[PATCH] Alpha: convert to generic irq framework (generic part)
[pv_ops_mirror.git] / kernel / workqueue.c
blob2bd5aee1c7369af14c8f8ba71a9715ad6f03346b
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
32 * The per-CPU workqueue (if single thread, we always use cpu 0's).
34 * The sequence counters are for flush_scheduled_work(). It wants to wait
35 * until until all currently-scheduled works are completed, but it doesn't
36 * want to be livelocked by new, incoming ones. So it waits until
37 * remove_sequence is >= the insert_sequence which pertained when
38 * flush_scheduled_work() was called.
40 struct cpu_workqueue_struct {
42 spinlock_t lock;
44 long remove_sequence; /* Least-recently added (next to run) */
45 long insert_sequence; /* Next to add */
47 struct list_head worklist;
48 wait_queue_head_t more_work;
49 wait_queue_head_t work_done;
51 struct workqueue_struct *wq;
52 task_t *thread;
54 int run_depth; /* Detect run_workqueue() recursion depth */
55 } ____cacheline_aligned;
58 * The externally visible workqueue abstraction is an array of
59 * per-CPU workqueues:
61 struct workqueue_struct {
62 struct cpu_workqueue_struct *cpu_wq;
63 const char *name;
64 struct list_head list; /* Empty if single thread */
67 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
68 threads to each one as cpus come/go. */
69 static DEFINE_SPINLOCK(workqueue_lock);
70 static LIST_HEAD(workqueues);
72 /* If it's single threaded, it isn't in the list of workqueues. */
73 static inline int is_single_threaded(struct workqueue_struct *wq)
75 return list_empty(&wq->list);
78 /* Preempt must be disabled. */
79 static void __queue_work(struct cpu_workqueue_struct *cwq,
80 struct work_struct *work)
82 unsigned long flags;
84 spin_lock_irqsave(&cwq->lock, flags);
85 work->wq_data = cwq;
86 list_add_tail(&work->entry, &cwq->worklist);
87 cwq->insert_sequence++;
88 wake_up(&cwq->more_work);
89 spin_unlock_irqrestore(&cwq->lock, flags);
93 * Queue work on a workqueue. Return non-zero if it was successfully
94 * added.
96 * We queue the work to the CPU it was submitted, but there is no
97 * guarantee that it will be processed by that CPU.
99 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
101 int ret = 0, cpu = get_cpu();
103 if (!test_and_set_bit(0, &work->pending)) {
104 if (unlikely(is_single_threaded(wq)))
105 cpu = any_online_cpu(cpu_online_map);
106 BUG_ON(!list_empty(&work->entry));
107 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
108 ret = 1;
110 put_cpu();
111 return ret;
114 static void delayed_work_timer_fn(unsigned long __data)
116 struct work_struct *work = (struct work_struct *)__data;
117 struct workqueue_struct *wq = work->wq_data;
118 int cpu = smp_processor_id();
120 if (unlikely(is_single_threaded(wq)))
121 cpu = any_online_cpu(cpu_online_map);
123 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
126 int fastcall queue_delayed_work(struct workqueue_struct *wq,
127 struct work_struct *work, unsigned long delay)
129 int ret = 0;
130 struct timer_list *timer = &work->timer;
132 if (!test_and_set_bit(0, &work->pending)) {
133 BUG_ON(timer_pending(timer));
134 BUG_ON(!list_empty(&work->entry));
136 /* This stores wq for the moment, for the timer_fn */
137 work->wq_data = wq;
138 timer->expires = jiffies + delay;
139 timer->data = (unsigned long)work;
140 timer->function = delayed_work_timer_fn;
141 add_timer(timer);
142 ret = 1;
144 return ret;
147 static inline void run_workqueue(struct cpu_workqueue_struct *cwq)
149 unsigned long flags;
152 * Keep taking off work from the queue until
153 * done.
