2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
34 #include <asm/system.h>
37 #include "fw-transaction.h"
39 #define DESCRIPTOR_OUTPUT_MORE 0
40 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
41 #define DESCRIPTOR_INPUT_MORE (2 << 12)
42 #define DESCRIPTOR_INPUT_LAST (3 << 12)
43 #define DESCRIPTOR_STATUS (1 << 11)
44 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
45 #define DESCRIPTOR_PING (1 << 7)
46 #define DESCRIPTOR_YY (1 << 6)
47 #define DESCRIPTOR_NO_IRQ (0 << 4)
48 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
49 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
50 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
51 #define DESCRIPTOR_WAIT (3 << 0)
57 __le32 branch_address
;
59 __le16 transfer_status
;
60 } __attribute__((aligned(16)));
62 struct db_descriptor
{
65 __le16 second_req_count
;
66 __le16 first_req_count
;
67 __le32 branch_address
;
68 __le16 second_res_count
;
69 __le16 first_res_count
;
74 } __attribute__((aligned(16)));
76 #define CONTROL_SET(regs) (regs)
77 #define CONTROL_CLEAR(regs) ((regs) + 4)
78 #define COMMAND_PTR(regs) ((regs) + 12)
79 #define CONTEXT_MATCH(regs) ((regs) + 16)
82 struct descriptor descriptor
;
83 struct ar_buffer
*next
;
89 struct ar_buffer
*current_buffer
;
90 struct ar_buffer
*last_buffer
;
93 struct tasklet_struct tasklet
;
98 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
100 struct descriptor
*last
);
103 * A buffer that contains a block of DMA-able coherent memory used for
104 * storing a portion of a DMA descriptor program.
106 struct descriptor_buffer
{
107 struct list_head list
;
108 dma_addr_t buffer_bus
;
111 struct descriptor buffer
[0];
115 struct fw_ohci
*ohci
;
117 int total_allocation
;
120 * List of page-sized buffers for storing DMA descriptors.
121 * Head of list contains buffers in use and tail of list contains
124 struct list_head buffer_list
;
127 * Pointer to a buffer inside buffer_list that contains the tail
128 * end of the current DMA program.
130 struct descriptor_buffer
*buffer_tail
;
133 * The descriptor containing the branch address of the first
134 * descriptor that has not yet been filled by the device.
136 struct descriptor
*last
;
139 * The last descriptor in the DMA program. It contains the branch
140 * address that must be updated upon appending a new descriptor.
142 struct descriptor
*prev
;
144 descriptor_callback_t callback
;
146 struct tasklet_struct tasklet
;
149 #define IT_HEADER_SY(v) ((v) << 0)
150 #define IT_HEADER_TCODE(v) ((v) << 4)
151 #define IT_HEADER_CHANNEL(v) ((v) << 8)
152 #define IT_HEADER_TAG(v) ((v) << 14)
153 #define IT_HEADER_SPEED(v) ((v) << 16)
154 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
157 struct fw_iso_context base
;
158 struct context context
;
161 size_t header_length
;
164 #define CONFIG_ROM_SIZE 1024
170 __iomem
char *registers
;
171 dma_addr_t self_id_bus
;
173 struct tasklet_struct bus_reset_tasklet
;
176 int request_generation
;
180 * Spinlock for accessing fw_ohci data. Never call out of
181 * this driver with this lock held.
184 u32 self_id_buffer
[512];
186 /* Config rom buffers */
188 dma_addr_t config_rom_bus
;
189 __be32
*next_config_rom
;
190 dma_addr_t next_config_rom_bus
;
193 struct ar_context ar_request_ctx
;
194 struct ar_context ar_response_ctx
;
195 struct context at_request_ctx
;
196 struct context at_response_ctx
;
199 struct iso_context
*it_context_list
;
201 struct iso_context
*ir_context_list
;
204 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
206 return container_of(card
, struct fw_ohci
, card
);
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
210 #define IR_CONTEXT_BUFFER_FILL 0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
216 #define CONTEXT_RUN 0x8000
217 #define CONTEXT_WAKE 0x1000
218 #define CONTEXT_DEAD 0x0800
219 #define CONTEXT_ACTIVE 0x0400
221 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
222 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
225 #define FW_OHCI_MAJOR 240
226 #define OHCI1394_REGISTER_SIZE 0x800
227 #define OHCI_LOOP_COUNT 500
228 #define OHCI1394_PCI_HCI_Control 0x40
229 #define SELF_ID_BUF_SIZE 0x800
230 #define OHCI_TCODE_PHY_PACKET 0x0e
231 #define OHCI_VERSION_1_1 0x010010
233 static char ohci_driver_name
[] = KBUILD_MODNAME
;
235 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
237 writel(data
, ohci
->registers
+ offset
);
240 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
242 return readl(ohci
->registers
+ offset
);
245 static inline void flush_writes(const struct fw_ohci
*ohci
)
247 /* Do a dummy read to flush writes. */
248 reg_read(ohci
, OHCI1394_Version
);
252 ohci_update_phy_reg(struct fw_card
*card
, int addr
,
253 int clear_bits
, int set_bits
)
255 struct fw_ohci
*ohci
= fw_ohci(card
);
258 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
261 val
= reg_read(ohci
, OHCI1394_PhyControl
);
262 if ((val
& OHCI1394_PhyControl_ReadDone
) == 0) {
263 fw_error("failed to set phy reg bits.\n");
267 old
= OHCI1394_PhyControl_ReadData(val
);
268 old
= (old
& ~clear_bits
) | set_bits
;
269 reg_write(ohci
, OHCI1394_PhyControl
,
270 OHCI1394_PhyControl_Write(addr
, old
));
275 static int ar_context_add_page(struct ar_context
*ctx
)
277 struct device
*dev
= ctx
->ohci
->card
.device
;
278 struct ar_buffer
*ab
;
282 ab
= (struct ar_buffer
*) __get_free_page(GFP_ATOMIC
);
286 ab_bus
= dma_map_single(dev
, ab
, PAGE_SIZE
, DMA_BIDIRECTIONAL
);
287 if (dma_mapping_error(ab_bus
)) {
288 free_page((unsigned long) ab
);
292 memset(&ab
->descriptor
, 0, sizeof(ab
->descriptor
));
293 ab
->descriptor
.control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
295 DESCRIPTOR_BRANCH_ALWAYS
);
296 offset
= offsetof(struct ar_buffer
, data
);
297 ab
->descriptor
.req_count
= cpu_to_le16(PAGE_SIZE
- offset
);
298 ab
->descriptor
.data_address
= cpu_to_le32(ab_bus
+ offset
);
299 ab
->descriptor
.res_count
= cpu_to_le16(PAGE_SIZE
- offset
);
300 ab
->descriptor
.branch_address
= 0;
302 dma_sync_single_for_device(dev
, ab_bus
, PAGE_SIZE
, DMA_BIDIRECTIONAL
);
304 ctx
->last_buffer
->descriptor
.branch_address
= cpu_to_le32(ab_bus
| 1);
305 ctx
->last_buffer
->next
= ab
;
306 ctx
->last_buffer
= ab
;
308 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
309 flush_writes(ctx
->ohci
);
314 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
316 struct fw_ohci
*ohci
= ctx
->ohci
;
318 u32 status
, length
, tcode
;
320 p
.header
[0] = le32_to_cpu(buffer
[0]);
321 p
.header
[1] = le32_to_cpu(buffer
[1]);
322 p
.header
