2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
25 static unsigned long nr_huge_pages
, free_huge_pages
, resv_huge_pages
;
26 static unsigned long surplus_huge_pages
;
27 unsigned long max_huge_pages
;
28 static struct list_head hugepage_freelists
[MAX_NUMNODES
];
29 static unsigned int nr_huge_pages_node
[MAX_NUMNODES
];
30 static unsigned int free_huge_pages_node
[MAX_NUMNODES
];
31 static unsigned int surplus_huge_pages_node
[MAX_NUMNODES
];
32 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
33 unsigned long hugepages_treat_as_movable
;
34 int hugetlb_dynamic_pool
;
35 static int hugetlb_next_nid
;
38 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 static DEFINE_SPINLOCK(hugetlb_lock
);
42 static void clear_huge_page(struct page
*page
, unsigned long addr
)
47 for (i
= 0; i
< (HPAGE_SIZE
/PAGE_SIZE
); i
++) {
49 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
53 static void copy_huge_page(struct page
*dst
, struct page
*src
,
54 unsigned long addr
, struct vm_area_struct
*vma
)
59 for (i
= 0; i
< HPAGE_SIZE
/PAGE_SIZE
; i
++) {
61 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
65 static void enqueue_huge_page(struct page
*page
)
67 int nid
= page_to_nid(page
);
68 list_add(&page
->lru
, &hugepage_freelists
[nid
]);
70 free_huge_pages_node
[nid
]++;
73 static struct page
*dequeue_huge_page(struct vm_area_struct
*vma
,
74 unsigned long address
)
77 struct page
*page
= NULL
;
78 struct mempolicy
*mpol
;
79 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
80 htlb_alloc_mask
, &mpol
);
83 for (z
= zonelist
->zones
; *z
; z
++) {
84 nid
= zone_to_nid(*z
);
85 if (cpuset_zone_allowed_softwall(*z
, htlb_alloc_mask
) &&
86 !list_empty(&hugepage_freelists
[nid
])) {
87 page
= list_entry(hugepage_freelists
[nid
].next
,
91 free_huge_pages_node
[nid
]--;
92 if (vma
&& vma
->vm_flags
& VM_MAYSHARE
)
97 mpol_free(mpol
); /* unref if mpol !NULL */
101 static void update_and_free_page(struct page
*page
)
105 nr_huge_pages_node
[page_to_nid(page
)]--;
106 for (i
= 0; i
< (HPAGE_SIZE
/ PAGE_SIZE
); i
++) {
107 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
108 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
109 1 << PG_private
| 1<< PG_writeback
);
111 set_compound_page_dtor(page
, NULL
);
112 set_page_refcounted(page
);
113 __free_pages(page
, HUGETLB_PAGE_ORDER
);
116 static void free_huge_page(struct page
*page
)
118 int nid
= page_to_nid(page
);
119 struct address_space
*mapping
;
121 mapping
= (struct address_space
*) page_private(page
);
122 BUG_ON(page_count(page
));
123 INIT_LIST_HEAD(&page
->lru
);
125 spin_lock(&hugetlb_lock
);
126 if (surplus_huge_pages_node
[nid
]) {
127 update_and_free_page(page
);
128 surplus_huge_pages
--;
129 surplus_huge_pages_node
[nid
]--;
131 enqueue_huge_page(page
);
133 spin_unlock(&hugetlb_lock
);
135 hugetlb_put_quota(mapping
, 1);
136 set_page_private(page
, 0);
140 * Increment or decrement surplus_huge_pages. Keep node-specific counters
141 * balanced by operating on them in a round-robin fashion.
142 * Returns 1 if an adjustment was made.
