Merge remote-tracking branch 'stefanha/trivial-patches' into staging
[qemu-dev-zwu.git] / gdbstub.c
blobb9ae30dd7dbbcf7f212a06459d9a5182cdd89c1d
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "monitor.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "exec-all.h"
41 #include "qemu_socket.h"
42 #include "kvm.h"
45 enum {
46 GDB_SIGNAL_0 = 0,
47 GDB_SIGNAL_INT = 2,
48 GDB_SIGNAL_QUIT = 3,
49 GDB_SIGNAL_TRAP = 5,
50 GDB_SIGNAL_ABRT = 6,
51 GDB_SIGNAL_ALRM = 14,
52 GDB_SIGNAL_IO = 23,
53 GDB_SIGNAL_XCPU = 24,
54 GDB_SIGNAL_UNKNOWN = 143
57 #ifdef CONFIG_USER_ONLY
59 /* Map target signal numbers to GDB protocol signal numbers and vice
60 * versa. For user emulation's currently supported systems, we can
61 * assume most signals are defined.
64 static int gdb_signal_table[] = {
66 TARGET_SIGHUP,
67 TARGET_SIGINT,
68 TARGET_SIGQUIT,
69 TARGET_SIGILL,
70 TARGET_SIGTRAP,
71 TARGET_SIGABRT,
72 -1, /* SIGEMT */
73 TARGET_SIGFPE,
74 TARGET_SIGKILL,
75 TARGET_SIGBUS,
76 TARGET_SIGSEGV,
77 TARGET_SIGSYS,
78 TARGET_SIGPIPE,
79 TARGET_SIGALRM,
80 TARGET_SIGTERM,
81 TARGET_SIGURG,
82 TARGET_SIGSTOP,
83 TARGET_SIGTSTP,
84 TARGET_SIGCONT,
85 TARGET_SIGCHLD,
86 TARGET_SIGTTIN,
87 TARGET_SIGTTOU,
88 TARGET_SIGIO,
89 TARGET_SIGXCPU,
90 TARGET_SIGXFSZ,
91 TARGET_SIGVTALRM,
92 TARGET_SIGPROF,
93 TARGET_SIGWINCH,
94 -1, /* SIGLOST */
95 TARGET_SIGUSR1,
96 TARGET_SIGUSR2,
97 #ifdef TARGET_SIGPWR
98 TARGET_SIGPWR,
99 #else
101 #endif
102 -1, /* SIGPOLL */
114 #ifdef __SIGRTMIN
115 __SIGRTMIN + 1,
116 __SIGRTMIN + 2,
117 __SIGRTMIN + 3,
118 __SIGRTMIN + 4,
119 __SIGRTMIN + 5,
120 __SIGRTMIN + 6,
121 __SIGRTMIN + 7,
122 __SIGRTMIN + 8,
123 __SIGRTMIN + 9,
124 __SIGRTMIN + 10,
125 __SIGRTMIN + 11,
126 __SIGRTMIN + 12,
127 __SIGRTMIN + 13,
128 __SIGRTMIN + 14,
129 __SIGRTMIN + 15,
130 __SIGRTMIN + 16,
131 __SIGRTMIN + 17,
132 __SIGRTMIN + 18,
133 __SIGRTMIN + 19,
134 __SIGRTMIN + 20,
135 __SIGRTMIN + 21,
136 __SIGRTMIN + 22,
137 __SIGRTMIN + 23,
138 __SIGRTMIN + 24,
139 __SIGRTMIN + 25,
140 __SIGRTMIN + 26,
141 __SIGRTMIN + 27,
142 __SIGRTMIN + 28,
143 __SIGRTMIN + 29,
144 __SIGRTMIN + 30,
145 __SIGRTMIN + 31,
146 -1, /* SIGCANCEL */
147 __SIGRTMIN,
148 __SIGRTMIN + 32,
149 __SIGRTMIN + 33,
150 __SIGRTMIN + 34,
151 __SIGRTMIN + 35,
152 __SIGRTMIN + 36,
153 __SIGRTMIN + 37,
154 __SIGRTMIN + 38,
155 __SIGRTMIN + 39,
156 __SIGRTMIN + 40,
157 __SIGRTMIN + 41,
158 __SIGRTMIN + 42,
159 __SIGRTMIN + 43,
160 __SIGRTMIN + 44,
161 __SIGRTMIN + 45,
162 __SIGRTMIN + 46,
163 __SIGRTMIN + 47,
164 __SIGRTMIN + 48,
165 __SIGRTMIN + 49,
166 __SIGRTMIN + 50,
167 __SIGRTMIN + 51,
168 __SIGRTMIN + 52,
169 __SIGRTMIN + 53,