155 spin_lock_irqsave(&cwq->lock, flags);
156 cwq->run_depth++;
157 if (cwq->run_depth > 3) {
158 /* morton gets to eat his hat */
159 printk("%s: recursion depth exceeded: %d\n",
160 __FUNCTION__, cwq->run_depth);
161 dump_stack();
163 while (!list_empty(&cwq->worklist)) {
164 struct work_struct *work = list_entry(cwq->worklist.next,
165 struct work_struct, entry);
166 void (*f) (void *) = work->func;
167 void *data = work->data;
169 list_del_init(cwq->worklist.next);
170 spin_unlock_irqrestore(&cwq->lock, flags);
172 BUG_ON(work->wq_data != cwq);
173 clear_bit(0, &work->pending);
174 f(data);
176 spin_lock_irqsave(&cwq->lock, flags);
177 cwq->remove_sequence++;
178 wake_up(&cwq->work_done);
180 cwq->run_depth--;
181 spin_unlock_irqrestore(&cwq->lock, flags);
184 static int worker_thread(void *__cwq)
186 struct cpu_workqueue_struct *cwq = __cwq;
187 DECLARE_WAITQUEUE(wait, current);
188 struct k_sigaction sa;
189 sigset_t blocked;
191 current->flags |= PF_NOFREEZE;
193 set_user_nice(current, -5);
195 /* Block and flush all signals */
196 sigfillset(&blocked);
197 sigprocmask(SIG_BLOCK, &blocked, NULL);
198 flush_signals(current);
200 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
201 sa.sa.sa_handler = SIG_IGN;
202 sa.sa.sa_flags = 0;
203 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
204 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
206 set_current_state(TASK_INTERRUPTIBLE);
207 while (!kthread_should_stop()) {
208 add_wait_queue(&cwq->more_work, &wait);
209 if (list_empty(&cwq->worklist))
210 schedule();
211 else
212 __set_current_state(TASK_RUNNING);
213 remove_wait_queue(&cwq->more_work, &wait);
215 if (!list_empty(&cwq->worklist))
216 run_workqueue(cwq);
217 set_current_state(TASK_INTERRUPTIBLE);
219 __set_current_state(TASK_RUNNING);
220 return 0;
223 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
225 if (cwq->thread == current) {
227 * Probably keventd trying to flush its own queue. So simply run
228 * it by hand rather than deadlocking.
230 run_workqueue(cwq);
231 } else {
232 DEFINE_WAIT(wait);
233 long sequence_needed;
235 spin_lock_irq(&cwq->lock);
236 sequence_needed = cwq->insert_sequence;
238 while (sequence_needed - cwq->remove_sequence > 0) {
239 prepare_to_wait(&cwq->work_done, &wait,
240 TASK_UNINTERRUPTIBLE);
241 spin_unlock_irq(&cwq->lock);
242 schedule();
243 spin_lock_irq(&cwq->lock);
245 finish_wait(&cwq->work_done, &wait);
246 spin_unlock_irq(&cwq->lock);
251 * flush_workqueue - ensure that any scheduled work has run to completion.
253 * Forces execution of the workqueue and blocks until its completion.
254 * This is typically used in driver shutdown handlers.
256 * This function will sample each workqueue's current insert_sequence number and
257 * will sleep until the head sequence is greater than or equal to that. This
258 * means that we sleep until all works which were queued on entry have been
259 * handled, but we are not livelocked by new incoming ones.
261 * This function used to run the workqueues itself. Now we just wait for the
262 * helper threads to do it.