[2] = le32_to_cpu(buffer
[2]);
324 tcode
= (p
.header
[0] >> 4) & 0x0f;
326 case TCODE_WRITE_QUADLET_REQUEST
:
327 case TCODE_READ_QUADLET_RESPONSE
:
328 p
.header
[3] = (__force __u32
) buffer
[3];
329 p
.header_length
= 16;
330 p
.payload_length
= 0;
333 case TCODE_READ_BLOCK_REQUEST
:
334 p
.header
[3] = le32_to_cpu(buffer
[3]);
335 p
.header_length
= 16;
336 p
.payload_length
= 0;
339 case TCODE_WRITE_BLOCK_REQUEST
:
340 case TCODE_READ_BLOCK_RESPONSE
:
341 case TCODE_LOCK_REQUEST
:
342 case TCODE_LOCK_RESPONSE
:
343 p
.header
[3] = le32_to_cpu(buffer
[3]);
344 p
.header_length
= 16;
345 p
.payload_length
= p
.header
[3] >> 16;
348 case TCODE_WRITE_RESPONSE
:
349 case TCODE_READ_QUADLET_REQUEST
:
350 case OHCI_TCODE_PHY_PACKET
:
351 p
.header_length
= 12;
352 p
.payload_length
= 0;
356 p
.payload
= (void *) buffer
+ p
.header_length
;
358 /* FIXME: What to do about evt_* errors? */
359 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
360 status
= le32_to_cpu(buffer
[length
]);
362 p
.ack
= ((status
>> 16) & 0x1f) - 16;
363 p
.speed
= (status
>> 21) & 0x7;
364 p
.timestamp
= status
& 0xffff;
365 p
.generation
= ohci
->request_generation
;
368 * The OHCI bus reset handler synthesizes a phy packet with
369 * the new generation number when a bus reset happens (see
370 * section 8.4.2.3). This helps us determine when a request
371 * was received and make sure we send the response in the same
372 * generation. We only need this for requests; for responses
373 * we use the unique tlabel for finding the matching
377 if (p
.ack
+ 16 == 0x09)
378 ohci
->request_generation
= (buffer
[2] >> 16) & 0xff;
379 else if (ctx
== &ohci
->ar_request_ctx
)
380 fw_core_handle_request(&ohci
->card
, &p
);
382 fw_core_handle_response(&ohci
->card
, &p
);
384 return buffer
+ length
+ 1;
387 static void ar_context_tasklet(unsigned long data
)
389 struct ar_context
*ctx
= (struct ar_context
*)data
;
390 struct fw_ohci
*ohci
= ctx
->ohci
;
391 struct ar_buffer
*ab
;
392 struct descriptor
*d
;
395 ab
= ctx
->current_buffer
;
398 if (d
->res_count
== 0) {
399 size_t size
, rest
, offset
;
402 * This descriptor is finished and we may have a
403 * packet split across this and the next buffer. We
404 * reuse the page for reassembling the split packet.
407 offset
= offsetof(struct ar_buffer
, data
);
408 dma_unmap_single(ohci
->card
.device
,
409 le32_to_cpu(ab
->descriptor
.data_address
) - offset
,
410 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
415 size
= buffer
+ PAGE_SIZE
- ctx
->pointer
;
416 rest
= le16_to_cpu(d
->req_count
) - le16_to_cpu(d
->res_count
);
417 memmove(buffer
, ctx
->pointer
, size
);
418 memcpy(buffer
+ size
, ab
->data
, rest
);
419 ctx
->current_buffer
= ab
;
420 ctx
->pointer
= (void *) ab
->data
+ rest
;
421 end
= buffer
+ size
+ rest
;
424 buffer
= handle_ar_packet(ctx
, buffer
);
426 free_page((unsigned long)buffer
);
427 ar_context_add_page(ctx
);
429 buffer
= ctx
->pointer
;
431 (void *) ab
+ PAGE_SIZE
- le16_to_cpu(d
->res_count
);
434 buffer
= handle_ar_packet(ctx
, buffer
);
439 ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
, u32 regs
)
445 ctx
->last_buffer
= &ab
;
446 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
448 ar_context_add_page(ctx
);
449 ar_context_add_page(ctx
);
450 ctx
->current_buffer
= ab
.next
;
451 ctx
->pointer
= ctx
->current_buffer
->data
;
456 static void ar_context_run(struct ar_context
*ctx
)
458 struct ar_buffer
*ab
= ctx
->current_buffer
;
462 offset
= offsetof(struct ar_buffer
, data
);
463 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
465 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ab_bus
| 1);
466 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
467 flush_writes(ctx
->ohci
);
470 static struct descriptor
*
471 find_branch_descriptor(struct descriptor
*d
, int z
)
475 b
= (le16_to_cpu(d
->control
) & DESCRIPTOR_BRANCH_ALWAYS
) >> 2;
476 key
= (le16_to_cpu(d
->control
) & DESCRIPTOR_KEY_IMMEDIATE
) >> 8;
478 /* figure out which descriptor the branch address goes in */
479 if (z
== 2 && (b
== 3 || key
== 2))
485 static void context_tasklet(unsigned long data
)
487 struct context
*ctx
= (struct context
*) data
;
488 struct descriptor
*d
, *last
;
491 struct descriptor_buffer
*desc
;
493 desc
= list_entry(ctx
->buffer_list
.next
,
494 struct descriptor_buffer
, list
);
496 while (last
->branch_address
!= 0) {
497 struct descriptor_buffer
*old_desc
= desc
;
498 address
= le32_to_cpu(last
->branch_address
);
502 /* If the branch address points to a buffer outside of the
503 * current buffer, advance to the next buffer. */
504 if (address
< desc
->buffer_bus
||
505 address
>= desc
->buffer_bus
+ desc
->used
)
506 desc
= list_entry(desc
->list
.next
,
507 struct descriptor_buffer
, list
);
508 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
509 last
= find_branch_descriptor(d
, z
);
511 if (!ctx
->callback(ctx
, d
, last
))
514 if (old_desc
!= desc
) {
515 /* If we've advanced to the next buffer, move the
516 * previous buffer to the free list. */
519 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
520 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
521 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
528 * Allocate a new buffer and add it to the list of free buffers for this
529 * context. Must be called with ohci->lock held.
532 context_add_buffer(struct context
*ctx
)
534 struct descriptor_buffer
*desc
;
539 * 16MB of descriptors should be far more than enough for any DMA
540 * program. This will catch run-away userspace or DoS attacks.
542 if (ctx
->total_allocation
>= 16*1024*1024)
545 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
546 &bus_addr
, GFP_ATOMIC
);
550 offset
= (void *)&desc
->buffer
- (void *)desc
;
551 desc
->buffer_size
= PAGE_SIZE
- offset
;
552 desc
->buffer_bus
= bus_addr
+ offset
;
555 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
556 ctx
->total_allocation
+= PAGE_SIZE
;
562 context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
563 u32 regs
, descriptor_callback_t callback
)
567 ctx
->total_allocation
= 0;
569 INIT_LIST_HEAD(&ctx
->buffer_list
);
570 if (context_add_buffer(ctx
) < 0)
573 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
574 struct descriptor_buffer
, list
);
576 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
577 ctx
->callback
= callback
;
580 * We put a dummy descriptor in the buffer that has a NULL
581 * branch address and looks like it's been sent. That way we
582 * have a descriptor to append DMA programs to.
