fs: fix nobh error handling
[pv_ops_mirror.git] / drivers / md / md.c
blobacf1b81b47cbeccf74d85cc6bc9f66ee998afbbb
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
48 #include <linux/init.h>
50 #include <linux/file.h>
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
56 #include <asm/unaligned.h>
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
75 static void md_print_devices(void);
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81 * is 1000 KB/sec, so the extra system load does not show up that much.
82 * Increase it if you want to have more _guaranteed_ speed. Note that
83 * the RAID driver will use the maximum available bandwidth if the IO
84 * subsystem is idle. There is also an 'absolute maximum' reconstruction
85 * speed limit - in case reconstruction slows down your system despite
86 * idle IO detection.
88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89 * or /sys/block/mdX/md/sync_speed_{min,max}
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
96 return mddev->sync_speed_min ?
97 mddev->sync_speed_min : sysctl_speed_limit_min;
100 static inline int speed_max(mddev_t *mddev)
102 return mddev->sync_speed_max ?
103 mddev->sync_speed_max : sysctl_speed_limit_max;
106 static struct ctl_table_header *raid_table_header;
108 static ctl_table raid_table[] = {
110 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
111 .procname = "speed_limit_min",
112 .data = &sysctl_speed_limit_min,
113 .maxlen = sizeof(int),
114 .mode = S_IRUGO|S_IWUSR,
115 .proc_handler = &proc_dointvec,
118 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = &proc_dointvec,
125 { .ctl_name = 0 }
128 static ctl_table raid_dir_table[] = {
130 .ctl_name = DEV_RAID,
131 .procname = "raid",
132 .maxlen = 0,
133 .mode = S_IRUGO|S_IXUGO,
134 .child = raid_table,
136 { .ctl_name = 0 }
139 static ctl_table raid_root_table[] = {
141 .ctl_name = CTL_DEV,
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
147 { .ctl_name = 0 }
150 static struct block_device_operations md_fops;
152 static int start_readonly;
155 * We have a system wide 'event count' that is incremented
156 * on any 'interesting' event, and readers of /proc/mdstat
157 * can use 'poll' or 'select' to find out when the event
158 * count increases.
160 * Events are:
161 * start array, stop array, error, add device, remove device,
162 * start build, activate spare
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
168 atomic_inc(&md_event_count);
169 wake_up(&md_event_waiters);
170 sysfs_notify(&mddev->kobj, NULL, "sync_action");
172 EXPORT_SYMBOL_GPL(md_new_event);
174 /* Alternate version that can be called from interrupts
175 * when calling sysfs_notify isn't needed.
177 static void md_new_event_inintr(mddev_t *mddev)
179 atomic_inc(&md_event_count);
180 wake_up(&md_event_waiters);
184 * Enables to iterate over all existing md arrays
185 * all_mddevs_lock protects this list.
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
192 * iterates through all used mddevs in the system.
193 * We take care to grab the all_mddevs_lock whenever navigating
194 * the list, and to always hold a refcount when unlocked.
195 * Any code which breaks out of this loop while own
196 * a reference to the current mddev and must mddev_put it.
198 #define ITERATE_MDDEV(mddev,tmp) \
200 for (({ spin_lock(&all_mddevs_lock); \
201 tmp = all_mddevs.next; \
202 mddev = NULL;}); \
203 ({ if (tmp != &all_mddevs) \
204 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 spin_unlock(&all_mddevs_lock); \
206 if (mddev) mddev_put(mddev); \
207 mddev = list_entry(tmp, mddev_t, all_mddevs); \
208 tmp != &all_mddevs;}); \
209 ({ spin_lock(&all_mddevs_lock); \
210 tmp = tmp->next;}) \
214 static int md_fail_request (struct request_queue *q, struct bio *bio)
216 bio_io_error(bio);
217 return 0;
220 static inline mddev_t *mddev_get(mddev_t *mddev)
222 atomic_inc(&mddev->active);
223 return mddev;
226 static void mddev_put(mddev_t *mddev)
228 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 return;
230 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 list_del(&mddev->all_mddevs);
232 spin_unlock(&all_mddevs_lock);
233 blk_cleanup_queue(mddev->queue);
234 kobject_unregister(&mddev->kobj);
235 } else
236 spin_unlock(&all_mddevs_lock);
239 static mddev_t * mddev_find(dev_t unit)
241 mddev_t *mddev, *new = NULL;
243 retry:
244 spin_lock(&all_mddevs_lock);
245 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 if (mddev->unit == unit) {
247 mddev_get(mddev);
248 spin_unlock(&all_mddevs_lock);
249 kfree(new);
250 return mddev;
253 if (new) {
254 list_add(&new->all_mddevs, &all_mddevs);
255 spin_unlock(&all_mddevs_lock);
256 return new;
258 spin_unlock(&all_mddevs_lock);
260 new = kzalloc(sizeof(*new), GFP_KERNEL);
261 if (!new)
262 return NULL;
264 new->unit = unit;
265 if (MAJOR(unit) == MD_MAJOR)
266 new->md_minor = MINOR(unit);
267 else
268 new->md_minor = MINOR(unit) >> MdpMinorShift;
270 mutex_init(&new->reconfig_mutex);
271 INIT_LIST_HEAD(&new->disks);
272 INIT_LIST_HEAD(&new->all_mddevs);
273 init_timer(&new->safemode_timer);
274 atomic_set(&new->active, 1);
275 spin_lock_init(&new->write_lock);
276 init_waitqueue_head(&new->sb_wait);
277 new->reshape_position = MaxSector;
279 new->queue = blk_alloc_queue(GFP_KERNEL);
280 if (!new->queue) {
281 kfree(new);
282 return NULL;
284 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
286 blk_queue_make_request(new->queue, md_fail_request);
288 goto retry;
291 static inline int mddev_lock(mddev_t * mddev)
293 return mutex_lock_interruptible(&mddev->reconfig_mutex);
296 static inline int mddev_trylock(mddev_t * mddev)
298 return mutex_trylock(&mddev->reconfig_mutex);
301 static inline void mddev_unlock(mddev_t * mddev)
303 mutex_unlock(&mddev->reconfig_mutex);
305 md_wakeup_thread(mddev->thread);
308 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
310 mdk_rdev_t * rdev;
311 struct list_head *tmp;
313 ITERATE_RDEV(mddev,rdev,tmp) {
314 if (rdev->desc_nr == nr)
315 return rdev;
317 return NULL;
320 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
322 struct list_head *tmp;
323 mdk_rdev_t *rdev;
325 ITERATE_RDEV(mddev,rdev,tmp) {
326 if (rdev->bdev->bd_dev == dev)
327 return rdev;
329 return NULL;
332 static struct mdk_personality *find_pers(int level, char *clevel)
334 struct mdk_personality *pers;
335 list_for_each_entry(pers, &pers_list, list) {
336 if (level != LEVEL_NONE && pers->level == level)
337 return pers;
338 if (strcmp(pers->name, clevel)==0)
339 return pers;
341 return NULL;
344 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
346 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
347 return MD_NEW_SIZE_BLOCKS(size);
350 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
352 sector_t size;
354 size = rdev->sb_offset;
356 if (chunk_size)
357 size &= ~((sector_t)chunk_size/1024 - 1);
358 return size;
361 static int alloc_disk_sb(mdk_rdev_t * rdev)
363 if (rdev->sb_page)
364 MD_BUG();
366 rdev->sb_page = alloc_page(GFP_KERNEL);
367 if (!rdev->sb_page) {
368 printk(KERN_ALERT "md: out of memory.\n");
369 return -EINVAL;
372 return 0;
375 static void free_disk_sb(mdk_rdev_t * rdev)
377 if (rdev->sb_page) {
378 put_page(rdev->sb_page);
379 rdev->sb_loaded = 0;
380 rdev->sb_page = NULL;
381 rdev->sb_offset = 0;
382 rdev->size = 0;
387 static void super_written(struct bio *bio, int error)
389 mdk_rdev_t *rdev = bio->bi_private;
390 mddev_t *mddev = rdev->mddev;
392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 printk("md: super_written gets error=%d, uptodate=%d\n",
394 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 md_error(mddev, rdev);
399 if (atomic_dec_and_test(&mddev->pending_writes))
400 wake_up(&mddev->sb_wait);
401 bio_put(bio);
404 static void super_written_barrier(struct bio *bio, int error)
406 struct bio *bio2 = bio->bi_private;
407 mdk_rdev_t *rdev = bio2->bi_private;
408 mddev_t *mddev = rdev->mddev;
410 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
411 error == -EOPNOTSUPP) {
412 unsigned long flags;
413 /* barriers don't appear to be supported :-( */
414 set_bit(BarriersNotsupp, &rdev->flags);
415 mddev->barriers_work = 0;
416 spin_lock_irqsave(&mddev->write_lock, flags);
417 bio2->bi_next = mddev->biolist;
418 mddev->biolist = bio2;
419 spin_unlock_irqrestore(&mddev->write_lock, flags);
420 wake_up(&mddev->sb_wait);
421 bio_put(bio);
422 } else {
423 bio_put(bio2);
424 bio->bi_private = rdev;
425 super_written(bio, error);
429 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
430 sector_t sector, int size, struct page *page)
432 /* write first size bytes of page to sector of rdev
433 * Increment mddev->pending_writes before returning
434 * and decrement it on completion, waking up sb_wait
435 * if zero is reached.
436 * If an error occurred, call md_error
438 * As we might need to resubmit the request if BIO_RW_BARRIER
439 * causes ENOTSUPP, we allocate a spare bio...
441 struct bio *bio = bio_alloc(GFP_NOIO, 1);
442 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
444 bio->bi_bdev = rdev->bdev;
445 bio->bi_sector = sector;
446 bio_add_page(bio, page, size, 0);
447 bio->bi_private = rdev;
448 bio->bi_end_io = super_written;
449 bio->bi_rw = rw;
451 atomic_inc(&mddev->pending_writes);
452 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
453 struct bio *rbio;
454 rw |= (1<<BIO_RW_BARRIER);
455 rbio = bio_clone(bio, GFP_NOIO);
456 rbio->bi_private = bio;
457 rbio->bi_end_io = super_written_barrier;
458 submit_bio(rw, rbio);
459 } else
460 submit_bio(rw, bio);
463 void md_super_wait(mddev_t *mddev)
465 /* wait for all superblock writes that were scheduled to complete.
466 * if any had to be retried (due to BARRIER problems), retry them
468 DEFINE_WAIT(wq);
469 for(;;) {
470 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
471 if (atomic_read(&mddev->pending_writes)==0)
472 break;
473 while (mddev->biolist) {
474 struct bio *bio;
475 spin_lock_irq(&mddev->write_lock);
476 bio = mddev->biolist;
477 mddev->biolist = bio->bi_next ;
478 bio->bi_next = NULL;
479 spin_unlock_irq(&mddev->write_lock);
480 submit_bio(bio->bi_rw, bio);
482 schedule();
484 finish_wait(&mddev->sb_wait, &wq);
487 static void bi_complete(struct bio *bio, int error)
489 complete((struct completion*)bio->bi_private);
492 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
493 struct page *page, int rw)
495 struct bio *bio = bio_alloc(GFP_NOIO, 1);
496 struct completion event;
497 int ret;
499 rw |= (1 << BIO_RW_SYNC);
501 bio->bi_bdev = bdev;
502 bio->bi_sector = sector;
503 bio_add_page(bio, page, size, 0);
504 init_completion(&event);
505 bio->bi_private = &event;
506 bio->bi_end_io = bi_complete;
507 submit_bio(rw, bio);
508 wait_for_completion(&event);
510 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
511 bio_put(bio);
512 return ret;
514 EXPORT_SYMBOL_GPL(sync_page_io);
516 static int read_disk_sb(mdk_rdev_t * rdev, int size)
518 char b[BDEVNAME_SIZE];
519 if (!rdev->sb_page) {
520 MD_BUG();
521 return -EINVAL;
523 if (rdev->sb_loaded)
524 return 0;
527 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
528 goto fail;
529 rdev->sb_loaded = 1;
530 return 0;
532 fail:
533 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
534 bdevname(rdev->bdev,b));
535 return -EINVAL;
538 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
540 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
541 (sb1->set_uuid1 == sb2->set_uuid1) &&
542 (sb1->set_uuid2 == sb2->set_uuid2) &&
543 (sb1->set_uuid3 == sb2->set_uuid3))
545 return 1;
547 return 0;
551 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
553 int ret;
554 mdp_super_t *tmp1, *tmp2;
556 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
557 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
559 if (!tmp1 || !tmp2) {
560 ret = 0;
561 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
562 goto abort;
565 *tmp1 = *sb1;
566 *tmp2 = *sb2;
569 * nr_disks is not constant
571 tmp1->nr_disks = 0;
572 tmp2->nr_disks = 0;
574 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
575 ret = 0;
576 else
577 ret = 1;
579 abort:
580 kfree(tmp1);
581 kfree(tmp2);
582 return ret;
586 static u32 md_csum_fold(u32 csum)
588 csum = (csum & 0xffff) + (csum >> 16);
589 return (csum & 0xffff) + (csum >> 16);
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
594 u64 newcsum = 0;
595 u32 *sb32 = (u32*)sb;
596 int i;
597 unsigned int disk_csum, csum;
599 disk_csum = sb->sb_csum;
600 sb->sb_csum = 0;
602 for (i = 0; i < MD_SB_BYTES/4 ; i++)
603 newcsum += sb32[i];
604 csum = (newcsum & 0xffffffff) + (newcsum>>32);
607 #ifdef CONFIG_ALPHA
608 /* This used to use csum_partial, which was wrong for several
609 * reasons including that different results are returned on
610 * different architectures. It isn't critical that we get exactly
611 * the same return value as before (we always csum_fold before
612 * testing, and that removes any differences). However as we
613 * know that csum_partial always returned a 16bit value on
614 * alphas, do a fold to maximise conformity to previous behaviour.
616 sb->sb_csum = md_csum_fold(disk_csum);
617 #else
618 sb->sb_csum = disk_csum;
619 #endif
620 return csum;
625 * Handle superblock details.
626 * We want to be able to handle multiple superblock formats
627 * so we have a common interface to them all, and an array of
628 * different handlers.
629 * We rely on user-space to write the initial superblock, and support
630 * reading and updating of superblocks.
631 * Interface methods are:
632 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
633 * loads and validates a superblock on dev.
634 * if refdev != NULL, compare superblocks on both devices
635 * Return:
636 * 0 - dev has a superblock that is compatible with refdev
637 * 1 - dev has a superblock that is compatible and newer than refdev
638 * so dev should be used as the refdev in future
639 * -EINVAL superblock incompatible or invalid
640 * -othererror e.g. -EIO
642 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
643 * Verify that dev is acceptable into mddev.
644 * The first time, mddev->raid_disks will be 0, and data from
645 * dev should be merged in. Subsequent calls check that dev
646 * is new enough. Return 0 or -EINVAL
648 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
649 * Update the superblock for rdev with data in mddev
650 * This does not write to disc.
654 struct super_type {
655 char *name;
656 struct module *owner;
657 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
658 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
659 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
663 * load_super for 0.90.0
665 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
667 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
668 mdp_super_t *sb;
669 int ret;
670 sector_t sb_offset;
673 * Calculate the position of the superblock,
674 * it's at the end of the disk.
676 * It also happens to be a multiple of 4Kb.
678 sb_offset = calc_dev_sboffset(rdev->bdev);
679 rdev->sb_offset = sb_offset;
681 ret = read_disk_sb(rdev, MD_SB_BYTES);
682 if (ret) return ret;
684 ret = -EINVAL;
686 bdevname(rdev->bdev, b);
687 sb = (mdp_super_t*)page_address(rdev->sb_page);
689 if (sb->md_magic != MD_SB_MAGIC) {
690 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
692 goto abort;
695 if (sb->major_version != 0 ||
696 sb->minor_version < 90 ||
697 sb->minor_version > 91) {
698 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
699 sb->major_version, sb->minor_version,
701 goto abort;
704 if (sb->raid_disks <= 0)
705 goto abort;
707 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
708 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
710 goto abort;
713 rdev->preferred_minor = sb->md_minor;
714 rdev->data_offset = 0;
715 rdev->sb_size = MD_SB_BYTES;
717 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
718 if (sb->level != 1 && sb->level != 4
719 && sb->level != 5 && sb->level != 6
720 && sb->level != 10) {
721 /* FIXME use a better test */
722 printk(KERN_WARNING
723 "md: bitmaps not supported for this level.\n");
724 goto abort;
728 if (sb->level == LEVEL_MULTIPATH)
729 rdev->desc_nr = -1;
730 else
731 rdev->desc_nr = sb->this_disk.number;
733 if (refdev == 0)
734 ret = 1;
735 else {
736 __u64 ev1, ev2;
737 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
738 if (!uuid_equal(refsb, sb)) {
739 printk(KERN_WARNING "md: %s has different UUID to %s\n",
740 b, bdevname(refdev->bdev,b2));
741 goto abort;
743 if (!sb_equal(refsb, sb)) {
744 printk(KERN_WARNING "md: %s has same UUID"
745 " but different superblock to %s\n",
746 b, bdevname(refdev->bdev, b2));
747 goto abort;
749 ev1 = md_event(sb);
750 ev2 = md_event(refsb);
751 if (ev1 > ev2)
752 ret = 1;
753 else
754 ret = 0;
756 rdev->size = calc_dev_size(rdev, sb->chunk_size);
758 if (rdev->size < sb->size && sb->level > 1)
759 /* "this cannot possibly happen" ... */
760 ret = -EINVAL;
762 abort:
763 return ret;
767 * validate_super for 0.90.0
769 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
771 mdp_disk_t *desc;
772 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
773 __u64 ev1 = md_event(sb);
775 rdev->raid_disk = -1;
776 rdev->flags = 0;
777 if (mddev->raid_disks == 0) {
778 mddev->major_version = 0;
779 mddev->minor_version = sb->minor_version;
780 mddev->patch_version = sb->patch_version;
781 mddev->persistent = ! sb->not_persistent;
782 mddev->chunk_size = sb->chunk_size;
783 mddev->ctime = sb->ctime;
784 mddev->utime = sb->utime;
785 mddev->level = sb->level;
786 mddev->clevel[0] = 0;
787 mddev->layout = sb->layout;
788 mddev->raid_disks = sb->raid_disks;
789 mddev->size = sb->size;
790 mddev->events = ev1;
791 mddev->bitmap_offset = 0;
792 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
794 if (mddev->minor_version >= 91) {
795 mddev->reshape_position = sb->reshape_position;
796 mddev->delta_disks = sb->delta_disks;
797 mddev->new_level = sb->new_level;
798 mddev->new_layout = sb->new_layout;
799 mddev->new_chunk = sb->new_chunk;
800 } else {
801 mddev->reshape_position = MaxSector;
802 mddev->delta_disks = 0;
803 mddev->new_level = mddev->level;
804 mddev->new_layout = mddev->layout;
805 mddev->new_chunk = mddev->chunk_size;
808 if (sb->state & (1<<MD_SB_CLEAN))
809 mddev->recovery_cp = MaxSector;
810 else {
811 if (sb->events_hi == sb->cp_events_hi &&
812 sb->events_lo == sb->cp_events_lo) {
813 mddev->recovery_cp = sb->recovery_cp;
814 } else
815 mddev->recovery_cp = 0;
818 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
819 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
820 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
821 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
823 mddev->max_disks = MD_SB_DISKS;
825 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
826 mddev->bitmap_file == NULL)
827 mddev->bitmap_offset = mddev->default_bitmap_offset;
829 } else if (mddev->pers == NULL) {
830 /* Insist on good event counter while assembling */
831 ++ev1;
832 if (ev1 < mddev->events)
833 return -EINVAL;
834 } else if (mddev->bitmap) {
835 /* if adding to array with a bitmap, then we can accept an
836 * older device ... but not too old.