144 static int adjust_pool_surplus(int delta
)
150 VM_BUG_ON(delta
!= -1 && delta
!= 1);
152 nid
= next_node(nid
, node_online_map
);
153 if (nid
== MAX_NUMNODES
)
154 nid
= first_node(node_online_map
);
156 /* To shrink on this node, there must be a surplus page */
157 if (delta
< 0 && !surplus_huge_pages_node
[nid
])
159 /* Surplus cannot exceed the total number of pages */
160 if (delta
> 0 && surplus_huge_pages_node
[nid
] >=
161 nr_huge_pages_node
[nid
])
164 surplus_huge_pages
+= delta
;
165 surplus_huge_pages_node
[nid
] += delta
;
168 } while (nid
!= prev_nid
);
174 static struct page
*alloc_fresh_huge_page_node(int nid
)
178 page
= alloc_pages_node(nid
,
179 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|__GFP_NOWARN
,
182 set_compound_page_dtor(page
, free_huge_page
);
183 spin_lock(&hugetlb_lock
);
185 nr_huge_pages_node
[nid
]++;
186 spin_unlock(&hugetlb_lock
);
187 put_page(page
); /* free it into the hugepage allocator */
193 static int alloc_fresh_huge_page(void)
200 start_nid
= hugetlb_next_nid
;
203 page
= alloc_fresh_huge_page_node(hugetlb_next_nid
);
207 * Use a helper variable to find the next node and then
208 * copy it back to hugetlb_next_nid afterwards:
209 * otherwise there's a window in which a racer might
210 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
211 * But we don't need to use a spin_lock here: it really
212 * doesn't matter if occasionally a racer chooses the
213 * same nid as we do. Move nid forward in the mask even
214 * if we just successfully allocated a hugepage so that
215 * the next caller gets hugepages on the next node.
217 next_nid
= next_node(hugetlb_next_nid
, node_online_map
);
218 if (next_nid
== MAX_NUMNODES
)
219 next_nid
= first_node(node_online_map
);
220 hugetlb_next_nid
= next_nid
;
221 } while (!page
&& hugetlb_next_nid
!= start_nid
);
226 static struct page
*alloc_buddy_huge_page(struct vm_area_struct
*vma
,
227 unsigned long address
)
231 /* Check if the dynamic pool is enabled */
232 if (!hugetlb_dynamic_pool
)
235 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|__GFP_NOWARN
,
238 set_compound_page_dtor(page
, free_huge_page
);
239 spin_lock(&hugetlb_lock
);
241 nr_huge_pages_node
[page_to_nid(page
)]++;
242 surplus_huge_pages
++;
243 surplus_huge_pages_node
[page_to_nid(page
)]++;
244 spin_unlock(&hugetlb_lock
);
251 * Increase the hugetlb pool such that it can accomodate a reservation
254 static int gather_surplus_pages(int delta
)
256 struct list_head surplus_list
;
257 struct page
*page
, *tmp
;
259 int needed
, allocated
;
261 needed
= (resv_huge_pages
+ delta
) - free_huge_pages
;
266 INIT_LIST_HEAD(&surplus_list
);
270 spin_unlock(&hugetlb_lock
);
271 for (i
= 0; i
< needed
; i
++) {
272 page
= alloc_buddy_huge_page(NULL
, 0);
275 * We were not able to allocate enough pages to
276 * satisfy the entire reservation so we free what
277 * we've allocated so far.
279 spin_lock(&hugetlb_lock
);
284 list_add(&page
->lru
, &surplus_list
);
289 * After retaking hugetlb_lock, we need to recalculate 'needed'
290 * because either resv_huge_pages or free_huge_pages may have changed.
292 spin_lock(&hugetlb_lock
);
293 needed
= (resv_huge_pages
+ delta
) - (free_huge_pages
+ allocated
);
298 * The surplus_list now contains _at_least_ the number of extra pages
299 * needed to accomodate the reservation. Add the appropriate number
300 * of pages to the hugetlb pool and free the extras back to the buddy
306 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
307 list_del(&page
->lru
);
309 enqueue_huge_page(page
);
312 * Decrement the refcount and free the page using its
313 * destructor. This must be done with hugetlb_lock
314 * unlocked which is safe because free_huge_page takes
315 * hugetlb_lock before deciding how to free the page.