584 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
585 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
586 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
587 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
588 ctx
->last
= ctx
->buffer_tail
->buffer
;
589 ctx
->prev
= ctx
->buffer_tail
->buffer
;
595 context_release(struct context
*ctx
)
597 struct fw_card
*card
= &ctx
->ohci
->card
;
598 struct descriptor_buffer
*desc
, *tmp
;
600 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
601 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
603 ((void *)&desc
->buffer
- (void *)desc
));
606 /* Must be called with ohci->lock held */
607 static struct descriptor
*
608 context_get_descriptors(struct context
*ctx
, int z
, dma_addr_t
*d_bus
)
610 struct descriptor
*d
= NULL
;
611 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
613 if (z
* sizeof(*d
) > desc
->buffer_size
)
616 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
617 /* No room for the descriptor in this buffer, so advance to the
620 if (desc
->list
.next
== &ctx
->buffer_list
) {
621 /* If there is no free buffer next in the list,
623 if (context_add_buffer(ctx
) < 0)
626 desc
= list_entry(desc
->list
.next
,
627 struct descriptor_buffer
, list
);
628 ctx
->buffer_tail
= desc
;
631 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
632 memset(d
, 0, z
* sizeof(*d
));
633 *d_bus
= desc
->buffer_bus
+ desc
->used
;
638 static void context_run(struct context
*ctx
, u32 extra
)
640 struct fw_ohci
*ohci
= ctx
->ohci
;
642 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
643 le32_to_cpu(ctx
->last
->branch_address
));
644 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
645 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
649 static void context_append(struct context
*ctx
,
650 struct descriptor
*d
, int z
, int extra
)
653 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
655 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
657 desc
->used
+= (z
+ extra
) * sizeof(*d
);
658 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
659 ctx
->prev
= find_branch_descriptor(d
, z
);
661 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
662 flush_writes(ctx
->ohci
);
665 static void context_stop(struct context
*ctx
)
670 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
671 flush_writes(ctx
->ohci
);
673 for (i
= 0; i
< 10; i
++) {
674 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
675 if ((reg
& CONTEXT_ACTIVE
) == 0)
678 fw_notify("context_stop: still active (0x%08x)\n", reg
);
684 struct fw_packet
*packet
;
688 * This function apppends a packet to the DMA queue for transmission.
689 * Must always be called with the ochi->lock held to ensure proper
690 * generation handling and locking around packet queue manipulation.
693 at_context_queue_packet(struct context
*ctx
, struct fw_packet
*packet
)
695 struct fw_ohci
*ohci
= ctx
->ohci
;
696 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
697 struct driver_data
*driver_data
;
698 struct descriptor
*d
, *last
;
703 d
= context_get_descriptors(ctx
, 4, &d_bus
);
705 packet
->ack
= RCODE_SEND_ERROR
;
709 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
710 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
713 * The DMA format for asyncronous link packets is different
714 * from the IEEE1394 layout, so shift the fields around
715 * accordingly. If header_length is 8, it's a PHY packet, to
716 * which we need to prepend an extra quadlet.
719 header
= (__le32
*) &d
[1];
720 if (packet
->header_length
> 8) {
721 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
722 (packet
->speed
<< 16));
723 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
724 (packet
->header
[0] & 0xffff0000));
725 header
[2] = cpu_to_le32(packet
->header
[2]);
727 tcode
= (packet
->header
[0] >> 4) & 0x0f;
728 if (TCODE_IS_BLOCK_PACKET(tcode
))
729 header
[3] = cpu_to_le32(packet
->header
[3]);
731 header
[3] = (__force __le32
) packet
->header
[3];
733 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
735 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
736 (packet
->speed
<< 16));
737 header
[1] = cpu_to_le32(packet
->header
[0]);
738 header
[2] = cpu_to_le32(packet
->header
[1]);
739 d
[0].req_count
= cpu_to_le16(12);
742 driver_data
= (struct driver_data
*) &d
[3];
743 driver_data
->packet
= packet
;
744 packet
->driver_data
= driver_data
;
746 if (packet
->payload_length
> 0) {
748 dma_map_single(ohci
->card
.device
, packet
->payload
,
749 packet
->payload_length
, DMA_TO_DEVICE
);
750 if (dma_mapping_error(payload_bus
)) {
751 packet
->ack
= RCODE_SEND_ERROR
;
755 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
756 d
[2].data_address
= cpu_to_le32(payload_bus
);
764 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
765 DESCRIPTOR_IRQ_ALWAYS
|
766 DESCRIPTOR_BRANCH_ALWAYS
);
768 /* FIXME: Document how the locking works. */
769 if (ohci
->generation
!= packet
->generation
) {
770 if (packet
->payload_length
> 0)
771 dma_unmap_single(ohci
->card
.device
, payload_bus
,
772 packet
->payload_length
, DMA_TO_DEVICE
);
773 packet
->ack
= RCODE_GENERATION
;
777 context_append(ctx
, d
, z
, 4 - z
);
779 /* If the context isn't already running, start it up. */
780 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
781 if ((reg
& CONTEXT_RUN
) == 0)
787 static int handle_at_packet(struct context
*context
,
788 struct descriptor
*d
,
789 struct descriptor
*last
)
791 struct driver_data
*driver_data
;
792 struct fw_packet
*packet
;
793 struct fw_ohci
*ohci
= context
->ohci
;
794 dma_addr_t payload_bus
;
797 if (last
->transfer_status
== 0)
798 /* This descriptor isn't done yet, stop iteration. */
801 driver_data
= (struct driver_data
*) &d
[3];
802 packet
= driver_data
->packet
;
804 /* This packet was cancelled, just continue. */
807 payload_bus
= le32_to_cpu(last
->data_address
);
808 if (payload_bus
!= 0)
809 dma_unmap_single(ohci
->card
.device
, payload_bus
,
810 packet
->payload_length
, DMA_TO_DEVICE
);
812 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
813 packet
->timestamp
= le16_to_cpu(last
->res_count
);
816 case OHCI1394_evt_timeout
:
817 /* Async response transmit timed out. */
818 packet
->ack
= RCODE_CANCELLED
;
821 case OHCI1394_evt_flushed
:
823 * The packet was flushed should give same error as
824 * when we try to use a stale generation count.
826 packet
->ack
= RCODE_GENERATION
;
829 case OHCI1394_evt_missing_ack
:
831 * Using a valid (current) generation count, but the
832 * node is not on the bus or not sending acks.
