PCI: use dev_printk in quirk messages
[pv_ops_mirror.git] / net / sched / cls_flow.c
blob5a7f6a3060fc3a3ad4237c4bd0704e74b68d1b07
1 /*
2 * net/sched/cls_flow.c Generic flow classifier
4 * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
23 #include <net/pkt_cls.h>
24 #include <net/ip.h>
25 #include <net/route.h>
26 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
27 #include <net/netfilter/nf_conntrack.h>
28 #endif
30 struct flow_head {
31 struct list_head filters;
34 struct flow_filter {
35 struct list_head list;
36 struct tcf_exts exts;
37 struct tcf_ematch_tree ematches;
38 u32 handle;
40 u32 nkeys;
41 u32 keymask;
42 u32 mode;
43 u32 mask;
44 u32 xor;
45 u32 rshift;
46 u32 addend;
47 u32 divisor;
48 u32 baseclass;
51 static u32 flow_hashrnd __read_mostly;
52 static int flow_hashrnd_initted __read_mostly;
54 static const struct tcf_ext_map flow_ext_map = {
55 .action = TCA_FLOW_ACT,
56 .police = TCA_FLOW_POLICE,
59 static inline u32 addr_fold(void *addr)
61 unsigned long a = (unsigned long)addr;
63 return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
66 static u32 flow_get_src(const struct sk_buff *skb)
68 switch (skb->protocol) {
69 case __constant_htons(ETH_P_IP):
70 return ntohl(ip_hdr(skb)->saddr);
71 case __constant_htons(ETH_P_IPV6):
72 return ntohl(ipv6_hdr(skb)->saddr.s6_addr32[3]);
73 default:
74 return addr_fold(skb->sk);
78 static u32 flow_get_dst(const struct sk_buff *skb)
80 switch (skb->protocol) {
81 case __constant_htons(ETH_P_IP):
82 return ntohl(ip_hdr(skb)->daddr);
83 case __constant_htons(ETH_P_IPV6):
84 return ntohl(ipv6_hdr(skb)->daddr.s6_addr32[3]);
85 default:
86 return addr_fold(skb->dst) ^ (__force u16)skb->protocol;
90 static u32 flow_get_proto(const struct sk_buff *skb)
92 switch (skb->protocol) {
93 case __constant_htons(ETH_P_IP):
94 return ip_hdr(skb)->protocol;
95 case __constant_htons(ETH_P_IPV6):
96 return ipv6_hdr(skb)->nexthdr;
97 default:
98 return 0;
102 static int has_ports(u8 protocol)
104 switch (protocol) {
105 case IPPROTO_TCP:
106 case IPPROTO_UDP:
107 case IPPROTO_UDPLITE:
108 case IPPROTO_SCTP:
109 case IPPROTO_DCCP:
110 case IPPROTO_ESP:
111 return 1;
112 default:
113 return 0;
117 static u32 flow_get_proto_src(const struct sk_buff *skb)
119 u32 res = 0;
121 switch (skb->protocol) {
122 case __constant_htons(ETH_P_IP): {
123 struct iphdr *iph = ip_hdr(skb);
125 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
126 has_ports(iph->protocol))
127 res = ntohs(*(__be16 *)((void *)iph + iph->ihl * 4));
128 break;
130 case __constant_htons(ETH_P_IPV6): {
131 struct ipv6hdr *iph = ipv6_hdr(skb);
133 if (has_ports(iph->nexthdr))
134 res = ntohs(*(__be16 *)&iph[1]);
135 break;
137 default:
138 res = addr_fold(skb->sk);
141 return res;
144 static u32 flow_get_proto_dst(const struct sk_buff *skb)
146 u32 res = 0;
148 switch (skb->protocol) {
149 case __constant_htons(ETH_P_IP): {
150 struct iphdr *iph = ip_hdr(skb);
152 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
153 has_ports(iph->protocol))
154 res = ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 + 2));
155 break;
157 case __constant_htons(ETH_P_IPV6): {
158 struct ipv6hdr *iph = ipv6_hdr(skb);
160 if (has_ports(iph->nexthdr))
161 res = ntohs(*(__be16 *)((void *)&iph[1] + 2));
162 break;
164 default:
165 res = addr_fold(skb->dst) ^ (__force u16)skb->protocol;
168 return res;
171 static u32 flow_get_iif(const struct sk_buff *skb)
173 return skb->iif;
176 static u32 flow_get_priority(const struct sk_buff *skb)
178 return skb->priority;
181 static u32 flow_get_mark(const struct sk_buff *skb)
183 return skb->mark;
186 static u32 flow_get_nfct(const struct sk_buff *skb)
188 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
