ia64/kvm: compilation fix. export account_system_vtime.
[pv_ops_mirror.git] / drivers / parisc / ccio-dma.c
blobb30e38f3a50d736d95d591594c04f9aeae7c62ea
1 /*
2 ** ccio-dma.c:
3 ** DMA management routines for first generation cache-coherent machines.
4 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5 **
6 ** (c) Copyright 2000 Grant Grundler
7 ** (c) Copyright 2000 Ryan Bradetich
8 ** (c) Copyright 2000 Hewlett-Packard Company
9 **
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
16 ** "Real Mode" operation refers to U2/Uturn chip operation.
17 ** U2/Uturn were designed to perform coherency checks w/o using
18 ** the I/O MMU - basically what x86 does.
20 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
24 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
26 ** Drawbacks of using Real Mode are:
27 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 ** o Ability to do scatter/gather in HW is lost.
30 ** o Doesn't work under PCX-U/U+ machines since they didn't follow
31 ** the coherency design originally worked out. Only PCX-W does.
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/scatterlist.h>
46 #include <linux/iommu-helper.h>
48 #include <asm/byteorder.h>
49 #include <asm/cache.h> /* for L1_CACHE_BYTES */
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 #include <asm/dma.h>
53 #include <asm/io.h>
54 #include <asm/hardware.h> /* for register_module() */
55 #include <asm/parisc-device.h>
57 /*
58 ** Choose "ccio" since that's what HP-UX calls it.
59 ** Make it easier for folks to migrate from one to the other :^)
61 #define MODULE_NAME "ccio"
63 #undef DEBUG_CCIO_RES
64 #undef DEBUG_CCIO_RUN
65 #undef DEBUG_CCIO_INIT
66 #undef DEBUG_CCIO_RUN_SG
68 #ifdef CONFIG_PROC_FS
70 * CCIO_SEARCH_TIME can help measure how fast the bitmap search is.
71 * impacts performance though - ditch it if you don't use it.
73 #define CCIO_SEARCH_TIME
74 #undef CCIO_MAP_STATS
75 #else
76 #undef CCIO_SEARCH_TIME
77 #undef CCIO_MAP_STATS
78 #endif
80 #include <linux/proc_fs.h>
81 #include <asm/runway.h> /* for proc_runway_root */
83 #ifdef DEBUG_CCIO_INIT
84 #define DBG_INIT(x...) printk(x)
85 #else
86 #define DBG_INIT(x...)
87 #endif
89 #ifdef DEBUG_CCIO_RUN
90 #define DBG_RUN(x...) printk(x)
91 #else
92 #define DBG_RUN(x...)
93 #endif
95 #ifdef DEBUG_CCIO_RES
96 #define DBG_RES(x...) printk(x)
97 #else
98 #define DBG_RES(x...)
99 #endif
101 #ifdef DEBUG_CCIO_RUN_SG
102 #define DBG_RUN_SG(x...) printk(x)
103 #else
104 #define DBG_RUN_SG(x...)
105 #endif
107 #define CCIO_INLINE inline
108 #define WRITE_U32(value, addr) __raw_writel(value, addr)
109 #define READ_U32(addr) __raw_readl(addr)
111 #define U2_IOA_RUNWAY 0x580
112 #define U2_BC_GSC 0x501
113 #define UTURN_IOA_RUNWAY 0x581
114 #define UTURN_BC_GSC 0x502
116 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
117 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
118 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
120 struct ioa_registers {
121 /* Runway Supervisory Set */
122 int32_t unused1[12];
123 uint32_t io_command; /* Offset 12 */
124 uint32_t io_status; /* Offset 13 */
125 uint32_t io_control; /* Offset 14 */
126 int32_t unused2[1];
128 /* Runway Auxiliary Register Set */
129 uint32_t io_err_resp; /* Offset 0 */
130 uint32_t io_err_info; /* Offset 1 */
131 uint32_t io_err_req; /* Offset 2 */
132 uint32_t io_err_resp_hi; /* Offset 3 */
133 uint32_t io_tlb_entry_m; /* Offset 4 */
134 uint32_t io_tlb_entry_l; /* Offset 5 */
135 uint32_t unused3[1];
136 uint32_t io_pdir_base; /* Offset 7 */
137 uint32_t io_io_low_hv; /* Offset 8 */
138 uint32_t io_io_high_hv; /* Offset 9 */
139 uint32_t unused4[1];
140 uint32_t io_chain_id_mask; /* Offset 11 */
141 uint32_t unused5[2];
142 uint32_t io_io_low; /* Offset 14 */
143 uint32_t io_io_high; /* Offset 15 */
147 ** IOA Registers
148 ** -------------
150 ** Runway IO_CONTROL Register (+0x38)
152 ** The Runway IO_CONTROL register controls the forwarding of transactions.
154 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
155 ** | HV | TLB | reserved | HV | mode | reserved |
157 ** o mode field indicates the address translation of transactions
158 ** forwarded from Runway to GSC+:
159 ** Mode Name Value Definition
160 ** Off (default) 0 Opaque to matching addresses.
161 ** Include 1 Transparent for matching addresses.
162 ** Peek 3 Map matching addresses.
164 ** + "Off" mode: Runway transactions which match the I/O range
165 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
166 ** + "Include" mode: all addresses within the I/O range specified
167 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
168 ** forwarded. This is the I/O Adapter's normal operating mode.
169 ** + "Peek" mode: used during system configuration to initialize the
170 ** GSC+ bus. Runway Write_Shorts in the address range specified by
171 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
172 ** *AND* the GSC+ address is remapped to the Broadcast Physical
173 ** Address space by setting the 14 high order address bits of the
174 ** 32 bit GSC+ address to ones.
