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
1787 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
1788 ew32(TXDCTL(0), txdctl
);
1789 txdctl
= er32(TXDCTL(1));
1790 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
1791 E1000_TXDCTL_FULL_TX_DESC_WB
;
1792 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
1793 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
1794 ew32(TXDCTL(1), txdctl
);
1797 * ICH8 has opposite polarity of no_snoop bits.
1798 * By default, we should use snoop behavior.
1800 if (mac
->type
== e1000_ich8lan
)
1801 snoop
= PCIE_ICH8_SNOOP_ALL
;
1803 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
1804 e1000e_set_pcie_no_snoop(hw
, snoop
);
1806 ctrl_ext
= er32(CTRL_EXT
);
1807 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
1808 ew32(CTRL_EXT
, ctrl_ext
);
1811 * Clear all of the statistics registers (clear on read). It is
1812 * important that we do this after we have tried to establish link
1813 * because the symbol error count will increment wildly if there
1816 e1000_clear_hw_cntrs_ich8lan(hw
);
1821 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
1822 * @hw: pointer to the HW structure
1824 * Sets/Clears required hardware bits necessary for correctly setting up the
1825 * hardware for transmit and receive.
1827 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
1831 /* Extended Device Control */
1832 reg
= er32(CTRL_EXT
);
1834 ew32(CTRL_EXT
, reg
);
1836 /* Transmit Descriptor Control 0 */
1837 reg
= er32(TXDCTL(0));
1839 ew32(TXDCTL(0), reg
);
1841 /* Transmit Descriptor Control 1 */
1842 reg
= er32(TXDCTL(1));
1844 ew32(TXDCTL(1), reg
);
1846 /* Transmit Arbitration Control 0 */
1847 reg
= er32(TARC(0));
1848 if (hw
->mac
.type
== e1000_ich8lan
)
1849 reg
|= (1 << 28) | (1 << 29);
1850 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
1853 /* Transmit Arbitration Control 1 */
1854 reg
= er32(TARC(1));
1855 if (er32(TCTL
) & E1000_TCTL_MULR
)
1859 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
1863 if (hw
->mac
.type
== e1000_ich8lan
) {
1871 * e1000_setup_link_ich8lan - Setup flow control and link settings
1872 * @hw: pointer to the HW structure
1874 * Determines which flow control settings to use, then configures flow
1875 * control. Calls the appropriate media-specific link configuration
1876 * function. Assuming the adapter has a valid link partner, a valid link
1877 * should be established. Assumes the hardware has previously been reset
1878 * and the transmitter and receiver are not enabled.
1880 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
1884 if (e1000_check_reset_block(hw
))
1888 * ICH parts do not have a word in the NVM to determine
1889 * the default flow control setting, so we explicitly
1892 if (hw
->fc
.type
== e1000_fc_default
)
1893 hw
->fc
.type
= e1000_fc_full
;
1895 hw
->fc
.original_type
= hw
->fc
.type
;
1897 hw_dbg(hw
, "After fix-ups FlowControl is now = %x\n", hw
->fc
.type
);
1899 /* Continue to configure the copper link. */
1900 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
1904 ew32(FCTTV
, hw
->fc
.pause_time
);
1906 return e1000e_set_fc_watermarks(hw
);
1910 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
1911 * @hw: pointer to the HW structure
1913 * Configures the kumeran interface to the PHY to wait the appropriate time
1914 * when polling the PHY, then call the generic setup_copper_link to finish
1915 * configuring the copper link.
1917 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
1924 ctrl
|= E1000_CTRL_SLU
;
1925 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1929 * Set the mac to wait the maximum time between each iteration
1930 * and increase the max iterations when polling the phy;
1931 * this fixes erroneous timeouts at 10Mbps.