834 packet
->ack
= RCODE_NO_ACK
;
837 case ACK_COMPLETE
+ 0x10:
838 case ACK_PENDING
+ 0x10:
839 case ACK_BUSY_X
+ 0x10:
840 case ACK_BUSY_A
+ 0x10:
841 case ACK_BUSY_B
+ 0x10:
842 case ACK_DATA_ERROR
+ 0x10:
843 case ACK_TYPE_ERROR
+ 0x10:
844 packet
->ack
= evt
- 0x10;
848 packet
->ack
= RCODE_SEND_ERROR
;
852 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
857 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
858 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
859 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
860 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
861 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
864 handle_local_rom(struct fw_ohci
*ohci
, struct fw_packet
*packet
, u32 csr
)
866 struct fw_packet response
;
867 int tcode
, length
, i
;
869 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
870 if (TCODE_IS_BLOCK_PACKET(tcode
))
871 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
875 i
= csr
- CSR_CONFIG_ROM
;
876 if (i
+ length
> CONFIG_ROM_SIZE
) {
877 fw_fill_response(&response
, packet
->header
,
878 RCODE_ADDRESS_ERROR
, NULL
, 0);
879 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
880 fw_fill_response(&response
, packet
->header
,
881 RCODE_TYPE_ERROR
, NULL
, 0);
883 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
884 (void *) ohci
->config_rom
+ i
, length
);
887 fw_core_handle_response(&ohci
->card
, &response
);
891 handle_local_lock(struct fw_ohci
*ohci
, struct fw_packet
*packet
, u32 csr
)
893 struct fw_packet response
;
894 int tcode
, length
, ext_tcode
, sel
;
895 __be32
*payload
, lock_old
;
896 u32 lock_arg
, lock_data
;
898 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
899 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
900 payload
= packet
->payload
;
901 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
903 if (tcode
== TCODE_LOCK_REQUEST
&&
904 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
905 lock_arg
= be32_to_cpu(payload
[0]);
906 lock_data
= be32_to_cpu(payload
[1]);
907 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
911 fw_fill_response(&response
, packet
->header
,
912 RCODE_TYPE_ERROR
, NULL
, 0);
916 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
917 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
918 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
919 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
921 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000)
922 lock_old
= cpu_to_be32(reg_read(ohci
, OHCI1394_CSRData
));
924 fw_notify("swap not done yet\n");
926 fw_fill_response(&response
, packet
->header
,
927 RCODE_COMPLETE
, &lock_old
, sizeof(lock_old
));
929 fw_core_handle_response(&ohci
->card
, &response
);
933 handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
938 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
939 packet
->ack
= ACK_PENDING
;
940 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
944 ((unsigned long long)
945 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
947 csr
= offset
- CSR_REGISTER_BASE
;
949 /* Handle config rom reads. */
950 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
951 handle_local_rom(ctx
->ohci
, packet
, csr
);
953 case CSR_BUS_MANAGER_ID
:
954 case CSR_BANDWIDTH_AVAILABLE
:
955 case CSR_CHANNELS_AVAILABLE_HI
:
956 case CSR_CHANNELS_AVAILABLE_LO
:
957 handle_local_lock(ctx
->ohci
, packet
, csr
);
960 if (ctx
== &ctx
->ohci
->at_request_ctx
)
961 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
963 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
967 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
968 packet
->ack
= ACK_COMPLETE
;
969 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
974 at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
979 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
981 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
982 ctx
->ohci
->generation
== packet
->generation
) {
983 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
984 handle_local_request(ctx
, packet
);
988 retval
= at_context_queue_packet(ctx
, packet
);
989 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
992 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
996 static void bus_reset_tasklet(unsigned long data
)
998 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
999 int self_id_count
, i
, j
, reg
;
1000 int generation
, new_generation
;
1001 unsigned long flags
;
1002 void *free_rom
= NULL
;
1003 dma_addr_t free_rom_bus
= 0;
1005 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1006 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1007 fw_notify("node ID not valid, new bus reset in progress\n");
1010 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1011 fw_notify("malconfigured bus\n");
1014 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1015 OHCI1394_NodeID_nodeNumber
);
1018 * The count in the SelfIDCount register is the number of
1019 * bytes in the self ID receive buffer. Since we also receive
1020 * the inverted quadlets and a header quadlet, we shift one
1021 * bit extra to get the actual number of self IDs.
1024 self_id_count
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 3) & 0x3ff;
1025 generation
= (le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1028 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1029 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1])
1030 fw_error("inconsistent self IDs\n");
1031 ohci
->self_id_buffer
[j
] = le32_to_cpu(ohci
->self_id_cpu
[i
]);
1036 * Check the consistency of the self IDs we just read. The
1037 * problem we face is that a new bus reset can start while we
1038 * read out the self IDs from the DMA buffer. If this happens,
1039 * the DMA buffer will be overwritten with new self IDs and we
1040 * will read out inconsistent data. The OHCI specification
1041 * (section 11.2) recommends a technique similar to
1042 * linux/seqlock.h, where we remember the generation of the
1043 * self IDs in the buffer before reading them out and compare
1044 * it to the current generation after reading them out. If
1045 * the two generations match we know we have a consistent set
1049 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1050 if (new_generation
!= generation
) {
1051 fw_notify("recursive bus reset detected, "
1052 "discarding self ids\n");
1056 /* FIXME: Document how the locking works. */
1057 spin_lock_irqsave(&ohci
->lock
, flags
);
1059 ohci
->generation
= generation
;
1060 context_stop(&ohci
->at_request_ctx
);
1061 context_stop(&ohci
->at_response_ctx
);
1062 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1065 * This next bit is unrelated to the AT context stuff but we
1066 * have to do it under the spinlock also. If a new config rom
1067 * was set up before this reset, the old one is now no longer
1068 * in use and we can free it. Update the config rom pointers
1069 * to point to the current config rom and clear the
1070 * next_config_rom pointer so a new udpate can take place.
1073 if (ohci
->next_config_rom
!= NULL
) {
1074 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1075 free_rom
= ohci
->config_rom
;
1076 free_rom_bus
= ohci
->config_rom_bus
;
1078 ohci
->config_rom
= ohci
->next_config_rom
;
1079 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1080 ohci
->next_config_rom
= NULL
;
1083 * Restore config_rom image and manually update
1084 * config_rom registers. Writing the header quadlet
1085 * will indicate that the config rom is ready, so we
1088 reg_write(ohci
, OHCI1394_BusOptions
,
1089 be32_to_cpu(ohci
->config_rom
[2]));
1090 ohci
->config_rom
[0] = cpu_to_be32(ohci
->next_header
);
1091 reg_write(ohci
, OHCI1394_ConfigROMhdr
, ohci
->next_header
);
1094 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1097 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1098 free_rom
, free_rom_bus
);
1100 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
1101 self_id_count
, ohci
->self_id_buffer
);
1104 static irqreturn_t
irq_handler(int irq
, void *data
)
1106 struct fw_ohci
*ohci
= data
;
1107 u32 event
, iso_event
, cycle_time
;
1110 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
1112 if (!event
|| !~event
)
1115 reg_write(ohci
, OHCI1394_IntEventClear
, event
);
1117 if (event
& OHCI1394_selfIDComplete
)
1118 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1120 if (event
& OHCI1394_RQPkt
)
1121 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1123 if (event
& OHCI1394_RSPkt
)
1124 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1126 if (event
& OHCI1394_reqTxComplete
)
1127 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1129 if (event
& OHCI1394_respTxComplete
)
1130 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1132 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1133 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1136 i
= ffs(iso_event
) - 1;
1137 tasklet_schedule(&ohci
->ir_context_list
[i
].context
.tasklet
);
1138 iso_event
&= ~(1 << i
);
1141 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1142 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1145 i
= ffs(iso_event
) - 1;
1146 tasklet_schedule(&ohci
->it_context_list
[i
].context
.tasklet
);
1147 iso_event
&= ~(1 << i
);
1150 if (unlikely(event
& OHCI1394_postedWriteErr
))
1151 fw_error("PCI posted write error\n");
1153 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
1154 if (printk_ratelimit())
1155 fw_notify("isochronous cycle too long\n");
1156 reg_write(ohci
, OHCI1394_LinkControlSet
,
1157 OHCI1394_LinkControl_cycleMaster
);
1160 if (event
& OHCI1394_cycle64Seconds
) {
1161 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1162 if ((cycle_time
& 0x80000000) == 0)
1163 ohci
->bus_seconds
++;
1169 static int software_reset(struct fw_ohci
*ohci
)
1173 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1175 for (i
= 0; i
< OHCI_LOOP_COUNT
; i
++) {
1176 if ((reg_read(ohci
, OHCI1394_HCControlSet
) &
1177 OHCI1394_HCControl_softReset
) == 0)
1185 static int ohci_enable(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1187 struct fw_ohci
*ohci
= fw_ohci(card
);
1188 struct pci_dev
*dev
= to_pci_dev(card
->device
);
1190 if (software_reset(ohci
)) {
1191 fw_error("Failed to reset ohci card.\n");
1196 * Now enable LPS, which we need in order to start accessing
1197 * most of the registers. In fact, on some cards (ALI M5251),
1198 * accessing registers in the SClk domain without LPS enabled
1199 * will lock up the machine. Wait 50msec to make sure we have
1200 * full link enabled.