176 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
177 ** "Real" mode is the poweron default.
179 ** TLB Mode Value Description
180 ** Real 0 No TLB translation. Address is directly mapped and the
181 ** virtual address is composed of selected physical bits.
182 ** Error 1 Software fills the TLB manually.
183 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
186 ** IO_IO_LOW_HV +0x60 (HV dependent)
187 ** IO_IO_HIGH_HV +0x64 (HV dependent)
188 ** IO_IO_LOW +0x78 (Architected register)
189 ** IO_IO_HIGH +0x7c (Architected register)
191 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
192 ** I/O Adapter address space, respectively.
194 ** 0 ... 7 | 8 ... 15 | 16 ... 31 |
195 ** 11111111 | 11111111 | address |
197 ** Each LOW/HIGH pair describes a disjoint address space region.
198 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
199 ** with both sets of LOW/HIGH registers. If the address is in the range
200 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
201 ** for forwarded to the respective GSC+ bus.
202 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
203 ** an address space region.
205 ** In order for a Runway address to reside within GSC+ extended address space:
206 ** Runway Address [0:7] must identically compare to 8'b11111111
207 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
208 ** Runway Address [12:23] must be greater than or equal to
209 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
210 ** Runway Address [24:39] is not used in the comparison.
212 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
213 ** as follows:
214 ** GSC+ Address[0:3] 4'b1111
215 ** GSC+ Address[4:29] Runway Address[12:37]
216 ** GSC+ Address[30:31] 2'b00
218 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
219 ** is interrogated and address space is defined. The operating system will
220 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
221 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW
222 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
224 ** Writes to both sets of registers will take effect immediately, bypassing
225 ** the queues, which ensures that subsequent Runway transactions are checked
226 ** against the updated bounds values. However reads are queued, introducing
227 ** the possibility of a read being bypassed by a subsequent write to the same
228 ** register. This sequence can be avoided by having software wait for read
229 ** returns before issuing subsequent writes.
232 struct ioc {
233 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
234 u8 *res_map; /* resource map, bit == pdir entry */
235 u64 *pdir_base; /* physical base address */
236 u32 pdir_size; /* bytes, function of IOV Space size */
237 u32 res_hint; /* next available IOVP -
238 circular search */
239 u32 res_size; /* size of resource map in bytes */
240 spinlock_t res_lock;
242 #ifdef CCIO_SEARCH_TIME
243 #define CCIO_SEARCH_SAMPLE 0x100
244 unsigned long avg_search[CCIO_SEARCH_SAMPLE];
245 unsigned long avg_idx; /* current index into avg_search */
246 #endif
247 #ifdef CCIO_MAP_STATS
248 unsigned long used_pages;
249 unsigned long msingle_calls;
250 unsigned long msingle_pages;
251 unsigned long msg_calls;
252 unsigned long msg_pages;
253 unsigned long usingle_calls;
254 unsigned long usingle_pages;
255 unsigned long usg_calls;
256 unsigned long usg_pages;
257 #endif
258 unsigned short cujo20_bug;
260 /* STUFF We don't need in performance path */
261 u32 chainid_shift; /* specify bit location of chain_id */
262 struct ioc *next; /* Linked list of discovered iocs */
263 const char *name; /* device name from firmware */
264 unsigned int hw_path; /* the hardware path this ioc is associatd with */
265 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
266 struct resource mmio_region[2]; /* The "routed" MMIO regions */
269 static struct ioc *ioc_list;
270 static int ioc_count;
272 /**************************************************************
274 * I/O Pdir Resource Management
276 * Bits set in the resource map are in use.
277 * Each bit can represent a number of pages.
278 * LSbs represent lower addresses (IOVA's).
280 * This was was copied from sba_iommu.c. Don't try to unify
281 * the two resource managers unless a way to have different
282 * allocation policies is also adjusted. We'd like to avoid
283 * I/O TLB thrashing by having resource allocation policy
284 * match the I/O TLB replacement policy.
286 ***************************************************************/
287 #define IOVP_SIZE PAGE_SIZE
288 #define IOVP_SHIFT PAGE_SHIFT
289 #define IOVP_MASK PAGE_MASK
291 /* Convert from IOVP to IOVA and vice versa. */
292 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
293 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
295 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
296 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
297 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
300 ** Don't worry about the 150% average search length on a miss.
301 ** If the search wraps around, and passes the res_hint, it will
302 ** cause the kernel to panic anyhow.
304 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
305 for(; res_ptr < res_end; ++res_ptr) { \
306 int ret;\
307 unsigned int idx;\
308 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
309 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
310 if ((0 == (*res_ptr & mask)) && !ret) { \
311 *res_ptr |= mask; \
312 res_idx = idx;\
313 ioc->res_hint = res_idx + (size >> 3); \
314 goto resource_found; \
318 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
319 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
320 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
321 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
322 res_ptr = (u##size *)&(ioc)->res_map[0]; \
323 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
326 ** Find available bit in this ioa's resource map.
327 ** Use a "circular" search:
328 ** o Most IOVA's are "temporary" - avg search time should be small.
329 ** o keep a history of what happened for debugging
330 ** o KISS.
332 ** Perf optimizations:
333 ** o search for log2(size) bits at a time.
334 ** o search for available resource bits using byte/word/whatever.
335 ** o use different search for "large" (eg > 4 pages) or "very large"
336 ** (eg > 16 pages) mappings.
340 * ccio_alloc_range - Allocate pages in the ioc's resource map.
341 * @ioc: The I/O Controller.
342 * @pages_needed: The requested number of pages to be mapped into the
343 * I/O Pdir...