317 spin_unlock(&hugetlb_lock
);
319 spin_lock(&hugetlb_lock
);
327 * When releasing a hugetlb pool reservation, any surplus pages that were
328 * allocated to satisfy the reservation must be explicitly freed if they were
331 static void return_unused_surplus_pages(unsigned long unused_resv_pages
)
335 unsigned long nr_pages
;
337 nr_pages
= min(unused_resv_pages
, surplus_huge_pages
);
340 nid
= next_node(nid
, node_online_map
);
341 if (nid
== MAX_NUMNODES
)
342 nid
= first_node(node_online_map
);
344 if (!surplus_huge_pages_node
[nid
])
347 if (!list_empty(&hugepage_freelists
[nid
])) {
348 page
= list_entry(hugepage_freelists
[nid
].next
,
350 list_del(&page
->lru
);
351 update_and_free_page(page
);
353 free_huge_pages_node
[nid
]--;
354 surplus_huge_pages
--;
355 surplus_huge_pages_node
[nid
]--;
362 static struct page
*alloc_huge_page_shared(struct vm_area_struct
*vma
,
367 spin_lock(&hugetlb_lock
);
368 page
= dequeue_huge_page(vma
, addr
);
369 spin_unlock(&hugetlb_lock
);
370 return page
? page
: ERR_PTR(-VM_FAULT_OOM
);
373 static struct page
*alloc_huge_page_private(struct vm_area_struct
*vma
,
376 struct page
*page
= NULL
;
378 if (hugetlb_get_quota(vma
->vm_file
->f_mapping
, 1))
379 return ERR_PTR(-VM_FAULT_SIGBUS
);
381 spin_lock(&hugetlb_lock
);
382 if (free_huge_pages
> resv_huge_pages
)
383 page
= dequeue_huge_page(vma
, addr
);
384 spin_unlock(&hugetlb_lock
);
386 page
= alloc_buddy_huge_page(vma
, addr
);
387 return page
? page
: ERR_PTR(-VM_FAULT_OOM
);
390 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
394 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
396 if (vma
->vm_flags
& VM_MAYSHARE
)
397 page
= alloc_huge_page_shared(vma
, addr
);
399 page
= alloc_huge_page_private(vma
, addr
);
402 set_page_refcounted(page
);
403 set_page_private(page
, (unsigned long) mapping
);
408 static int __init
hugetlb_init(void)
412 if (HPAGE_SHIFT
== 0)
415 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
416 INIT_LIST_HEAD(&hugepage_freelists
[i
]);
418 hugetlb_next_nid
= first_node(node_online_map
);
420 for (i
= 0; i
< max_huge_pages
; ++i
) {
421 if (!alloc_fresh_huge_page())
424 max_huge_pages
= free_huge_pages
= nr_huge_pages
= i
;
425 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages
);
428 module_init(hugetlb_init
);
430 static int __init
hugetlb_setup(char *s
)
432 if (sscanf(s
, "%lu", &max_huge_pages
) <= 0)
436 __setup("hugepages=", hugetlb_setup
);
438 static unsigned int cpuset_mems_nr(unsigned int *array
)
443 for_each_node_mask(node
, cpuset_current_mems_allowed
)
450 #ifdef CONFIG_HIGHMEM
451 static void try_to_free_low(unsigned long count
)
455 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
456 struct page
*page
, *next
;
457 list_for_each_entry_safe(page
, next
, &hugepage_freelists
[i
], lru
) {
458 if (count
>= nr_huge_pages
)
460 if (PageHighMem(page
))
462 list_del(&page
->lru
);
463 update_and_free_page(page
);
465 free_huge_pages_node
[page_to_nid(page
)]--;
470 static inline void try_to_free_low(unsigned long count
)
475 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
476 static unsigned long set_max_huge_pages(unsigned long count
)
478 unsigned long min_count
, ret
;
481 * Increase the pool size
482 * First take pages out of surplus state. Then make up the
483 * remaining difference by allocating fresh huge pages.