838 if (ev1 < mddev->bitmap->events_cleared)
839 return 0;
840 } else {
841 if (ev1 < mddev->events)
842 /* just a hot-add of a new device, leave raid_disk at -1 */
843 return 0;
846 if (mddev->level != LEVEL_MULTIPATH) {
847 desc = sb->disks + rdev->desc_nr;
849 if (desc->state & (1<<MD_DISK_FAULTY))
850 set_bit(Faulty, &rdev->flags);
851 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
852 desc->raid_disk < mddev->raid_disks */) {
853 set_bit(In_sync, &rdev->flags);
854 rdev->raid_disk = desc->raid_disk;
856 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
857 set_bit(WriteMostly, &rdev->flags);
858 } else /* MULTIPATH are always insync */
859 set_bit(In_sync, &rdev->flags);
860 return 0;
864 * sync_super for 0.90.0
866 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
868 mdp_super_t *sb;
869 struct list_head *tmp;
870 mdk_rdev_t *rdev2;
871 int next_spare = mddev->raid_disks;
874 /* make rdev->sb match mddev data..
876 * 1/ zero out disks
877 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
878 * 3/ any empty disks < next_spare become removed
880 * disks[0] gets initialised to REMOVED because
881 * we cannot be sure from other fields if it has
882 * been initialised or not.
884 int i;
885 int active=0, working=0,failed=0,spare=0,nr_disks=0;
887 rdev->sb_size = MD_SB_BYTES;
889 sb = (mdp_super_t*)page_address(rdev->sb_page);
891 memset(sb, 0, sizeof(*sb));
893 sb->md_magic = MD_SB_MAGIC;
894 sb->major_version = mddev->major_version;
895 sb->patch_version = mddev->patch_version;
896 sb->gvalid_words = 0; /* ignored */
897 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
898 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
899 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
900 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
902 sb->ctime = mddev->ctime;
903 sb->level = mddev->level;
904 sb->size = mddev->size;
905 sb->raid_disks = mddev->raid_disks;
906 sb->md_minor = mddev->md_minor;
907 sb->not_persistent = !mddev->persistent;
908 sb->utime = mddev->utime;
909 sb->state = 0;
910 sb->events_hi = (mddev->events>>32);
911 sb->events_lo = (u32)mddev->events;
913 if (mddev->reshape_position == MaxSector)
914 sb->minor_version = 90;
915 else {
916 sb->minor_version = 91;
917 sb->reshape_position = mddev->reshape_position;
918 sb->new_level = mddev->new_level;
919 sb->delta_disks = mddev->delta_disks;
920 sb->new_layout = mddev->new_layout;
921 sb->new_chunk = mddev->new_chunk;
923 mddev->minor_version = sb->minor_version;
924 if (mddev->in_sync)
926 sb->recovery_cp = mddev->recovery_cp;
927 sb->cp_events_hi = (mddev->events>>32);
928 sb->cp_events_lo = (u32)mddev->events;
929 if (mddev->recovery_cp == MaxSector)
930 sb->state = (1<< MD_SB_CLEAN);
931 } else
932 sb->recovery_cp = 0;
934 sb->layout = mddev->layout;
935 sb->chunk_size = mddev->chunk_size;
937 if (mddev->bitmap && mddev->bitmap_file == NULL)
938 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
940 sb->disks[0].state = (1<<MD_DISK_REMOVED);
941 ITERATE_RDEV(mddev,rdev2,tmp) {
942 mdp_disk_t *d;
943 int desc_nr;
944 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
945 && !test_bit(Faulty, &rdev2->flags))
946 desc_nr = rdev2->raid_disk;
947 else
948 desc_nr = next_spare++;
949 rdev2->desc_nr = desc_nr;
950 d = &sb->disks[rdev2->desc_nr];
951 nr_disks++;
952 d->number = rdev2->desc_nr;
953 d->major = MAJOR(rdev2->bdev->bd_dev);
954 d->minor = MINOR(rdev2->bdev->bd_dev);
955 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
956 && !test_bit(Faulty, &rdev2->flags))
957 d->raid_disk = rdev2->raid_disk;
958 else
959 d->raid_disk = rdev2->desc_nr; /* compatibility */
960 if (test_bit(Faulty, &rdev2->flags))
961 d->state = (1<<MD_DISK_FAULTY);
962 else if (test_bit(In_sync, &rdev2->flags)) {
963 d->state = (1<<MD_DISK_ACTIVE);
964 d->state |= (1<<MD_DISK_SYNC);
965 active++;
966 working++;
967 } else {
968 d->state = 0;
969 spare++;
970 working++;
972 if (test_bit(WriteMostly, &rdev2->flags))
973 d->state |= (1<<MD_DISK_WRITEMOSTLY);
975 /* now set the "removed" and "faulty" bits on any missing devices */
976 for (i=0 ; i < mddev->raid_disks ; i++) {
977 mdp_disk_t *d = &sb->disks[i];
978 if (d->state == 0 && d->number == 0) {
979 d->number = i;
980 d->raid_disk = i;
981 d->state = (1<<MD_DISK_REMOVED);
982 d->state |= (1<<MD_DISK_FAULTY);
983 failed++;
986 sb->nr_disks = nr_disks;
987 sb->active_disks = active;
988 sb->working_disks = working;
989 sb->failed_disks = failed;
990 sb->spare_disks = spare;
992 sb->this_disk = sb->disks[rdev->desc_nr];
993 sb->sb_csum = calc_sb_csum(sb);
997 * version 1 superblock
1000 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1002 __le32 disk_csum;
1003 u32 csum;
1004 unsigned long long newcsum;
1005 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1006 __le32 *isuper = (__le32*)sb;
1007 int i;
1009 disk_csum = sb->sb_csum;
1010 sb->sb_csum = 0;
1011 newcsum = 0;
1012 for (i=0; size>=4; size -= 4 )
1013 newcsum += le32_to_cpu(*isuper++);
1015 if (size == 2)
1016 newcsum += le16_to_cpu(*(__le16*) isuper);
1018 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1019 sb->sb_csum = disk_csum;
1020 return cpu_to_le32(csum);
1023 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1025 struct mdp_superblock_1 *sb;
1026 int ret;
1027 sector_t sb_offset;
1028 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1029 int bmask;
1032 * Calculate the position of the superblock.
1033 * It is always aligned to a 4K boundary and
1034 * depeding on minor_version, it can be:
1035 * 0: At least 8K, but less than 12K, from end of device
1036 * 1: At start of device
1037 * 2: 4K from start of device.
1039 switch(minor_version) {
1040 case 0:
1041 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1042 sb_offset -= 8*2;
1043 sb_offset &= ~(sector_t)(4*2-1);
1044 /* convert from sectors to K */
1045 sb_offset /= 2;
1046 break;
1047 case 1:
1048 sb_offset = 0;
1049 break;
1050 case 2:
1051 sb_offset = 4;
1052 break;
1053 default:
1054 return -EINVAL;
1056 rdev->sb_offset = sb_offset;
1058 /* superblock is rarely larger than 1K, but it can be larger,
1059 * and it is safe to read 4k, so we do that
1061 ret = read_disk_sb(rdev, 4096);
1062 if (ret) return ret;
1065 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1067 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1068 sb->major_version != cpu_to_le32(1) ||
1069 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1070 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1071 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1072 return -EINVAL;
1074 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1075 printk("md: invalid superblock checksum on %s\n",
1076 bdevname(rdev->bdev,b));
1077 return -EINVAL;
1079 if (le64_to_cpu(sb->data_size) < 10) {
1080 printk("md: data_size too small on %s\n",
1081 bdevname(rdev->bdev,b));
1082 return -EINVAL;
1084 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1085 if (sb->level != cpu_to_le32(1) &&
1086 sb->level != cpu_to_le32(4) &&
1087 sb->level != cpu_to_le32(5) &&
1088 sb->level != cpu_to_le32(6) &&
1089 sb->level != cpu_to_le32(10)) {
1090 printk(KERN_WARNING
1091 "md: bitmaps not supported for this level.\n");
1092 return -EINVAL;
1096 rdev->preferred_minor = 0xffff;
1097 rdev->data_offset = le64_to_cpu(sb->data_offset);
1098 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1100 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1101 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1102 if (rdev->sb_size & bmask)
1103 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1105 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1106 rdev->desc_nr = -1;
1107 else
1108 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1110 if (refdev == 0)
1111 ret = 1;
1112 else {
1113 __u64 ev1, ev2;
1114 struct mdp_superblock_1 *refsb =
1115 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1117 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1118 sb->level != refsb->level ||
1119 sb->layout != refsb->layout ||
1120 sb->chunksize != refsb->chunksize) {
1121 printk(KERN_WARNING "md: %s has strangely different"
1122 " superblock to %s\n",
1123 bdevname(rdev->bdev,b),
1124 bdevname(refdev->bdev,b2));
1125 return -EINVAL;
1127 ev1 = le64_to_cpu(sb->events);
1128 ev2 = le64_to_cpu(refsb->events);
1130 if (ev1 > ev2)
1131 ret = 1;
1132 else
1133 ret = 0;
1135 if (minor_version)
1136 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1137 else
1138 rdev->size = rdev->sb_offset;
1139 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1140 return -EINVAL;
1141 rdev->size = le64_to_cpu(sb->data_size)/2;
1142 if (le32_to_cpu(sb->chunksize))
1143 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1145 if (le64_to_cpu(sb->size) > rdev->size*2)
1146 return -EINVAL;
1147 return ret;
1150 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1152 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1153 __u64 ev1 = le64_to_cpu(sb->events);
1155 rdev->raid_disk = -1;
1156 rdev->flags = 0;
1157 if (mddev->raid_disks == 0) {
1158 mddev->major_version = 1;
1159 mddev->patch_version = 0;
1160 mddev->persistent = 1;
1161 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1162 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1163 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1164 mddev->level = le32_to_cpu(sb->level);
1165 mddev->clevel[0] = 0;
1166 mddev->layout = le32_to_cpu(sb->layout);
1167 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1168 mddev->size = le64_to_cpu(sb->size)/2;
1169 mddev->events = ev1;
1170 mddev->bitmap_offset = 0;
1171 mddev->default_bitmap_offset = 1024 >> 9;
1173 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1174 memcpy(mddev->uuid, sb->set_uuid, 16);
1176 mddev->max_disks = (4096-256)/2;
1178 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1179 mddev->bitmap_file == NULL )
1180 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1182 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1183 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1184 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1185 mddev->new_level = le32_to_cpu(sb->new_level);
1186 mddev->new_layout = le32_to_cpu(sb->new_layout);
1187 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1188 } else {
1189 mddev->reshape_position = MaxSector;
1190 mddev->delta_disks = 0;
1191 mddev->new_level = mddev->level;
1192 mddev->new_layout = mddev->layout;
1193 mddev->new_chunk = mddev->chunk_size;
1196 } else if (mddev->pers == NULL) {
1197 /* Insist of good event counter while assembling */
1198 ++ev1;
1199 if (ev1 < mddev->events)
1200 return -EINVAL;
1201 } else if (mddev->bitmap) {
1202 /* If adding to array with a bitmap, then we can accept an
1203 * older device, but not too old.
1205 if (ev1 < mddev->bitmap->events_cleared)
1206 return 0;
1207 } else {
1208 if (ev1 < mddev->events)
1209 /* just a hot-add of a new device, leave raid_disk at -1 */
1210 return 0;
1212 if (mddev->level != LEVEL_MULTIPATH) {
1213 int role;
1214 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1215 switch(role) {
1216 case 0xffff: /* spare */
1217 break;
1218 case 0xfffe: /* faulty */
1219 set_bit(Faulty, &rdev->flags);
1220 break;
1221 default:
1222 if ((le32_to_cpu(sb->feature_map) &
1223 MD_FEATURE_RECOVERY_OFFSET))
1224 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1225 else
1226 set_bit(In_sync, &rdev->flags);
1227 rdev->raid_disk = role;
1228 break;
1230 if (sb->devflags & WriteMostly1)
1231 set_bit(WriteMostly, &rdev->flags);
1232 } else /* MULTIPATH are always insync */
1233 set_bit(In_sync, &rdev->flags);
1235 return 0;
1238 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1240 struct mdp_superblock_1 *sb;
1241 struct list_head *tmp;
1242 mdk_rdev_t *rdev2;
1243 int max_dev, i;
1244 /* make rdev->sb match mddev and rdev data. */
1246 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1248 sb->feature_map = 0;
1249 sb->pad0 = 0;
1250 sb->recovery_offset = cpu_to_le64(0);
1251 memset(sb->pad1, 0, sizeof(sb->pad1));
1252 memset(sb->pad2, 0, sizeof(sb->pad2));
1253 memset(sb->pad3, 0, sizeof(sb->pad3));
1255 sb->utime = cpu_to_le64((__u64)mddev->utime);
1256 sb->events = cpu_to_le64(mddev->events);
1257 if (mddev->in_sync)
1258 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1259 else
1260 sb->resync_offset = cpu_to_le64(0);
1262 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1264 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1265 sb->size = cpu_to_le64(mddev->size<<1);
1267 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1268 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1269 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1272 if (rdev->raid_disk >= 0 &&
1273 !test_bit(In_sync, &rdev->flags) &&
1274 rdev->recovery_offset > 0) {
1275 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1276 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1279 if (mddev->reshape_position != MaxSector) {
1280 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1281 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1282 sb->new_layout = cpu_to_le32(mddev->new_layout);
1283 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1284 sb->new_level = cpu_to_le32(mddev->new_level);
1285 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1288 max_dev = 0;
1289 ITERATE_RDEV(mddev,rdev2,tmp)
1290 if (rdev2->desc_nr+1 > max_dev)
1291 max_dev = rdev2->desc_nr+1;
1293 if (max_dev > le32_to_cpu(sb->max_dev))
1294 sb->max_dev = cpu_to_le32(max_dev);
1295 for (i=0; i<max_dev;i++)
1296 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1298 ITERATE_RDEV(mddev,rdev2,tmp) {
1299 i = rdev2->desc_nr;
1300 if (test_bit(Faulty, &rdev2->flags))
1301 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1302 else if (test_bit(In_sync, &rdev2->flags))
1303 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1304 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1305 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1306 else
1307 sb->dev_roles[i] = cpu_to_le16(0xffff);
1310 sb->sb_csum = calc_sb_1_csum(sb);
1314 static struct super_type super_types[] = {
1315 [0] = {
1316 .name = "0.90.0",
1317 .owner = THIS_MODULE,
1318 .load_super = super_90_load,
1319 .validate_super = super_90_validate,
1320 .sync_super = super_90_sync,
1322 [1] = {
1323 .name = "md-1",
1324 .owner = THIS_MODULE,
1325 .load_super = super_1_load,
1326 .validate_super = super_1_validate,
1327 .sync_super = super_1_sync,
1331 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1333 struct list_head *tmp, *tmp2;
1334 mdk_rdev_t *rdev, *rdev2;
1336 ITERATE_RDEV(mddev1,rdev,tmp)
1337 ITERATE_RDEV(mddev2, rdev2, tmp2)
1338 if (rdev->bdev->bd_contains ==
1339 rdev2->bdev->bd_contains)
1340 return 1;
1342 return 0;
1345 static LIST_HEAD(pending_raid_disks);
1347 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1349 char b[BDEVNAME_SIZE];
1350 struct kobject *ko;
1351 char *s;
1352 int err;
1354 if (rdev->mddev) {
1355 MD_BUG();
1356 return -EINVAL;
1358 /* make sure rdev->size exceeds mddev->size */
1359 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1360 if (mddev->pers) {
1361 /* Cannot change size, so fail
1362 * If mddev->level <= 0, then we don't care
1363 * about aligning sizes (e.g. linear)
1365 if (mddev->level > 0)
1366 return -ENOSPC;
1367 } else
1368 mddev->size = rdev->size;
1371 /* Verify rdev->desc_nr is unique.
1372 * If it is -1, assign a free number, else
1373 * check number is not in use
1375 if (rdev->desc_nr < 0) {
1376 int choice = 0;
1377 if (mddev->pers) choice = mddev->raid_disks;
1378 while (find_rdev_nr(mddev, choice))
1379 choice++;
1380 rdev->desc_nr = choice;
1381 } else {
1382 if (find_rdev_nr(mddev, rdev->desc_nr))
1383 return -EBUSY;
1385 bdevname(rdev->bdev,b);
1386 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1387 return -ENOMEM;
1388 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1389 *s = '!';
1391 rdev->mddev = mddev;
1392 printk(KERN_INFO "md: bind<%s>\n", b);
1394 rdev->kobj.parent = &mddev->kobj;
1395 if ((err = kobject_add(&rdev->kobj)))
1396 goto fail;
1398 if (rdev->bdev->bd_part)
1399 ko = &rdev->bdev->bd_part->kobj;
1400 else
1401 ko = &rdev->bdev->bd_disk->kobj;
1402 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1403 kobject_del(&rdev->kobj);
1404 goto fail;
1406 list_add(&rdev->same_set, &mddev->disks);
1407 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1408 return 0;
1410 fail:
1411 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1412 b, mdname(mddev));
1413 return err;
1416 static void delayed_delete(struct work_struct *ws)
1418 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1419 kobject_del(&rdev->kobj);
1422 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1424 char b[BDEVNAME_SIZE];
1425 if (!rdev->mddev) {
1426 MD_BUG();
1427 return;
1429 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1430 list_del_init(&rdev->same_set);
1431 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1432 rdev->mddev = NULL;
1433 sysfs_remove_link(&rdev->kobj, "block");
1435 /* We need to delay this, otherwise we can deadlock when
1436 * writing to 'remove' to "dev/state"
1438 INIT_WORK(&rdev->del_work, delayed_delete);
1439 schedule_work(&rdev->del_work);
1443 * prevent the device from being mounted, repartitioned or
1444 * otherwise reused by a RAID array (or any other kernel
1445 * subsystem), by bd_claiming the device.
1447 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1449 int err = 0;
1450 struct block_device *bdev;
1451 char b[BDEVNAME_SIZE];
1453 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1454 if (IS_ERR(bdev)) {
1455 printk(KERN_ERR "md: could not open %s.\n",
1456 __bdevname(dev, b));
1457 return PTR_ERR(bdev);
1459 err = bd_claim(bdev, rdev);
1460 if (err) {
1461 printk(KERN_ERR "md: could not bd_claim %s.\n",
1462 bdevname(bdev, b));
1463 blkdev_put(bdev);
1464 return err;
1466 rdev->bdev = bdev;
1467 return err;
1470 static void unlock_rdev(mdk_rdev_t *rdev)
1472 struct block_device *bdev = rdev->bdev;
1473 rdev->bdev = NULL;
1474 if (!bdev)
1475 MD_BUG();
1476 bd_release(bdev);
1477 blkdev_put(bdev);
1480 void md_autodetect_dev(dev_t dev);
1482 static void export_rdev(mdk_rdev_t * rdev)
1484 char b[BDEVNAME_SIZE];
1485 printk(KERN_INFO "md: export_rdev(%s)\n",
1486 bdevname(rdev->bdev,b));
1487 if (rdev->mddev)
1488 MD_BUG();
1489 free_disk_sb(rdev);
1490 list_del_init(&rdev->same_set);
1491 #ifndef MODULE
1492 md_autodetect_dev(rdev->bdev->bd_dev);
1493 #endif
1494 unlock_rdev(rdev);
1495 kobject_put(&rdev->kobj);
1498 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1500 unbind_rdev_from_array(rdev);
1501 export_rdev(rdev);
1504 static void export_array(mddev_t *mddev)
1506 struct list_head *tmp;
1507 mdk_rdev_t *rdev;
1509 ITERATE_RDEV(mddev,rdev,tmp) {
1510 if (!rdev->mddev) {
1511 MD_BUG();
1512 continue;
1514 kick_rdev_from_array(rdev);
1516 if (!list_empty(&mddev->disks))
1517 MD_BUG();
1518 mddev->raid_disks = 0;
1519 mddev->major_version = 0;
1522 static void print_desc(mdp_disk_t *desc)
1524 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1525 desc->major,desc->minor,desc->raid_disk,desc->state);
1528 static void print_sb(mdp_super_t *sb)
1530 int i;
1532 printk(KERN_INFO
1533 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1534 sb->major_version, sb->minor_version, sb->patch_version,
1535 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1536 sb->ctime);
1537 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1538 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1539 sb->md_minor, sb->layout, sb->chunk_size);
1540 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1541 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1542 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1543 sb->failed_disks, sb->spare_disks,
1544 sb->sb_csum, (unsigned long)sb->events_lo);
1546 printk(KERN_INFO);
1547 for (i = 0; i < MD_SB_DISKS; i++) {
1548 mdp_disk_t *desc;
1550 desc = sb->disks + i;
1551 if (desc->number || desc->major || desc->minor ||
1552 desc->raid_disk || (desc->state && (desc->state != 4))) {
1553 printk(" D %2d: ", i);
1554 print_desc(desc);
1557 printk(KERN_INFO "md: THIS: ");
1558 print_desc(&sb->this_disk);
1562 static void print_rdev(mdk_rdev_t *rdev)
1564 char b[BDEVNAME_SIZE];
1565 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1566 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1567 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1568 rdev->desc_nr);
1569 if (rdev->sb_loaded) {
1570 printk(KERN_INFO "md: rdev superblock:\n");
1571 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1572 } else
1573 printk(KERN_INFO "md: no rdev superblock!\n");
1576 static void md_print_devices(void)
1578 struct list_head *tmp, *tmp2;
1579 mdk_rdev_t *rdev;
1580 mddev_t *mddev;
1581 char b[BDEVNAME_SIZE];
1583 printk("\n");
1584 printk("md: **********************************\n");
1585 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1586 printk("md: **********************************\n");
1587 ITERATE_MDDEV(mddev,tmp) {
1589 if (mddev->bitmap)
1590 bitmap_print_sb(mddev->bitmap);
1591 else
1592 printk("%s: ", mdname(mddev));
1593 ITERATE_RDEV(mddev,rdev,tmp2)
1594 printk("<%s>", bdevname(rdev->bdev,b));
1595 printk("\n");
1597 ITERATE_RDEV(mddev,rdev,tmp2)
1598 print_rdev(rdev);
1600 printk("md: **********************************\n");
1601 printk("\n");
1605 static void sync_sbs(mddev_t * mddev, int nospares)
1607 /* Update each superblock (in-memory image), but
1608 * if we are allowed to, skip spares which already
1609 * have the right event counter, or have one earlier
1610 * (which would mean they aren't being marked as dirty
1611 * with the rest of the array)
1613 mdk_rdev_t *rdev;
1614 struct list_head *tmp;
1616 ITERATE_RDEV(mddev,rdev,tmp) {
1617 if (rdev->sb_events == mddev->events ||
1618 (nospares &&
1619 rdev->raid_disk < 0 &&
1620 (rdev->sb_events&1)==0 &&
1621 rdev->sb_events+1 == mddev->events)) {
1622 /* Don't update this superblock */
1623 rdev->sb_loaded = 2;
1624 } else {
1625 super_types[mddev->major_version].