1933 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 4), 0xFFFF);
1936 ret_val
= e1000e_read_kmrn_reg(hw
, GG82563_REG(0x34, 9), ®_data
);
1940 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 9), reg_data
);
1944 if (hw
->phy
.type
== e1000_phy_igp_3
) {
1945 ret_val
= e1000e_copper_link_setup_igp(hw
);
1948 } else if (hw
->phy
.type
== e1000_phy_bm
) {
1949 ret_val
= e1000e_copper_link_setup_m88(hw
);
1954 if (hw
->phy
.type
== e1000_phy_ife
) {
1955 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
1959 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
1961 switch (hw
->phy
.mdix
) {
1963 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
1966 reg_data
|= IFE_PMC_FORCE_MDIX
;
1970 reg_data
|= IFE_PMC_AUTO_MDIX
;
1973 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
1977 return e1000e_setup_copper_link(hw
);
1981 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
1982 * @hw: pointer to the HW structure
1983 * @speed: pointer to store current link speed
1984 * @duplex: pointer to store the current link duplex
1986 * Calls the generic get_speed_and_duplex to retrieve the current link
1987 * information and then calls the Kumeran lock loss workaround for links at
1990 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
1995 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
1999 if ((hw
->mac
.type
== e1000_ich8lan
) &&
2000 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2001 (*speed
== SPEED_1000
)) {
2002 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
2009 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2010 * @hw: pointer to the HW structure
2012 * Work-around for 82566 Kumeran PCS lock loss:
2013 * On link status change (i.e. PCI reset, speed change) and link is up and
2015 * 0) if workaround is optionally disabled do nothing
2016 * 1) wait 1ms for Kumeran link to come up
2017 * 2) check Kumeran Diagnostic register PCS lock loss bit
2018 * 3) if not set the link is locked (all is good), otherwise...
2020 * 5) repeat up to 10 times
2021 * Note: this is only called for IGP3 copper when speed is 1gb.
2023 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
2025 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2031 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
2035 * Make sure link is up before proceeding. If not just return.
2036 * Attempting this while link is negotiating fouled up link
2039 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2043 for (i
= 0; i
< 10; i
++) {
2044 /* read once to clear */
2045 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2048 /* and again to get new status */
2049 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2053 /* check for PCS lock */
2054 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
2057 /* Issue PHY reset */
2058 e1000_phy_hw_reset(hw
);
2061 /* Disable GigE link negotiation */
2062 phy_ctrl
= er32(PHY_CTRL
);
2063 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2064 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2065 ew32(PHY_CTRL
, phy_ctrl
);
2068 * Call gig speed drop workaround on Gig disable before accessing
2071 e1000e_gig_downshift_workaround_ich8lan(hw
);
2073 /* unable to acquire PCS lock */
2074 return -E1000_ERR_PHY
;
2078 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2079 * @hw: pointer to the HW structure
2080 * @state: boolean value used to set the current Kumeran workaround state
2082 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2083 * /disabled - FALSE).
2085 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
2088 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2090 if (hw
->mac
.type
!= e1000_ich8lan
) {
2091 hw_dbg(hw
, "Workaround applies to ICH8 only.\n");
2095 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
2099 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2100 * @hw: pointer to the HW structure
2102 * Workaround for 82566 power-down on D3 entry:
2103 * 1) disable gigabit link
2104 * 2) write VR power-down enable
2106 * Continue if successful, else issue LCD reset and repeat
2108 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
2114 if (hw
->phy
.type
!= e1000_phy_igp_3
)
2117 /* Try the workaround twice (if needed) */
2120 reg
= er32(PHY_CTRL
);
2121 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2122 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2123 ew32(PHY_CTRL
, reg
);
2126 * Call gig speed drop workaround on Gig disable before
2127 * accessing any PHY registers
2129 if (hw
->mac
.type
== e1000_ich8lan
)
2130 e1000e_gig_downshift_workaround_ich8lan(hw
);
2132 /* Write VR power-down enable */
2133 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2134 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2135 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
2137 /* Read it back and test */
2138 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2139 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2140 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
2143 /* Issue PHY reset and repeat at most one more time */
2145 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
2151 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2152 * @hw: pointer to the HW structure
2154 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2155 * LPLU, Gig disable, MDIC PHY reset):
2156 * 1) Set Kumeran Near-end loopback
2157 * 2) Clear Kumeran Near-end loopback
2158 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2160 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
2165 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
2166 (hw
->phy
.type
!= e1000_phy_igp_3
))
2169 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2173 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2174 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2178 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2179 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2184 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2185 * @hw: pointer to the HW structure
2187 * During S0 to Sx transition, it is possible the link remains at gig
2188 * instead of negotiating to a lower speed. Before going to Sx, set
2189 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2192 * Should only be called for ICH9 devices.
2194 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw
*hw
)
2198 if (hw
->mac
.type
== e1000_ich9lan
) {
2199 phy_ctrl
= er32(PHY_CTRL
);
2200 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
|
2201 E1000_PHY_CTRL_GBE_DISABLE
;
2202 ew32(PHY_CTRL
, phy_ctrl
);
2209 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2210 * @hw: pointer to the HW structure
2212 * Return the LED back to the default configuration.