189 return addr_fold(skb->nfct);
190 #else
191 return 0;
192 #endif
195 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
196 #define CTTUPLE(skb, member) \
197 ({ \
198 enum ip_conntrack_info ctinfo; \
199 struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \
200 if (ct == NULL) \
201 goto fallback; \
202 ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \
204 #else
205 #define CTTUPLE(skb, member) \
206 ({ \
207 goto fallback; \
208 0; \
210 #endif
212 static u32 flow_get_nfct_src(const struct sk_buff *skb)
214 switch (skb->protocol) {
215 case __constant_htons(ETH_P_IP):
216 return ntohl(CTTUPLE(skb, src.u3.ip));
217 case __constant_htons(ETH_P_IPV6):
218 return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
220 fallback:
221 return flow_get_src(skb);
224 static u32 flow_get_nfct_dst(const struct sk_buff *skb)
226 switch (skb->protocol) {
227 case __constant_htons(ETH_P_IP):
228 return ntohl(CTTUPLE(skb, dst.u3.ip));
229 case __constant_htons(ETH_P_IPV6):
230 return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
232 fallback:
233 return flow_get_dst(skb);
236 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb)
238 return ntohs(CTTUPLE(skb, src.u.all));
239 fallback:
240 return flow_get_proto_src(skb);
243 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb)
245 return ntohs(CTTUPLE(skb, dst.u.all));
246 fallback:
247 return flow_get_proto_dst(skb);
250 static u32 flow_get_rtclassid(const struct sk_buff *skb)
252 #ifdef CONFIG_NET_CLS_ROUTE
253 if (skb->dst)
254 return skb->dst->tclassid;
255 #endif
256 return 0;
259 static u32 flow_get_skuid(const struct sk_buff *skb)
261 if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
262 return skb->sk->sk_socket->file->f_uid;
263 return 0;
266 static u32 flow_get_skgid(const struct sk_buff *skb)
268 if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
269 return skb->sk->sk_socket->file->f_gid;
270 return 0;
273 static u32 flow_key_get(const struct sk_buff *skb, int key)
275 switch (key) {
276 case FLOW_KEY_SRC:
277 return flow_get_src(skb);
278 case FLOW_KEY_DST:
279 return flow_get_dst(skb);
280 case FLOW_KEY_PROTO:
281 return flow_get_proto(skb);
282 case FLOW_KEY_PROTO_SRC:
283 return flow_get_proto_src(skb);
284 case FLOW_KEY_PROTO_DST:
285 return flow_get_proto_dst(skb);
286 case FLOW_KEY_IIF:
287 return flow_get_iif(skb);
288 case FLOW_KEY_PRIORITY:
289 return flow_get_priority(skb);
290 case FLOW_KEY_MARK:
291 return flow_get_mark(skb);
292 case FLOW_KEY_NFCT:
293 return flow_get_nfct(skb);
294 case FLOW_KEY_NFCT_SRC:
295 return flow_get_nfct_src(skb);
296 case FLOW_KEY_NFCT_DST:
297 return flow_get_nfct_dst(skb);
298 case FLOW_KEY_NFCT_PROTO_SRC:
299 return flow_get_nfct_proto_src(skb);
300 case FLOW_KEY_NFCT_PROTO_DST:
301 return flow_get_nfct_proto_dst(skb);
302 case FLOW_KEY_RTCLASSID:
303 return flow_get_rtclassid(skb);
304 case FLOW_KEY_SKUID:
305 return flow_get_skuid(skb);
306 case FLOW_KEY_SKGID:
307 return flow_get_skgid(skb);
308 default:
309 WARN_ON(1);
310 return 0;
314 static int flow_classify(struct sk_buff *skb, struct tcf_proto *tp,
315 struct tcf_result *res)
317 struct flow_head *head = tp->root;
318 struct flow_filter *f;
319 u32 keymask;
320 u32 classid;
321 unsigned int n, key;
322 int r;
324 list_for_each_entry(f, &head->filters, list) {
325 u32 keys[f->nkeys];
327 if (!tcf_em_tree_match(skb, &f->ematches, NULL))
328 continue;
330 keymask = f->keymask;
332 for (n = 0; n < f->nkeys; n++) {
333 key = ffs(keymask) - 1;
334 keymask &= ~(1 << key);
335 keys[n] = flow_key_get(skb, key);
338 if (f->mode == FLOW_MODE_HASH)
339 classid = jhash2(keys, f->nkeys, flow_hashrnd);
340 else {
341 classid = keys[0];