1626 sync_super(mddev, rdev);
1627 rdev->sb_loaded = 1;
1632 static void md_update_sb(mddev_t * mddev, int force_change)
1634 struct list_head *tmp;
1635 mdk_rdev_t *rdev;
1636 int sync_req;
1637 int nospares = 0;
1639 repeat:
1640 spin_lock_irq(&mddev->write_lock);
1642 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1643 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1644 force_change = 1;
1645 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1646 /* just a clean<-> dirty transition, possibly leave spares alone,
1647 * though if events isn't the right even/odd, we will have to do
1648 * spares after all
1650 nospares = 1;
1651 if (force_change)
1652 nospares = 0;
1653 if (mddev->degraded)
1654 /* If the array is degraded, then skipping spares is both
1655 * dangerous and fairly pointless.
1656 * Dangerous because a device that was removed from the array
1657 * might have a event_count that still looks up-to-date,
1658 * so it can be re-added without a resync.
1659 * Pointless because if there are any spares to skip,
1660 * then a recovery will happen and soon that array won't
1661 * be degraded any more and the spare can go back to sleep then.
1663 nospares = 0;
1665 sync_req = mddev->in_sync;
1666 mddev->utime = get_seconds();
1668 /* If this is just a dirty<->clean transition, and the array is clean
1669 * and 'events' is odd, we can roll back to the previous clean state */
1670 if (nospares
1671 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1672 && (mddev->events & 1)
1673 && mddev->events != 1)
1674 mddev->events--;
1675 else {
1676 /* otherwise we have to go forward and ... */
1677 mddev->events ++;
1678 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1679 /* .. if the array isn't clean, insist on an odd 'events' */
1680 if ((mddev->events&1)==0) {
1681 mddev->events++;
1682 nospares = 0;
1684 } else {
1685 /* otherwise insist on an even 'events' (for clean states) */
1686 if ((mddev->events&1)) {
1687 mddev->events++;
1688 nospares = 0;
1693 if (!mddev->events) {
1695 * oops, this 64-bit counter should never wrap.
1696 * Either we are in around ~1 trillion A.C., assuming
1697 * 1 reboot per second, or we have a bug:
1699 MD_BUG();
1700 mddev->events --;
1702 sync_sbs(mddev, nospares);
1705 * do not write anything to disk if using
1706 * nonpersistent superblocks
1708 if (!mddev->persistent) {
1709 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1710 spin_unlock_irq(&mddev->write_lock);
1711 wake_up(&mddev->sb_wait);
1712 return;
1714 spin_unlock_irq(&mddev->write_lock);
1716 dprintk(KERN_INFO
1717 "md: updating %s RAID superblock on device (in sync %d)\n",
1718 mdname(mddev),mddev->in_sync);
1720 bitmap_update_sb(mddev->bitmap);
1721 ITERATE_RDEV(mddev,rdev,tmp) {
1722 char b[BDEVNAME_SIZE];
1723 dprintk(KERN_INFO "md: ");
1724 if (rdev->sb_loaded != 1)
1725 continue; /* no noise on spare devices */
1726 if (test_bit(Faulty, &rdev->flags))
1727 dprintk("(skipping faulty ");
1729 dprintk("%s ", bdevname(rdev->bdev,b));
1730 if (!test_bit(Faulty, &rdev->flags)) {
1731 md_super_write(mddev,rdev,
1732 rdev->sb_offset<<1, rdev->sb_size,
1733 rdev->sb_page);
1734 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1735 bdevname(rdev->bdev,b),
1736 (unsigned long long)rdev->sb_offset);
1737 rdev->sb_events = mddev->events;
1739 } else
1740 dprintk(")\n");
1741 if (mddev->level == LEVEL_MULTIPATH)
1742 /* only need to write one superblock... */
1743 break;
1745 md_super_wait(mddev);
1746 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1748 spin_lock_irq(&mddev->write_lock);
1749 if (mddev->in_sync != sync_req ||
1750 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1751 /* have to write it out again */
1752 spin_unlock_irq(&mddev->write_lock);
1753 goto repeat;
1755 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1756 spin_unlock_irq(&mddev->write_lock);
1757 wake_up(&mddev->sb_wait);
1761 /* words written to sysfs files may, or my not, be \n terminated.
1762 * We want to accept with case. For this we use cmd_match.
1764 static int cmd_match(const char *cmd, const char *str)
1766 /* See if cmd, written into a sysfs file, matches
1767 * str. They must either be the same, or cmd can
1768 * have a trailing newline
1770 while (*cmd && *str && *cmd == *str) {
1771 cmd++;
1772 str++;
1774 if (*cmd == '\n')
1775 cmd++;
1776 if (*str || *cmd)
1777 return 0;
1778 return 1;
1781 struct rdev_sysfs_entry {
1782 struct attribute attr;
1783 ssize_t (*show)(mdk_rdev_t *, char *);
1784 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1787 static ssize_t
1788 state_show(mdk_rdev_t *rdev, char *page)
1790 char *sep = "";
1791 int len=0;
1793 if (test_bit(Faulty, &rdev->flags)) {
1794 len+= sprintf(page+len, "%sfaulty",sep);
1795 sep = ",";
1797 if (test_bit(In_sync, &rdev->flags)) {
1798 len += sprintf(page+len, "%sin_sync",sep);
1799 sep = ",";
1801 if (test_bit(WriteMostly, &rdev->flags)) {
1802 len += sprintf(page+len, "%swrite_mostly",sep);
1803 sep = ",";
1805 if (!test_bit(Faulty, &rdev->flags) &&
1806 !test_bit(In_sync, &rdev->flags)) {
1807 len += sprintf(page+len, "%sspare", sep);
1808 sep = ",";
1810 return len+sprintf(page+len, "\n");
1813 static ssize_t
1814 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1816 /* can write
1817 * faulty - simulates and error
1818 * remove - disconnects the device
1819 * writemostly - sets write_mostly
1820 * -writemostly - clears write_mostly
1822 int err = -EINVAL;
1823 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1824 md_error(rdev->mddev, rdev);
1825 err = 0;
1826 } else if (cmd_match(buf, "remove")) {
1827 if (rdev->raid_disk >= 0)
1828 err = -EBUSY;
1829 else {
1830 mddev_t *mddev = rdev->mddev;
1831 kick_rdev_from_array(rdev);
1832 if (mddev->pers)
1833 md_update_sb(mddev, 1);
1834 md_new_event(mddev);
1835 err = 0;
1837 } else if (cmd_match(buf, "writemostly")) {
1838 set_bit(WriteMostly, &rdev->flags);
1839 err = 0;
1840 } else if (cmd_match(buf, "-writemostly")) {
1841 clear_bit(WriteMostly, &rdev->flags);
1842 err = 0;
1844 return err ? err : len;
1846 static struct rdev_sysfs_entry rdev_state =
1847 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1849 static ssize_t
1850 super_show(mdk_rdev_t *rdev, char *page)
1852 if (rdev->sb_loaded && rdev->sb_size) {
1853 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1854 return rdev->sb_size;
1855 } else
1856 return 0;
1858 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1860 static ssize_t
1861 errors_show(mdk_rdev_t *rdev, char *page)
1863 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1866 static ssize_t
1867 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1869 char *e;
1870 unsigned long n = simple_strtoul(buf, &e, 10);
1871 if (*buf && (*e == 0 || *e == '\n')) {
1872 atomic_set(&rdev->corrected_errors, n);
1873 return len;
1875 return -EINVAL;
1877 static struct rdev_sysfs_entry rdev_errors =
1878 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1880 static ssize_t
1881 slot_show(mdk_rdev_t *rdev, char *page)
1883 if (rdev->raid_disk < 0)
1884 return sprintf(page, "none\n");
1885 else
1886 return sprintf(page, "%d\n", rdev->raid_disk);
1889 static ssize_t
1890 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1892 char *e;
1893 int slot = simple_strtoul(buf, &e, 10);
1894 if (strncmp(buf, "none", 4)==0)
1895 slot = -1;
1896 else if (e==buf || (*e && *e!= '\n'))
1897 return -EINVAL;
1898 if (rdev->mddev->pers)
1899 /* Cannot set slot in active array (yet) */
1900 return -EBUSY;
1901 if (slot >= rdev->mddev->raid_disks)
1902 return -ENOSPC;
1903 rdev->raid_disk = slot;
1904 /* assume it is working */
1905 rdev->flags = 0;
1906 set_bit(In_sync, &rdev->flags);
1907 return len;
1911 static struct rdev_sysfs_entry rdev_slot =
1912 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1914 static ssize_t
1915 offset_show(mdk_rdev_t *rdev, char *page)
1917 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1920 static ssize_t
1921 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1923 char *e;
1924 unsigned long long offset = simple_strtoull(buf, &e, 10);
1925 if (e==buf || (*e && *e != '\n'))
1926 return -EINVAL;
1927 if (rdev->mddev->pers)
1928 return -EBUSY;
1929 rdev->data_offset = offset;
1930 return len;
1933 static struct rdev_sysfs_entry rdev_offset =
1934 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1936 static ssize_t
1937 rdev_size_show(mdk_rdev_t *rdev, char *page)
1939 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1942 static ssize_t
1943 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1945 char *e;
1946 unsigned long long size = simple_strtoull(buf, &e, 10);
1947 if (e==buf || (*e && *e != '\n'))
1948 return -EINVAL;
1949 if (rdev->mddev->pers)
1950 return -EBUSY;
1951 rdev->size = size;
1952 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1953 rdev->mddev->size = size;
1954 return len;
1957 static struct rdev_sysfs_entry rdev_size =
1958 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1960 static struct attribute *rdev_default_attrs[] = {
1961 &rdev_state.attr,
1962 &rdev_super.attr,
1963 &rdev_errors.attr,
1964 &rdev_slot.attr,
1965 &rdev_offset.attr,
1966 &rdev_size.attr,
1967 NULL,
1969 static ssize_t
1970 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1972 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1973 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1975 if (!entry->show)
1976 return -EIO;
1977 return entry->show(rdev, page);
1980 static ssize_t
1981 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1982 const char *page, size_t length)
1984 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1985 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1987 if (!entry->store)
1988 return -EIO;
1989 if (!capable(CAP_SYS_ADMIN))
1990 return -EACCES;
1991 return entry->store(rdev, page, length);
1994 static void rdev_free(struct kobject *ko)
1996 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1997 kfree(rdev);
1999 static struct sysfs_ops rdev_sysfs_ops = {
2000 .show = rdev_attr_show,
2001 .store = rdev_attr_store,
2003 static struct kobj_type rdev_ktype = {
2004 .release = rdev_free,
2005 .sysfs_ops = &rdev_sysfs_ops,
2006 .default_attrs = rdev_default_attrs,
2010 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2012 * mark the device faulty if:
2014 * - the device is nonexistent (zero size)
2015 * - the device has no valid superblock
2017 * a faulty rdev _never_ has rdev->sb set.
2019 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2021 char b[BDEVNAME_SIZE];
2022 int err;
2023 mdk_rdev_t *rdev;
2024 sector_t size;
2026 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2027 if (!rdev) {
2028 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2029 return ERR_PTR(-ENOMEM);
2032 if ((err = alloc_disk_sb(rdev)))
2033 goto abort_free;
2035 err = lock_rdev(rdev, newdev);
2036 if (err)
2037 goto abort_free;
2039 rdev->kobj.parent = NULL;
2040 rdev->kobj.ktype = &rdev_ktype;
2041 kobject_init(&rdev->kobj);
2043 rdev->desc_nr = -1;
2044 rdev->saved_raid_disk = -1;
2045 rdev->raid_disk = -1;
2046 rdev->flags = 0;
2047 rdev->data_offset = 0;
2048 rdev->sb_events = 0;
2049 atomic_set(&rdev->nr_pending, 0);
2050 atomic_set(&rdev->read_errors, 0);
2051 atomic_set(&rdev->corrected_errors, 0);
2053 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2054 if (!size) {
2055 printk(KERN_WARNING
2056 "md: %s has zero or unknown size, marking faulty!\n",
2057 bdevname(rdev->bdev,b));
2058 err = -EINVAL;
2059 goto abort_free;
2062 if (super_format >= 0) {
2063 err = super_types[super_format].
2064 load_super(rdev, NULL, super_minor);
2065 if (err == -EINVAL) {
2066 printk(KERN_WARNING
2067 "md: %s does not have a valid v%d.%d "
2068 "superblock, not importing!\n",
2069 bdevname(rdev->bdev,b),
2070 super_format, super_minor);
2071 goto abort_free;
2073 if (err < 0) {
2074 printk(KERN_WARNING
2075 "md: could not read %s's sb, not importing!\n",
2076 bdevname(rdev->bdev,b));
2077 goto abort_free;
2080 INIT_LIST_HEAD(&rdev->same_set);
2082 return rdev;
2084 abort_free:
2085 if (rdev->sb_page) {
2086 if (rdev->bdev)
2087 unlock_rdev(rdev);
2088 free_disk_sb(rdev);
2090 kfree(rdev);
2091 return ERR_PTR(err);
2095 * Check a full RAID array for plausibility
2099 static void analyze_sbs(mddev_t * mddev)
2101 int i;
2102 struct list_head *tmp;
2103 mdk_rdev_t *rdev, *freshest;
2104 char b[BDEVNAME_SIZE];
2106 freshest = NULL;
2107 ITERATE_RDEV(mddev,rdev,tmp)
2108 switch (super_types[mddev->major_version].
2109 load_super(rdev, freshest, mddev->minor_version)) {
2110 case 1:
2111 freshest = rdev;
2112 break;
2113 case 0:
2114 break;
2115 default:
2116 printk( KERN_ERR \
2117 "md: fatal superblock inconsistency in %s"
2118 " -- removing from array\n",
2119 bdevname(rdev->bdev,b));
2120 kick_rdev_from_array(rdev);
2124 super_types[mddev->major_version].
2125 validate_super(mddev, freshest);
2127 i = 0;
2128 ITERATE_RDEV(mddev,rdev,tmp) {
2129 if (rdev != freshest)
2130 if (super_types[mddev->major_version].
2131 validate_super(mddev, rdev)) {
2132 printk(KERN_WARNING "md: kicking non-fresh %s"
2133 " from array!\n",
2134 bdevname(rdev->bdev,b));
2135 kick_rdev_from_array(rdev);
2136 continue;
2138 if (mddev->level == LEVEL_MULTIPATH) {
2139 rdev->desc_nr = i++;
2140 rdev->raid_disk = rdev->desc_nr;
2141 set_bit(In_sync, &rdev->flags);
2142 } else if (rdev->raid_disk >= mddev->raid_disks) {
2143 rdev->raid_disk = -1;
2144 clear_bit(In_sync, &rdev->flags);
2150 if (mddev->recovery_cp != MaxSector &&
2151 mddev->level >= 1)
2152 printk(KERN_ERR "md: %s: raid array is not clean"
2153 " -- starting background reconstruction\n",
2154 mdname(mddev));
2158 static ssize_t
2159 safe_delay_show(mddev_t *mddev, char *page)
2161 int msec = (mddev->safemode_delay*1000)/HZ;
2162 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2164 static ssize_t
2165 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2167 int scale=1;
2168 int dot=0;
2169 int i;
2170 unsigned long msec;
2171 char buf[30];
2172 char *e;
2173 /* remove a period, and count digits after it */
2174 if (len >= sizeof(buf))
2175 return -EINVAL;
2176 strlcpy(buf, cbuf, len);
2177 buf[len] = 0;
2178 for (i=0; i<len; i++) {
2179 if (dot) {
2180 if (isdigit(buf[i])) {
2181 buf[i-1] = buf[i];
2182 scale *= 10;
2184 buf[i] = 0;
2185 } else if (buf[i] == '.') {
2186 dot=1;
2187 buf[i] = 0;
2190 msec = simple_strtoul(buf, &e, 10);
2191 if (e == buf || (*e && *e != '\n'))
2192 return -EINVAL;
2193 msec = (msec * 1000) / scale;
2194 if (msec == 0)
2195 mddev->safemode_delay = 0;
2196 else {
2197 mddev->safemode_delay = (msec*HZ)/1000;
2198 if (mddev->safemode_delay == 0)
2199 mddev->safemode_delay = 1;
2201 return len;
2203 static struct md_sysfs_entry md_safe_delay =
2204 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2206 static ssize_t
2207 level_show(mddev_t *mddev, char *page)
2209 struct mdk_personality *p = mddev->pers;
2210 if (p)
2211 return sprintf(page, "%s\n", p->name);
2212 else if (mddev->clevel[0])
2213 return sprintf(page, "%s\n", mddev->clevel);
2214 else if (mddev->level != LEVEL_NONE)
2215 return sprintf(page, "%d\n", mddev->level);
2216 else
2217 return 0;
2220 static ssize_t
2221 level_store(mddev_t *mddev, const char *buf, size_t len)
2223 int rv = len;
2224 if (mddev->pers)
2225 return -EBUSY;
2226 if (len == 0)
2227 return 0;
2228 if (len >= sizeof(mddev->clevel))
2229 return -ENOSPC;
2230 strncpy(mddev->clevel, buf, len);
2231 if (mddev->clevel[len-1] == '\n')
2232 len--;
2233 mddev->clevel[len] = 0;
2234 mddev->level = LEVEL_NONE;
2235 return rv;
2238 static struct md_sysfs_entry md_level =
2239 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2242 static ssize_t
2243 layout_show(mddev_t *mddev, char *page)
2245 /* just a number, not meaningful for all levels */
2246 if (mddev->reshape_position != MaxSector &&
2247 mddev->layout != mddev->new_layout)
2248 return sprintf(page, "%d (%d)\n",
2249 mddev->new_layout, mddev->layout);
2250 return sprintf(page, "%d\n", mddev->layout);
2253 static ssize_t
2254 layout_store(mddev_t *mddev, const char *buf, size_t len)
2256 char *e;
2257 unsigned long n = simple_strtoul(buf, &e, 10);
2259 if (!*buf || (*e && *e != '\n'))
2260 return -EINVAL;
2262 if (mddev->pers)
2263 return -EBUSY;
2264 if (mddev->reshape_position != MaxSector)
2265 mddev->new_layout = n;
2266 else
2267 mddev->layout = n;
2268 return len;
2270 static struct md_sysfs_entry md_layout =
2271 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2274 static ssize_t
2275 raid_disks_show(mddev_t *mddev, char *page)
2277 if (mddev->raid_disks == 0)
2278 return 0;
2279 if (mddev->reshape_position != MaxSector &&
2280 mddev->delta_disks != 0)
2281 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2282 mddev->raid_disks - mddev->delta_disks);
2283 return sprintf(page, "%d\n", mddev->raid_disks);
2286 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2288 static ssize_t
2289 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2291 char *e;
2292 int rv = 0;
2293 unsigned long n = simple_strtoul(buf, &e, 10);
2295 if (!*buf || (*e && *e != '\n'))
2296 return -EINVAL;
2298 if (mddev->pers)
2299 rv = update_raid_disks(mddev, n);
2300 else if (mddev->reshape_position != MaxSector) {
2301 int olddisks = mddev->raid_disks - mddev->delta_disks;
2302 mddev->delta_disks = n - olddisks;
2303 mddev->raid_disks = n;
2304 } else
2305 mddev->raid_disks = n;
2306 return rv ? rv : len;
2308 static struct md_sysfs_entry md_raid_disks =
2309 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2311 static ssize_t
2312 chunk_size_show(mddev_t *mddev, char *page)
2314 if (mddev->reshape_position != MaxSector &&
2315 mddev->chunk_size != mddev->new_chunk)
2316 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2317 mddev->chunk_size);
2318 return sprintf(page, "%d\n", mddev->chunk_size);
2321 static ssize_t
2322 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2324 /* can only set chunk_size if array is not yet active */
2325 char *e;
2326 unsigned long n = simple_strtoul(buf, &e, 10);
2328 if (!*buf || (*e && *e != '\n'))
2329 return -EINVAL;
2331 if (mddev->pers)
2332 return -EBUSY;
2333 else if (mddev->reshape_position != MaxSector)
2334 mddev->new_chunk = n;
2335 else
2336 mddev->chunk_size = n;
2337 return len;
2339 static struct md_sysfs_entry md_chunk_size =
2340 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2342 static ssize_t
2343 resync_start_show(mddev_t *mddev, char *page)
2345 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2348 static ssize_t
2349 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2351 /* can only set chunk_size if array is not yet active */
2352 char *e;
2353 unsigned long long n = simple_strtoull(buf, &e, 10);
2355 if (mddev->pers)
2356 return -EBUSY;
2357 if (!*buf || (*e && *e != '\n'))
2358 return -EINVAL;
2360 mddev->recovery_cp = n;
2361 return len;
2363 static struct md_sysfs_entry md_resync_start =
2364 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2367 * The array state can be:
2369 * clear
2370 * No devices, no size, no level
2371 * Equivalent to STOP_ARRAY ioctl
2372 * inactive
2373 * May have some settings, but array is not active
2374 * all IO results in error
2375 * When written, doesn't tear down array, but just stops it
2376 * suspended (not supported yet)
2377 * All IO requests will block. The array can be reconfigured.