345 * This function searches the resource map of the ioc to locate a range
346 * of available pages for the requested size.
348 static int
349 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
351 unsigned int pages_needed = size >> IOVP_SHIFT;
352 unsigned int res_idx;
353 unsigned long boundary_size;
354 #ifdef CCIO_SEARCH_TIME
355 unsigned long cr_start = mfctl(16);
356 #endif
358 BUG_ON(pages_needed == 0);
359 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
361 DBG_RES("%s() size: %d pages_needed %d\n",
362 __func__, size, pages_needed);
365 ** "seek and ye shall find"...praying never hurts either...
366 ** ggg sacrifices another 710 to the computer gods.
369 boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
370 1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
372 if (pages_needed <= 8) {
374 * LAN traffic will not thrash the TLB IFF the same NIC
375 * uses 8 adjacent pages to map separate payload data.
376 * ie the same byte in the resource bit map.
378 #if 0
379 /* FIXME: bit search should shift it's way through
380 * an unsigned long - not byte at a time. As it is now,
381 * we effectively allocate this byte to this mapping.
383 unsigned long mask = ~(~0UL >> pages_needed);
384 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
385 #else
386 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
387 #endif
388 } else if (pages_needed <= 16) {
389 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
390 } else if (pages_needed <= 32) {
391 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
392 #ifdef __LP64__
393 } else if (pages_needed <= 64) {
394 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
395 #endif
396 } else {
397 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
398 __FILE__, __func__, pages_needed);
401 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
402 __func__);
404 resource_found:
406 DBG_RES("%s() res_idx %d res_hint: %d\n",
407 __func__, res_idx, ioc->res_hint);
409 #ifdef CCIO_SEARCH_TIME
411 unsigned long cr_end = mfctl(16);
412 unsigned long tmp = cr_end - cr_start;
413 /* check for roll over */
414 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
416 ioc->avg_search[ioc->avg_idx++] = cr_start;
417 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
418 #endif
419 #ifdef CCIO_MAP_STATS
420 ioc->used_pages += pages_needed;
421 #endif
423 ** return the bit address.
425 return res_idx << 3;
428 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
429 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
430 BUG_ON((*res_ptr & mask) != mask); \
431 *res_ptr &= ~(mask);
434 * ccio_free_range - Free pages from the ioc's resource map.
435 * @ioc: The I/O Controller.
436 * @iova: The I/O Virtual Address.
437 * @pages_mapped: The requested number of pages to be freed from the
438 * I/O Pdir.
440 * This function frees the resouces allocated for the iova.
442 static void
443 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
445 unsigned long iovp = CCIO_IOVP(iova);
446 unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
448 BUG_ON(pages_mapped == 0);
449 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
450 BUG_ON(pages_mapped > BITS_PER_LONG);
452 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
453 __func__, res_idx, pages_mapped);
455 #ifdef CCIO_MAP_STATS
456 ioc->used_pages -= pages_mapped;
457 #endif
459 if(pages_mapped <= 8) {
460 #if 0
461 /* see matching comments in alloc_range */
462 unsigned long mask = ~(~0UL >> pages_mapped);
463 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
464 #else
465 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xff, 8);
466 #endif
467 } else if(pages_mapped <= 16) {
468 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffff, 16);
469 } else if(pages_mapped <= 32) {
470 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
471 #ifdef __LP64__
472 } else if(pages_mapped <= 64) {
473 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
474 #endif
475 } else {
476 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
477 __func__);
481 /****************************************************************
483 ** CCIO dma_ops support routines
485 *****************************************************************/
487 typedef unsigned long space_t;
488 #define KERNEL_SPACE 0
491 ** DMA "Page Type" and Hints
492 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
493 ** set for subcacheline DMA transfers since we don't want to damage the
494 ** other part of a cacheline.
495 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
496 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
497 ** data can avoid this if the mapping covers full cache lines.
498 ** o STOP_MOST is needed for atomicity across cachelines.
499 ** Apparently only "some EISA devices" need this.
500 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
501 ** to use this hint iff the EISA devices needs this feature.
502 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
503 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
504 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
505 ** device can be fetched and multiply DMA streams will thrash the
506 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
507 ** and Invalidation of Prefetch Entries".
509 ** FIXME: the default hints need to be per GSC device - not global.
511 ** HP-UX dorks: linux device driver programming model is totally different
512 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
513 ** do special things to work on non-coherent platforms...linux has to
514 ** be much more careful with this.
516 #define IOPDIR_VALID 0x01UL
517 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
518 #ifdef CONFIG_EISA
519 #define HINT_STOP_MOST 0x04UL /* LSL support */
520 #else
521 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
522 #endif
523 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
524 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
528 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
529 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
530 ** when it passes in BIDIRECTIONAL flag.
532 static u32 hint_lookup[] = {
533 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
534 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
535 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
539 * ccio_io_pdir_entry - Initialize an I/O Pdir.
540 * @pdir_ptr: A pointer into I/O Pdir.
541 * @sid: The Space Identifier.
542 * @vba: The virtual address.
543 * @hints: The DMA Hint.
545 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
546 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
547 * entry consists of 8 bytes as shown below (MSB == bit 0):
550 * WORD 0:
551 * +------+----------------+-----------------------------------------------+
552 * | Phys | Virtual Index | Phys |
553 * | 0:3 | 0:11 | 4:19 |
554 * |4 bits| 12 bits | 16 bits |
555 * +------+----------------+-----------------------------------------------+
556 * WORD 1:
557 * +-----------------------+-----------------------------------------------+
558 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
559 * | 20:39 | | Enable |Enable | |Enable|DMA | |
560 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
561 * +-----------------------+-----------------------------------------------+
563 * The virtual index field is filled with the results of the LCI
564 * (Load Coherence Index) instruction. The 8 bits used for the virtual
565 * index are bits 12:19 of the value returned by LCI.