2214 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
2216 if (hw
->phy
.type
== e1000_phy_ife
)
2217 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
2219 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
2224 * e1000_led_on_ich8lan - Turn LEDs on
2225 * @hw: pointer to the HW structure
2229 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
2231 if (hw
->phy
.type
== e1000_phy_ife
)
2232 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2233 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
2235 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
2240 * e1000_led_off_ich8lan - Turn LEDs off
2241 * @hw: pointer to the HW structure
2243 * Turn off the LEDs.
2245 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
2247 if (hw
->phy
.type
== e1000_phy_ife
)
2248 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2249 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_OFF
));
2251 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
2256 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2257 * @hw: pointer to the HW structure
2259 * Clears hardware counters specific to the silicon family and calls
2260 * clear_hw_cntrs_generic to clear all general purpose counters.
2262 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
2266 e1000e_clear_hw_cntrs_base(hw
);
2268 temp
= er32(ALGNERRC
);
2269 temp
= er32(RXERRC
);
2271 temp
= er32(CEXTERR
);
2273 temp
= er32(TSCTFC
);
2275 temp
= er32(MGTPRC
);
2276 temp
= er32(MGTPDC
);
2277 temp
= er32(MGTPTC
);
2280 temp
= er32(ICRXOC
);
2284 static struct e1000_mac_operations ich8_mac_ops
= {
2285 .mng_mode_enab
= E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
,
2286 .check_for_link
= e1000e_check_for_copper_link
,
2287 .cleanup_led
= e1000_cleanup_led_ich8lan
,
2288 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
2289 .get_bus_info
= e1000_get_bus_info_ich8lan
,
2290 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
2291 .led_on
= e1000_led_on_ich8lan
,
2292 .led_off
= e1000_led_off_ich8lan
,
2293 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
2294 .reset_hw
= e1000_reset_hw_ich8lan
,
2295 .init_hw
= e1000_init_hw_ich8lan
,
2296 .setup_link
= e1000_setup_link_ich8lan
,
2297 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
2300 static struct e1000_phy_operations ich8_phy_ops
= {
2301 .acquire_phy
= e1000_acquire_swflag_ich8lan
,
2302 .check_reset_block
= e1000_check_reset_block_ich8lan
,
2304 .force_speed_duplex
= e1000_phy_force_speed_duplex_ich8lan
,
2305 .get_cfg_done
= e1000e_get_cfg_done
,
2306 .get_cable_length
= e1000e_get_cable_length_igp_2
,
2307 .get_phy_info
= e1000_get_phy_info_ich8lan
,
2308 .read_phy_reg
= e1000e_read_phy_reg_igp
,
2309 .release_phy
= e1000_release_swflag_ich8lan
,
2310 .reset_phy
= e1000_phy_hw_reset_ich8lan
,
2311 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
2312 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
2313 .write_phy_reg
= e1000e_write_phy_reg_igp
,
2316 static struct e1000_nvm_operations ich8_nvm_ops
= {
2317 .acquire_nvm
= e1000_acquire_swflag_ich8lan
,
2318 .read_nvm
= e1000_read_nvm_ich8lan
,
2319 .release_nvm
= e1000_release_swflag_ich8lan
,
2320 .update_nvm
= e1000_update_nvm_checksum_ich8lan
,
2321 .valid_led_default
= e1000_valid_led_default_ich8lan
,
2322 .validate_nvm
= e1000_validate_nvm_checksum_ich8lan
,
2323 .write_nvm
= e1000_write_nvm_ich8lan
,
2326 struct e1000_info e1000_ich8_info
= {
2327 .mac
= e1000_ich8lan
,
2328 .flags
= FLAG_HAS_WOL
2330 | FLAG_RX_CSUM_ENABLED
2331 | FLAG_HAS_CTRLEXT_ON_LOAD
2336 .get_variants
= e1000_get_variants_ich8lan
,
2337 .mac_ops
= &ich8_mac_ops
,
2338 .phy_ops
= &ich8_phy_ops
,
2339 .nvm_ops
= &ich8_nvm_ops
,
2342 struct e1000_info e1000_ich9_info
= {
2343 .mac
= e1000_ich9lan
,
2344 .flags
= FLAG_HAS_JUMBO_FRAMES
2347 | FLAG_RX_CSUM_ENABLED
2348 | FLAG_HAS_CTRLEXT_ON_LOAD
2354 .get_variants
= e1000_get_variants_ich8lan
,
2355 .mac_ops
= &ich8_mac_ops
,
2356 .phy_ops
= &ich8_phy_ops
,
2357 .nvm_ops
= &ich8_nvm_ops
,