170 __SIGRTMIN + 54,
171 __SIGRTMIN + 55,
172 __SIGRTMIN + 56,
173 __SIGRTMIN + 57,
174 __SIGRTMIN + 58,
175 __SIGRTMIN + 59,
176 __SIGRTMIN + 60,
177 __SIGRTMIN + 61,
178 __SIGRTMIN + 62,
179 __SIGRTMIN + 63,
180 __SIGRTMIN + 64,
181 __SIGRTMIN + 65,
182 __SIGRTMIN + 66,
183 __SIGRTMIN + 67,
184 __SIGRTMIN + 68,
185 __SIGRTMIN + 69,
186 __SIGRTMIN + 70,
187 __SIGRTMIN + 71,
188 __SIGRTMIN + 72,
189 __SIGRTMIN + 73,
190 __SIGRTMIN + 74,
191 __SIGRTMIN + 75,
192 __SIGRTMIN + 76,
193 __SIGRTMIN + 77,
194 __SIGRTMIN + 78,
195 __SIGRTMIN + 79,
196 __SIGRTMIN + 80,
197 __SIGRTMIN + 81,
198 __SIGRTMIN + 82,
199 __SIGRTMIN + 83,
200 __SIGRTMIN + 84,
201 __SIGRTMIN + 85,
202 __SIGRTMIN + 86,
203 __SIGRTMIN + 87,
204 __SIGRTMIN + 88,
205 __SIGRTMIN + 89,
206 __SIGRTMIN + 90,
207 __SIGRTMIN + 91,
208 __SIGRTMIN + 92,
209 __SIGRTMIN + 93,
210 __SIGRTMIN + 94,
211 __SIGRTMIN + 95,
212 -1, /* SIGINFO */
213 -1, /* UNKNOWN */
214 -1, /* DEFAULT */
221 #endif
223 #else
224 /* In system mode we only need SIGINT and SIGTRAP; other signals
225 are not yet supported. */
227 enum {
228 TARGET_SIGINT = 2,
229 TARGET_SIGTRAP = 5
232 static int gdb_signal_table[] = {
235 TARGET_SIGINT,
238 TARGET_SIGTRAP
240 #endif
242 #ifdef CONFIG_USER_ONLY
243 static int target_signal_to_gdb (int sig)
245 int i;
246 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
247 if (gdb_signal_table[i] == sig)
248 return i;
249 return GDB_SIGNAL_UNKNOWN;
251 #endif
253 static int gdb_signal_to_target (int sig)
255 if (sig < ARRAY_SIZE (gdb_signal_table))
256 return gdb_signal_table[sig];
257 else
258 return -1;
261 //#define DEBUG_GDB
263 typedef struct GDBRegisterState {
264 int base_reg;
265 int num_regs;
266 gdb_reg_cb get_reg;
267 gdb_reg_cb set_reg;
268 const char *xml;
269 struct GDBRegisterState *next;
270 } GDBRegisterState;
272 enum RSState {
273 RS_INACTIVE,
274 RS_IDLE,
275 RS_GETLINE,
276 RS_CHKSUM1,
277 RS_CHKSUM2,
278 RS_SYSCALL,
280 typedef struct GDBState {
281 CPUState *c_cpu; /* current CPU for step/continue ops */
282 CPUState *g_cpu; /* current CPU for other ops */
283 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
284 enum RSState state; /* parsing state */
285 char line_buf[MAX_PACKET_LENGTH];
286 int line_buf_index;
287 int line_csum;
288 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
289 int last_packet_len;
290 int signal;
291 #ifdef CONFIG_USER_ONLY
292 int fd;
293 int running_state;
294 #else
295 CharDriverState *chr;
296 CharDriverState *mon_chr;
297 #endif
298 } GDBState;
300 /* By default use no IRQs and no timers while single stepping so as to
301 * make single stepping like an ICE HW step.