485 spin_lock(&hugetlb_lock
);
486 while (surplus_huge_pages
&& count
> persistent_huge_pages
) {
487 if (!adjust_pool_surplus(-1))
491 while (count
> persistent_huge_pages
) {
494 * If this allocation races such that we no longer need the
495 * page, free_huge_page will handle it by freeing the page
496 * and reducing the surplus.
498 spin_unlock(&hugetlb_lock
);
499 ret
= alloc_fresh_huge_page();
500 spin_lock(&hugetlb_lock
);
507 * Decrease the pool size
508 * First return free pages to the buddy allocator (being careful
509 * to keep enough around to satisfy reservations). Then place
510 * pages into surplus state as needed so the pool will shrink
511 * to the desired size as pages become free.
513 min_count
= resv_huge_pages
+ nr_huge_pages
- free_huge_pages
;
514 min_count
= max(count
, min_count
);
515 try_to_free_low(min_count
);
516 while (min_count
< persistent_huge_pages
) {
517 struct page
*page
= dequeue_huge_page(NULL
, 0);
520 update_and_free_page(page
);
522 while (count
< persistent_huge_pages
) {
523 if (!adjust_pool_surplus(1))
527 ret
= persistent_huge_pages
;
528 spin_unlock(&hugetlb_lock
);
532 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
533 struct file
*file
, void __user
*buffer
,
534 size_t *length
, loff_t
*ppos
)
536 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
537 max_huge_pages
= set_max_huge_pages(max_huge_pages
);
541 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
542 struct file
*file
, void __user
*buffer
,
543 size_t *length
, loff_t
*ppos
)
545 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
546 if (hugepages_treat_as_movable
)
547 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
549 htlb_alloc_mask
= GFP_HIGHUSER
;
553 #endif /* CONFIG_SYSCTL */
555 int hugetlb_report_meminfo(char *buf
)
558 "HugePages_Total: %5lu\n"
559 "HugePages_Free: %5lu\n"
560 "HugePages_Rsvd: %5lu\n"
561 "HugePages_Surp: %5lu\n"
562 "Hugepagesize: %5lu kB\n",
570 int hugetlb_report_node_meminfo(int nid
, char *buf
)
573 "Node %d HugePages_Total: %5u\n"
574 "Node %d HugePages_Free: %5u\n",
575 nid
, nr_huge_pages_node
[nid
],
576 nid
, free_huge_pages_node
[nid
]);
579 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
580 unsigned long hugetlb_total_pages(void)
582 return nr_huge_pages
* (HPAGE_SIZE
/ PAGE_SIZE
);
586 * We cannot handle pagefaults against hugetlb pages at all. They cause
587 * handle_mm_fault() to try to instantiate regular-sized pages in the
588 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
591 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
597 struct vm_operations_struct hugetlb_vm_ops
= {
598 .fault
= hugetlb_vm_op_fault
,
601 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
608 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
610 entry
= pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
612 entry
= pte_mkyoung(entry
);
613 entry
= pte_mkhuge(entry
);
618 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
619 unsigned long address
, pte_t
*ptep
)
623 entry
= pte_mkwrite(pte_mkdirty(*ptep
));
624 if (ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
625 update_mmu_cache(vma
, address
, entry
);
630 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
631 struct vm_area_struct
*vma
)
633 pte_t
*src_pte
, *dst_pte
, entry
;
634 struct page
*ptepage
;
638 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
640 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= HPAGE_SIZE
) {
641 src_pte
= huge_pte_offset(src
, addr
);
644 dst_pte
= huge_pte_alloc(dst
, addr
);
647 spin_lock(&dst
->page_table_lock
);
648 spin_lock(&src
->page_table_lock
);
649 if (!pte_none(*src_pte
)) {
651 ptep_set_wrprotect(src
, addr
, src_pte
);
653 ptepage
= pte_page(entry
);
655 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
657 spin_unlock(&src
->page_table_lock
);
658 spin_unlock(&dst
->page_table_lock
);
666 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
669 struct mm_struct
*mm
= vma
->vm_mm
;
670 unsigned long address
;
676 * A page gathering list, protected by per file i_mmap_lock. The
677 * lock is used to avoid list corruption from multiple unmapping
678 * of the same page since we are using page->lru.