2378 * Writing this, if accepted, will block until array is quiessent
2379 * readonly
2380 * no resync can happen. no superblocks get written.
2381 * write requests fail
2382 * read-auto
2383 * like readonly, but behaves like 'clean' on a write request.
2385 * clean - no pending writes, but otherwise active.
2386 * When written to inactive array, starts without resync
2387 * If a write request arrives then
2388 * if metadata is known, mark 'dirty' and switch to 'active'.
2389 * if not known, block and switch to write-pending
2390 * If written to an active array that has pending writes, then fails.
2391 * active
2392 * fully active: IO and resync can be happening.
2393 * When written to inactive array, starts with resync
2395 * write-pending
2396 * clean, but writes are blocked waiting for 'active' to be written.
2398 * active-idle
2399 * like active, but no writes have been seen for a while (100msec).
2402 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2403 write_pending, active_idle, bad_word};
2404 static char *array_states[] = {
2405 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2406 "write-pending", "active-idle", NULL };
2408 static int match_word(const char *word, char **list)
2410 int n;
2411 for (n=0; list[n]; n++)
2412 if (cmd_match(word, list[n]))
2413 break;
2414 return n;
2417 static ssize_t
2418 array_state_show(mddev_t *mddev, char *page)
2420 enum array_state st = inactive;
2422 if (mddev->pers)
2423 switch(mddev->ro) {
2424 case 1:
2425 st = readonly;
2426 break;
2427 case 2:
2428 st = read_auto;
2429 break;
2430 case 0:
2431 if (mddev->in_sync)
2432 st = clean;
2433 else if (mddev->safemode)
2434 st = active_idle;
2435 else
2436 st = active;
2438 else {
2439 if (list_empty(&mddev->disks) &&
2440 mddev->raid_disks == 0 &&
2441 mddev->size == 0)
2442 st = clear;
2443 else
2444 st = inactive;
2446 return sprintf(page, "%s\n", array_states[st]);
2449 static int do_md_stop(mddev_t * mddev, int ro);
2450 static int do_md_run(mddev_t * mddev);
2451 static int restart_array(mddev_t *mddev);
2453 static ssize_t
2454 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2456 int err = -EINVAL;
2457 enum array_state st = match_word(buf, array_states);
2458 switch(st) {
2459 case bad_word:
2460 break;
2461 case clear:
2462 /* stopping an active array */
2463 if (mddev->pers) {
2464 if (atomic_read(&mddev->active) > 1)
2465 return -EBUSY;
2466 err = do_md_stop(mddev, 0);
2468 break;
2469 case inactive:
2470 /* stopping an active array */
2471 if (mddev->pers) {
2472 if (atomic_read(&mddev->active) > 1)
2473 return -EBUSY;
2474 err = do_md_stop(mddev, 2);
2476 break;
2477 case suspended:
2478 break; /* not supported yet */
2479 case readonly:
2480 if (mddev->pers)
2481 err = do_md_stop(mddev, 1);
2482 else {
2483 mddev->ro = 1;
2484 err = do_md_run(mddev);
2486 break;
2487 case read_auto:
2488 /* stopping an active array */
2489 if (mddev->pers) {
2490 err = do_md_stop(mddev, 1);
2491 if (err == 0)
2492 mddev->ro = 2; /* FIXME mark devices writable */
2493 } else {
2494 mddev->ro = 2;
2495 err = do_md_run(mddev);
2497 break;
2498 case clean:
2499 if (mddev->pers) {
2500 restart_array(mddev);
2501 spin_lock_irq(&mddev->write_lock);
2502 if (atomic_read(&mddev->writes_pending) == 0) {
2503 mddev->in_sync = 1;
2504 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2506 spin_unlock_irq(&mddev->write_lock);
2507 } else {
2508 mddev->ro = 0;
2509 mddev->recovery_cp = MaxSector;
2510 err = do_md_run(mddev);
2512 break;
2513 case active:
2514 if (mddev->pers) {
2515 restart_array(mddev);
2516 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2517 wake_up(&mddev->sb_wait);
2518 err = 0;
2519 } else {
2520 mddev->ro = 0;
2521 err = do_md_run(mddev);
2523 break;
2524 case write_pending:
2525 case active_idle:
2526 /* these cannot be set */
2527 break;
2529 if (err)
2530 return err;
2531 else
2532 return len;
2534 static struct md_sysfs_entry md_array_state =
2535 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2537 static ssize_t
2538 null_show(mddev_t *mddev, char *page)
2540 return -EINVAL;
2543 static ssize_t
2544 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2546 /* buf must be %d:%d\n? giving major and minor numbers */
2547 /* The new device is added to the array.
2548 * If the array has a persistent superblock, we read the
2549 * superblock to initialise info and check validity.
2550 * Otherwise, only checking done is that in bind_rdev_to_array,
2551 * which mainly checks size.
2553 char *e;
2554 int major = simple_strtoul(buf, &e, 10);
2555 int minor;
2556 dev_t dev;
2557 mdk_rdev_t *rdev;
2558 int err;
2560 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2561 return -EINVAL;
2562 minor = simple_strtoul(e+1, &e, 10);
2563 if (*e && *e != '\n')
2564 return -EINVAL;
2565 dev = MKDEV(major, minor);
2566 if (major != MAJOR(dev) ||
2567 minor != MINOR(dev))
2568 return -EOVERFLOW;
2571 if (mddev->persistent) {
2572 rdev = md_import_device(dev, mddev->major_version,
2573 mddev->minor_version);
2574 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2575 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2576 mdk_rdev_t, same_set);
2577 err = super_types[mddev->major_version]
2578 .load_super(rdev, rdev0, mddev->minor_version);
2579 if (err < 0)
2580 goto out;
2582 } else
2583 rdev = md_import_device(dev, -1, -1);
2585 if (IS_ERR(rdev))
2586 return PTR_ERR(rdev);
2587 err = bind_rdev_to_array(rdev, mddev);
2588 out:
2589 if (err)
2590 export_rdev(rdev);
2591 return err ? err : len;
2594 static struct md_sysfs_entry md_new_device =
2595 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2597 static ssize_t
2598 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2600 char *end;
2601 unsigned long chunk, end_chunk;
2603 if (!mddev->bitmap)
2604 goto out;
2605 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2606 while (*buf) {
2607 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2608 if (buf == end) break;
2609 if (*end == '-') { /* range */
2610 buf = end + 1;
2611 end_chunk = simple_strtoul(buf, &end, 0);
2612 if (buf == end) break;
2614 if (*end && !isspace(*end)) break;
2615 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2616 buf = end;
2617 while (isspace(*buf)) buf++;
2619 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2620 out:
2621 return len;
2624 static struct md_sysfs_entry md_bitmap =
2625 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2627 static ssize_t
2628 size_show(mddev_t *mddev, char *page)
2630 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2633 static int update_size(mddev_t *mddev, unsigned long size);
2635 static ssize_t
2636 size_store(mddev_t *mddev, const char *buf, size_t len)
2638 /* If array is inactive, we can reduce the component size, but
2639 * not increase it (except from 0).
2640 * If array is active, we can try an on-line resize
2642 char *e;
2643 int err = 0;
2644 unsigned long long size = simple_strtoull(buf, &e, 10);
2645 if (!*buf || *buf == '\n' ||
2646 (*e && *e != '\n'))
2647 return -EINVAL;
2649 if (mddev->pers) {
2650 err = update_size(mddev, size);
2651 md_update_sb(mddev, 1);
2652 } else {
2653 if (mddev->size == 0 ||
2654 mddev->size > size)
2655 mddev->size = size;
2656 else
2657 err = -ENOSPC;
2659 return err ? err : len;
2662 static struct md_sysfs_entry md_size =
2663 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2666 /* Metdata version.
2667 * This is either 'none' for arrays with externally managed metadata,
2668 * or N.M for internally known formats
2670 static ssize_t
2671 metadata_show(mddev_t *mddev, char *page)
2673 if (mddev->persistent)
2674 return sprintf(page, "%d.%d\n",
2675 mddev->major_version, mddev->minor_version);
2676 else
2677 return sprintf(page, "none\n");
2680 static ssize_t
2681 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2683 int major, minor;
2684 char *e;
2685 if (!list_empty(&mddev->disks))
2686 return -EBUSY;
2688 if (cmd_match(buf, "none")) {
2689 mddev->persistent = 0;
2690 mddev->major_version = 0;
2691 mddev->minor_version = 90;
2692 return len;
2694 major = simple_strtoul(buf, &e, 10);
2695 if (e==buf || *e != '.')
2696 return -EINVAL;
2697 buf = e+1;
2698 minor = simple_strtoul(buf, &e, 10);
2699 if (e==buf || (*e && *e != '\n') )
2700 return -EINVAL;
2701 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2702 return -ENOENT;
2703 mddev->major_version = major;
2704 mddev->minor_version = minor;
2705 mddev->persistent = 1;
2706 return len;
2709 static struct md_sysfs_entry md_metadata =
2710 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2712 static ssize_t
2713 action_show(mddev_t *mddev, char *page)
2715 char *type = "idle";
2716 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2717 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2718 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2719 type = "reshape";
2720 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2721 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2722 type = "resync";
2723 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2724 type = "check";
2725 else
2726 type = "repair";
2727 } else
2728 type = "recover";
2730 return sprintf(page, "%s\n", type);
2733 static ssize_t
2734 action_store(mddev_t *mddev, const char *page, size_t len)
2736 if (!mddev->pers || !mddev->pers->sync_request)
2737 return -EINVAL;
2739 if (cmd_match(page, "idle")) {
2740 if (mddev->sync_thread) {
2741 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2742 md_unregister_thread(mddev->sync_thread);
2743 mddev->sync_thread = NULL;
2744 mddev->recovery = 0;
2746 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2747 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2748 return -EBUSY;
2749 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2750 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2751 else if (cmd_match(page, "reshape")) {
2752 int err;
2753 if (mddev->pers->start_reshape == NULL)
2754 return -EINVAL;
2755 err = mddev->pers->start_reshape(mddev);
2756 if (err)
2757 return err;
2758 } else {
2759 if (cmd_match(page, "check"))
2760 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2761 else if (!cmd_match(page, "repair"))
2762 return -EINVAL;
2763 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2764 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2766 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2767 md_wakeup_thread(mddev->thread);
2768 return len;
2771 static ssize_t
2772 mismatch_cnt_show(mddev_t *mddev, char *page)
2774 return sprintf(page, "%llu\n",
2775 (unsigned long long) mddev->resync_mismatches);
2778 static struct md_sysfs_entry md_scan_mode =
2779 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2782 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2784 static ssize_t
2785 sync_min_show(mddev_t *mddev, char *page)
2787 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2788 mddev->sync_speed_min ? "local": "system");
2791 static ssize_t
2792 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2794 int min;
2795 char *e;
2796 if (strncmp(buf, "system", 6)==0) {
2797 mddev->sync_speed_min = 0;
2798 return len;
2800 min = simple_strtoul(buf, &e, 10);
2801 if (buf == e || (*e && *e != '\n') || min <= 0)
2802 return -EINVAL;
2803 mddev->sync_speed_min = min;
2804 return len;
2807 static struct md_sysfs_entry md_sync_min =
2808 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2810 static ssize_t
2811 sync_max_show(mddev_t *mddev, char *page)
2813 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2814 mddev->sync_speed_max ? "local": "system");
2817 static ssize_t
2818 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2820 int max;
2821 char *e;
2822 if (strncmp(buf, "system", 6)==0) {
2823 mddev->sync_speed_max = 0;
2824 return len;
2826 max = simple_strtoul(buf, &e, 10);
2827 if (buf == e || (*e && *e != '\n') || max <= 0)
2828 return -EINVAL;
2829 mddev->sync_speed_max = max;
2830 return len;
2833 static struct md_sysfs_entry md_sync_max =
2834 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2837 static ssize_t
2838 sync_speed_show(mddev_t *mddev, char *page)
2840 unsigned long resync, dt, db;
2841 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2842 dt = ((jiffies - mddev->resync_mark) / HZ);
2843 if (!dt) dt++;
2844 db = resync - (mddev->resync_mark_cnt);
2845 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2848 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2850 static ssize_t
2851 sync_completed_show(mddev_t *mddev, char *page)
2853 unsigned long max_blocks, resync;
2855 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2856 max_blocks = mddev->resync_max_sectors;
2857 else
2858 max_blocks = mddev->size << 1;
2860 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2861 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2864 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2866 static ssize_t
2867 suspend_lo_show(mddev_t *mddev, char *page)
2869 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2872 static ssize_t
2873 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2875 char *e;
2876 unsigned long long new = simple_strtoull(buf, &e, 10);
2878 if (mddev->pers->quiesce == NULL)
2879 return -EINVAL;
2880 if (buf == e || (*e && *e != '\n'))
2881 return -EINVAL;
2882 if (new >= mddev->suspend_hi ||
2883 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2884 mddev->suspend_lo = new;
2885 mddev->pers->quiesce(mddev, 2);
2886 return len;
2887 } else
2888 return -EINVAL;
2890 static struct md_sysfs_entry md_suspend_lo =
2891 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2894 static ssize_t
2895 suspend_hi_show(mddev_t *mddev, char *page)
2897 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2900 static ssize_t
2901 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2903 char *e;
2904 unsigned long long new = simple_strtoull(buf, &e, 10);
2906 if (mddev->pers->quiesce == NULL)
2907 return -EINVAL;
2908 if (buf == e || (*e && *e != '\n'))
2909 return -EINVAL;
2910 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2911 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2912 mddev->suspend_hi = new;
2913 mddev->pers->quiesce(mddev, 1);
2914 mddev->pers->quiesce(mddev, 0);
2915 return len;
2916 } else
2917 return -EINVAL;
2919 static struct md_sysfs_entry md_suspend_hi =
2920 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2922 static ssize_t
2923 reshape_position_show(mddev_t *mddev, char *page)
2925 if (mddev->reshape_position != MaxSector)
2926 return sprintf(page, "%llu\n",
2927 (unsigned long long)mddev->reshape_position);
2928 strcpy(page, "none\n");
2929 return 5;
2932 static ssize_t
2933 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
2935 char *e;
2936 unsigned long long new = simple_strtoull(buf, &e, 10);
2937 if (mddev->pers)
2938 return -EBUSY;
2939 if (buf == e || (*e && *e != '\n'))
2940 return -EINVAL;
2941 mddev->reshape_position = new;
2942 mddev->delta_disks = 0;
2943 mddev->new_level = mddev->level;
2944 mddev->new_layout = mddev->layout;
2945 mddev->new_chunk = mddev->chunk_size;
2946 return len;
2949 static struct md_sysfs_entry md_reshape_position =
2950 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
2951 reshape_position_store);
2954 static struct attribute *md_default_attrs[] = {
2955 &md_level.attr,
2956 &md_layout.attr,
2957 &md_raid_disks.attr,
2958 &md_chunk_size.attr,
2959 &md_size.attr,
2960 &md_resync_start.attr,
2961 &md_metadata.attr,
2962 &md_new_device.attr,
2963 &md_safe_delay.attr,
2964 &md_array_state.attr,
2965 &md_reshape_position.attr,
2966 NULL,
2969 static struct attribute *md_redundancy_attrs[] = {
2970 &md_scan_mode.attr,
2971 &md_mismatches.attr,
2972 &md_sync_min.attr,
2973 &md_sync_max.attr,
2974 &md_sync_speed.attr,
2975 &md_sync_completed.attr,
2976 &md_suspend_lo.attr,
2977 &md_suspend_hi.attr,
2978 &md_bitmap.attr,
2979 NULL,
2981 static struct attribute_group md_redundancy_group = {
2982 .name = NULL,
2983 .attrs = md_redundancy_attrs,
2987 static ssize_t
2988 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2990 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2991 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2992 ssize_t rv;
2994 if (!entry->show)
2995 return -EIO;
2996 rv = mddev_lock(mddev);
2997 if (!rv) {
2998 rv = entry->show(mddev, page);
2999 mddev_unlock(mddev);
3001 return rv;
3004 static ssize_t
3005 md_attr_store(struct kobject *kobj, struct attribute *attr,
3006 const char *page, size_t length)
3008 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3009 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3010 ssize_t rv;
3012 if (!entry->store)
3013 return -EIO;
3014 if (!capable(CAP_SYS_ADMIN))
3015 return -EACCES;
3016 rv = mddev_lock(mddev);
3017 if (!rv) {
3018 rv = entry->store(mddev, page, length);
3019 mddev_unlock(mddev);
3021 return rv;
3024 static void md_free(struct kobject *ko)
3026 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3027 kfree(mddev);
3030 static struct sysfs_ops md_sysfs_ops = {
3031 .show = md_attr_show,
3032 .store = md_attr_store,
3034 static struct kobj_type md_ktype = {
3035 .release = md_free,
3036 .sysfs_ops = &md_sysfs_ops,
3037 .default_attrs = md_default_attrs,
3040 int mdp_major = 0;
3042 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3044 static DEFINE_MUTEX(disks_mutex);
3045 mddev_t *mddev = mddev_find(dev);
3046 struct gendisk *disk;
3047 int partitioned = (MAJOR(dev) != MD_MAJOR);
3048 int shift = partitioned ? MdpMinorShift : 0;
3049 int unit = MINOR(dev) >> shift;
3051 if (!mddev)
3052 return NULL;
3054 mutex_lock(&disks_mutex);
3055 if (mddev->gendisk) {
3056 mutex_unlock(&disks_mutex);
3057 mddev_put(mddev);
3058 return NULL;
3060 disk = alloc_disk(1 << shift);
3061 if (!disk) {
3062 mutex_unlock(&disks_mutex);
3063 mddev_put(mddev);
3064 return NULL;
3066 disk->major = MAJOR(dev);
3067 disk->first_minor = unit << shift;
3068 if (partitioned)
3069 sprintf(disk->disk_name, "md_d%d", unit);
3070 else
3071 sprintf(disk->disk_name, "md%d", unit);
3072 disk->fops = &md_fops;
3073 disk->private_data = mddev;
3074 disk->queue = mddev->queue;
3075 add_disk(disk);
3076 mddev->gendisk = disk;
3077 mutex_unlock(&disks_mutex);
3078 mddev->kobj.parent = &disk->kobj;
3079 kobject_set_name(&mddev->kobj, "%s", "md");
3080 mddev->kobj.ktype = &md_ktype;
3081 if (kobject_register(&mddev->kobj))
3082 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3083 disk->disk_name);
3084 return NULL;
3087 static void md_safemode_timeout(unsigned long data)
3089 mddev_t *mddev = (mddev_t *) data;
3091 mddev->safemode = 1;
3092 md_wakeup_thread(mddev->thread);
3095 static int start_dirty_degraded;
3097 static int do_md_run(mddev_t * mddev)
3099 int err;
3100 int chunk_size;
3101 struct list_head *tmp;
3102 mdk_rdev_t *rdev;
3103 struct gendisk *disk;
3104 struct mdk_personality *pers;
3105 char b[BDEVNAME_SIZE];
3107 if (list_empty(&mddev->disks))
3108 /* cannot run an array with no devices.. */
3109 return -EINVAL;
3111 if (mddev->pers)
3112 return -EBUSY;
3115 * Analyze all RAID superblock(s)
3117 if (!mddev->raid_disks)
3118 analyze_sbs(mddev);
3120 chunk_size = mddev->chunk_size;
3122 if (chunk_size) {
3123 if (chunk_size > MAX_CHUNK_SIZE) {
3124 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3125 chunk_size, MAX_CHUNK_SIZE);
3126 return -EINVAL;
3129 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3131 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3132 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3133 return -EINVAL;
3135 if (chunk_size < PAGE_SIZE) {
3136 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3137 chunk_size, PAGE_SIZE);
3138 return -EINVAL;
3141 /* devices must have minimum size of one chunk */
3142 ITERATE_RDEV(mddev,rdev,tmp) {
3143 if (test_bit(Faulty, &rdev->flags))
3144 continue;
3145 if (rdev->size < chunk_size / 1024) {
3146 printk(KERN_WARNING
3147 "md: Dev %s smaller than chunk_size:"
3148 " %lluk < %dk\n",
3149 bdevname(rdev->bdev,b),
3150 (unsigned long long)rdev->size,
3151 chunk_size / 1024);
3152 return -EINVAL;
3157 #ifdef CONFIG_KMOD
3158 if (mddev->level != LEVEL_NONE)
3159 request_module("md-level-%d", mddev->level);
3160 else if (mddev->clevel[0])
3161 request_module("md-%s", mddev->clevel);
3162 #endif
3165 * Drop all container device buffers, from now on
3166 * the only valid external interface is through the md
3167 * device.
