3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
27 #include <linux/stddef.h>
28 #include <linux/init.h>
29 #include <linux/bootmem.h>
30 #include <linux/highmem.h>
31 #include <linux/initrd.h>
32 #include <linux/pagemap.h>
33 #include <linux/suspend.h>
35 #include <asm/pgalloc.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
42 #include <asm/machdep.h>
43 #include <asm/btext.h>
46 #include <asm/sections.h>
51 #ifndef CPU_FTR_COHERENT_ICACHE
52 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
53 #define CPU_FTR_NOEXECUTE 0
56 int init_bootmem_done
;
58 unsigned long memory_limit
;
60 int page_is_ram(unsigned long pfn
)
62 unsigned long paddr
= (pfn
<< PAGE_SHIFT
);
64 #ifndef CONFIG_PPC64 /* XXX for now */
65 return paddr
< __pa(high_memory
);
68 for (i
=0; i
< lmb
.memory
.cnt
; i
++) {
71 base
= lmb
.memory
.region
[i
].base
;
73 if ((paddr
>= base
) &&
74 (paddr
< (base
+ lmb
.memory
.region
[i
].size
))) {
83 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
84 unsigned long size
, pgprot_t vma_prot
)
86 if (ppc_md
.phys_mem_access_prot
)
87 return ppc_md
.phys_mem_access_prot(file
, pfn
, size
, vma_prot
);
89 if (!page_is_ram(pfn
))
90 vma_prot
= __pgprot(pgprot_val(vma_prot
)
91 | _PAGE_GUARDED
| _PAGE_NO_CACHE
);
94 EXPORT_SYMBOL(phys_mem_access_prot
);
96 #ifdef CONFIG_MEMORY_HOTPLUG
98 void online_page(struct page
*page
)
100 ClearPageReserved(page
);
101 init_page_count(page
);
108 int memory_add_physaddr_to_nid(u64 start
)
110 return hot_add_scn_to_nid(start
);
114 int __devinit
arch_add_memory(int nid
, u64 start
, u64 size
)
116 struct pglist_data
*pgdata
;
118 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
119 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
121 pgdata
= NODE_DATA(nid
);
123 start
= (unsigned long)__va(start
);
124 create_section_mapping(start
, start
+ size
);
126 /* this should work for most non-highmem platforms */
127 zone
= pgdata
->node_zones
;
129 return __add_pages(zone
, start_pfn
, nr_pages
);
133 * First pass at this code will check to determine if the remove
134 * request is within the RMO. Do not allow removal within the RMO.
136 int __devinit
remove_memory(u64 start
, u64 size
)
139 unsigned long start_pfn
, end_pfn
, nr_pages
;
141 start_pfn
= start
>> PAGE_SHIFT
;
142 nr_pages
= size
>> PAGE_SHIFT
;
143 end_pfn
= start_pfn
+ nr_pages
;
145 printk("%s(): Attempting to remove memoy in range "
146 "%lx to %lx\n", __func__
, start
, start
+size
);
148 * check for range within RMO
150 zone
= page_zone(pfn_to_page(start_pfn
));
152 printk("%s(): memory will be removed from "
153 "the %s zone\n", __func__
, zone
->name
);
156 * not handling removing memory ranges that
157 * overlap multiple zones yet
159 if (end_pfn
> (zone
->zone_start_pfn
+ zone
->spanned_pages
))
162 /* make sure it is NOT in RMO */
163 if ((start
< lmb
.rmo_size
) || ((start
+size
) < lmb
.rmo_size
)) {
164 printk("%s(): range to be removed must NOT be in RMO!\n",
169 return __remove_pages(zone
, start_pfn
, nr_pages
);
172 printk("%s(): memory range to be removed overlaps "
173 "multiple zones!!!\n", __func__
);
177 #endif /* CONFIG_MEMORY_HOTPLUG */
181 unsigned long total
= 0, reserved
= 0;
182 unsigned long shared
= 0, cached
= 0;
183 unsigned long highmem
= 0;
188 printk("Mem-info:\n");
190 printk("Free swap: %6ldkB\n", nr_swap_pages
<<(PAGE_SHIFT
-10));
191 for_each_online_pgdat(pgdat
) {
193 pgdat_resize_lock(pgdat
, &flags
);
194 for (i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
195 if (!pfn_valid(pgdat
->node_start_pfn
+ i
))
197 page
= pgdat_page_nr(pgdat
, i
);
199 if (PageHighMem(page
))
201 if (PageReserved(page
))
203 else if (PageSwapCache(page
))
205 else if (page_count(page
))
206 shared
+= page_count(page
) - 1;
208 pgdat_resize_unlock(pgdat
, &flags
);
210 printk("%ld pages of RAM\n", total
);
211 #ifdef CONFIG_HIGHMEM
212 printk("%ld pages of HIGHMEM\n", highmem
);
214 printk("%ld reserved pages\n", reserved
);
215 printk("%ld pages shared\n", shared
);
216 printk("%ld pages swap cached\n", cached
);
220 * Initialize the bootmem system and give it all the memory we
221 * have available. If we are using highmem, we only put the
222 * lowmem into the bootmem system.