1202 reg_write(ohci
, OHCI1394_HCControlSet
,
1203 OHCI1394_HCControl_LPS
|
1204 OHCI1394_HCControl_postedWriteEnable
);
1208 reg_write(ohci
, OHCI1394_HCControlClear
,
1209 OHCI1394_HCControl_noByteSwapData
);
1211 reg_write(ohci
, OHCI1394_LinkControlSet
,
1212 OHCI1394_LinkControl_rcvSelfID
|
1213 OHCI1394_LinkControl_cycleTimerEnable
|
1214 OHCI1394_LinkControl_cycleMaster
);
1216 reg_write(ohci
, OHCI1394_ATRetries
,
1217 OHCI1394_MAX_AT_REQ_RETRIES
|
1218 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
1219 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8));
1221 ar_context_run(&ohci
->ar_request_ctx
);
1222 ar_context_run(&ohci
->ar_response_ctx
);
1224 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
1225 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
1226 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
1227 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
1228 reg_write(ohci
, OHCI1394_IntMaskSet
,
1229 OHCI1394_selfIDComplete
|
1230 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
1231 OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
1232 OHCI1394_isochRx
| OHCI1394_isochTx
|
1233 OHCI1394_postedWriteErr
| OHCI1394_cycleTooLong
|
1234 OHCI1394_cycle64Seconds
| OHCI1394_masterIntEnable
);
1236 /* Activate link_on bit and contender bit in our self ID packets.*/
1237 if (ohci_update_phy_reg(card
, 4, 0,
1238 PHY_LINK_ACTIVE
| PHY_CONTENDER
) < 0)
1242 * When the link is not yet enabled, the atomic config rom
1243 * update mechanism described below in ohci_set_config_rom()
1244 * is not active. We have to update ConfigRomHeader and
1245 * BusOptions manually, and the write to ConfigROMmap takes
1246 * effect immediately. We tie this to the enabling of the
1247 * link, so we have a valid config rom before enabling - the
1248 * OHCI requires that ConfigROMhdr and BusOptions have valid
1249 * values before enabling.
1251 * However, when the ConfigROMmap is written, some controllers
1252 * always read back quadlets 0 and 2 from the config rom to
1253 * the ConfigRomHeader and BusOptions registers on bus reset.
1254 * They shouldn't do that in this initial case where the link
1255 * isn't enabled. This means we have to use the same
1256 * workaround here, setting the bus header to 0 and then write
1257 * the right values in the bus reset tasklet.
1261 ohci
->next_config_rom
=
1262 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1263 &ohci
->next_config_rom_bus
,
1265 if (ohci
->next_config_rom
== NULL
)
1268 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1269 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
, length
* 4);
1272 * In the suspend case, config_rom is NULL, which
1273 * means that we just reuse the old config rom.
1275 ohci
->next_config_rom
= ohci
->config_rom
;
1276 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
1279 ohci
->next_header
= be32_to_cpu(ohci
->next_config_rom
[0]);
1280 ohci
->next_config_rom
[0] = 0;
1281 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
1282 reg_write(ohci
, OHCI1394_BusOptions
,
1283 be32_to_cpu(ohci
->next_config_rom
[2]));
1284 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
1286 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
1288 if (request_irq(dev
->irq
, irq_handler
,
1289 IRQF_SHARED
, ohci_driver_name
, ohci
)) {
1290 fw_error("Failed to allocate shared interrupt %d.\n",
1292 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1293 ohci
->config_rom
, ohci
->config_rom_bus
);
1297 reg_write(ohci
, OHCI1394_HCControlSet
,
1298 OHCI1394_HCControl_linkEnable
|
1299 OHCI1394_HCControl_BIBimageValid
);
1303 * We are ready to go, initiate bus reset to finish the
1307 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1313 ohci_set_config_rom(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1315 struct fw_ohci
*ohci
;
1316 unsigned long flags
;
1317 int retval
= -EBUSY
;
1318 __be32
*next_config_rom
;
1319 dma_addr_t next_config_rom_bus
;
1321 ohci
= fw_ohci(card
);
1324 * When the OHCI controller is enabled, the config rom update
1325 * mechanism is a bit tricky, but easy enough to use. See
1326 * section 5.5.6 in the OHCI specification.
1328 * The OHCI controller caches the new config rom address in a
1329 * shadow register (ConfigROMmapNext) and needs a bus reset
1330 * for the changes to take place. When the bus reset is
1331 * detected, the controller loads the new values for the
1332 * ConfigRomHeader and BusOptions registers from the specified
1333 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1334 * shadow register. All automatically and atomically.
1336 * Now, there's a twist to this story. The automatic load of
1337 * ConfigRomHeader and BusOptions doesn't honor the
1338 * noByteSwapData bit, so with a be32 config rom, the
1339 * controller will load be32 values in to these registers
1340 * during the atomic update, even on litte endian
1341 * architectures. The workaround we use is to put a 0 in the
1342 * header quadlet; 0 is endian agnostic and means that the
1343 * config rom isn't ready yet. In the bus reset tasklet we
1344 * then set up the real values for the two registers.
1346 * We use ohci->lock to avoid racing with the code that sets
1347 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1351 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1352 &next_config_rom_bus
, GFP_KERNEL
);
1353 if (next_config_rom
== NULL
)
1356 spin_lock_irqsave(&ohci
->lock
, flags
);
1358 if (ohci
->next_config_rom
== NULL
) {
1359 ohci
->next_config_rom
= next_config_rom
;
1360 ohci
->next_config_rom_bus
= next_config_rom_bus
;
1362 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1363 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
,
1366 ohci
->next_header
= config_rom
[0];
1367 ohci
->next_config_rom
[0] = 0;
1369 reg_write(ohci
, OHCI1394_ConfigROMmap
,
1370 ohci
->next_config_rom_bus
);
1374 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1377 * Now initiate a bus reset to have the changes take
1378 * effect. We clean up the old config rom memory and DMA
1379 * mappings in the bus reset tasklet, since the OHCI
1380 * controller could need to access it before the bus reset
1384 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1386 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1387 next_config_rom
, next_config_rom_bus
);
1392 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
1394 struct fw_ohci
*ohci
= fw_ohci(card
);
1396 at_context_transmit(&ohci
->at_request_ctx
, packet
);
1399 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
1401 struct fw_ohci
*ohci
= fw_ohci(card
);
1403 at_context_transmit(&ohci
->at_response_ctx
, packet
);
1406 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
1408 struct fw_ohci
*ohci
= fw_ohci(card
);
1409 struct context
*ctx
= &ohci
->at_request_ctx
;
1410 struct driver_data
*driver_data
= packet
->driver_data
;
1411 int retval
= -ENOENT
;
1413 tasklet_disable(&ctx
->tasklet
);
1415 if (packet
->ack
!= 0)
1418 driver_data
->packet
= NULL
;
1419 packet
->ack
= RCODE_CANCELLED
;
1420 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1424 tasklet_enable(&ctx
->tasklet
);
1430 ohci_enable_phys_dma(struct fw_card
*card
, int node_id
, int generation
)
1432 struct fw_ohci
*ohci
= fw_ohci(card
);
1433 unsigned long flags
;
1437 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1438 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1441 spin_lock_irqsave(&ohci
->lock
, flags
);
1443 if (ohci
->generation
!= generation
) {
1449 * Note, if the node ID contains a non-local bus ID, physical DMA is
1450 * enabled for _all_ nodes on remote buses.