567 void CCIO_INLINE
568 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
569 unsigned long hints)
571 register unsigned long pa;
572 register unsigned long ci; /* coherent index */
574 /* We currently only support kernel addresses */
575 BUG_ON(sid != KERNEL_SPACE);
577 mtsp(sid,1);
580 ** WORD 1 - low order word
581 ** "hints" parm includes the VALID bit!
582 ** "dep" clobbers the physical address offset bits as well.
584 pa = virt_to_phys(vba);
585 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
586 ((u32 *)pdir_ptr)[1] = (u32) pa;
589 ** WORD 0 - high order word
592 #ifdef __LP64__
594 ** get bits 12:15 of physical address
595 ** shift bits 16:31 of physical address
596 ** and deposit them
598 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
599 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
600 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
601 #else
602 pa = 0;
603 #endif
605 ** get CPU coherency index bits
606 ** Grab virtual index [0:11]
607 ** Deposit virt_idx bits into I/O PDIR word
609 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
610 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
611 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
613 ((u32 *)pdir_ptr)[0] = (u32) pa;
616 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
617 ** PCX-U/U+ do. (eg C200/C240)
618 ** PCX-T'? Don't know. (eg C110 or similar K-class)
620 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
621 ** Hopefully we can patch (NOP) these out at boot time somehow.
623 ** "Since PCX-U employs an offset hash that is incompatible with
624 ** the real mode coherence index generation of U2, the PDIR entry
625 ** must be flushed to memory to retain coherence."
627 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
628 asm volatile("sync");
632 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
633 * @ioc: The I/O Controller.
634 * @iovp: The I/O Virtual Page.
635 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
637 * Purge invalid I/O PDIR entries from the I/O TLB.
639 * FIXME: Can we change the byte_cnt to pages_mapped?
641 static CCIO_INLINE void
642 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
644 u32 chain_size = 1 << ioc->chainid_shift;
646 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
647 byte_cnt += chain_size;
649 while(byte_cnt > chain_size) {
650 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
651 iovp += chain_size;
652 byte_cnt -= chain_size;
657 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
658 * @ioc: The I/O Controller.
659 * @iova: The I/O Virtual Address.
660 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
662 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
663 * TLB entries.
665 * FIXME: at some threshhold it might be "cheaper" to just blow
666 * away the entire I/O TLB instead of individual entries.
668 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
669 * PDIR entry - just once for each possible TLB entry.
670 * (We do need to maker I/O PDIR entries invalid regardless).
672 * FIXME: Can we change byte_cnt to pages_mapped?
674 static CCIO_INLINE void
675 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
677 u32 iovp = (u32)CCIO_IOVP(iova);
678 size_t saved_byte_cnt;
680 /* round up to nearest page size */
681 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
683 while(byte_cnt > 0) {
684 /* invalidate one page at a time */
685 unsigned int idx = PDIR_INDEX(iovp);
686 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
688 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
689 pdir_ptr[7] = 0; /* clear only VALID bit */
691 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
692 ** PCX-U/U+ do. (eg C200/C240)
693 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
695 ** Hopefully someone figures out how to patch (NOP) the
696 ** FDC/SYNC out at boot time.
698 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
700 iovp += IOVP_SIZE;
701 byte_cnt -= IOVP_SIZE;
704 asm volatile("sync");
705 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
708 /****************************************************************
710 ** CCIO dma_ops
712 *****************************************************************/
715 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
716 * @dev: The PCI device.
717 * @mask: A bit mask describing the DMA address range of the device.
719 * This function implements the pci_dma_supported function.
721 static int
722 ccio_dma_supported(struct device *dev, u64 mask)
724 if(dev == NULL) {
725 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
726 BUG();
727 return 0;
730 /* only support 32-bit devices (ie PCI/GSC) */
731 return (int)(mask == 0xffffffffUL);
735 * ccio_map_single - Map an address range into the IOMMU.
736 * @dev: The PCI device.
737 * @addr: The start address of the DMA region.
738 * @size: The length of the DMA region.
739 * @direction: The direction of the DMA transaction (to/from device).
741 * This function implements the pci_map_single function.
743 static dma_addr_t
744 ccio_map_single(struct device *dev, void *addr, size_t size,
745 enum dma_data_direction direction)
747 int idx;
748 struct ioc *ioc;
749 unsigned long flags;
750 dma_addr_t iovp;
751 dma_addr_t offset;
752 u64 *pdir_start;
753 unsigned long hint = hint_lookup[(int)direction];
755 BUG_ON(!dev);
756 ioc = GET_IOC(dev);
758 BUG_ON(size <= 0);
760 /* save offset bits */
761 offset = ((unsigned long) addr) & ~IOVP_MASK;
763 /* round up to nearest IOVP_SIZE */
764 size = ALIGN(size + offset, IOVP_SIZE);
765 spin_lock_irqsave(&ioc->res_lock, flags);
767 #ifdef CCIO_MAP_STATS
768 ioc->msingle_calls++;
769 ioc->msingle_pages += size >> IOVP_SHIFT;
770 #endif
772 idx = ccio_alloc_range(ioc, dev, size);
773 iovp = (dma_addr_t)MKIOVP(idx);
775 pdir_start = &(ioc->pdir_base[idx]);
777 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
778 __func__, addr, (long)iovp | offset, size);
780 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
781 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
782 hint |= HINT_SAFE_DMA;
784 while(size > 0) {
785 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
787 DBG_RUN(" pdir %p %08x%08x\n",
788 pdir_start,
789 (u32) (((u32 *) pdir_start)[0]),
790 (u32) (((u32 *) pdir_start)[1]));
791 ++pdir_start;
792 addr += IOVP_SIZE;
793 size -= IOVP_SIZE;
796 spin_unlock_irqrestore(&ioc->res_lock, flags);
798 /* form complete address */
799 return CCIO_IOVA(iovp, offset);
803 * ccio_unmap_single - Unmap an address range from the IOMMU.