680 LIST_HEAD(page_list
);
682 WARN_ON(!is_vm_hugetlb_page(vma
));
683 BUG_ON(start
& ~HPAGE_MASK
);
684 BUG_ON(end
& ~HPAGE_MASK
);
686 spin_lock(&mm
->page_table_lock
);
687 for (address
= start
; address
< end
; address
+= HPAGE_SIZE
) {
688 ptep
= huge_pte_offset(mm
, address
);
692 if (huge_pmd_unshare(mm
, &address
, ptep
))
695 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
699 page
= pte_page(pte
);
701 set_page_dirty(page
);
702 list_add(&page
->lru
, &page_list
);
704 spin_unlock(&mm
->page_table_lock
);
705 flush_tlb_range(vma
, start
, end
);
706 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
707 list_del(&page
->lru
);
712 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
716 * It is undesirable to test vma->vm_file as it should be non-null
717 * for valid hugetlb area. However, vm_file will be NULL in the error
718 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
719 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
720 * to clean up. Since no pte has actually been setup, it is safe to
721 * do nothing in this case.
724 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
725 __unmap_hugepage_range(vma
, start
, end
);
726 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
730 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
731 unsigned long address
, pte_t
*ptep
, pte_t pte
)
733 struct page
*old_page
, *new_page
;
736 old_page
= pte_page(pte
);
738 /* If no-one else is actually using this page, avoid the copy
739 * and just make the page writable */
740 avoidcopy
= (page_count(old_page
) == 1);
742 set_huge_ptep_writable(vma
, address
, ptep
);
746 page_cache_get(old_page
);
747 new_page
= alloc_huge_page(vma
, address
);
749 if (IS_ERR(new_page
)) {
750 page_cache_release(old_page
);
751 return -PTR_ERR(new_page
);
754 spin_unlock(&mm
->page_table_lock
);
755 copy_huge_page(new_page
, old_page
, address
, vma
);
756 spin_lock(&mm
->page_table_lock
);
758 ptep
= huge_pte_offset(mm
, address
& HPAGE_MASK
);
759 if (likely(pte_same(*ptep
, pte
))) {
761 set_huge_pte_at(mm
, address
, ptep
,
762 make_huge_pte(vma
, new_page
, 1));
763 /* Make the old page be freed below */
766 page_cache_release(new_page
);
767 page_cache_release(old_page
);
771 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
772 unsigned long address
, pte_t
*ptep
, int write_access
)
774 int ret
= VM_FAULT_SIGBUS
;
778 struct address_space
*mapping
;
781 mapping
= vma
->vm_file
->f_mapping
;
782 idx
= ((address
- vma
->vm_start
) >> HPAGE_SHIFT
)
783 + (vma
->vm_pgoff
>> (HPAGE_SHIFT
- PAGE_SHIFT
));
786 * Use page lock to guard against racing truncation
787 * before we get page_table_lock.