1453 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
1455 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
1457 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
1461 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1466 ohci_get_bus_time(struct fw_card
*card
)
1468 struct fw_ohci
*ohci
= fw_ohci(card
);
1472 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1473 bus_time
= ((u64
) ohci
->bus_seconds
<< 32) | cycle_time
;
1478 static int handle_ir_dualbuffer_packet(struct context
*context
,
1479 struct descriptor
*d
,
1480 struct descriptor
*last
)
1482 struct iso_context
*ctx
=
1483 container_of(context
, struct iso_context
, context
);
1484 struct db_descriptor
*db
= (struct db_descriptor
*) d
;
1486 size_t header_length
;
1490 if (db
->first_res_count
> 0 && db
->second_res_count
> 0) {
1491 if (ctx
->excess_bytes
<= le16_to_cpu(db
->second_req_count
)) {
1492 /* This descriptor isn't done yet, stop iteration. */
1495 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
);
1498 header_length
= le16_to_cpu(db
->first_req_count
) -
1499 le16_to_cpu(db
->first_res_count
);
1501 i
= ctx
->header_length
;
1503 end
= p
+ header_length
;
1504 while (p
< end
&& i
+ ctx
->base
.header_size
<= PAGE_SIZE
) {
1506 * The iso header is byteswapped to little endian by
1507 * the controller, but the remaining header quadlets
1508 * are big endian. We want to present all the headers
1509 * as big endian, so we have to swap the first
1512 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1513 memcpy(ctx
->header
+ i
+ 4, p
+ 8, ctx
->base
.header_size
- 4);
1514 i
+= ctx
->base
.header_size
;
1515 ctx
->excess_bytes
+=
1516 (le32_to_cpu(*(u32
*)(p
+ 4)) >> 16) & 0xffff;
1517 p
+= ctx
->base
.header_size
+ 4;
1519 ctx
->header_length
= i
;
1521 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
) -
1522 le16_to_cpu(db
->second_res_count
);
1524 if (le16_to_cpu(db
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1525 ir_header
= (__le32
*) (db
+ 1);
1526 ctx
->base
.callback(&ctx
->base
,
1527 le32_to_cpu(ir_header
[0]) & 0xffff,
1528 ctx
->header_length
, ctx
->header
,
1529 ctx
->base
.callback_data
);
1530 ctx
->header_length
= 0;
1536 static int handle_ir_packet_per_buffer(struct context
*context
,
1537 struct descriptor
*d
,
1538 struct descriptor
*last
)
1540 struct iso_context
*ctx
=
1541 container_of(context
, struct iso_context
, context
);
1542 struct descriptor
*pd
;
1547 for (pd
= d
; pd
<= last
; pd
++) {
1548 if (pd
->transfer_status
)
1552 /* Descriptor(s) not done yet, stop iteration */
1555 i
= ctx
->header_length
;
1558 if (ctx
->base
.header_size
> 0 &&
1559 i
+ ctx
->base
.header_size
<= PAGE_SIZE
) {
1561 * The iso header is byteswapped to little endian by
1562 * the controller, but the remaining header quadlets
1563 * are big endian. We want to present all the headers
1564 * as big endian, so we have to swap the first quadlet.
1566 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1567 memcpy(ctx
->header
+ i
+ 4, p
+ 8, ctx
->base
.header_size
- 4);
1568 ctx
->header_length
+= ctx
->base
.header_size
;
1571 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1572 ir_header
= (__le32
*) p
;
1573 ctx
->base
.callback(&ctx
->base
,
1574 le32_to_cpu(ir_header
[0]) & 0xffff,
1575 ctx
->header_length
, ctx
->header
,
1576 ctx
->base
.callback_data
);
1577 ctx
->header_length
= 0;
1583 static int handle_it_packet(struct context
*context
,
1584 struct descriptor
*d
,
1585 struct descriptor
*last
)
1587 struct iso_context
*ctx
=
1588 container_of(context
, struct iso_context
, context
);
1590 if (last
->transfer_status
== 0)
1591 /* This descriptor isn't done yet, stop iteration. */
1594 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
)
1595 ctx
->base
.callback(&ctx
->base
, le16_to_cpu(last
->res_count
),
1596 0, NULL
, ctx
->base
.callback_data
);
1601 static struct fw_iso_context
*
1602 ohci_allocate_iso_context(struct fw_card
*card
, int type
, size_t header_size
)
1604 struct fw_ohci
*ohci
= fw_ohci(card
);
1605 struct iso_context
*ctx
, *list
;
1606 descriptor_callback_t callback
;
1608 unsigned long flags
;
1609 int index
, retval
= -ENOMEM
;
1611 if (type
== FW_ISO_CONTEXT_TRANSMIT
) {
1612 mask
= &ohci
->it_context_mask
;
1613 list
= ohci
->it_context_list
;
1614 callback
= handle_it_packet
;
1616 mask
= &ohci
->ir_context_mask
;
1617 list
= ohci
->ir_context_list
;
1618 if (ohci
->version
>= OHCI_VERSION_1_1
)
1619 callback
= handle_ir_dualbuffer_packet
;
1621 callback
= handle_ir_packet_per_buffer
;
1624 spin_lock_irqsave(&ohci
->lock
, flags
);
1625 index
= ffs(*mask
) - 1;
1627 *mask
&= ~(1 << index
);
1628 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1631 return ERR_PTR(-EBUSY
);
1633 if (type
== FW_ISO_CONTEXT_TRANSMIT
)
1634 regs
= OHCI1394_IsoXmitContextBase(index
);
1636 regs
= OHCI1394_IsoRcvContextBase(index
);
1639 memset(ctx
, 0, sizeof(*ctx
));
1640 ctx
->header_length
= 0;
1641 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
1642 if (ctx
->header
== NULL
)
1645 retval
= context_init(&ctx
->context
, ohci
, regs
, callback
);
1647 goto out_with_header
;
1652 free_page((unsigned long)ctx
->header
);
1654 spin_lock_irqsave(&ohci
->lock
, flags
);
1655 *mask
|= 1 << index
;
1656 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1658 return ERR_PTR(retval
);
1661 static int ohci_start_iso(struct fw_iso_context
*base
,
1662 s32 cycle
, u32 sync
, u32 tags
)
1664 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1665 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
1669 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1670 index
= ctx
- ohci
->it_context_list
;
1673 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
1674 (cycle
& 0x7fff) << 16;
1676 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
1677 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
1678 context_run(&ctx
->context
, match
);
1680 index
= ctx
- ohci
->ir_context_list
;
1681 control
= IR_CONTEXT_ISOCH_HEADER
;
1682 if (ohci
->version
>= OHCI_VERSION_1_1
)
1683 control
|= IR_CONTEXT_DUAL_BUFFER_MODE
;
1684 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
1686 match
|= (cycle
& 0x07fff) << 12;
1687 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
1690 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
1691 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
1692 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
1693 context_run(&ctx
->context
, control
);
1699 static int ohci_stop_iso(struct fw_iso_context
*base
)
1701 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
1702 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1705 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1706 index
= ctx
- ohci
->it_context_list
;
1707 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
1709 index
= ctx
- ohci
->ir_context_list
;
1710 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
1713 context_stop(&ctx
->context
);
1718 static void ohci_free_iso_context(struct fw_iso_context
*base
)
1720 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
1721 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1722 unsigned long flags
;
1725 ohci_stop_iso(base
);
1726 context_release(&ctx
->context
);
1727 free_page((unsigned long)ctx
->header
);
1729 spin_lock_irqsave(&ohci
->lock
, flags
);
1731 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1732 index
= ctx
- ohci
->it_context_list
;
1733 ohci
->it_context_mask
|= 1 << index
;
1735 index
= ctx
- ohci
->ir_context_list
;
1736 ohci
->ir_context_mask
|= 1 << index
;
1739 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1743 ohci_queue_iso_transmit(struct fw_iso_context
*base
,
1744 struct fw_iso_packet
*packet
,
1745 struct fw_iso_buffer
*buffer
,
1746 unsigned long payload
)
1748 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1749 struct descriptor
*d
, *last
, *pd
;
1750 struct fw_iso_packet
*p
;
1752 dma_addr_t d_bus
, page_bus
;
1753 u32 z
, header_z
, payload_z
, irq
;
1754 u32 payload_index
, payload_end_index
, next_page_index
;
1755 int page
, end_page
, i
, length
, offset
;
1758 * FIXME: Cycle lost behavior should be configurable: lose
1759 * packet, retransmit or terminate..