3169 ITERATE_RDEV(mddev,rdev,tmp) {
3170 if (test_bit(Faulty, &rdev->flags))
3171 continue;
3172 sync_blockdev(rdev->bdev);
3173 invalidate_bdev(rdev->bdev);
3175 /* perform some consistency tests on the device.
3176 * We don't want the data to overlap the metadata,
3177 * Internal Bitmap issues has handled elsewhere.
3179 if (rdev->data_offset < rdev->sb_offset) {
3180 if (mddev->size &&
3181 rdev->data_offset + mddev->size*2
3182 > rdev->sb_offset*2) {
3183 printk("md: %s: data overlaps metadata\n",
3184 mdname(mddev));
3185 return -EINVAL;
3187 } else {
3188 if (rdev->sb_offset*2 + rdev->sb_size/512
3189 > rdev->data_offset) {
3190 printk("md: %s: metadata overlaps data\n",
3191 mdname(mddev));
3192 return -EINVAL;
3197 md_probe(mddev->unit, NULL, NULL);
3198 disk = mddev->gendisk;
3199 if (!disk)
3200 return -ENOMEM;
3202 spin_lock(&pers_lock);
3203 pers = find_pers(mddev->level, mddev->clevel);
3204 if (!pers || !try_module_get(pers->owner)) {
3205 spin_unlock(&pers_lock);
3206 if (mddev->level != LEVEL_NONE)
3207 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3208 mddev->level);
3209 else
3210 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3211 mddev->clevel);
3212 return -EINVAL;
3214 mddev->pers = pers;
3215 spin_unlock(&pers_lock);
3216 mddev->level = pers->level;
3217 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3219 if (mddev->reshape_position != MaxSector &&
3220 pers->start_reshape == NULL) {
3221 /* This personality cannot handle reshaping... */
3222 mddev->pers = NULL;
3223 module_put(pers->owner);
3224 return -EINVAL;
3227 if (pers->sync_request) {
3228 /* Warn if this is a potentially silly
3229 * configuration.
3231 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3232 mdk_rdev_t *rdev2;
3233 struct list_head *tmp2;
3234 int warned = 0;
3235 ITERATE_RDEV(mddev, rdev, tmp) {
3236 ITERATE_RDEV(mddev, rdev2, tmp2) {
3237 if (rdev < rdev2 &&
3238 rdev->bdev->bd_contains ==
3239 rdev2->bdev->bd_contains) {
3240 printk(KERN_WARNING
3241 "%s: WARNING: %s appears to be"
3242 " on the same physical disk as"
3243 " %s.\n",
3244 mdname(mddev),
3245 bdevname(rdev->bdev,b),
3246 bdevname(rdev2->bdev,b2));
3247 warned = 1;
3251 if (warned)
3252 printk(KERN_WARNING
3253 "True protection against single-disk"
3254 " failure might be compromised.\n");
3257 mddev->recovery = 0;
3258 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3259 mddev->barriers_work = 1;
3260 mddev->ok_start_degraded = start_dirty_degraded;
3262 if (start_readonly)
3263 mddev->ro = 2; /* read-only, but switch on first write */
3265 err = mddev->pers->run(mddev);
3266 if (!err && mddev->pers->sync_request) {
3267 err = bitmap_create(mddev);
3268 if (err) {
3269 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3270 mdname(mddev), err);
3271 mddev->pers->stop(mddev);
3274 if (err) {
3275 printk(KERN_ERR "md: pers->run() failed ...\n");
3276 module_put(mddev->pers->owner);
3277 mddev->pers = NULL;
3278 bitmap_destroy(mddev);
3279 return err;
3281 if (mddev->pers->sync_request) {
3282 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3283 printk(KERN_WARNING
3284 "md: cannot register extra attributes for %s\n",
3285 mdname(mddev));
3286 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3287 mddev->ro = 0;
3289 atomic_set(&mddev->writes_pending,0);
3290 mddev->safemode = 0;
3291 mddev->safemode_timer.function = md_safemode_timeout;
3292 mddev->safemode_timer.data = (unsigned long) mddev;
3293 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3294 mddev->in_sync = 1;
3296 ITERATE_RDEV(mddev,rdev,tmp)
3297 if (rdev->raid_disk >= 0) {
3298 char nm[20];
3299 sprintf(nm, "rd%d", rdev->raid_disk);
3300 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3301 printk("md: cannot register %s for %s\n",
3302 nm, mdname(mddev));
3305 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3307 if (mddev->flags)
3308 md_update_sb(mddev, 0);
3310 set_capacity(disk, mddev->array_size<<1);
3312 /* If we call blk_queue_make_request here, it will
3313 * re-initialise max_sectors etc which may have been
3314 * refined inside -> run. So just set the bits we need to set.
3315 * Most initialisation happended when we called
3316 * blk_queue_make_request(..., md_fail_request)
3317 * earlier.
3319 mddev->queue->queuedata = mddev;
3320 mddev->queue->make_request_fn = mddev->pers->make_request;
3322 /* If there is a partially-recovered drive we need to
3323 * start recovery here. If we leave it to md_check_recovery,
3324 * it will remove the drives and not do the right thing
3326 if (mddev->degraded && !mddev->sync_thread) {
3327 struct list_head *rtmp;
3328 int spares = 0;
3329 ITERATE_RDEV(mddev,rdev,rtmp)
3330 if (rdev->raid_disk >= 0 &&
3331 !test_bit(In_sync, &rdev->flags) &&
3332 !test_bit(Faulty, &rdev->flags))
3333 /* complete an interrupted recovery */
3334 spares++;
3335 if (spares && mddev->pers->sync_request) {
3336 mddev->recovery = 0;
3337 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3338 mddev->sync_thread = md_register_thread(md_do_sync,
3339 mddev,
3340 "%s_resync");
3341 if (!mddev->sync_thread) {
3342 printk(KERN_ERR "%s: could not start resync"
3343 " thread...\n",
3344 mdname(mddev));
3345 /* leave the spares where they are, it shouldn't hurt */
3346 mddev->recovery = 0;
3350 md_wakeup_thread(mddev->thread);
3351 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3353 mddev->changed = 1;
3354 md_new_event(mddev);
3355 kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3356 return 0;
3359 static int restart_array(mddev_t *mddev)
3361 struct gendisk *disk = mddev->gendisk;
3362 int err;
3365 * Complain if it has no devices
3367 err = -ENXIO;
3368 if (list_empty(&mddev->disks))
3369 goto out;
3371 if (mddev->pers) {
3372 err = -EBUSY;
3373 if (!mddev->ro)
3374 goto out;
3376 mddev->safemode = 0;
3377 mddev->ro = 0;
3378 set_disk_ro(disk, 0);
3380 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3381 mdname(mddev));
3383 * Kick recovery or resync if necessary
3385 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3386 md_wakeup_thread(mddev->thread);
3387 md_wakeup_thread(mddev->sync_thread);
3388 err = 0;
3389 } else
3390 err = -EINVAL;
3392 out:
3393 return err;
3396 /* similar to deny_write_access, but accounts for our holding a reference
3397 * to the file ourselves */
3398 static int deny_bitmap_write_access(struct file * file)
3400 struct inode *inode = file->f_mapping->host;
3402 spin_lock(&inode->i_lock);
3403 if (atomic_read(&inode->i_writecount) > 1) {
3404 spin_unlock(&inode->i_lock);
3405 return -ETXTBSY;
3407 atomic_set(&inode->i_writecount, -1);
3408 spin_unlock(&inode->i_lock);
3410 return 0;
3413 static void restore_bitmap_write_access(struct file *file)
3415 struct inode *inode = file->f_mapping->host;
3417 spin_lock(&inode->i_lock);
3418 atomic_set(&inode->i_writecount, 1);
3419 spin_unlock(&inode->i_lock);
3422 /* mode:
3423 * 0 - completely stop and dis-assemble array
3424 * 1 - switch to readonly
3425 * 2 - stop but do not disassemble array
3427 static int do_md_stop(mddev_t * mddev, int mode)
3429 int err = 0;
3430 struct gendisk *disk = mddev->gendisk;
3432 if (mddev->pers) {
3433 if (atomic_read(&mddev->active)>2) {
3434 printk("md: %s still in use.\n",mdname(mddev));
3435 return -EBUSY;
3438 if (mddev->sync_thread) {
3439 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3440 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3441 md_unregister_thread(mddev->sync_thread);
3442 mddev->sync_thread = NULL;
3445 del_timer_sync(&mddev->safemode_timer);
3447 invalidate_partition(disk, 0);
3449 switch(mode) {
3450 case 1: /* readonly */
3451 err = -ENXIO;
3452 if (mddev->ro==1)
3453 goto out;
3454 mddev->ro = 1;
3455 break;
3456 case 0: /* disassemble */
3457 case 2: /* stop */
3458 bitmap_flush(mddev);
3459 md_super_wait(mddev);
3460 if (mddev->ro)
3461 set_disk_ro(disk, 0);
3462 blk_queue_make_request(mddev->queue, md_fail_request);
3463 mddev->pers->stop(mddev);
3464 mddev->queue->merge_bvec_fn = NULL;
3465 mddev->queue->unplug_fn = NULL;
3466 mddev->queue->issue_flush_fn = NULL;
3467 mddev->queue->backing_dev_info.congested_fn = NULL;
3468 if (mddev->pers->sync_request)
3469 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3471 module_put(mddev->pers->owner);
3472 mddev->pers = NULL;
3474 set_capacity(disk, 0);
3475 mddev->changed = 1;
3477 if (mddev->ro)
3478 mddev->ro = 0;
3480 if (!mddev->in_sync || mddev->flags) {
3481 /* mark array as shutdown cleanly */
3482 mddev->in_sync = 1;
3483 md_update_sb(mddev, 1);
3485 if (mode == 1)
3486 set_disk_ro(disk, 1);
3487 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3491 * Free resources if final stop
3493 if (mode == 0) {
3494 mdk_rdev_t *rdev;
3495 struct list_head *tmp;
3497 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3499 bitmap_destroy(mddev);
3500 if (mddev->bitmap_file) {
3501 restore_bitmap_write_access(mddev->bitmap_file);
3502 fput(mddev->bitmap_file);
3503 mddev->bitmap_file = NULL;
3505 mddev->bitmap_offset = 0;
3507 ITERATE_RDEV(mddev,rdev,tmp)
3508 if (rdev->raid_disk >= 0) {
3509 char nm[20];
3510 sprintf(nm, "rd%d", rdev->raid_disk);
3511 sysfs_remove_link(&mddev->kobj, nm);
3514 /* make sure all delayed_delete calls have finished */
3515 flush_scheduled_work();
3517 export_array(mddev);
3519 mddev->array_size = 0;
3520 mddev->size = 0;
3521 mddev->raid_disks = 0;
3522 mddev->recovery_cp = 0;
3523 mddev->reshape_position = MaxSector;
3525 } else if (mddev->pers)
3526 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3527 mdname(mddev));
3528 err = 0;
3529 md_new_event(mddev);
3530 out:
3531 return err;
3534 #ifndef MODULE
3535 static void autorun_array(mddev_t *mddev)
3537 mdk_rdev_t *rdev;
3538 struct list_head *tmp;
3539 int err;
3541 if (list_empty(&mddev->disks))
3542 return;
3544 printk(KERN_INFO "md: running: ");
3546 ITERATE_RDEV(mddev,rdev,tmp) {
3547 char b[BDEVNAME_SIZE];
3548 printk("<%s>", bdevname(rdev->bdev,b));
3550 printk("\n");
3552 err = do_md_run (mddev);
3553 if (err) {
3554 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3555 do_md_stop (mddev, 0);
3560 * lets try to run arrays based on all disks that have arrived
3561 * until now. (those are in pending_raid_disks)
3563 * the method: pick the first pending disk, collect all disks with
3564 * the same UUID, remove all from the pending list and put them into
3565 * the 'same_array' list. Then order this list based on superblock
3566 * update time (freshest comes first), kick out 'old' disks and
3567 * compare superblocks. If everything's fine then run it.
3569 * If "unit" is allocated, then bump its reference count
3571 static void autorun_devices(int part)
3573 struct list_head *tmp;
3574 mdk_rdev_t *rdev0, *rdev;
3575 mddev_t *mddev;
3576 char b[BDEVNAME_SIZE];
3578 printk(KERN_INFO "md: autorun ...\n");
3579 while (!list_empty(&pending_raid_disks)) {
3580 int unit;
3581 dev_t dev;
3582 LIST_HEAD(candidates);
3583 rdev0 = list_entry(pending_raid_disks.next,
3584 mdk_rdev_t, same_set);
3586 printk(KERN_INFO "md: considering %s ...\n",
3587 bdevname(rdev0->bdev,b));
3588 INIT_LIST_HEAD(&candidates);
3589 ITERATE_RDEV_PENDING(rdev,tmp)
3590 if (super_90_load(rdev, rdev0, 0) >= 0) {
3591 printk(KERN_INFO "md: adding %s ...\n",
3592 bdevname(rdev->bdev,b));
3593 list_move(&rdev->same_set, &candidates);
3596 * now we have a set of devices, with all of them having
3597 * mostly sane superblocks. It's time to allocate the
3598 * mddev.
3600 if (part) {
3601 dev = MKDEV(mdp_major,
3602 rdev0->preferred_minor << MdpMinorShift);
3603 unit = MINOR(dev) >> MdpMinorShift;
3604 } else {
3605 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3606 unit = MINOR(dev);
3608 if (rdev0->preferred_minor != unit) {
3609 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3610 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3611 break;
3614 md_probe(dev, NULL, NULL);
3615 mddev = mddev_find(dev);
3616 if (!mddev) {
3617 printk(KERN_ERR
3618 "md: cannot allocate memory for md drive.\n");
3619 break;
3621 if (mddev_lock(mddev))
3622 printk(KERN_WARNING "md: %s locked, cannot run\n",
3623 mdname(mddev));
3624 else if (mddev->raid_disks || mddev->major_version
3625 || !list_empty(&mddev->disks)) {
3626 printk(KERN_WARNING
3627 "md: %s already running, cannot run %s\n",
3628 mdname(mddev), bdevname(rdev0->bdev,b));
3629 mddev_unlock(mddev);
3630 } else {
3631 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3632 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3633 list_del_init(&rdev->same_set);
3634 if (bind_rdev_to_array(rdev, mddev))
3635 export_rdev(rdev);
3637 autorun_array(mddev);
3638 mddev_unlock(mddev);
3640 /* on success, candidates will be empty, on error
3641 * it won't...