264 void fastcall flush_workqueue(struct workqueue_struct *wq)
266 might_sleep();
268 if (is_single_threaded(wq)) {
269 /* Always use first cpu's area. */
270 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, any_online_cpu(cpu_online_map)));
271 } else {
272 int cpu;
274 lock_cpu_hotplug();
275 for_each_online_cpu(cpu)
276 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
277 unlock_cpu_hotplug();
281 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
282 int cpu)
284 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
285 struct task_struct *p;
287 spin_lock_init(&cwq->lock);
288 cwq->wq = wq;
289 cwq->thread = NULL;
290 cwq->insert_sequence = 0;
291 cwq->remove_sequence = 0;
292 INIT_LIST_HEAD(&cwq->worklist);
293 init_waitqueue_head(&cwq->more_work);
294 init_waitqueue_head(&cwq->work_done);
296 if (is_single_threaded(wq))
297 p = kthread_create(worker_thread, cwq, "%s", wq->name);
298 else
299 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
300 if (IS_ERR(p))
301 return NULL;
302 cwq->thread = p;
303 return p;
306 struct workqueue_struct *__create_workqueue(const char *name,
307 int singlethread)
309 int cpu, destroy = 0;
310 struct workqueue_struct *wq;
311 struct task_struct *p;
313 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
314 if (!wq)
315 return NULL;
317 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
318 wq->name = name;
319 /* We don't need the distraction of CPUs appearing and vanishing. */
320 lock_cpu_hotplug();
321 if (singlethread) {
322 INIT_LIST_HEAD(&wq->list);
323 p = create_workqueue_thread(wq, any_online_cpu(cpu_online_map));
324 if (!p)
325 destroy = 1;
326 else
327 wake_up_process(p);
328 } else {
329 spin_lock(&workqueue_lock);
330 list_add(&wq->list, &workqueues);
331 spin_unlock(&workqueue_lock);
332 for_each_online_cpu(cpu) {
333 p = create_workqueue_thread(wq, cpu);
334 if (p) {
335 kthread_bind(p, cpu);
336 wake_up_process(p);
337 } else
338 destroy = 1;
341 unlock_cpu_hotplug();
344 * Was there any error during startup? If yes then clean up:
346 if (destroy) {
347 destroy_workqueue(wq);
348 wq = NULL;
350 return wq;
353 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
355 struct cpu_workqueue_struct *cwq;
356 unsigned long flags;
357 struct task_struct *p;
359 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
360 spin_lock_irqsave(&cwq->lock, flags);
361 p = cwq->thread;
362 cwq->thread = NULL;
363 spin_unlock_irqrestore(&cwq->lock, flags);
364 if (p)
365 kthread_stop(p);
368 void destroy_workqueue(struct workqueue_struct *wq)
370 int cpu;
372 flush_workqueue(wq);
374 /* We don't need the distraction of CPUs appearing and vanishing. */
375 lock_cpu_hotplug();
376 if (is_single_threaded(wq))
377 cleanup_workqueue_thread(wq, any_online_cpu(cpu_online_map));
378 else {
379 for_each_online_cpu(cpu)
380 cleanup_workqueue_thread(wq, cpu);
381 spin_lock(&workqueue_lock);
382 list_del(&wq->list);
383 spin_unlock(&workqueue_lock);
385 unlock_cpu_hotplug();
386 free_percpu(wq->cpu_wq);
387 kfree(wq);
390 static struct workqueue_struct *keventd_wq;
392 int fastcall schedule_work(struct work_struct *work)
394 return queue_work(keventd_wq, work);
397 int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
399 return queue_delayed_work(keventd_wq, work, delay);
402 int schedule_delayed_work_on(int cpu,
403 struct work_struct *work, unsigned long delay)
405 int ret = 0;
406 struct timer_list *timer = &work->timer;
408 if (!test_and_set_bit(0, &work->pending)) {
409 BUG_ON(timer_pending(timer));
410 BUG_ON(!list_empty(&work->entry));
411 /* This stores keventd_wq for the moment, for the timer_fn */
412 work->wq_data = keventd_wq;
413 timer->expires = jiffies + delay;
414 timer->data = (unsigned long)work;
415 timer->function = delayed_work_timer_fn;
416 add_timer_on(timer, cpu);
417 ret = 1;
419 return ret;
422 void flush_scheduled_work(void)
424 flush_workqueue(keventd_wq);
428 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
429 * work whose handler rearms the delayed work.