1763 payload_index
= payload
;
1769 if (p
->header_length
> 0)
1772 /* Determine the first page the payload isn't contained in. */
1773 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
1774 if (p
->payload_length
> 0)
1775 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
1781 /* Get header size in number of descriptors. */
1782 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
1784 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
1789 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1790 d
[0].req_count
= cpu_to_le16(8);
1792 header
= (__le32
*) &d
[1];
1793 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
1794 IT_HEADER_TAG(p
->tag
) |
1795 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
1796 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
1797 IT_HEADER_SPEED(ctx
->base
.speed
));
1799 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
1800 p
->payload_length
));
1803 if (p
->header_length
> 0) {
1804 d
[2].req_count
= cpu_to_le16(p
->header_length
);
1805 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
1806 memcpy(&d
[z
], p
->header
, p
->header_length
);
1809 pd
= d
+ z
- payload_z
;
1810 payload_end_index
= payload_index
+ p
->payload_length
;
1811 for (i
= 0; i
< payload_z
; i
++) {
1812 page
= payload_index
>> PAGE_SHIFT
;
1813 offset
= payload_index
& ~PAGE_MASK
;
1814 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
1816 min(next_page_index
, payload_end_index
) - payload_index
;
1817 pd
[i
].req_count
= cpu_to_le16(length
);
1819 page_bus
= page_private(buffer
->pages
[page
]);
1820 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
1822 payload_index
+= length
;
1826 irq
= DESCRIPTOR_IRQ_ALWAYS
;
1828 irq
= DESCRIPTOR_NO_IRQ
;
1830 last
= z
== 2 ? d
: d
+ z
- 1;
1831 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1833 DESCRIPTOR_BRANCH_ALWAYS
|
1836 context_append(&ctx
->context
, d
, z
, header_z
);
1842 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context
*base
,
1843 struct fw_iso_packet
*packet
,
1844 struct fw_iso_buffer
*buffer
,
1845 unsigned long payload
)
1847 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1848 struct db_descriptor
*db
= NULL
;
1849 struct descriptor
*d
;
1850 struct fw_iso_packet
*p
;
1851 dma_addr_t d_bus
, page_bus
;
1852 u32 z
, header_z
, length
, rest
;
1853 int page
, offset
, packet_count
, header_size
;
1856 * FIXME: Cycle lost behavior should be configurable: lose
1857 * packet, retransmit or terminate..
1864 * The OHCI controller puts the status word in the header
1865 * buffer too, so we need 4 extra bytes per packet.
1867 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
1868 header_size
= packet_count
* (ctx
->base
.header_size
+ 4);
1870 /* Get header size in number of descriptors. */
1871 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
1872 page
= payload
>> PAGE_SHIFT
;
1873 offset
= payload
& ~PAGE_MASK
;
1874 rest
= p
->payload_length
;
1876 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1878 d
= context_get_descriptors(&ctx
->context
,
1879 z
+ header_z
, &d_bus
);
1883 db
= (struct db_descriptor
*) d
;
1884 db
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1885 DESCRIPTOR_BRANCH_ALWAYS
);
1886 db
->first_size
= cpu_to_le16(ctx
->base
.header_size
+ 4);
1887 if (p
->skip
&& rest
== p
->payload_length
) {
1888 db
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
1889 db
->first_req_count
= db
->first_size
;
1891 db
->first_req_count
= cpu_to_le16(header_size
);
1893 db
->first_res_count
= db
->first_req_count
;
1894 db
->first_buffer
= cpu_to_le32(d_bus
+ sizeof(*db
));
1896 if (p
->skip
&& rest
== p
->payload_length
)
1898 else if (offset
+ rest
< PAGE_SIZE
)
1901 length
= PAGE_SIZE
- offset
;
1903 db
->second_req_count
= cpu_to_le16(length
);
1904 db
->second_res_count
= db
->second_req_count
;
1905 page_bus
= page_private(buffer
->pages
[page
]);
1906 db
->second_buffer
= cpu_to_le32(page_bus
+ offset
);
1908 if (p
->interrupt
&& length
== rest
)
1909 db
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
1911 context_append(&ctx
->context
, d
, z
, header_z
);
1912 offset
= (offset
+ length
) & ~PAGE_MASK
;
1922 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context
*base
,
1923 struct fw_iso_packet
*packet
,
1924 struct fw_iso_buffer
*buffer
,
1925 unsigned long payload
)
1927 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1928 struct descriptor
*d
= NULL
, *pd
= NULL
;
1929 struct fw_iso_packet
*p
= packet
;
1930 dma_addr_t d_bus
, page_bus
;
1931 u32 z
, header_z
, rest
;
1933 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
1936 * The OHCI controller puts the status word in the
1937 * buffer too, so we need 4 extra bytes per packet.