224 #ifndef CONFIG_NEED_MULTIPLE_NODES
225 void __init
do_init_bootmem(void)
228 unsigned long start
, bootmap_pages
;
229 unsigned long total_pages
;
232 max_pfn
= total_pages
= lmb_end_of_DRAM() >> PAGE_SHIFT
;
233 #ifdef CONFIG_HIGHMEM
234 total_pages
= total_lowmem
>> PAGE_SHIFT
;
238 * Find an area to use for the bootmem bitmap. Calculate the size of
239 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
240 * Add 1 additional page in case the address isn't page-aligned.
242 bootmap_pages
= bootmem_bootmap_pages(total_pages
);
244 start
= lmb_alloc(bootmap_pages
<< PAGE_SHIFT
, PAGE_SIZE
);
246 boot_mapsize
= init_bootmem(start
>> PAGE_SHIFT
, total_pages
);
248 /* Add active regions with valid PFNs */
249 for (i
= 0; i
< lmb
.memory
.cnt
; i
++) {
250 unsigned long start_pfn
, end_pfn
;
251 start_pfn
= lmb
.memory
.region
[i
].base
>> PAGE_SHIFT
;
252 end_pfn
= start_pfn
+ lmb_size_pages(&lmb
.memory
, i
);
253 add_active_range(0, start_pfn
, end_pfn
);
256 /* Add all physical memory to the bootmem map, mark each area
259 #ifdef CONFIG_HIGHMEM
260 free_bootmem_with_active_regions(0, total_lowmem
>> PAGE_SHIFT
);
262 free_bootmem_with_active_regions(0, max_pfn
);
265 /* reserve the sections we're already using */
266 for (i
= 0; i
< lmb
.reserved
.cnt
; i
++)
267 reserve_bootmem(lmb
.reserved
.region
[i
].base
,
268 lmb_size_bytes(&lmb
.reserved
, i
));
270 /* XXX need to clip this if using highmem? */
271 sparse_memory_present_with_active_regions(0);
273 init_bootmem_done
= 1;
276 /* mark pages that don't exist as nosave */
277 static int __init
mark_nonram_nosave(void)
279 unsigned long lmb_next_region_start_pfn
,
283 for (i
= 0; i
< lmb
.memory
.cnt
- 1; i
++) {
285 (lmb
.memory
.region
[i
].base
>> PAGE_SHIFT
) +
286 (lmb
.memory
.region
[i
].size
>> PAGE_SHIFT
);
287 lmb_next_region_start_pfn
=
288 lmb
.memory
.region
[i
+1].base
>> PAGE_SHIFT
;
290 if (lmb_region_max_pfn
< lmb_next_region_start_pfn
)
291 register_nosave_region(lmb_region_max_pfn
,
292 lmb_next_region_start_pfn
);
299 * paging_init() sets up the page tables - in fact we've already done this.