430 * @wq: the controlling workqueue structure
431 * @work: the delayed work struct
433 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
434 struct work_struct *work)
436 while (!cancel_delayed_work(work))
437 flush_workqueue(wq);
439 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
442 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
443 * work whose handler rearms the delayed work.
444 * @work: the delayed work struct
446 void cancel_rearming_delayed_work(struct work_struct *work)
448 cancel_rearming_delayed_workqueue(keventd_wq, work);
450 EXPORT_SYMBOL(cancel_rearming_delayed_work);
452 int keventd_up(void)
454 return keventd_wq != NULL;
457 int current_is_keventd(void)
459 struct cpu_workqueue_struct *cwq;
460 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
461 int ret = 0;
463 BUG_ON(!keventd_wq);
465 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
466 if (current == cwq->thread)
467 ret = 1;
469 return ret;
473 #ifdef CONFIG_HOTPLUG_CPU
474 /* Take the work from this (downed) CPU. */
475 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
477 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
478 LIST_HEAD(list);
479 struct work_struct *work;
481 spin_lock_irq(&cwq->lock);
482 list_splice_init(&cwq->worklist, &list);
484 while (!list_empty(&list)) {
485 printk("Taking work for %s\n", wq->name);
486 work = list_entry(list.next,struct work_struct,entry);
487 list_del(&work->entry);
488 __queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
490 spin_unlock_irq(&cwq->lock);
493 /* We're holding the cpucontrol mutex here */
494 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
495 unsigned long action,
496 void *hcpu)
498 unsigned int hotcpu = (unsigned long)hcpu;
499 struct workqueue_struct *wq;
501 switch (action) {
502 case CPU_UP_PREPARE:
503 /* Create a new workqueue thread for it. */
504 list_for_each_entry(wq, &workqueues, list) {
505 if (!create_workqueue_thread(wq, hotcpu)) {
506 printk("workqueue for %i failed\n", hotcpu);
507 return NOTIFY_BAD;
510 break;
512 case CPU_ONLINE:
513 /* Kick off worker threads. */
514 list_for_each_entry(wq, &workqueues, list) {
515 struct cpu_workqueue_struct *cwq;
517 cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
518 kthread_bind(cwq->thread, hotcpu);
519 wake_up_process(cwq->thread);
521 break;
523 case CPU_UP_CANCELED:
524 list_for_each_entry(wq, &workqueues, list) {
525 /* Unbind so it can run. */
526 kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
527 any_online_cpu(cpu_online_map));
528 cleanup_workqueue_thread(wq, hotcpu);
530 break;
532 case CPU_DEAD:
533 list_for_each_entry(wq, &workqueues, list)
534 cleanup_workqueue_thread(wq, hotcpu);
535 list_for_each_entry(wq, &workqueues, list)
536 take_over_work(wq, hotcpu);
537 break;
540 return NOTIFY_OK;
542 #endif
544 void init_workqueues(void)
546 hotcpu_notifier(workqueue_cpu_callback, 0);
547 keventd_wq = create_workqueue("events");
548 BUG_ON(!keventd_wq);
551 EXPORT_SYMBOL_GPL(__create_workqueue);
552 EXPORT_SYMBOL_GPL(queue_work);
553 EXPORT_SYMBOL_GPL(queue_delayed_work);
554 EXPORT_SYMBOL_GPL(flush_workqueue);
555 EXPORT_SYMBOL_GPL(destroy_workqueue);
557 EXPORT_SYMBOL(schedule_work);
558 EXPORT_SYMBOL(schedule_delayed_work);
559 EXPORT_SYMBOL(schedule_delayed_work_on);
560 EXPORT_SYMBOL(flush_scheduled_work);