804 * @dev: The PCI device.
805 * @addr: The start address of the DMA region.
806 * @size: The length of the DMA region.
807 * @direction: The direction of the DMA transaction (to/from device).
809 * This function implements the pci_unmap_single function.
811 static void
812 ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
813 enum dma_data_direction direction)
815 struct ioc *ioc;
816 unsigned long flags;
817 dma_addr_t offset = iova & ~IOVP_MASK;
819 BUG_ON(!dev);
820 ioc = GET_IOC(dev);
822 DBG_RUN("%s() iovp 0x%lx/%x\n",
823 __func__, (long)iova, size);
825 iova ^= offset; /* clear offset bits */
826 size += offset;
827 size = ALIGN(size, IOVP_SIZE);
829 spin_lock_irqsave(&ioc->res_lock, flags);
831 #ifdef CCIO_MAP_STATS
832 ioc->usingle_calls++;
833 ioc->usingle_pages += size >> IOVP_SHIFT;
834 #endif
836 ccio_mark_invalid(ioc, iova, size);
837 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
838 spin_unlock_irqrestore(&ioc->res_lock, flags);
842 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
843 * @dev: The PCI device.
844 * @size: The length of the DMA region.
845 * @dma_handle: The DMA address handed back to the device (not the cpu).
847 * This function implements the pci_alloc_consistent function.
849 static void *
850 ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
852 void *ret;
853 #if 0
854 /* GRANT Need to establish hierarchy for non-PCI devs as well
855 ** and then provide matching gsc_map_xxx() functions for them as well.
857 if(!hwdev) {
858 /* only support PCI */
859 *dma_handle = 0;
860 return 0;
862 #endif
863 ret = (void *) __get_free_pages(flag, get_order(size));
865 if (ret) {
866 memset(ret, 0, size);
867 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
870 return ret;
874 * ccio_free_consistent - Free a consistent DMA mapping.
875 * @dev: The PCI device.
876 * @size: The length of the DMA region.
877 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
878 * @dma_handle: The device address returned from the ccio_alloc_consistent.
880 * This function implements the pci_free_consistent function.
882 static void
883 ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
884 dma_addr_t dma_handle)
886 ccio_unmap_single(dev, dma_handle, size, 0);
887 free_pages((unsigned long)cpu_addr, get_order(size));
891 ** Since 0 is a valid pdir_base index value, can't use that
892 ** to determine if a value is valid or not. Use a flag to indicate
893 ** the SG list entry contains a valid pdir index.
895 #define PIDE_FLAG 0x80000000UL
897 #ifdef CCIO_MAP_STATS
898 #define IOMMU_MAP_STATS
899 #endif
900 #include "iommu-helpers.h"
903 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
904 * @dev: The PCI device.
905 * @sglist: The scatter/gather list to be mapped in the IOMMU.
906 * @nents: The number of entries in the scatter/gather list.
907 * @direction: The direction of the DMA transaction (to/from device).
909 * This function implements the pci_map_sg function.
911 static int
912 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
913 enum dma_data_direction direction)
915 struct ioc *ioc;
916 int coalesced, filled = 0;
917 unsigned long flags;
918 unsigned long hint = hint_lookup[(int)direction];
919 unsigned long prev_len = 0, current_len = 0;
920 int i;
922 BUG_ON(!dev);
923 ioc = GET_IOC(dev);
925 DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
927 /* Fast path single entry scatterlists. */
928 if (nents == 1) {
929 sg_dma_address(sglist) = ccio_map_single(dev,
930 (void *)sg_virt_addr(sglist), sglist->length,
931 direction);
932 sg_dma_len(sglist) = sglist->length;
933 return 1;
936 for(i = 0; i < nents; i++)
937 prev_len += sglist[i].length;
939 spin_lock_irqsave(&ioc->res_lock, flags);
941 #ifdef CCIO_MAP_STATS
942 ioc->msg_calls++;
943 #endif
946 ** First coalesce the chunks and allocate I/O pdir space
948 ** If this is one DMA stream, we can properly map using the
949 ** correct virtual address associated with each DMA page.
950 ** w/o this association, we wouldn't have coherent DMA!
951 ** Access to the virtual address is what forces a two pass algorithm.
953 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
956 ** Program the I/O Pdir
958 ** map the virtual addresses to the I/O Pdir
959 ** o dma_address will contain the pdir index
960 ** o dma_len will contain the number of bytes to map
961 ** o page/offset contain the virtual address.
963 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
965 spin_unlock_irqrestore(&ioc->res_lock, flags);
967 BUG_ON(coalesced != filled);
969 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
971 for (i = 0; i < filled; i++)
972 current_len += sg_dma_len(sglist + i);
974 BUG_ON(current_len != prev_len);
976 return filled;
980 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
981 * @dev: The PCI device.
982 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
983 * @nents: The number of entries in the scatter/gather list.
984 * @direction: The direction of the DMA transaction (to/from device).
986 * This function implements the pci_unmap_sg function.