1939 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
1940 header_size
= ctx
->base
.header_size
+ 4;
1942 /* Get header size in number of descriptors. */
1943 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
1944 page
= payload
>> PAGE_SHIFT
;
1945 offset
= payload
& ~PAGE_MASK
;
1946 payload_per_buffer
= p
->payload_length
/ packet_count
;
1948 for (i
= 0; i
< packet_count
; i
++) {
1949 /* d points to the header descriptor */
1950 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
1951 d
= context_get_descriptors(&ctx
->context
,
1952 z
+ header_z
, &d_bus
);
1956 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1957 DESCRIPTOR_INPUT_MORE
);
1958 if (p
->skip
&& i
== 0)
1959 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
1960 d
->req_count
= cpu_to_le16(header_size
);
1961 d
->res_count
= d
->req_count
;
1962 d
->transfer_status
= 0;
1963 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
1965 rest
= payload_per_buffer
;
1966 for (j
= 1; j
< z
; j
++) {
1968 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1969 DESCRIPTOR_INPUT_MORE
);
1971 if (offset
+ rest
< PAGE_SIZE
)
1974 length
= PAGE_SIZE
- offset
;
1975 pd
->req_count
= cpu_to_le16(length
);
1976 pd
->res_count
= pd
->req_count
;
1977 pd
->transfer_status
= 0;
1979 page_bus
= page_private(buffer
->pages
[page
]);
1980 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
1982 offset
= (offset
+ length
) & ~PAGE_MASK
;
1987 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1988 DESCRIPTOR_INPUT_LAST
|
1989 DESCRIPTOR_BRANCH_ALWAYS
);
1990 if (p
->interrupt
&& i
== packet_count
- 1)
1991 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
1993 context_append(&ctx
->context
, d
, z
, header_z
);
2000 ohci_queue_iso(struct fw_iso_context
*base
,
2001 struct fw_iso_packet
*packet
,
2002 struct fw_iso_buffer
*buffer
,
2003 unsigned long payload
)
2005 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2006 unsigned long flags
;
2009 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
2010 if (base
->type
== FW_ISO_CONTEXT_TRANSMIT
)
2011 retval
= ohci_queue_iso_transmit(base
, packet
, buffer
, payload
);
2012 else if (ctx
->context
.ohci
->version
>= OHCI_VERSION_1_1
)
2013 retval
= ohci_queue_iso_receive_dualbuffer(base
, packet
,
2016 retval
= ohci_queue_iso_receive_packet_per_buffer(base
, packet
,
2019 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
2024 static const struct fw_card_driver ohci_driver
= {
2025 .name
= ohci_driver_name
,
2026 .enable
= ohci_enable
,
2027 .update_phy_reg
= ohci_update_phy_reg
,
2028 .set_config_rom
= ohci_set_config_rom
,
2029 .send_request
= ohci_send_request
,
2030 .send_response
= ohci_send_response
,
2031 .cancel_packet
= ohci_cancel_packet
,
2032 .enable_phys_dma
= ohci_enable_phys_dma
,
2033 .get_bus_time
= ohci_get_bus_time
,
2035 .allocate_iso_context
= ohci_allocate_iso_context
,
2036 .free_iso_context
= ohci_free_iso_context
,
2037 .queue_iso
= ohci_queue_iso
,
2038 .start_iso
= ohci_start_iso
,
2039 .stop_iso
= ohci_stop_iso
,
2042 static int __devinit
2043 pci_probe(struct pci_dev
*dev
, const struct pci_device_id
*ent
)
2045 struct fw_ohci
*ohci
;
2046 u32 bus_options
, max_receive
, link_speed
;
2051 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
2053 fw_error("Could not malloc fw_ohci data.\n");
2057 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
2059 err
= pci_enable_device(dev
);
2061 fw_error("Failed to enable OHCI hardware.\n");
2065 pci_set_master(dev
);
2066 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
2067 pci_set_drvdata(dev
, ohci
);
2069 spin_lock_init(&ohci
->lock
);
2071 tasklet_init(&ohci
->bus_reset_tasklet
,
2072 bus_reset_tasklet
, (unsigned long)ohci
);
2074 err
= pci_request_region(dev
, 0, ohci_driver_name
);
2076 fw_error("MMIO resource unavailable\n");
2080 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
2081 if (ohci
->registers
== NULL
) {
2082 fw_error("Failed to remap registers\n");
2087 ar_context_init(&ohci
->ar_request_ctx
, ohci
,
2088 OHCI1394_AsReqRcvContextControlSet
);
2090 ar_context_init(&ohci
->ar_response_ctx
, ohci
,
2091 OHCI1394_AsRspRcvContextControlSet
);
2093 context_init(&ohci
->at_request_ctx
, ohci
,
2094 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
2096 context_init(&ohci
->at_response_ctx
, ohci
,
2097 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
2099 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
2100 ohci
->it_context_mask
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
2101 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
2102 size
= sizeof(struct iso_context
) * hweight32(ohci
->it_context_mask
);
2103 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
2105 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
2106 ohci
->ir_context_mask
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
2107 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
2108 size
= sizeof(struct iso_context
) * hweight32(ohci
->ir_context_mask
);
2109 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
2111 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
2112 fw_error("Out of memory for it/ir contexts.\n");
2114 goto fail_registers
;
2117 /* self-id dma buffer allocation */
2118 ohci
->self_id_cpu
= dma_alloc_coherent(ohci
->card
.device
,
2122 if (ohci
->self_id_cpu
== NULL
) {
2123 fw_error("Out of memory for self ID buffer.\n");
2125 goto fail_registers
;
2128 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
2129 max_receive
= (bus_options
>> 12) & 0xf;
2130 link_speed
= bus_options
& 0x7;
2131 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
2132 reg_read(ohci
, OHCI1394_GUIDLo
);
2134 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
2138 ohci
->version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2139 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2140 dev
->dev
.bus_id
, ohci
->version
>> 16, ohci
->version
& 0xff);
2144 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2145 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2147 kfree(ohci
->it_context_list
);
2148 kfree(ohci
->ir_context_list
);
2149 pci_iounmap(dev
, ohci
->registers
);
2151 pci_release_region(dev
, 0);
2153 pci_disable_device(dev
);
2155 fw_card_put(&ohci
->card
);
2160 static void pci_remove(struct pci_dev
*dev
)
2162 struct fw_ohci
*ohci
;
2164 ohci
= pci_get_drvdata(dev
);
2165 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2167 fw_core_remove_card(&ohci
->card
);
2170 * FIXME: Fail all pending packets here, now that the upper
2171 * layers can't queue any more.
2174 software_reset(ohci
);
2175 free_irq(dev
->irq
, ohci
);
2176 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2177 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2178 kfree(ohci
->it_context_list
);
2179 kfree(ohci
->ir_context_list
);
2180 pci_iounmap(dev
, ohci
->registers
);
2181 pci_release_region(dev
, 0);
2182 pci_disable_device(dev
);
2183 fw_card_put(&ohci
->card
);
2185 fw_notify("Removed fw-ohci device.\n");
2189 static int pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2191 struct fw_ohci
*ohci
= pci_get_drvdata(pdev
);
2194 software_reset(ohci
);
2195 free_irq(pdev
->irq
, ohci
);
2196 err
= pci_save_state(pdev
);
2198 fw_error("pci_save_state failed\n");
2201 err
= pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
2203 fw_error("pci_set_power_state failed with %d\n", err
);
2208 static int pci_resume(struct pci_dev
*pdev
)
2210 struct fw_ohci
*ohci
= pci_get_drvdata(pdev
);
2213 pci_set_power_state(pdev
, PCI_D0
);
2214 pci_restore_state(pdev
);
2215 err
= pci_enable_device(pdev
);
2217 fw_error("pci_enable_device failed\n");
2221 return ohci_enable(&ohci
->card
, NULL
, 0);
2225 static struct pci_device_id pci_table
[] = {
2226 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
2230 MODULE_DEVICE_TABLE(pci
, pci_table
);
2232 static struct pci_driver fw_ohci_pci_driver
= {
2233 .name
= ohci_driver_name
,
2234 .id_table
= pci_table
,
2236 .remove
= pci_remove
,
2238 .resume
= pci_resume
,
2239 .suspend
= pci_suspend
,
2243 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2244 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2245 MODULE_LICENSE("GPL");
2247 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2248 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2249 MODULE_ALIAS("ohci1394");
2252 static int __init
fw_ohci_init(void)
2254 return pci_register_driver(&fw_ohci_pci_driver
);
2257 static void __exit
fw_ohci_cleanup(void)
2259 pci_unregister_driver(&fw_ohci_pci_driver
);
2262 module_init(fw_ohci_init
);
2263 module_exit(fw_ohci_cleanup
);