3643 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3644 export_rdev(rdev);
3645 mddev_put(mddev);
3647 printk(KERN_INFO "md: ... autorun DONE.\n");
3649 #endif /* !MODULE */
3651 static int get_version(void __user * arg)
3653 mdu_version_t ver;
3655 ver.major = MD_MAJOR_VERSION;
3656 ver.minor = MD_MINOR_VERSION;
3657 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3659 if (copy_to_user(arg, &ver, sizeof(ver)))
3660 return -EFAULT;
3662 return 0;
3665 static int get_array_info(mddev_t * mddev, void __user * arg)
3667 mdu_array_info_t info;
3668 int nr,working,active,failed,spare;
3669 mdk_rdev_t *rdev;
3670 struct list_head *tmp;
3672 nr=working=active=failed=spare=0;
3673 ITERATE_RDEV(mddev,rdev,tmp) {
3674 nr++;
3675 if (test_bit(Faulty, &rdev->flags))
3676 failed++;
3677 else {
3678 working++;
3679 if (test_bit(In_sync, &rdev->flags))
3680 active++;
3681 else
3682 spare++;
3686 info.major_version = mddev->major_version;
3687 info.minor_version = mddev->minor_version;
3688 info.patch_version = MD_PATCHLEVEL_VERSION;
3689 info.ctime = mddev->ctime;
3690 info.level = mddev->level;
3691 info.size = mddev->size;
3692 if (info.size != mddev->size) /* overflow */
3693 info.size = -1;
3694 info.nr_disks = nr;
3695 info.raid_disks = mddev->raid_disks;
3696 info.md_minor = mddev->md_minor;
3697 info.not_persistent= !mddev->persistent;
3699 info.utime = mddev->utime;
3700 info.state = 0;
3701 if (mddev->in_sync)
3702 info.state = (1<<MD_SB_CLEAN);
3703 if (mddev->bitmap && mddev->bitmap_offset)
3704 info.state = (1<<MD_SB_BITMAP_PRESENT);
3705 info.active_disks = active;
3706 info.working_disks = working;
3707 info.failed_disks = failed;
3708 info.spare_disks = spare;
3710 info.layout = mddev->layout;
3711 info.chunk_size = mddev->chunk_size;
3713 if (copy_to_user(arg, &info, sizeof(info)))
3714 return -EFAULT;
3716 return 0;
3719 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3721 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3722 char *ptr, *buf = NULL;
3723 int err = -ENOMEM;
3725 md_allow_write(mddev);
3727 file = kmalloc(sizeof(*file), GFP_KERNEL);
3728 if (!file)
3729 goto out;
3731 /* bitmap disabled, zero the first byte and copy out */
3732 if (!mddev->bitmap || !mddev->bitmap->file) {
3733 file->pathname[0] = '\0';
3734 goto copy_out;
3737 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3738 if (!buf)
3739 goto out;
3741 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3742 if (!ptr)
3743 goto out;
3745 strcpy(file->pathname, ptr);
3747 copy_out:
3748 err = 0;
3749 if (copy_to_user(arg, file, sizeof(*file)))
3750 err = -EFAULT;
3751 out:
3752 kfree(buf);
3753 kfree(file);
3754 return err;
3757 static int get_disk_info(mddev_t * mddev, void __user * arg)
3759 mdu_disk_info_t info;
3760 unsigned int nr;
3761 mdk_rdev_t *rdev;
3763 if (copy_from_user(&info, arg, sizeof(info)))
3764 return -EFAULT;
3766 nr = info.number;
3768 rdev = find_rdev_nr(mddev, nr);
3769 if (rdev) {
3770 info.major = MAJOR(rdev->bdev->bd_dev);
3771 info.minor = MINOR(rdev->bdev->bd_dev);
3772 info.raid_disk = rdev->raid_disk;
3773 info.state = 0;
3774 if (test_bit(Faulty, &rdev->flags))
3775 info.state |= (1<<MD_DISK_FAULTY);
3776 else if (test_bit(In_sync, &rdev->flags)) {
3777 info.state |= (1<<MD_DISK_ACTIVE);
3778 info.state |= (1<<MD_DISK_SYNC);
3780 if (test_bit(WriteMostly, &rdev->flags))
3781 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3782 } else {
3783 info.major = info.minor = 0;
3784 info.raid_disk = -1;
3785 info.state = (1<<MD_DISK_REMOVED);
3788 if (copy_to_user(arg, &info, sizeof(info)))
3789 return -EFAULT;
3791 return 0;
3794 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3796 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3797 mdk_rdev_t *rdev;
3798 dev_t dev = MKDEV(info->major,info->minor);
3800 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3801 return -EOVERFLOW;
3803 if (!mddev->raid_disks) {
3804 int err;
3805 /* expecting a device which has a superblock */
3806 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3807 if (IS_ERR(rdev)) {
3808 printk(KERN_WARNING
3809 "md: md_import_device returned %ld\n",
3810 PTR_ERR(rdev));
3811 return PTR_ERR(rdev);
3813 if (!list_empty(&mddev->disks)) {
3814 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3815 mdk_rdev_t, same_set);
3816 int err = super_types[mddev->major_version]
3817 .load_super(rdev, rdev0, mddev->minor_version);
3818 if (err < 0) {
3819 printk(KERN_WARNING
3820 "md: %s has different UUID to %s\n",
3821 bdevname(rdev->bdev,b),
3822 bdevname(rdev0->bdev,b2));
3823 export_rdev(rdev);
3824 return -EINVAL;
3827 err = bind_rdev_to_array(rdev, mddev);
3828 if (err)
3829 export_rdev(rdev);
3830 return err;
3834 * add_new_disk can be used once the array is assembled
3835 * to add "hot spares". They must already have a superblock
3836 * written
3838 if (mddev->pers) {
3839 int err;
3840 if (!mddev->pers->hot_add_disk) {
3841 printk(KERN_WARNING
3842 "%s: personality does not support diskops!\n",
3843 mdname(mddev));
3844 return -EINVAL;
3846 if (mddev->persistent)
3847 rdev = md_import_device(dev, mddev->major_version,
3848 mddev->minor_version);
3849 else
3850 rdev = md_import_device(dev, -1, -1);
3851 if (IS_ERR(rdev)) {
3852 printk(KERN_WARNING
3853 "md: md_import_device returned %ld\n",
3854 PTR_ERR(rdev));
3855 return PTR_ERR(rdev);
3857 /* set save_raid_disk if appropriate */
3858 if (!mddev->persistent) {
3859 if (info->state & (1<<MD_DISK_SYNC) &&
3860 info->raid_disk < mddev->raid_disks)
3861 rdev->raid_disk = info->raid_disk;
3862 else
3863 rdev->raid_disk = -1;
3864 } else
3865 super_types[mddev->major_version].
3866 validate_super(mddev, rdev);
3867 rdev->saved_raid_disk = rdev->raid_disk;
3869 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3870 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3871 set_bit(WriteMostly, &rdev->flags);
3873 rdev->raid_disk = -1;
3874 err = bind_rdev_to_array(rdev, mddev);
3875 if (!err && !mddev->pers->hot_remove_disk) {
3876 /* If there is hot_add_disk but no hot_remove_disk
3877 * then added disks for geometry changes,
3878 * and should be added immediately.
3880 super_types[mddev->major_version].
3881 validate_super(mddev, rdev);
3882 err = mddev->pers->hot_add_disk(mddev, rdev);
3883 if (err)
3884 unbind_rdev_from_array(rdev);
3886 if (err)
3887 export_rdev(rdev);
3889 md_update_sb(mddev, 1);
3890 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3891 md_wakeup_thread(mddev->thread);
3892 return err;
3895 /* otherwise, add_new_disk is only allowed
3896 * for major_version==0 superblocks
3898 if (mddev->major_version != 0) {
3899 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3900 mdname(mddev));
3901 return -EINVAL;
3904 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3905 int err;
3906 rdev = md_import_device (dev, -1, 0);
3907 if (IS_ERR(rdev)) {
3908 printk(KERN_WARNING
3909 "md: error, md_import_device() returned %ld\n",
3910 PTR_ERR(rdev));
3911 return PTR_ERR(rdev);
3913 rdev->desc_nr = info->number;
3914 if (info->raid_disk < mddev->raid_disks)
3915 rdev->raid_disk = info->raid_disk;
3916 else
3917 rdev->raid_disk = -1;
3919 rdev->flags = 0;
3921 if (rdev->raid_disk < mddev->raid_disks)
3922 if (info->state & (1<<MD_DISK_SYNC))
3923 set_bit(In_sync, &rdev->flags);
3925 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3926 set_bit(WriteMostly, &rdev->flags);
3928 if (!mddev->persistent) {
3929 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3930 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3931 } else
3932 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3933 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3935 err = bind_rdev_to_array(rdev, mddev);
3936 if (err) {
3937 export_rdev(rdev);
3938 return err;
3942 return 0;
3945 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3947 char b[BDEVNAME_SIZE];
3948 mdk_rdev_t *rdev;
3950 if (!mddev->pers)
3951 return -ENODEV;
3953 rdev = find_rdev(mddev, dev);
3954 if (!rdev)
3955 return -ENXIO;
3957 if (rdev->raid_disk >= 0)
3958 goto busy;
3960 kick_rdev_from_array(rdev);
3961 md_update_sb(mddev, 1);
3962 md_new_event(mddev);
3964 return 0;
3965 busy:
3966 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3967 bdevname(rdev->bdev,b), mdname(mddev));
3968 return -EBUSY;
3971 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3973 char b[BDEVNAME_SIZE];
3974 int err;
3975 unsigned int size;
3976 mdk_rdev_t *rdev;
3978 if (!mddev->pers)
3979 return -ENODEV;
3981 if (mddev->major_version != 0) {
3982 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3983 " version-0 superblocks.\n",
3984 mdname(mddev));
3985 return -EINVAL;
3987 if (!mddev->pers->hot_add_disk) {
3988 printk(KERN_WARNING
3989 "%s: personality does not support diskops!\n",
3990 mdname(mddev));
3991 return -EINVAL;
3994 rdev = md_import_device (dev, -1, 0);
3995 if (IS_ERR(rdev)) {
3996 printk(KERN_WARNING
3997 "md: error, md_import_device() returned %ld\n",
3998 PTR_ERR(rdev));
3999 return -EINVAL;
4002 if (mddev->persistent)
4003 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4004 else
4005 rdev->sb_offset =
4006 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4008 size = calc_dev_size(rdev, mddev->chunk_size);
4009 rdev->size = size;
4011 if (test_bit(Faulty, &rdev->flags)) {
4012 printk(KERN_WARNING
4013 "md: can not hot-add faulty %s disk to %s!\n",
4014 bdevname(rdev->bdev,b), mdname(mddev));
4015 err = -EINVAL;
4016 goto abort_export;
4018 clear_bit(In_sync, &rdev->flags);
4019 rdev->desc_nr = -1;
4020 rdev->saved_raid_disk = -1;
4021 err = bind_rdev_to_array(rdev, mddev);
4022 if (err)
4023 goto abort_export;
4026 * The rest should better be atomic, we can have disk failures
4027 * noticed in interrupt contexts ...
4030 if (rdev->desc_nr == mddev->max_disks) {
4031 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4032 mdname(mddev));
4033 err = -EBUSY;
4034 goto abort_unbind_export;
4037 rdev->raid_disk = -1;
4039 md_update_sb(mddev, 1);
4042 * Kick recovery, maybe this spare has to be added to the
4043 * array immediately.
4045 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4046 md_wakeup_thread(mddev->thread);
4047 md_new_event(mddev);
4048 return 0;
4050 abort_unbind_export:
4051 unbind_rdev_from_array(rdev);
4053 abort_export:
4054 export_rdev(rdev);
4055 return err;
4058 static int set_bitmap_file(mddev_t *mddev, int fd)
4060 int err;
4062 if (mddev->pers) {
4063 if (!mddev->pers->quiesce)
4064 return -EBUSY;
4065 if (mddev->recovery || mddev->sync_thread)
4066 return -EBUSY;
4067 /* we should be able to change the bitmap.. */
4071 if (fd >= 0) {
4072 if (mddev->bitmap)
4073 return -EEXIST; /* cannot add when bitmap is present */
4074 mddev->bitmap_file = fget(fd);
4076 if (mddev->bitmap_file == NULL) {
4077 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4078 mdname(mddev));
4079 return -EBADF;
4082 err = deny_bitmap_write_access(mddev->bitmap_file);
4083 if (err) {
4084 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4085 mdname(mddev));
4086 fput(mddev->bitmap_file);
4087 mddev->bitmap_file = NULL;
4088 return err;
4090 mddev->bitmap_offset = 0; /* file overrides offset */
4091 } else if (mddev->bitmap == NULL)
4092 return -ENOENT; /* cannot remove what isn't there */
4093 err = 0;
4094 if (mddev->pers) {
4095 mddev->pers->quiesce(mddev, 1);
4096 if (fd >= 0)
4097 err = bitmap_create(mddev);
4098 if (fd < 0 || err) {
4099 bitmap_destroy(mddev);
4100 fd = -1; /* make sure to put the file */
4102 mddev->pers->quiesce(mddev, 0);
4104 if (fd < 0) {
4105 if (mddev->bitmap_file) {
4106 restore_bitmap_write_access(mddev->bitmap_file);
4107 fput(mddev->bitmap_file);
4109 mddev->bitmap_file = NULL;
4112 return err;
4116 * set_array_info is used two different ways
4117 * The original usage is when creating a new array.
4118 * In this usage, raid_disks is > 0 and it together with
4119 * level, size, not_persistent,layout,chunksize determine the
4120 * shape of the array.
4121 * This will always create an array with a type-0.90.0 superblock.
4122 * The newer usage is when assembling an array.
4123 * In this case raid_disks will be 0, and the major_version field is
4124 * use to determine which style super-blocks are to be found on the devices.
4125 * The minor and patch _version numbers are also kept incase the
4126 * super_block handler wishes to interpret them.
4128 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4131 if (info->raid_disks == 0) {
4132 /* just setting version number for superblock loading */
4133 if (info->major_version < 0 ||
4134 info->major_version >= ARRAY_SIZE(super_types) ||
4135 super_types[info->major_version].name == NULL) {
4136 /* maybe try to auto-load a module? */
4137 printk(KERN_INFO
4138 "md: superblock version %d not known\n",
4139 info->major_version);
4140 return -EINVAL;
4142 mddev->major_version = info->major_version;
4143 mddev->minor_version = info->minor_version;
4144 mddev->patch_version = info->patch_version;
4145 mddev->persistent = !info->not_persistent;
4146 return 0;
4148 mddev->major_version = MD_MAJOR_VERSION;
4149 mddev->minor_version = MD_MINOR_VERSION;
4150 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4151 mddev->ctime = get_seconds();
4153 mddev->level = info->level;
4154 mddev->clevel[0] = 0;
4155 mddev->size = info->size;
4156 mddev->raid_disks = info->raid_disks;
4157 /* don't set md_minor, it is determined by which /dev/md* was
4158 * openned
4160 if (info->state & (1<<MD_SB_CLEAN))
4161 mddev->recovery_cp = MaxSector;
4162 else
4163 mddev->recovery_cp = 0;
4164 mddev->persistent = ! info->not_persistent;
4166 mddev->layout = info->layout;
4167 mddev->chunk_size = info->chunk_size;
4169 mddev->max_disks = MD_SB_DISKS;
4171 mddev->flags = 0;
4172 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4174 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4175 mddev->bitmap_offset = 0;
4177 mddev->reshape_position = MaxSector;
4180 * Generate a 128 bit UUID
4182 get_random_bytes(mddev->uuid, 16);
4184 mddev->new_level = mddev->level;
4185 mddev->new_chunk = mddev->chunk_size;
4186 mddev->new_layout = mddev->layout;
4187 mddev->delta_disks = 0;
4189 return 0;
4192 static int update_size(mddev_t *mddev, unsigned long size)
4194 mdk_rdev_t * rdev;
4195 int rv;
4196 struct list_head *tmp;
4197 int fit = (size == 0);
4199 if (mddev->pers->resize == NULL)
4200 return -EINVAL;
4201 /* The "size" is the amount of each device that is used.
4202 * This can only make sense for arrays with redundancy.
4203 * linear and raid0 always use whatever space is available
4204 * We can only consider changing the size if no resync
4205 * or reconstruction is happening, and if the new size
4206 * is acceptable. It must fit before the sb_offset or,
4207 * if that is <data_offset, it must fit before the
4208 * size of each device.
4209 * If size is zero, we find the largest size that fits.
4211 if (mddev->sync_thread)
4212 return -EBUSY;
4213 ITERATE_RDEV(mddev,rdev,tmp) {
4214 sector_t avail;
4215 avail = rdev->size * 2;
4217 if (fit && (size == 0 || size > avail/2))
4218 size = avail/2;
4219 if (avail < ((sector_t)size << 1))
4220 return -ENOSPC;
4222 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4223 if (!rv) {
4224 struct block_device *bdev;
4226 bdev = bdget_disk(mddev->gendisk, 0);
4227 if (bdev) {
4228 mutex_lock(&bdev->bd_inode->i_mutex);
4229 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4230 mutex_unlock(&bdev->bd_inode->i_mutex);
4231 bdput(bdev);
4234 return rv;
4237 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4239 int rv;
4240 /* change the number of raid disks */
4241 if (mddev->pers->check_reshape == NULL)
4242 return -EINVAL;
4243 if (raid_disks <= 0 ||
4244 raid_disks >= mddev->max_disks)
4245 return -EINVAL;
4246 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4247 return -EBUSY;
4248 mddev->delta_disks = raid_disks - mddev->raid_disks;
4250 rv = mddev->pers->check_reshape(mddev);
4251 return rv;
4256 * update_array_info is used to change the configuration of an
4257 * on-line array.
4258 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4259 * fields in the info are checked against the array.
4260 * Any differences that cannot be handled will cause an error.
4261 * Normally, only one change can be managed at a time.
4263 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4265 int rv = 0;
4266 int cnt = 0;
4267 int state = 0;
4269 /* calculate expected state,ignoring low bits */
4270 if (mddev->bitmap && mddev->bitmap_offset)
4271 state |= (1 << MD_SB_BITMAP_PRESENT);
4273 if (mddev->major_version != info->major_version ||
4274 mddev->minor_version != info->minor_version ||
4275 /* mddev->patch_version != info->patch_version || */
4276 mddev->ctime != info->ctime ||
4277 mddev->level != info->level ||
4278 /* mddev->layout != info->layout || */
4279 !mddev->persistent != info->not_persistent||
4280 mddev->chunk_size != info->chunk_size ||
4281 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4282 ((state^info->state) & 0xfffffe00)
4284 return -EINVAL;
4285 /* Check there is only one change */
4286 if (info->size >= 0 && mddev->size != info->size) cnt++;
4287 if (mddev->raid_disks != info->raid_disks) cnt++;
4288 if (mddev->layout != info->layout) cnt++;
4289 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4290 if (cnt == 0) return 0;
4291 if (cnt > 1) return -EINVAL;
4293 if (mddev->layout != info->layout) {
4294 /* Change layout
4295 * we don't need to do anything at the md level, the
4296 * personality will take care of it all.
4298 if (mddev->pers->reconfig == NULL)
4299 return -EINVAL;
4300 else
4301 return mddev->pers->reconfig(mddev, info->layout, -1);
4303 if (info->size >= 0 && mddev->size != info->size)
4304 rv = update_size(mddev, info->size);
4306 if (mddev->raid_disks != info->raid_disks)
4307 rv = update_raid_disks(mddev, info->raid_disks);
4309 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4310 if (mddev->pers->quiesce == NULL)
4311 return -EINVAL;
4312 if (mddev->recovery || mddev->sync_thread)
4313 return -EBUSY;
4314 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4315 /* add the bitmap */
4316 if (mddev->bitmap)
4317 return -EEXIST;
4318 if (mddev->default_bitmap_offset == 0)
4319 return -EINVAL;
4320 mddev->bitmap_offset = mddev->default_bitmap_offset;
4321 mddev->pers->quiesce(mddev, 1);
4322 rv = bitmap_create(mddev);
4323 if (rv)
4324 bitmap_destroy(mddev);
4325 mddev->pers->quiesce(mddev, 0);
4326 } else {
4327 /* remove the bitmap */
4328 if (!mddev->bitmap)
4329 return -ENOENT;
4330 if (mddev->bitmap->file)
4331 return -EINVAL;
4332 mddev->pers->quiesce(mddev, 1);
4333 bitmap_destroy(mddev);
4334 mddev->pers->quiesce(mddev, 0);
4335 mddev->bitmap_offset = 0;
4338 md_update_sb(mddev, 1);
4339 return rv;
4342 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4344 mdk_rdev_t *rdev;
4346 if (mddev->pers == NULL)
4347 return -ENODEV;
4349 rdev = find_rdev(mddev, dev);
4350 if (!rdev)
4351 return -ENODEV;
4353 md_error(mddev, rdev);
4354 return 0;
4357 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4359 mddev_t *mddev = bdev->bd_disk->private_data;
4361 geo->heads = 2;
4362 geo->sectors = 4;
4363 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4364 return 0;
4367 static int md_ioctl(struct inode *inode, struct file *file,
4368 unsigned int cmd, unsigned long arg)
4370 int err = 0;
4371 void __user *argp = (void __user *)arg;
4372 mddev_t *mddev = NULL;
4374 if (!capable(CAP_SYS_ADMIN))
4375 return -EACCES;
4378 * Commands dealing with the RAID driver but not any
4379 * particular array:
4381 switch (cmd)
4383 case RAID_VERSION:
4384 err = get_version(argp);
4385 goto done;
4387 case PRINT_RAID_DEBUG:
4388 err = 0;
4389 md_print_devices();
4390 goto done;
4392 #ifndef MODULE
4393 case RAID_AUTORUN:
4394 err = 0;
4395 autostart_arrays(arg);
4396 goto done;
4397 #endif
4398 default:;
4402 * Commands creating/starting a new array:
4405 mddev = inode->i_bdev->bd_disk->private_data;
4407 if (!mddev) {
4408 BUG();
4409 goto abort;
4412 err = mddev_lock(mddev);
4413 if (err) {
4414 printk(KERN_INFO
4415 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4416 err, cmd);
4417 goto abort;
4420 switch (cmd)
4422 case SET_ARRAY_INFO:
4424 mdu_array_info_t info;
4425 if (!arg)
4426 memset(&info, 0, sizeof(info));
4427 else if (copy_from_user(&info, argp, sizeof(info))) {
4428 err = -EFAULT;
4429 goto abort_unlock;
4431 if (mddev->pers) {
4432 err = update_array_info(mddev, &info);
4433 if (err) {
4434 printk(KERN_WARNING "md: couldn't update"
4435 " array info. %d\n", err);
4436 goto abort_unlock;
4438 goto done_unlock;
4440 if (!list_empty(&mddev->disks)) {
4441 printk(KERN_WARNING
4442 "md: array %s already has disks!\n",
4443 mdname(mddev));
4444 err = -EBUSY;
4445 goto abort_unlock;
4447 if (mddev->raid_disks) {
4448 printk(KERN_WARNING
4449 "md: array %s already initialised!\n",
4450 mdname(mddev));
4451 err = -EBUSY;
4452 goto abort_unlock;
4454 err = set_array_info(mddev, &info);
4455 if (err) {
4456 printk(KERN_WARNING "md: couldn't set"
4457 " array info. %d\n", err);
4458 goto abort_unlock;
4461 goto done_unlock;
4463 default:;
4467 * Commands querying/configuring an existing array:
4469 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4470 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4471 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4472 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4473 && cmd != GET_BITMAP_FILE) {
4474 err = -ENODEV;
4475 goto abort_unlock;
4479 * Commands even a read-only array can execute:
4481 switch (cmd)
4483 case GET_ARRAY_INFO:
4484 err = get_array_info(mddev, argp);
4485 goto done_unlock;
4487 case GET_BITMAP_FILE:
4488 err = get_bitmap_file(mddev, argp);
4489 goto done_unlock;
4491 case GET_DISK_INFO:
4492 err = get_disk_info(mddev, argp);
4493 goto done_unlock;
4495 case RESTART_ARRAY_RW:
4496 err = restart_array(mddev);
4497 goto done_unlock;
4499 case STOP_ARRAY:
4500 err = do_md_stop (mddev, 0);
4501 goto done_unlock;
4503 case STOP_ARRAY_RO:
4504 err = do_md_stop (mddev, 1);
4505 goto done_unlock;
4508 * We have a problem here : there is no easy way to give a CHS
4509 * virtual geometry. We currently pretend that we have a 2 heads
4510 * 4 sectors (with a BIG number of cylinders...). This drives
4511 * dosfs just mad... ;-)
4516 * The remaining ioctls are changing the state of the
4517 * superblock, so we do not allow them on read-only arrays.