988 static void
989 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
990 enum dma_data_direction direction)
992 struct ioc *ioc;
994 BUG_ON(!dev);
995 ioc = GET_IOC(dev);
997 DBG_RUN_SG("%s() START %d entries, %08lx,%x\n",
998 __func__, nents, sg_virt_addr(sglist), sglist->length);
1000 #ifdef CCIO_MAP_STATS
1001 ioc->usg_calls++;
1002 #endif
1004 while(sg_dma_len(sglist) && nents--) {
1006 #ifdef CCIO_MAP_STATS
1007 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1008 #endif
1009 ccio_unmap_single(dev, sg_dma_address(sglist),
1010 sg_dma_len(sglist), direction);
1011 ++sglist;
1014 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1017 static struct hppa_dma_ops ccio_ops = {
1018 .dma_supported = ccio_dma_supported,
1019 .alloc_consistent = ccio_alloc_consistent,
1020 .alloc_noncoherent = ccio_alloc_consistent,
1021 .free_consistent = ccio_free_consistent,
1022 .map_single = ccio_map_single,
1023 .unmap_single = ccio_unmap_single,
1024 .map_sg = ccio_map_sg,
1025 .unmap_sg = ccio_unmap_sg,
1026 .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */
1027 .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */
1028 .dma_sync_sg_for_cpu = NULL, /* ditto */
1029 .dma_sync_sg_for_device = NULL, /* ditto */
1032 #ifdef CONFIG_PROC_FS
1033 static int ccio_proc_info(struct seq_file *m, void *p)
1035 int len = 0;
1036 struct ioc *ioc = ioc_list;
1038 while (ioc != NULL) {
1039 unsigned int total_pages = ioc->res_size << 3;
1040 unsigned long avg = 0, min, max;
1041 int j;
1043 len += seq_printf(m, "%s\n", ioc->name);
1045 len += seq_printf(m, "Cujo 2.0 bug : %s\n",
1046 (ioc->cujo20_bug ? "yes" : "no"));
1048 len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1049 total_pages * 8, total_pages);
1051 #ifdef CCIO_MAP_STATS
1052 len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1053 total_pages - ioc->used_pages, ioc->used_pages,
1054 (int)(ioc->used_pages * 100 / total_pages));
1055 #endif
1057 len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1058 ioc->res_size, total_pages);
1060 #ifdef CCIO_SEARCH_TIME
1061 min = max = ioc->avg_search[0];
1062 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1063 avg += ioc->avg_search[j];
1064 if(ioc->avg_search[j] > max)
1065 max = ioc->avg_search[j];
1066 if(ioc->avg_search[j] < min)
1067 min = ioc->avg_search[j];
1069 avg /= CCIO_SEARCH_SAMPLE;
1070 len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1071 min, avg, max);
1072 #endif
1073 #ifdef CCIO_MAP_STATS
1074 len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1075 ioc->msingle_calls, ioc->msingle_pages,
1076 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1078 /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1079 min = ioc->usingle_calls - ioc->usg_calls;
1080 max = ioc->usingle_pages - ioc->usg_pages;
1081 len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1082 min, max, (int)((max * 1000)/min));
1084 len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1085 ioc->msg_calls, ioc->msg_pages,
1086 (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1088 len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1089 ioc->usg_calls, ioc->usg_pages,
1090 (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1091 #endif /* CCIO_MAP_STATS */
1093 ioc = ioc->next;
1096 return 0;
1099 static int ccio_proc_info_open(struct inode *inode, struct file *file)
1101 return single_open(file, &ccio_proc_info, NULL);
1104 static const struct file_operations ccio_proc_info_fops = {
1105 .owner = THIS_MODULE,
1106 .open = ccio_proc_info_open,
1107 .read = seq_read,
1108 .llseek = seq_lseek,
1109 .release = single_release,
1112 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1114 int len = 0;
1115 struct ioc *ioc = ioc_list;
1117 while (ioc != NULL) {
1118 u32 *res_ptr = (u32 *)ioc->res_map;
1119 int j;
1121 for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1122 if ((j & 7) == 0)
1123 len += seq_puts(m, "\n ");
1124 len += seq_printf(m, "%08x", *res_ptr);
1125 res_ptr++;
1127 len += seq_puts(m, "\n\n");
1128 ioc = ioc->next;
1129 break; /* XXX - remove me */
1132 return 0;
1135 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1137 return single_open(file, &ccio_proc_bitmap_info, NULL);
1140 static const struct file_operations ccio_proc_bitmap_fops = {
1141 .owner = THIS_MODULE,
1142 .open = ccio_proc_bitmap_open,
1143 .read = seq_read,
1144 .llseek = seq_lseek,
1145 .release = single_release,
1147 #endif
1150 * ccio_find_ioc - Find the ioc in the ioc_list
1151 * @hw_path: The hardware path of the ioc.
1153 * This function searches the ioc_list for an ioc that matches
1154 * the provide hardware path.
1156 static struct ioc * ccio_find_ioc(int hw_path)
1158 int i;
1159 struct ioc *ioc;
1161 ioc = ioc_list;
1162 for (i = 0; i < ioc_count; i++) {
1163 if (ioc->hw_path == hw_path)
1164 return ioc;
1166 ioc = ioc->next;
1169 return NULL;
1173 * ccio_get_iommu - Find the iommu which controls this device
1174 * @dev: The parisc device.
1176 * This function searches through the registered IOMMU's and returns
1177 * the appropriate IOMMU for the device based on its hardware path.
1179 void * ccio_get_iommu(const struct parisc_device *dev)
1181 dev = find_pa_parent_type(dev, HPHW_IOA);
1182 if (!dev)
1183 return NULL;
1185 return ccio_find_ioc(dev->hw_path);
1188 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1190 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1191 * to/from certain pages. To avoid this happening, we mark these pages
1192 * as `used', and ensure that nothing will try to allocate from them.