790 page
= find_lock_page(mapping
, idx
);
792 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
795 page
= alloc_huge_page(vma
, address
);
797 ret
= -PTR_ERR(page
);
800 clear_huge_page(page
, address
);
802 if (vma
->vm_flags
& VM_SHARED
) {
804 struct inode
*inode
= mapping
->host
;
806 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
814 spin_lock(&inode
->i_lock
);
815 inode
->i_blocks
+= BLOCKS_PER_HUGEPAGE
;
816 spin_unlock(&inode
->i_lock
);
821 spin_lock(&mm
->page_table_lock
);
822 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
827 if (!pte_none(*ptep
))
830 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
831 && (vma
->vm_flags
& VM_SHARED
)));
832 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
834 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
835 /* Optimization, do the COW without a second fault */
836 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
);
839 spin_unlock(&mm
->page_table_lock
);
845 spin_unlock(&mm
->page_table_lock
);
851 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
852 unsigned long address
, int write_access
)
857 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
859 ptep
= huge_pte_alloc(mm
, address
);
864 * Serialize hugepage allocation and instantiation, so that we don't
865 * get spurious allocation failures if two CPUs race to instantiate
866 * the same page in the page cache.
868 mutex_lock(&hugetlb_instantiation_mutex
);
870 if (pte_none(entry
)) {
871 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
872 mutex_unlock(&hugetlb_instantiation_mutex
);
878 spin_lock(&mm
->page_table_lock
);
879 /* Check for a racing update before calling hugetlb_cow */
880 if (likely(pte_same(entry
, *ptep
)))
881 if (write_access
&& !pte_write(entry
))
882 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
);
883 spin_unlock(&mm
->page_table_lock
);
884 mutex_unlock(&hugetlb_instantiation_mutex
);
889 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
890 struct page
**pages
, struct vm_area_struct
**vmas
,
891 unsigned long *position
, int *length
, int i
,
894 unsigned long pfn_offset
;
895 unsigned long vaddr
= *position
;
896 int remainder
= *length
;
898 spin_lock(&mm
->page_table_lock
);
899 while (vaddr
< vma
->vm_end
&& remainder
) {
904 * Some archs (sparc64, sh*) have multiple pte_ts to
905 * each hugepage. We have to make * sure we get the
906 * first, for the page indexing below to work.
908 pte
= huge_pte_offset(mm
, vaddr
& HPAGE_MASK
);
910 if (!pte
|| pte_none(*pte
) || (write
&& !pte_write(*pte
))) {
913 spin_unlock(&mm
->page_table_lock
);
914 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
915 spin_lock(&mm
->page_table_lock
);
916 if (!(ret
& VM_FAULT_ERROR
))
925 pfn_offset
= (vaddr
& ~HPAGE_MASK
) >> PAGE_SHIFT
;
926 page
= pte_page(*pte
);
930 pages
[i
] = page
+ pfn_offset
;
940 if (vaddr
< vma
->vm_end
&& remainder
&&
941 pfn_offset
< HPAGE_SIZE
/PAGE_SIZE
) {
943 * We use pfn_offset to avoid touching the pageframes
944 * of this compound page.
949 spin_unlock(&mm
->page_table_lock
);
956 void hugetlb_change_protection(struct vm_area_struct
*vma
,
957 unsigned long address
, unsigned long end
, pgprot_t newprot
)
959 struct mm_struct
*mm
= vma
->vm_mm
;
960 unsigned long start
= address
;
964 BUG_ON(address
>= end
);
965 flush_cache_range(vma
, address
, end
);
967 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
968 spin_lock(&mm
->page_table_lock
);
969 for (; address
< end
; address
+= HPAGE_SIZE
) {
970 ptep
= huge_pte_offset(mm
, address
);
973 if (huge_pmd_unshare(mm
, &address
, ptep
))
975 if (!pte_none(*ptep
)) {
976 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
977 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
978 set_huge_pte_at(mm
, address
, ptep
, pte
);
981 spin_unlock(&mm
->page_table_lock
);
982 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
984 flush_tlb_range(vma
, start
, end
);
988 struct list_head link
;
993 static long region_add(struct list_head
*head
, long f
, long t
)
995 struct file_region
*rg
, *nrg
, *trg
;
997 /* Locate the region we are either in or before. */
998 list_for_each_entry(rg
, head
, link
)
1002 /* Round our left edge to the current segment if it encloses us. */
1006 /* Check for and consume any regions we now overlap with. */
1008 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
1009 if (&rg
->link
== head
)
1014 /* If this area reaches higher then extend our area to
1015 * include it completely. If this is not the first area
1016 * which we intend to reuse, free it. */
1020 list_del(&rg
->link
);
1029 static long region_chg(struct list_head
*head
, long f
, long t
)
1031 struct file_region
*rg
, *nrg
;
1034 /* Locate the region we are before or in. */
1035 list_for_each_entry(rg
, head
, link
)
1039 /* If we are below the current region then a new region is required.