4518 * However non-MD ioctls (e.g. get-size) will still come through
4519 * here and hit the 'default' below, so only disallow
4520 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4522 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4523 mddev->ro && mddev->pers) {
4524 if (mddev->ro == 2) {
4525 mddev->ro = 0;
4526 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4527 md_wakeup_thread(mddev->thread);
4529 } else {
4530 err = -EROFS;
4531 goto abort_unlock;
4535 switch (cmd)
4537 case ADD_NEW_DISK:
4539 mdu_disk_info_t info;
4540 if (copy_from_user(&info, argp, sizeof(info)))
4541 err = -EFAULT;
4542 else
4543 err = add_new_disk(mddev, &info);
4544 goto done_unlock;
4547 case HOT_REMOVE_DISK:
4548 err = hot_remove_disk(mddev, new_decode_dev(arg));
4549 goto done_unlock;
4551 case HOT_ADD_DISK:
4552 err = hot_add_disk(mddev, new_decode_dev(arg));
4553 goto done_unlock;
4555 case SET_DISK_FAULTY:
4556 err = set_disk_faulty(mddev, new_decode_dev(arg));
4557 goto done_unlock;
4559 case RUN_ARRAY:
4560 err = do_md_run (mddev);
4561 goto done_unlock;
4563 case SET_BITMAP_FILE:
4564 err = set_bitmap_file(mddev, (int)arg);
4565 goto done_unlock;
4567 default:
4568 err = -EINVAL;
4569 goto abort_unlock;
4572 done_unlock:
4573 abort_unlock:
4574 mddev_unlock(mddev);
4576 return err;
4577 done:
4578 if (err)
4579 MD_BUG();
4580 abort:
4581 return err;
4584 static int md_open(struct inode *inode, struct file *file)
4587 * Succeed if we can lock the mddev, which confirms that
4588 * it isn't being stopped right now.
4590 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4591 int err;
4593 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4594 goto out;
4596 err = 0;
4597 mddev_get(mddev);
4598 mddev_unlock(mddev);
4600 check_disk_change(inode->i_bdev);
4601 out:
4602 return err;
4605 static int md_release(struct inode *inode, struct file * file)
4607 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4609 BUG_ON(!mddev);
4610 mddev_put(mddev);
4612 return 0;
4615 static int md_media_changed(struct gendisk *disk)
4617 mddev_t *mddev = disk->private_data;
4619 return mddev->changed;
4622 static int md_revalidate(struct gendisk *disk)
4624 mddev_t *mddev = disk->private_data;
4626 mddev->changed = 0;
4627 return 0;
4629 static struct block_device_operations md_fops =
4631 .owner = THIS_MODULE,
4632 .open = md_open,
4633 .release = md_release,
4634 .ioctl = md_ioctl,
4635 .getgeo = md_getgeo,
4636 .media_changed = md_media_changed,
4637 .revalidate_disk= md_revalidate,
4640 static int md_thread(void * arg)
4642 mdk_thread_t *thread = arg;
4645 * md_thread is a 'system-thread', it's priority should be very
4646 * high. We avoid resource deadlocks individually in each
4647 * raid personality. (RAID5 does preallocation) We also use RR and
4648 * the very same RT priority as kswapd, thus we will never get
4649 * into a priority inversion deadlock.
4651 * we definitely have to have equal or higher priority than
4652 * bdflush, otherwise bdflush will deadlock if there are too
4653 * many dirty RAID5 blocks.
4656 allow_signal(SIGKILL);
4657 while (!kthread_should_stop()) {
4659 /* We need to wait INTERRUPTIBLE so that
4660 * we don't add to the load-average.
4661 * That means we need to be sure no signals are
4662 * pending
4664 if (signal_pending(current))
4665 flush_signals(current);
4667 wait_event_interruptible_timeout
4668 (thread->wqueue,
4669 test_bit(THREAD_WAKEUP, &thread->flags)
4670 || kthread_should_stop(),
4671 thread->timeout);
4673 clear_bit(THREAD_WAKEUP, &thread->flags);
4675 thread->run(thread->mddev);
4678 return 0;
4681 void md_wakeup_thread(mdk_thread_t *thread)
4683 if (thread) {
4684 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4685 set_bit(THREAD_WAKEUP, &thread->flags);
4686 wake_up(&thread->wqueue);
4690 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4691 const char *name)
4693 mdk_thread_t *thread;
4695 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4696 if (!thread)
4697 return NULL;
4699 init_waitqueue_head(&thread->wqueue);
4701 thread->run = run;
4702 thread->mddev = mddev;
4703 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4704 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4705 if (IS_ERR(thread->tsk)) {
4706 kfree(thread);
4707 return NULL;
4709 return thread;
4712 void md_unregister_thread(mdk_thread_t *thread)
4714 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4716 kthread_stop(thread->tsk);
4717 kfree(thread);
4720 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4722 if (!mddev) {
4723 MD_BUG();
4724 return;
4727 if (!rdev || test_bit(Faulty, &rdev->flags))
4728 return;
4730 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4731 mdname(mddev),
4732 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4733 __builtin_return_address(0),__builtin_return_address(1),
4734 __builtin_return_address(2),__builtin_return_address(3));
4736 if (!mddev->pers)
4737 return;
4738 if (!mddev->pers->error_handler)
4739 return;
4740 mddev->pers->error_handler(mddev,rdev);
4741 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4742 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4743 md_wakeup_thread(mddev->thread);
4744 md_new_event_inintr(mddev);
4747 /* seq_file implementation /proc/mdstat */
4749 static void status_unused(struct seq_file *seq)
4751 int i = 0;
4752 mdk_rdev_t *rdev;
4753 struct list_head *tmp;
4755 seq_printf(seq, "unused devices: ");
4757 ITERATE_RDEV_PENDING(rdev,tmp) {
4758 char b[BDEVNAME_SIZE];
4759 i++;
4760 seq_printf(seq, "%s ",
4761 bdevname(rdev->bdev,b));
4763 if (!i)
4764 seq_printf(seq, "<none>");
4766 seq_printf(seq, "\n");
4770 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4772 sector_t max_blocks, resync, res;
4773 unsigned long dt, db, rt;
4774 int scale;
4775 unsigned int per_milli;
4777 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4779 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4780 max_blocks = mddev->resync_max_sectors >> 1;
4781 else
4782 max_blocks = mddev->size;
4785 * Should not happen.
4787 if (!max_blocks) {
4788 MD_BUG();
4789 return;
4791 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4792 * in a sector_t, and (max_blocks>>scale) will fit in a
4793 * u32, as those are the requirements for sector_div.
4794 * Thus 'scale' must be at least 10
4796 scale = 10;
4797 if (sizeof(sector_t) > sizeof(unsigned long)) {
4798 while ( max_blocks/2 > (1ULL<<(scale+32)))
4799 scale++;
4801 res = (resync>>scale)*1000;
4802 sector_div(res, (u32)((max_blocks>>scale)+1));
4804 per_milli = res;
4806 int i, x = per_milli/50, y = 20-x;
4807 seq_printf(seq, "[");
4808 for (i = 0; i < x; i++)
4809 seq_printf(seq, "=");
4810 seq_printf(seq, ">");
4811 for (i = 0; i < y; i++)
4812 seq_printf(seq, ".");
4813 seq_printf(seq, "] ");
4815 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4816 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4817 "reshape" :
4818 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4819 "check" :
4820 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4821 "resync" : "recovery"))),
4822 per_milli/10, per_milli % 10,
4823 (unsigned long long) resync,
4824 (unsigned long long) max_blocks);
4827 * We do not want to overflow, so the order of operands and
4828 * the * 100 / 100 trick are important. We do a +1 to be
4829 * safe against division by zero. We only estimate anyway.
4831 * dt: time from mark until now
4832 * db: blocks written from mark until now
4833 * rt: remaining time
4835 dt = ((jiffies - mddev->resync_mark) / HZ);
4836 if (!dt) dt++;
4837 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4838 - mddev->resync_mark_cnt;
4839 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4841 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4843 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4846 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4848 struct list_head *tmp;
4849 loff_t l = *pos;
4850 mddev_t *mddev;
4852 if (l >= 0x10000)
4853 return NULL;
4854 if (!l--)
4855 /* header */
4856 return (void*)1;
4858 spin_lock(&all_mddevs_lock);
4859 list_for_each(tmp,&all_mddevs)
4860 if (!l--) {
4861 mddev = list_entry(tmp, mddev_t, all_mddevs);
4862 mddev_get(mddev);
4863 spin_unlock(&all_mddevs_lock);
4864 return mddev;
4866 spin_unlock(&all_mddevs_lock);
4867 if (!l--)
4868 return (void*)2;/* tail */
4869 return NULL;
4872 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4874 struct list_head *tmp;
4875 mddev_t *next_mddev, *mddev = v;
4877 ++*pos;
4878 if (v == (void*)2)
4879 return NULL;
4881 spin_lock(&all_mddevs_lock);
4882 if (v == (void*)1)
4883 tmp = all_mddevs.next;
4884 else
4885 tmp = mddev->all_mddevs.next;
4886 if (tmp != &all_mddevs)
4887 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4888 else {
4889 next_mddev = (void*)2;
4890 *pos = 0x10000;
4892 spin_unlock(&all_mddevs_lock);
4894 if (v != (void*)1)
4895 mddev_put(mddev);
4896 return next_mddev;
4900 static void md_seq_stop(struct seq_file *seq, void *v)
4902 mddev_t *mddev = v;
4904 if (mddev && v != (void*)1 && v != (void*)2)
4905 mddev_put(mddev);
4908 struct mdstat_info {
4909 int event;
4912 static int md_seq_show(struct seq_file *seq, void *v)
4914 mddev_t *mddev = v;
4915 sector_t size;
4916 struct list_head *tmp2;
4917 mdk_rdev_t *rdev;
4918 struct mdstat_info *mi = seq->private;
4919 struct bitmap *bitmap;
4921 if (v == (void*)1) {
4922 struct mdk_personality *pers;
4923 seq_printf(seq, "Personalities : ");
4924 spin_lock(&pers_lock);
4925 list_for_each_entry(pers, &pers_list, list)
4926 seq_printf(seq, "[%s] ", pers->name);
4928 spin_unlock(&pers_lock);
4929 seq_printf(seq, "\n");
4930 mi->event = atomic_read(&md_event_count);
4931 return 0;
4933 if (v == (void*)2) {
4934 status_unused(seq);
4935 return 0;
4938 if (mddev_lock(mddev) < 0)
4939 return -EINTR;
4941 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4942 seq_printf(seq, "%s : %sactive", mdname(mddev),
4943 mddev->pers ? "" : "in");
4944 if (mddev->pers) {
4945 if (mddev->ro==1)
4946 seq_printf(seq, " (read-only)");
4947 if (mddev->ro==2)
4948 seq_printf(seq, "(auto-read-only)");
4949 seq_printf(seq, " %s", mddev->pers->name);
4952 size = 0;
4953 ITERATE_RDEV(mddev,rdev,tmp2) {
4954 char b[BDEVNAME_SIZE];
4955 seq_printf(seq, " %s[%d]",
4956 bdevname(rdev->bdev,b), rdev->desc_nr);
4957 if (test_bit(WriteMostly, &rdev->flags))
4958 seq_printf(seq, "(W)");
4959 if (test_bit(Faulty, &rdev->flags)) {
4960 seq_printf(seq, "(F)");
4961 continue;
4962 } else if (rdev->raid_disk < 0)
4963 seq_printf(seq, "(S)"); /* spare */
4964 size += rdev->size;
4967 if (!list_empty(&mddev->disks)) {
4968 if (mddev->pers)
4969 seq_printf(seq, "\n %llu blocks",
4970 (unsigned long long)mddev->array_size);
4971 else
4972 seq_printf(seq, "\n %llu blocks",
4973 (unsigned long long)size);
4975 if (mddev->persistent) {
4976 if (mddev->major_version != 0 ||
4977 mddev->minor_version != 90) {
4978 seq_printf(seq," super %d.%d",
4979 mddev->major_version,
4980 mddev->minor_version);
4982 } else
4983 seq_printf(seq, " super non-persistent");
4985 if (mddev->pers) {
4986 mddev->pers->status (seq, mddev);
4987 seq_printf(seq, "\n ");
4988 if (mddev->pers->sync_request) {
4989 if (mddev->curr_resync > 2) {
4990 status_resync (seq, mddev);
4991 seq_printf(seq, "\n ");
4992 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4993 seq_printf(seq, "\tresync=DELAYED\n ");
4994 else if (mddev->recovery_cp < MaxSector)
4995 seq_printf(seq, "\tresync=PENDING\n ");
4997 } else
4998 seq_printf(seq, "\n ");
5000 if ((bitmap = mddev->bitmap)) {
5001 unsigned long chunk_kb;
5002 unsigned long flags;
5003 spin_lock_irqsave(&bitmap->lock, flags);
5004 chunk_kb = bitmap->chunksize >> 10;
5005 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5006 "%lu%s chunk",
5007 bitmap->pages - bitmap->missing_pages,
5008 bitmap->pages,
5009 (bitmap->pages - bitmap->missing_pages)
5010 << (PAGE_SHIFT - 10),
5011 chunk_kb ? chunk_kb : bitmap->chunksize,
5012 chunk_kb ? "KB" : "B");
5013 if (bitmap->file) {
5014 seq_printf(seq, ", file: ");
5015 seq_path(seq, bitmap->file->f_path.mnt,
5016 bitmap->file->f_path.dentry," \t\n");
5019 seq_printf(seq, "\n");
5020 spin_unlock_irqrestore(&bitmap->lock, flags);
5023 seq_printf(seq, "\n");
5025 mddev_unlock(mddev);
5027 return 0;
5030 static struct seq_operations md_seq_ops = {
5031 .start = md_seq_start,
5032 .next = md_seq_next,
5033 .stop = md_seq_stop,
5034 .show = md_seq_show,
5037 static int md_seq_open(struct inode *inode, struct file *file)
5039 int error;
5040 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5041 if (mi == NULL)
5042 return -ENOMEM;
5044 error = seq_open(file, &md_seq_ops);
5045 if (error)
5046 kfree(mi);
5047 else {
5048 struct seq_file *p = file->private_data;
5049 p->private = mi;
5050 mi->event = atomic_read(&md_event_count);
5052 return error;
5055 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5057 struct seq_file *m = filp->private_data;
5058 struct mdstat_info *mi = m->private;
5059 int mask;
5061 poll_wait(filp, &md_event_waiters, wait);
5063 /* always allow read */
5064 mask = POLLIN | POLLRDNORM;
5066 if (mi->event != atomic_read(&md_event_count))
5067 mask |= POLLERR | POLLPRI;
5068 return mask;
5071 static const struct file_operations md_seq_fops = {
5072 .owner = THIS_MODULE,
5073 .open = md_seq_open,
5074 .read = seq_read,
5075 .llseek = seq_lseek,
5076 .release = seq_release_private,
5077 .poll = mdstat_poll,
5080 int register_md_personality(struct mdk_personality *p)
5082 spin_lock(&pers_lock);
5083 list_add_tail(&p->list, &pers_list);
5084 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5085 spin_unlock(&pers_lock);
5086 return 0;
5089 int unregister_md_personality(struct mdk_personality *p)
5091 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5092 spin_lock(&pers_lock);
5093 list_del_init(&p->list);
5094 spin_unlock(&pers_lock);
5095 return 0;
5098 static int is_mddev_idle(mddev_t *mddev)
5100 mdk_rdev_t * rdev;
5101 struct list_head *tmp;
5102 int idle;
5103 long curr_events;
5105 idle = 1;
5106 ITERATE_RDEV(mddev,rdev,tmp) {
5107 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5108 curr_events = disk_stat_read(disk, sectors[0]) +
5109 disk_stat_read(disk, sectors[1]) -
5110 atomic_read(&disk->sync_io);
5111 /* sync IO will cause sync_io to increase before the disk_stats
5112 * as sync_io is counted when a request starts, and
5113 * disk_stats is counted when it completes.
5114 * So resync activity will cause curr_events to be smaller than
5115 * when there was no such activity.
5116 * non-sync IO will cause disk_stat to increase without
5117 * increasing sync_io so curr_events will (eventually)
5118 * be larger than it was before. Once it becomes
5119 * substantially larger, the test below will cause
5120 * the array to appear non-idle, and resync will slow
5121 * down.
5122 * If there is a lot of outstanding resync activity when
5123 * we set last_event to curr_events, then all that activity
5124 * completing might cause the array to appear non-idle
5125 * and resync will be slowed down even though there might
5126 * not have been non-resync activity. This will only
5127 * happen once though. 'last_events' will soon reflect
5128 * the state where there is little or no outstanding
5129 * resync requests, and further resync activity will
5130 * always make curr_events less than last_events.
5133 if (curr_events - rdev->last_events > 4096) {
5134 rdev->last_events = curr_events;
5135 idle = 0;
5138 return idle;
5141 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5143 /* another "blocks" (512byte) blocks have been synced */
5144 atomic_sub(blocks, &mddev->recovery_active);
5145 wake_up(&mddev->recovery_wait);
5146 if (!ok) {
5147 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5148 md_wakeup_thread(mddev->thread);
5149 // stop recovery, signal do_sync ....
5154 /* md_write_start(mddev, bi)
5155 * If we need to update some array metadata (e.g. 'active' flag
5156 * in superblock) before writing, schedule a superblock update
5157 * and wait for it to complete.