1194 void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1196 unsigned int idx;
1197 struct parisc_device *dev = parisc_parent(cujo);
1198 struct ioc *ioc = ccio_get_iommu(dev);
1199 u8 *res_ptr;
1201 ioc->cujo20_bug = 1;
1202 res_ptr = ioc->res_map;
1203 idx = PDIR_INDEX(iovp) >> 3;
1205 while (idx < ioc->res_size) {
1206 res_ptr[idx] |= 0xff;
1207 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1211 #if 0
1212 /* GRANT - is this needed for U2 or not? */
1215 ** Get the size of the I/O TLB for this I/O MMU.
1217 ** If spa_shift is non-zero (ie probably U2),
1218 ** then calculate the I/O TLB size using spa_shift.
1220 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1221 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1222 ** I think only Java (K/D/R-class too?) systems don't do this.
1224 static int
1225 ccio_get_iotlb_size(struct parisc_device *dev)
1227 if (dev->spa_shift == 0) {
1228 panic("%s() : Can't determine I/O TLB size.\n", __func__);
1230 return (1 << dev->spa_shift);
1232 #else
1234 /* Uturn supports 256 TLB entries */
1235 #define CCIO_CHAINID_SHIFT 8
1236 #define CCIO_CHAINID_MASK 0xff
1237 #endif /* 0 */
1239 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1240 static const struct parisc_device_id ccio_tbl[] = {
1241 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1242 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1243 { 0, }
1246 static int ccio_probe(struct parisc_device *dev);
1248 static struct parisc_driver ccio_driver = {
1249 .name = "ccio",
1250 .id_table = ccio_tbl,
1251 .probe = ccio_probe,
1255 * ccio_ioc_init - Initalize the I/O Controller
1256 * @ioc: The I/O Controller.
1258 * Initalize the I/O Controller which includes setting up the
1259 * I/O Page Directory, the resource map, and initalizing the
1260 * U2/Uturn chip into virtual mode.
1262 static void
1263 ccio_ioc_init(struct ioc *ioc)
1265 int i;
1266 unsigned int iov_order;
1267 u32 iova_space_size;
1270 ** Determine IOVA Space size from memory size.
1272 ** Ideally, PCI drivers would register the maximum number
1273 ** of DMA they can have outstanding for each device they
1274 ** own. Next best thing would be to guess how much DMA
1275 ** can be outstanding based on PCI Class/sub-class. Both
1276 ** methods still require some "extra" to support PCI
1277 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1280 iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver));
1282 /* limit IOVA space size to 1MB-1GB */
1284 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1285 iova_space_size = 1 << (20 - PAGE_SHIFT);
1286 #ifdef __LP64__
1287 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1288 iova_space_size = 1 << (30 - PAGE_SHIFT);
1289 #endif
1293 ** iova space must be log2() in size.
1294 ** thus, pdir/res_map will also be log2().
1297 /* We could use larger page sizes in order to *decrease* the number
1298 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1300 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1301 ** since the pages must also be physically contiguous - typically
1302 ** this is the case under linux."
1305 iov_order = get_order(iova_space_size << PAGE_SHIFT);
1307 /* iova_space_size is now bytes, not pages */
1308 iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1310 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1312 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1314 /* Verify it's a power of two */
1315 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1317 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1318 __func__, ioc->ioc_regs,
1319 (unsigned long) num_physpages >> (20 - PAGE_SHIFT),
1320 iova_space_size>>20,
1321 iov_order + PAGE_SHIFT);
1323 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1324 get_order(ioc->pdir_size));
1325 if(NULL == ioc->pdir_base) {
1326 panic("%s() could not allocate I/O Page Table\n", __func__);
1328 memset(ioc->pdir_base, 0, ioc->pdir_size);
1330 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1331 DBG_INIT(" base %p\n", ioc->pdir_base);
1333 /* resource map size dictated by pdir_size */
1334 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1335 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1337 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1338 get_order(ioc->res_size));
1339 if(NULL == ioc->res_map) {
1340 panic("%s() could not allocate resource map\n", __func__);
1342 memset(ioc->res_map, 0, ioc->res_size);
1344 /* Initialize the res_hint to 16 */
1345 ioc->res_hint = 16;
1347 /* Initialize the spinlock */
1348 spin_lock_init(&ioc->res_lock);
1351 ** Chainid is the upper most bits of an IOVP used to determine
1352 ** which TLB entry an IOVP will use.
1354 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1355 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1358 ** Initialize IOA hardware
1360 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1361 &ioc->ioc_regs->io_chain_id_mask);
1363 WRITE_U32(virt_to_phys(ioc->pdir_base),
1364 &ioc->ioc_regs->io_pdir_base);
1367 ** Go to "Virtual Mode"
1369 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1372 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1374 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1375 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1377 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1378 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1379 &ioc->ioc_regs->io_command);
1383 static void __init
1384 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1386 int result;
1388 res->parent = NULL;
1389 res->flags = IORESOURCE_MEM;
1391 * bracing ((signed) ...) are required for 64bit kernel because
1392 * we only want to sign extend the lower 16 bits of the register.
1393 * The upper 16-bits of range registers are hardcoded to 0xffff.
1395 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1396 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1397 res->name = name;
1399 * Check if this MMIO range is disable
1401 if (res->end + 1 == res->start)
1402 return;
1404 /* On some platforms (e.g. K-Class), we have already registered
1405 * resources for devices reported by firmware. Some are children
1406 * of ccio.