301 void __init
paging_init(void)
303 unsigned long total_ram
= lmb_phys_mem_size();
304 unsigned long top_of_ram
= lmb_end_of_DRAM();
305 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
307 #ifdef CONFIG_HIGHMEM
308 map_page(PKMAP_BASE
, 0, 0); /* XXX gross */
309 pkmap_page_table
= pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
310 (PKMAP_BASE
), PKMAP_BASE
), PKMAP_BASE
), PKMAP_BASE
);
311 map_page(KMAP_FIX_BEGIN
, 0, 0); /* XXX gross */
312 kmap_pte
= pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
313 (KMAP_FIX_BEGIN
), KMAP_FIX_BEGIN
), KMAP_FIX_BEGIN
),
315 kmap_prot
= PAGE_KERNEL
;
316 #endif /* CONFIG_HIGHMEM */
318 printk(KERN_DEBUG
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
319 top_of_ram
, total_ram
);
320 printk(KERN_DEBUG
"Memory hole size: %ldMB\n",
321 (top_of_ram
- total_ram
) >> 20);
322 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
323 #ifdef CONFIG_HIGHMEM
324 max_zone_pfns
[ZONE_DMA
] = total_lowmem
>> PAGE_SHIFT
;
325 max_zone_pfns
[ZONE_HIGHMEM
] = top_of_ram
>> PAGE_SHIFT
;
327 max_zone_pfns
[ZONE_DMA
] = top_of_ram
>> PAGE_SHIFT
;
329 free_area_init_nodes(max_zone_pfns
);
331 mark_nonram_nosave();
333 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
335 void __init
mem_init(void)
337 #ifdef CONFIG_NEED_MULTIPLE_NODES
343 unsigned long reservedpages
= 0, codesize
, initsize
, datasize
, bsssize
;
345 num_physpages
= lmb
.memory
.size
>> PAGE_SHIFT
;
346 high_memory
= (void *) __va(max_low_pfn
* PAGE_SIZE
);
348 #ifdef CONFIG_NEED_MULTIPLE_NODES
349 for_each_online_node(nid
) {
350 if (NODE_DATA(nid
)->node_spanned_pages
!= 0) {
351 printk("freeing bootmem node %d\n", nid
);
353 free_all_bootmem_node(NODE_DATA(nid
));
358 totalram_pages
+= free_all_bootmem();
360 for_each_online_pgdat(pgdat
) {
361 for (i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
362 if (!pfn_valid(pgdat
->node_start_pfn
+ i
))
364 page
= pgdat_page_nr(pgdat
, i
);
365 if (PageReserved(page
))
370 codesize
= (unsigned long)&_sdata
- (unsigned long)&_stext
;
371 datasize
= (unsigned long)&_edata
- (unsigned long)&_sdata
;
372 initsize
= (unsigned long)&__init_end
- (unsigned long)&__init_begin
;
373 bsssize
= (unsigned long)&__bss_stop
- (unsigned long)&__bss_start
;
375 #ifdef CONFIG_HIGHMEM
377 unsigned long pfn
, highmem_mapnr
;
379 highmem_mapnr
= total_lowmem
>> PAGE_SHIFT
;
380 for (pfn
= highmem_mapnr
; pfn
< max_mapnr
; ++pfn
) {
381 struct page
*page
= pfn_to_page(pfn
);
383 ClearPageReserved(page
);
384 init_page_count(page
);
388 totalram_pages
+= totalhigh_pages
;
389 printk(KERN_DEBUG
"High memory: %luk\n",
390 totalhigh_pages
<< (PAGE_SHIFT
-10));
392 #endif /* CONFIG_HIGHMEM */
394 printk(KERN_INFO
"Memory: %luk/%luk available (%luk kernel code, "
395 "%luk reserved, %luk data, %luk bss, %luk init)\n",
396 (unsigned long)nr_free_pages() << (PAGE_SHIFT
-10),
397 num_physpages
<< (PAGE_SHIFT
-10),
399 reservedpages
<< (PAGE_SHIFT
-10),
408 * This is called when a page has been modified by the kernel.
409 * It just marks the page as not i-cache clean. We do the i-cache
410 * flush later when the page is given to a user process, if necessary.