5159 void md_write_start(mddev_t *mddev, struct bio *bi)
5161 if (bio_data_dir(bi) != WRITE)
5162 return;
5164 BUG_ON(mddev->ro == 1);
5165 if (mddev->ro == 2) {
5166 /* need to switch to read/write */
5167 mddev->ro = 0;
5168 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5169 md_wakeup_thread(mddev->thread);
5171 atomic_inc(&mddev->writes_pending);
5172 if (mddev->in_sync) {
5173 spin_lock_irq(&mddev->write_lock);
5174 if (mddev->in_sync) {
5175 mddev->in_sync = 0;
5176 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5177 md_wakeup_thread(mddev->thread);
5179 spin_unlock_irq(&mddev->write_lock);
5181 wait_event(mddev->sb_wait, mddev->flags==0);
5184 void md_write_end(mddev_t *mddev)
5186 if (atomic_dec_and_test(&mddev->writes_pending)) {
5187 if (mddev->safemode == 2)
5188 md_wakeup_thread(mddev->thread);
5189 else if (mddev->safemode_delay)
5190 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5194 /* md_allow_write(mddev)
5195 * Calling this ensures that the array is marked 'active' so that writes
5196 * may proceed without blocking. It is important to call this before
5197 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5198 * Must be called with mddev_lock held.
5200 void md_allow_write(mddev_t *mddev)
5202 if (!mddev->pers)
5203 return;
5204 if (mddev->ro)
5205 return;
5207 spin_lock_irq(&mddev->write_lock);
5208 if (mddev->in_sync) {
5209 mddev->in_sync = 0;
5210 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5211 if (mddev->safemode_delay &&
5212 mddev->safemode == 0)
5213 mddev->safemode = 1;
5214 spin_unlock_irq(&mddev->write_lock);
5215 md_update_sb(mddev, 0);
5216 } else
5217 spin_unlock_irq(&mddev->write_lock);
5219 EXPORT_SYMBOL_GPL(md_allow_write);
5221 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5223 #define SYNC_MARKS 10
5224 #define SYNC_MARK_STEP (3*HZ)
5225 void md_do_sync(mddev_t *mddev)
5227 mddev_t *mddev2;
5228 unsigned int currspeed = 0,
5229 window;
5230 sector_t max_sectors,j, io_sectors;
5231 unsigned long mark[SYNC_MARKS];
5232 sector_t mark_cnt[SYNC_MARKS];
5233 int last_mark,m;
5234 struct list_head *tmp;
5235 sector_t last_check;
5236 int skipped = 0;
5237 struct list_head *rtmp;
5238 mdk_rdev_t *rdev;
5239 char *desc;
5241 /* just incase thread restarts... */
5242 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5243 return;
5244 if (mddev->ro) /* never try to sync a read-only array */
5245 return;
5247 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5248 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5249 desc = "data-check";
5250 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5251 desc = "requested-resync";
5252 else
5253 desc = "resync";
5254 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5255 desc = "reshape";
5256 else
5257 desc = "recovery";
5259 /* we overload curr_resync somewhat here.
5260 * 0 == not engaged in resync at all
5261 * 2 == checking that there is no conflict with another sync
5262 * 1 == like 2, but have yielded to allow conflicting resync to
5263 * commense
5264 * other == active in resync - this many blocks
5266 * Before starting a resync we must have set curr_resync to
5267 * 2, and then checked that every "conflicting" array has curr_resync
5268 * less than ours. When we find one that is the same or higher
5269 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5270 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5271 * This will mean we have to start checking from the beginning again.
5275 do {
5276 mddev->curr_resync = 2;
5278 try_again:
5279 if (kthread_should_stop()) {
5280 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5281 goto skip;
5283 ITERATE_MDDEV(mddev2,tmp) {
5284 if (mddev2 == mddev)
5285 continue;
5286 if (mddev2->curr_resync &&
5287 match_mddev_units(mddev,mddev2)) {
5288 DEFINE_WAIT(wq);
5289 if (mddev < mddev2 && mddev->curr_resync == 2) {
5290 /* arbitrarily yield */
5291 mddev->curr_resync = 1;
5292 wake_up(&resync_wait);
5294 if (mddev > mddev2 && mddev->curr_resync == 1)
5295 /* no need to wait here, we can wait the next
5296 * time 'round when curr_resync == 2
5298 continue;
5299 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5300 if (!kthread_should_stop() &&
5301 mddev2->curr_resync >= mddev->curr_resync) {
5302 printk(KERN_INFO "md: delaying %s of %s"
5303 " until %s has finished (they"
5304 " share one or more physical units)\n",
5305 desc, mdname(mddev), mdname(mddev2));
5306 mddev_put(mddev2);
5307 schedule();
5308 finish_wait(&resync_wait, &wq);
5309 goto try_again;
5311 finish_wait(&resync_wait, &wq);
5314 } while (mddev->curr_resync < 2);
5316 j = 0;
5317 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5318 /* resync follows the size requested by the personality,
5319 * which defaults to physical size, but can be virtual size
5321 max_sectors = mddev->resync_max_sectors;
5322 mddev->resync_mismatches = 0;
5323 /* we don't use the checkpoint if there's a bitmap */
5324 if (!mddev->bitmap &&
5325 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5326 j = mddev->recovery_cp;
5327 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5328 max_sectors = mddev->size << 1;
5329 else {
5330 /* recovery follows the physical size of devices */
5331 max_sectors = mddev->size << 1;
5332 j = MaxSector;
5333 ITERATE_RDEV(mddev,rdev,rtmp)
5334 if (rdev->raid_disk >= 0 &&
5335 !test_bit(Faulty, &rdev->flags) &&
5336 !test_bit(In_sync, &rdev->flags) &&
5337 rdev->recovery_offset < j)
5338 j = rdev->recovery_offset;
5341 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5342 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5343 " %d KB/sec/disk.\n", speed_min(mddev));
5344 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5345 "(but not more than %d KB/sec) for %s.\n",
5346 speed_max(mddev), desc);
5348 is_mddev_idle(mddev); /* this also initializes IO event counters */
5350 io_sectors = 0;
5351 for (m = 0; m < SYNC_MARKS; m++) {
5352 mark[m] = jiffies;
5353 mark_cnt[m] = io_sectors;
5355 last_mark = 0;
5356 mddev->resync_mark = mark[last_mark];
5357 mddev->resync_mark_cnt = mark_cnt[last_mark];
5360 * Tune reconstruction:
5362 window = 32*(PAGE_SIZE/512);
5363 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5364 window/2,(unsigned long long) max_sectors/2);
5366 atomic_set(&mddev->recovery_active, 0);
5367 init_waitqueue_head(&mddev->recovery_wait);
5368 last_check = 0;
5370 if (j>2) {
5371 printk(KERN_INFO
5372 "md: resuming %s of %s from checkpoint.\n",
5373 desc, mdname(mddev));
5374 mddev->curr_resync = j;
5377 while (j < max_sectors) {
5378 sector_t sectors;
5380 skipped = 0;
5381 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5382 currspeed < speed_min(mddev));
5383 if (sectors == 0) {
5384 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5385 goto out;
5388 if (!skipped) { /* actual IO requested */
5389 io_sectors += sectors;
5390 atomic_add(sectors, &mddev->recovery_active);
5393 j += sectors;
5394 if (j>1) mddev->curr_resync = j;
5395 mddev->curr_mark_cnt = io_sectors;
5396 if (last_check == 0)
5397 /* this is the earliers that rebuilt will be
5398 * visible in /proc/mdstat
5400 md_new_event(mddev);
5402 if (last_check + window > io_sectors || j == max_sectors)
5403 continue;
5405 last_check = io_sectors;
5407 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5408 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5409 break;
5411 repeat:
5412 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5413 /* step marks */
5414 int next = (last_mark+1) % SYNC_MARKS;
5416 mddev->resync_mark = mark[next];
5417 mddev->resync_mark_cnt = mark_cnt[next];
5418 mark[next] = jiffies;
5419 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5420 last_mark = next;
5424 if (kthread_should_stop()) {
5426 * got a signal, exit.
5428 printk(KERN_INFO
5429 "md: md_do_sync() got signal ... exiting\n");
5430 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5431 goto out;
5435 * this loop exits only if either when we are slower than
5436 * the 'hard' speed limit, or the system was IO-idle for
5437 * a jiffy.
5438 * the system might be non-idle CPU-wise, but we only care
5439 * about not overloading the IO subsystem. (things like an
5440 * e2fsck being done on the RAID array should execute fast)
5442 mddev->queue->unplug_fn(mddev->queue);
5443 cond_resched();
5445 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5446 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5448 if (currspeed > speed_min(mddev)) {
5449 if ((currspeed > speed_max(mddev)) ||
5450 !is_mddev_idle(mddev)) {
5451 msleep(500);
5452 goto repeat;
5456 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5458 * this also signals 'finished resyncing' to md_stop
5460 out:
5461 mddev->queue->unplug_fn(mddev->queue);
5463 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5465 /* tell personality that we are finished */
5466 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5468 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5469 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5470 mddev->curr_resync > 2) {
5471 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5472 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5473 if (mddev->curr_resync >= mddev->recovery_cp) {
5474 printk(KERN_INFO
5475 "md: checkpointing %s of %s.\n",
5476 desc, mdname(mddev));
5477 mddev->recovery_cp = mddev->curr_resync;
5479 } else
5480 mddev->recovery_cp = MaxSector;
5481 } else {
5482 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5483 mddev->curr_resync = MaxSector;
5484 ITERATE_RDEV(mddev,rdev,rtmp)
5485 if (rdev->raid_disk >= 0 &&
5486 !test_bit(Faulty, &rdev->flags) &&
5487 !test_bit(In_sync, &rdev->flags) &&
5488 rdev->recovery_offset < mddev->curr_resync)
5489 rdev->recovery_offset = mddev->curr_resync;
5492 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5494 skip:
5495 mddev->curr_resync = 0;
5496 wake_up(&resync_wait);
5497 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5498 md_wakeup_thread(mddev->thread);
5500 EXPORT_SYMBOL_GPL(md_do_sync);
5503 static int remove_and_add_spares(mddev_t *mddev)
5505 mdk_rdev_t *rdev;
5506 struct list_head *rtmp;
5507 int spares = 0;
5509 ITERATE_RDEV(mddev,rdev,rtmp)
5510 if (rdev->raid_disk >= 0 &&
5511 (test_bit(Faulty, &rdev->flags) ||
5512 ! test_bit(In_sync, &rdev->flags)) &&
5513 atomic_read(&rdev->nr_pending)==0) {
5514 if (mddev->pers->hot_remove_disk(
5515 mddev, rdev->raid_disk)==0) {
5516 char nm[20];
5517 sprintf(nm,"rd%d", rdev->raid_disk);
5518 sysfs_remove_link(&mddev->kobj, nm);
5519 rdev->raid_disk = -1;
5523 if (mddev->degraded) {
5524 ITERATE_RDEV(mddev,rdev,rtmp)
5525 if (rdev->raid_disk < 0
5526 && !test_bit(Faulty, &rdev->flags)) {
5527 rdev->recovery_offset = 0;
5528 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5529 char nm[20];
5530 sprintf(nm, "rd%d", rdev->raid_disk);
5531 if (sysfs_create_link(&mddev->kobj,
5532 &rdev->kobj, nm))
5533 printk(KERN_WARNING
5534 "md: cannot register "
5535 "%s for %s\n",
5536 nm, mdname(mddev));
5537 spares++;
5538 md_new_event(mddev);
5539 } else
5540 break;
5543 return spares;
5546 * This routine is regularly called by all per-raid-array threads to
5547 * deal with generic issues like resync and super-block update.
5548 * Raid personalities that don't have a thread (linear/raid0) do not
5549 * need this as they never do any recovery or update the superblock.
5551 * It does not do any resync itself, but rather "forks" off other threads
5552 * to do that as needed.
5553 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5554 * "->recovery" and create a thread at ->sync_thread.
5555 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5556 * and wakeups up this thread which will reap the thread and finish up.
5557 * This thread also removes any faulty devices (with nr_pending == 0).
5559 * The overall approach is:
5560 * 1/ if the superblock needs updating, update it.
5561 * 2/ If a recovery thread is running, don't do anything else.
5562 * 3/ If recovery has finished, clean up, possibly marking spares active.
5563 * 4/ If there are any faulty devices, remove them.
5564 * 5/ If array is degraded, try to add spares devices
5565 * 6/ If array has spares or is not in-sync, start a resync thread.
5567 void md_check_recovery(mddev_t *mddev)
5569 mdk_rdev_t *rdev;
5570 struct list_head *rtmp;
5573 if (mddev->bitmap)
5574 bitmap_daemon_work(mddev->bitmap);
5576 if (mddev->ro)
5577 return;
5579 if (signal_pending(current)) {
5580 if (mddev->pers->sync_request) {
5581 printk(KERN_INFO "md: %s in immediate safe mode\n",
5582 mdname(mddev));
5583 mddev->safemode = 2;
5585 flush_signals(current);
5588 if ( ! (
5589 mddev->flags ||
5590 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5591 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5592 (mddev->safemode == 1) ||
5593 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5594 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5596 return;
5598 if (mddev_trylock(mddev)) {
5599 int spares = 0;
5601 spin_lock_irq(&mddev->write_lock);
5602 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5603 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5604 mddev->in_sync = 1;
5605 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5607 if (mddev->safemode == 1)
5608 mddev->safemode = 0;
5609 spin_unlock_irq(&mddev->write_lock);
5611 if (mddev->flags)
5612 md_update_sb(mddev, 0);
5615 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5616 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5617 /* resync/recovery still happening */
5618 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5619 goto unlock;
5621 if (mddev->sync_thread) {
5622 /* resync has finished, collect result */
5623 md_unregister_thread(mddev->sync_thread);
5624 mddev->sync_thread = NULL;
5625 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5626 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5627 /* success...*/
5628 /* activate any spares */
5629 mddev->pers->spare_active(mddev);
5631 md_update_sb(mddev, 1);
5633 /* if array is no-longer degraded, then any saved_raid_disk
5634 * information must be scrapped
5636 if (!mddev->degraded)
5637 ITERATE_RDEV(mddev,rdev,rtmp)
5638 rdev->saved_raid_disk = -1;
5640 mddev->recovery = 0;
5641 /* flag recovery needed just to double check */
5642 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5643 md_new_event(mddev);
5644 goto unlock;
5646 /* Clear some bits that don't mean anything, but
5647 * might be left set
5649 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5650 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5651 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5652 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5654 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5655 goto unlock;
5656 /* no recovery is running.
5657 * remove any failed drives, then
5658 * add spares if possible.
5659 * Spare are also removed and re-added, to allow
5660 * the personality to fail the re-add.
5663 if (mddev->reshape_position != MaxSector) {
5664 if (mddev->pers->check_reshape(mddev) != 0)
5665 /* Cannot proceed */
5666 goto unlock;
5667 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5668 } else if ((spares = remove_and_add_spares(mddev))) {
5669 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5670 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5671 } else if (mddev->recovery_cp < MaxSector) {
5672 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5673 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5674 /* nothing to be done ... */
5675 goto unlock;
5677 if (mddev->pers->sync_request) {
5678 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5679 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5680 /* We are adding a device or devices to an array
5681 * which has the bitmap stored on all devices.
5682 * So make sure all bitmap pages get written
5684 bitmap_write_all(mddev->bitmap);
5686 mddev->sync_thread = md_register_thread(md_do_sync,
5687 mddev,
5688 "%s_resync");
5689 if (!mddev->sync_thread) {
5690 printk(KERN_ERR "%s: could not start resync"
5691 " thread...\n",
5692 mdname(mddev));
5693 /* leave the spares where they are, it shouldn't hurt */
5694 mddev->recovery = 0;
5695 } else
5696 md_wakeup_thread(mddev->sync_thread);
5697 md_new_event(mddev);
5699 unlock:
5700 mddev_unlock(mddev);
5704 static int md_notify_reboot(struct notifier_block *this,
5705 unsigned long code, void *x)
5707 struct list_head *tmp;
5708 mddev_t *mddev;
5710 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5712 printk(KERN_INFO "md: stopping all md devices.\n");
5714 ITERATE_MDDEV(mddev,tmp)
5715 if (mddev_trylock(mddev)) {
5716 do_md_stop (mddev, 1);
5717 mddev_unlock(mddev);
5720 * certain more exotic SCSI devices are known to be
5721 * volatile wrt too early system reboots. While the
5722 * right place to handle this issue is the given
5723 * driver, we do want to have a safe RAID driver ...
5725 mdelay(1000*1);
5727 return NOTIFY_DONE;
5730 static struct notifier_block md_notifier = {
5731 .notifier_call = md_notify_reboot,
5732 .next = NULL,
5733 .priority = INT_MAX, /* before any real devices */
5736 static void md_geninit(void)
5738 struct proc_dir_entry *p;
5740 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5742 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5743 if (p)
5744 p->proc_fops = &md_seq_fops;
5747 static int __init md_init(void)
5749 if (register_blkdev(MAJOR_NR, "md"))
5750 return -1;
5751 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5752 unregister_blkdev(MAJOR_NR, "md");
5753 return -1;
5755 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5756 md_probe, NULL, NULL);
5757 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5758 md_probe, NULL, NULL);
5760 register_reboot_notifier(&md_notifier);
5761 raid_table_header = register_sysctl_table(raid_root_table);
5763 md_geninit();
5764 return (0);
5768 #ifndef MODULE
5771 * Searches all registered partitions for autorun RAID arrays
5772 * at boot time.
5774 static dev_t detected_devices[128];
5775 static int dev_cnt;
5777 void md_autodetect_dev(dev_t dev)
5779 if (dev_cnt >= 0 && dev_cnt < 127)
5780 detected_devices[dev_cnt++] = dev;
5784 static void autostart_arrays(int part)
5786 mdk_rdev_t *rdev;
5787 int i;
5789 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5791 for (i = 0; i < dev_cnt; i++) {
5792 dev_t dev = detected_devices[i];
5794 rdev = md_import_device(dev,0, 90);
5795 if (IS_ERR(rdev))
5796 continue;
5798 if (test_bit(Faulty, &rdev->flags)) {
5799 MD_BUG();
5800 continue;
5802 list_add(&rdev->same_set, &pending_raid_disks);
5804 dev_cnt = 0;
5806 autorun_devices(part);
5809 #endif /* !MODULE */
5811 static __exit void md_exit(void)
5813 mddev_t *mddev;
5814 struct list_head *tmp;
5816 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5817 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5819 unregister_blkdev(MAJOR_NR,"md");
5820 unregister_blkdev(mdp_major, "mdp");
5821 unregister_reboot_notifier(&md_notifier);
5822 unregister_sysctl_table(raid_table_header);
5823 remove_proc_entry("mdstat", NULL);
5824 ITERATE_MDDEV(mddev,tmp) {
5825 struct gendisk *disk = mddev->gendisk;
5826 if (!disk)
5827 continue;
5828 export_array(mddev);
5829 del_gendisk(disk);
5830 put_disk(disk);
5831 mddev->gendisk = NULL;
5832 mddev_put(mddev);
5836 subsys_initcall(md_init);
5837 module_exit(md_exit)
5839 static int get_ro(char *buffer, struct kernel_param *kp)
5841 return sprintf(buffer, "%d", start_readonly);
5843 static int set_ro(const char *val, struct kernel_param *kp)
5845 char *e;
5846 int num = simple_strtoul(val, &e, 10);
5847 if (*val && (*e == '\0' || *e == '\n')) {
5848 start_readonly = num;
5849 return 0;
5851 return -EINVAL;
5854 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5855 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5858 EXPORT_SYMBOL(register_md_personality);
5859 EXPORT_SYMBOL(unregister_md_personality);
5860 EXPORT_SYMBOL(md_error);
5861 EXPORT_SYMBOL(md_done_sync);
5862 EXPORT_SYMBOL(md_write_start);
5863 EXPORT_SYMBOL(md_write_end);
5864 EXPORT_SYMBOL(md_register_thread);
5865 EXPORT_SYMBOL(md_unregister_thread);
5866 EXPORT_SYMBOL(md_wakeup_thread);
5867 EXPORT_SYMBOL(md_check_recovery);
5868 MODULE_LICENSE("GPL");
5869 MODULE_ALIAS("md");
5870 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);