342 classid = (classid & f->mask) ^ f->xor;
343 classid = (classid >> f->rshift) + f->addend;
346 if (f->divisor)
347 classid %= f->divisor;
349 res->class = 0;
350 res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
352 r = tcf_exts_exec(skb, &f->exts, res);
353 if (r < 0)
354 continue;
355 return r;
357 return -1;
360 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
361 [TCA_FLOW_KEYS] = { .type = NLA_U32 },
362 [TCA_FLOW_MODE] = { .type = NLA_U32 },
363 [TCA_FLOW_BASECLASS] = { .type = NLA_U32 },
364 [TCA_FLOW_RSHIFT] = { .type = NLA_U32 },
365 [TCA_FLOW_ADDEND] = { .type = NLA_U32 },
366 [TCA_FLOW_MASK] = { .type = NLA_U32 },
367 [TCA_FLOW_XOR] = { .type = NLA_U32 },
368 [TCA_FLOW_DIVISOR] = { .type = NLA_U32 },
369 [TCA_FLOW_ACT] = { .type = NLA_NESTED },
370 [TCA_FLOW_POLICE] = { .type = NLA_NESTED },
371 [TCA_FLOW_EMATCHES] = { .type = NLA_NESTED },
374 static int flow_change(struct tcf_proto *tp, unsigned long base,
375 u32 handle, struct nlattr **tca,
376 unsigned long *arg)
378 struct flow_head *head = tp->root;
379 struct flow_filter *f;
380 struct nlattr *opt = tca[TCA_OPTIONS];
381 struct nlattr *tb[TCA_FLOW_MAX + 1];
382 struct tcf_exts e;
383 struct tcf_ematch_tree t;
384 unsigned int nkeys = 0;
385 u32 baseclass = 0;
386 u32 keymask = 0;
387 u32 mode;
388 int err;
390 if (opt == NULL)
391 return -EINVAL;
393 err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
394 if (err < 0)
395 return err;
397 if (tb[TCA_FLOW_BASECLASS]) {
398 baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
399 if (TC_H_MIN(baseclass) == 0)
400 return -EINVAL;
403 if (tb[TCA_FLOW_KEYS]) {
404 keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
405 if (fls(keymask) - 1 > FLOW_KEY_MAX)
406 return -EOPNOTSUPP;
408 nkeys = hweight32(keymask);
409 if (nkeys == 0)
410 return -EINVAL;
413 err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
414 if (err < 0)
415 return err;
417 err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
418 if (err < 0)
419 goto err1;
421 f = (struct flow_filter *)*arg;
422 if (f != NULL) {
423 err = -EINVAL;
424 if (f->handle != handle && handle)
425 goto err2;
427 mode = f->mode;
428 if (tb[TCA_FLOW_MODE])
429 mode = nla_get_u32(tb[TCA_FLOW_MODE]);
430 if (mode != FLOW_MODE_HASH && nkeys > 1)
431 goto err2;
432 } else {
433 err = -EINVAL;
434 if (!handle)
435 goto err2;
436 if (!tb[TCA_FLOW_KEYS])
437 goto err2;
439 mode = FLOW_MODE_MAP;
440 if (tb[TCA_FLOW_MODE])
441 mode = nla_get_u32(tb[TCA_FLOW_MODE]);
442 if (mode != FLOW_MODE_HASH && nkeys > 1)
443 goto err2;
445 if (TC_H_MAJ(baseclass) == 0)
446 baseclass = TC_H_MAKE(tp->q->handle, baseclass);
447 if (TC_H_MIN(baseclass) == 0)
448 baseclass = TC_H_MAKE(baseclass, 1);
450 err = -ENOBUFS;
451 f = kzalloc(sizeof(*f), GFP_KERNEL);
452 if (f == NULL)
453 goto err2;
455 f->handle = handle;
456 f->mask = ~0U;
459 tcf_exts_change(tp, &f->exts, &e);
460 tcf_em_tree_change(tp, &f->ematches, &t);
462 tcf_tree_lock(tp);
464 if (tb[TCA_FLOW_KEYS]) {
465 f->keymask = keymask;
466 f->nkeys = nkeys;
469 f->mode = mode;
471 if (tb[TCA_FLOW_MASK])
472 f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
473 if (tb[TCA_FLOW_XOR])
474 f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
475 if (tb[TCA_FLOW_RSHIFT])
476 f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
477 if (tb[TCA_FLOW_ADDEND])
478 f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
480 if (tb[TCA_FLOW_DIVISOR])
481 f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
482 if (baseclass)
483 f->baseclass = baseclass;
485 if (*arg == 0)
486 list_add_tail(&f->list, &head->filters);
488 tcf_tree_unlock(tp);
490 *arg = (unsigned long)f;
491 return 0;
493 err2:
494 tcf_em_tree_destroy(tp, &t);
495 err1:
496 tcf_exts_destroy(tp, &e);
497 return err;
500 static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
502 tcf_exts_destroy(tp, &f->exts);
503 tcf_em_tree_destroy(tp, &f->ematches);
504 kfree(f);
507 static int flow_delete(struct tcf_proto *tp, unsigned long arg)
509 struct flow_filter *f = (struct flow_filter *)arg;
511 tcf_tree_lock(tp);
512 list_del(&f->list);
513 tcf_tree_unlock(tp);
514 flow_destroy_filter(tp, f);
515 return 0;
518 static int flow_init(struct tcf_proto *tp)
520 struct flow_head *head;
522 if (!flow_hashrnd_initted) {
523 get_random_bytes(&flow_hashrnd, 4);
524 flow_hashrnd_initted = 1;
527 head = kzalloc(sizeof(*head), GFP_KERNEL);
528 if (head == NULL)
529 return -ENOBUFS;
530 INIT_LIST_HEAD(&head->filters);
531 tp->root = head;
532 return 0;
535 static void flow_destroy(struct tcf_proto *tp)
537 struct flow_head *head = tp->root;
538 struct flow_filter *f, *next;
540 list_for_each_entry_safe(f, next, &head->filters, list) {
541 list_del(&f->list);
542 flow_destroy_filter(tp, f);
544 kfree(head);
547 static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
549 struct flow_head *head = tp->root;
550 struct flow_filter *f;
552 list_for_each_entry(f, &head->filters, list)
553 if (f->handle == handle)
554 return (unsigned long)f;
555 return 0;
558 static void flow_put(struct tcf_proto *tp, unsigned long f)
560 return;
563 static int flow_dump(struct tcf_proto *tp, unsigned long fh,
564 struct sk_buff *skb, struct tcmsg *t)
566 struct flow_filter *f = (struct flow_filter *)fh;
567 struct nlattr *nest;
569 if (f == NULL)
570 return skb->len;
572 t->tcm_handle = f->handle;
574 nest = nla_nest_start(skb, TCA_OPTIONS);
575 if (nest == NULL)
576 goto nla_put_failure;
578 NLA_PUT_U32(skb, TCA_FLOW_KEYS, f->keymask);
579 NLA_PUT_U32(skb, TCA_FLOW_MODE, f->mode);
581 if (f->mask != ~0 || f->xor != 0) {
582 NLA_PUT_U32(skb, TCA_FLOW_MASK, f->mask);
583 NLA_PUT_U32(skb, TCA_FLOW_XOR, f->xor);
585 if (f->rshift)
586 NLA_PUT_U32(skb, TCA_FLOW_RSHIFT, f->rshift);
587 if (f->addend)
588 NLA_PUT_U32(skb, TCA_FLOW_ADDEND, f->addend);
590 if (f->divisor)
591 NLA_PUT_U32(skb, TCA_FLOW_DIVISOR, f->divisor);
592 if (f->baseclass)
593 NLA_PUT_U32(skb, TCA_FLOW_BASECLASS, f->baseclass);
595 if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
596 goto nla_put_failure;
598 if (f->ematches.hdr.nmatches &&
599 tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
600 goto nla_put_failure;
602 nla_nest_end(skb, nest);
604 if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
605 goto nla_put_failure;
607 return skb->len;
609 nla_put_failure:
610 nlmsg_trim(skb, nest);
611 return -1;
614 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
616 struct flow_head *head = tp->root;
617 struct flow_filter *f;
619 list_for_each_entry(f, &head->filters, list) {
620 if (arg->count < arg->skip)
621 goto skip;
622 if (arg->fn(tp, (unsigned long)f, arg) < 0) {
623 arg->stop = 1;
624 break;
626 skip:
627 arg->count++;
631 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
632 .kind = "flow",
633 .classify = flow_classify,
634 .init = flow_init,
635 .destroy = flow_destroy,
636 .change = flow_change,
637 .delete = flow_delete,
638 .get = flow_get,
639 .put = flow_put,
640 .dump = flow_dump,
641 .walk = flow_walk,
642 .owner = THIS_MODULE,
645 static int __init cls_flow_init(void)
647 return register_tcf_proto_ops(&cls_flow_ops);
650 static void __exit cls_flow_exit(void)
652 unregister_tcf_proto_ops(&cls_flow_ops);
655 module_init(cls_flow_init);
656 module_exit(cls_flow_exit);
658 MODULE_LICENSE("GPL");
659 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
660 MODULE_DESCRIPTION("TC flow classifier");