412 void flush_dcache_page(struct page
*page
)
414 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE
))
416 /* avoid an atomic op if possible */
417 if (test_bit(PG_arch_1
, &page
->flags
))
418 clear_bit(PG_arch_1
, &page
->flags
);
420 EXPORT_SYMBOL(flush_dcache_page
);
422 void flush_dcache_icache_page(struct page
*page
)
425 void *start
= kmap_atomic(page
, KM_PPC_SYNC_ICACHE
);
426 __flush_dcache_icache(start
);
427 kunmap_atomic(start
, KM_PPC_SYNC_ICACHE
);
428 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
429 /* On 8xx there is no need to kmap since highmem is not supported */
430 __flush_dcache_icache(page_address(page
));
432 __flush_dcache_icache_phys(page_to_pfn(page
) << PAGE_SHIFT
);
436 void clear_user_page(void *page
, unsigned long vaddr
, struct page
*pg
)
441 * We shouldnt have to do this, but some versions of glibc
442 * require it (ld.so assumes zero filled pages are icache clean)
445 flush_dcache_page(pg
);
447 EXPORT_SYMBOL(clear_user_page
);
449 void copy_user_page(void *vto
, void *vfrom
, unsigned long vaddr
,
452 copy_page(vto
, vfrom
);
455 * We should be able to use the following optimisation, however
456 * there are two problems.
457 * Firstly a bug in some versions of binutils meant PLT sections
458 * were not marked executable.
459 * Secondly the first word in the GOT section is blrl, used
460 * to establish the GOT address. Until recently the GOT was
461 * not marked executable.
465 if (!vma
->vm_file
&& ((vma
->vm_flags
& VM_EXEC
) == 0))
469 flush_dcache_page(pg
);
472 void flush_icache_user_range(struct vm_area_struct
*vma
, struct page
*page
,
473 unsigned long addr
, int len
)
477 maddr
= (unsigned long) kmap(page
) + (addr
& ~PAGE_MASK
);
478 flush_icache_range(maddr
, maddr
+ len
);
481 EXPORT_SYMBOL(flush_icache_user_range
);
484 * This is called at the end of handling a user page fault, when the
485 * fault has been handled by updating a PTE in the linux page tables.
486 * We use it to preload an HPTE into the hash table corresponding to
487 * the updated linux PTE.
489 * This must always be called with the pte lock held.
491 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
,
494 #ifdef CONFIG_PPC_STD_MMU
495 unsigned long access
= 0, trap
;
497 unsigned long pfn
= pte_pfn(pte
);
499 /* handle i-cache coherency */
500 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE
) &&
501 !cpu_has_feature(CPU_FTR_NOEXECUTE
) &&
503 struct page
*page
= pfn_to_page(pfn
);
505 /* On 8xx, cache control instructions (particularly
506 * "dcbst" from flush_dcache_icache) fault as write
507 * operation if there is an unpopulated TLB entry
508 * for the address in question. To workaround that,
509 * we invalidate the TLB here, thus avoiding dcbst
514 if (!PageReserved(page
)
515 && !test_bit(PG_arch_1
, &page
->flags
)) {
516 if (vma
->vm_mm
== current
->active_mm
) {
517 __flush_dcache_icache((void *) address
);
519 flush_dcache_icache_page(page
);
520 set_bit(PG_arch_1
, &page
->flags
);
524 #ifdef CONFIG_PPC_STD_MMU
525 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
526 if (!pte_young(pte
) || address
>= TASK_SIZE
)
529 /* We try to figure out if we are coming from an instruction
530 * access fault and pass that down to __hash_page so we avoid
531 * double-faulting on execution of fresh text. We have to test
532 * for regs NULL since init will get here first thing at boot
534 * We also avoid filling the hash if not coming from a fault
536 if (current
->thread
.regs
== NULL
)
538 trap
= TRAP(current
->thread
.regs
);
540 access
|= _PAGE_EXEC
;
541 else if (trap
!= 0x300)
543 hash_preload(vma
->vm_mm
, address
, access
, trap
);
544 #endif /* CONFIG_PPC_STD_MMU */