1407 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1409 result = insert_resource(&iomem_resource, res);
1410 if (result < 0) {
1411 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1412 __func__, res->start, res->end);
1416 static void __init ccio_init_resources(struct ioc *ioc)
1418 struct resource *res = ioc->mmio_region;
1419 char *name = kmalloc(14, GFP_KERNEL);
1421 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1423 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1424 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1427 static int new_ioc_area(struct resource *res, unsigned long size,
1428 unsigned long min, unsigned long max, unsigned long align)
1430 if (max <= min)
1431 return -EBUSY;
1433 res->start = (max - size + 1) &~ (align - 1);
1434 res->end = res->start + size;
1436 /* We might be trying to expand the MMIO range to include
1437 * a child device that has already registered it's MMIO space.
1438 * Use "insert" instead of request_resource().
1440 if (!insert_resource(&iomem_resource, res))
1441 return 0;
1443 return new_ioc_area(res, size, min, max - size, align);
1446 static int expand_ioc_area(struct resource *res, unsigned long size,
1447 unsigned long min, unsigned long max, unsigned long align)
1449 unsigned long start, len;
1451 if (!res->parent)
1452 return new_ioc_area(res, size, min, max, align);
1454 start = (res->start - size) &~ (align - 1);
1455 len = res->end - start + 1;
1456 if (start >= min) {
1457 if (!adjust_resource(res, start, len))
1458 return 0;
1461 start = res->start;
1462 len = ((size + res->end + align) &~ (align - 1)) - start;
1463 if (start + len <= max) {
1464 if (!adjust_resource(res, start, len))
1465 return 0;
1468 return -EBUSY;
1472 * Dino calls this function. Beware that we may get called on systems
1473 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1474 * So it's legal to find no parent IOC.
1476 * Some other issues: one of the resources in the ioc may be unassigned.
1478 int ccio_allocate_resource(const struct parisc_device *dev,
1479 struct resource *res, unsigned long size,
1480 unsigned long min, unsigned long max, unsigned long align)
1482 struct resource *parent = &iomem_resource;
1483 struct ioc *ioc = ccio_get_iommu(dev);
1484 if (!ioc)
1485 goto out;
1487 parent = ioc->mmio_region;
1488 if (parent->parent &&
1489 !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1490 return 0;
1492 if ((parent + 1)->parent &&
1493 !allocate_resource(parent + 1, res, size, min, max, align,
1494 NULL, NULL))
1495 return 0;
1497 if (!expand_ioc_area(parent, size, min, max, align)) {
1498 __raw_writel(((parent->start)>>16) | 0xffff0000,
1499 &ioc->ioc_regs->io_io_low);
1500 __raw_writel(((parent->end)>>16) | 0xffff0000,
1501 &ioc->ioc_regs->io_io_high);
1502 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1503 parent++;
1504 __raw_writel(((parent->start)>>16) | 0xffff0000,
1505 &ioc->ioc_regs->io_io_low_hv);
1506 __raw_writel(((parent->end)>>16) | 0xffff0000,
1507 &ioc->ioc_regs->io_io_high_hv);
1508 } else {
1509 return -EBUSY;
1512 out:
1513 return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1516 int ccio_request_resource(const struct parisc_device *dev,
1517 struct resource *res)
1519 struct resource *parent;
1520 struct ioc *ioc = ccio_get_iommu(dev);
1522 if (!ioc) {
1523 parent = &iomem_resource;
1524 } else if ((ioc->mmio_region->start <= res->start) &&
1525 (res->end <= ioc->mmio_region->end)) {
1526 parent = ioc->mmio_region;
1527 } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1528 (res->end <= (ioc->mmio_region + 1)->end)) {
1529 parent = ioc->mmio_region + 1;
1530 } else {
1531 return -EBUSY;
1534 /* "transparent" bus bridges need to register MMIO resources
1535 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1536 * registered their resources in the PDC "bus walk" (See
1537 * arch/parisc/kernel/inventory.c).
1539 return insert_resource(parent, res);
1543 * ccio_probe - Determine if ccio should claim this device.
1544 * @dev: The device which has been found
1546 * Determine if ccio should claim this chip (return 0) or not (return 1).
1547 * If so, initialize the chip and tell other partners in crime they
1548 * have work to do.
1550 static int __init ccio_probe(struct parisc_device *dev)
1552 int i;
1553 struct ioc *ioc, **ioc_p = &ioc_list;
1555 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1556 if (ioc == NULL) {
1557 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1558 return 1;
1561 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1563 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa.start);
1565 for (i = 0; i < ioc_count; i++) {
1566 ioc_p = &(*ioc_p)->next;
1568 *ioc_p = ioc;
1570 ioc->hw_path = dev->hw_path;
1571 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1572 ccio_ioc_init(ioc);
1573 ccio_init_resources(ioc);
1574 hppa_dma_ops = &ccio_ops;
1575 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1577 /* if this fails, no I/O cards will work, so may as well bug */
1578 BUG_ON(dev->dev.platform_data == NULL);
1579 HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1581 if (ioc_count == 0) {
1582 proc_create(MODULE_NAME, 0, proc_runway_root,
1583 &ccio_proc_info_fops);
1584 proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root,
1585 &ccio_proc_bitmap_fops);
1588 ioc_count++;
1590 parisc_vmerge_boundary = IOVP_SIZE;
1591 parisc_vmerge_max_size = BITS_PER_LONG * IOVP_SIZE;
1592 parisc_has_iommu();
1593 return 0;
1597 * ccio_init - ccio initialization procedure.
1599 * Register this driver.
1601 void __init ccio_init(void)
1603 register_parisc_driver(&ccio_driver);