1040 * Subtle, allocate a new region at the position but make it zero
1041 * size such that we can guarantee to record the reservation. */
1042 if (&rg
->link
== head
|| t
< rg
->from
) {
1043 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
1048 INIT_LIST_HEAD(&nrg
->link
);
1049 list_add(&nrg
->link
, rg
->link
.prev
);
1054 /* Round our left edge to the current segment if it encloses us. */
1059 /* Check for and consume any regions we now overlap with. */
1060 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
1061 if (&rg
->link
== head
)
1066 /* We overlap with this area, if it extends futher than
1067 * us then we must extend ourselves. Account for its
1068 * existing reservation. */
1073 chg
-= rg
->to
- rg
->from
;
1078 static long region_truncate(struct list_head
*head
, long end
)
1080 struct file_region
*rg
, *trg
;
1083 /* Locate the region we are either in or before. */
1084 list_for_each_entry(rg
, head
, link
)
1087 if (&rg
->link
== head
)
1090 /* If we are in the middle of a region then adjust it. */
1091 if (end
> rg
->from
) {
1094 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
1097 /* Drop any remaining regions. */
1098 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
1099 if (&rg
->link
== head
)
1101 chg
+= rg
->to
- rg
->from
;
1102 list_del(&rg
->link
);
1108 static int hugetlb_acct_memory(long delta
)
1112 spin_lock(&hugetlb_lock
);
1114 * When cpuset is configured, it breaks the strict hugetlb page
1115 * reservation as the accounting is done on a global variable. Such
1116 * reservation is completely rubbish in the presence of cpuset because
1117 * the reservation is not checked against page availability for the
1118 * current cpuset. Application can still potentially OOM'ed by kernel
1119 * with lack of free htlb page in cpuset that the task is in.
1120 * Attempt to enforce strict accounting with cpuset is almost
1121 * impossible (or too ugly) because cpuset is too fluid that
1122 * task or memory node can be dynamically moved between cpusets.
1124 * The change of semantics for shared hugetlb mapping with cpuset is
1125 * undesirable. However, in order to preserve some of the semantics,
1126 * we fall back to check against current free page availability as
1127 * a best attempt and hopefully to minimize the impact of changing
1128 * semantics that cpuset has.
1131 if (gather_surplus_pages(delta
) < 0)
1134 if (delta
> cpuset_mems_nr(free_huge_pages_node
))
1139 resv_huge_pages
+= delta
;
1141 return_unused_surplus_pages((unsigned long) -delta
);
1144 spin_unlock(&hugetlb_lock
);
1148 int hugetlb_reserve_pages(struct inode
*inode
, long from
, long to
)
1152 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
1156 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1158 ret
= hugetlb_acct_memory(chg
);
1161 region_add(&inode
->i_mapping
->private_list
, from
, to
);
1165 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
1167 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
1169 spin_lock(&inode
->i_lock
);
1170 inode
->i_blocks
-= BLOCKS_PER_HUGEPAGE
* freed
;
1171 spin_unlock(&inode
->i_lock
);
1173 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
1174 hugetlb_acct_memory(-(chg
- freed
));