303 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
305 static GDBState *gdbserver_state;
307 /* This is an ugly hack to cope with both new and old gdb.
308 If gdb sends qXfer:features:read then assume we're talking to a newish
309 gdb that understands target descriptions. */
310 static int gdb_has_xml;
312 #ifdef CONFIG_USER_ONLY
313 /* XXX: This is not thread safe. Do we care? */
314 static int gdbserver_fd = -1;
316 static int get_char(GDBState *s)
318 uint8_t ch;
319 int ret;
321 for(;;) {
322 ret = recv(s->fd, &ch, 1, 0);
323 if (ret < 0) {
324 if (errno == ECONNRESET)
325 s->fd = -1;
326 if (errno != EINTR && errno != EAGAIN)
327 return -1;
328 } else if (ret == 0) {
329 close(s->fd);
330 s->fd = -1;
331 return -1;
332 } else {
333 break;
336 return ch;
338 #endif
340 static gdb_syscall_complete_cb gdb_current_syscall_cb;
342 static enum {
343 GDB_SYS_UNKNOWN,
344 GDB_SYS_ENABLED,
345 GDB_SYS_DISABLED,
346 } gdb_syscall_mode;
348 /* If gdb is connected when the first semihosting syscall occurs then use
349 remote gdb syscalls. Otherwise use native file IO. */
350 int use_gdb_syscalls(void)
352 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
353 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
354 : GDB_SYS_DISABLED);
356 return gdb_syscall_mode == GDB_SYS_ENABLED;
359 /* Resume execution. */
360 static inline void gdb_continue(GDBState *s)
362 #ifdef CONFIG_USER_ONLY
363 s->running_state = 1;
364 #else
365 vm_start();
366 #endif
369 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
371 #ifdef CONFIG_USER_ONLY
372 int ret;
374 while (len > 0) {
375 ret = send(s->fd, buf, len, 0);
376 if (ret < 0) {
377 if (errno != EINTR && errno != EAGAIN)
378 return;
379 } else {
380 buf += ret;
381 len -= ret;
384 #else
385 qemu_chr_write(s->chr, buf, len);
386 #endif
389 static inline int fromhex(int v)
391 if (v >= '0' && v <= '9')
392 return v - '0';
393 else if (v >= 'A' && v <= 'F')
394 return v - 'A' + 10;
395 else if (v >= 'a' && v <= 'f')
396 return v - 'a' + 10;
397 else
398 return 0;
401 static inline int tohex(int v)
403 if (v < 10)
404 return v + '0';
405 else
406 return v - 10 + 'a';
409 static void memtohex(char *buf, const uint8_t *mem, int len)
411 int i, c;
412 char *q;
413 q = buf;
414 for(i = 0; i < len; i++) {
415 c = mem[i];
416 *q++ = tohex(c >> 4);
417 *q++ = tohex(c & 0xf);
419 *q = '\0';
422 static void hextomem(uint8_t *mem, const char *buf, int len)
424 int i;
426 for(i = 0; i < len; i++) {
427 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
428 buf += 2;
432 /* return -1 if error, 0 if OK */
433 static int put_packet_binary(GDBState *s, const char *buf, int len)
435 int csum, i;
436 uint8_t *p;
438 for(;;) {
439 p = s->last_packet;
440 *(p++) = '$';
441 memcpy(p, buf, len);
442 p += len;
443 csum = 0;
444 for(i = 0; i < len; i++) {
445 csum += buf[i];
447 *(p++) = '#';
448 *(p++) = tohex((csum >> 4) & 0xf);
449 *(p++) = tohex((csum) & 0xf);
451 s->last_packet_len = p - s->last_packet;
452 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
454 #ifdef CONFIG_USER_ONLY
455 i = get_char(s);
456 if (i < 0)
457 return -1;
458 if (i == '+')
459 break;
460 #else
461 break;
462 #endif
464 return 0;
467 /* return -1 if error, 0 if OK */
468 static int put_packet(GDBState *s, const char *buf)
470 #ifdef DEBUG_GDB
471 printf("reply='%s'\n", buf);
472 #endif
474 return put_packet_binary(s, buf, strlen(buf));
477 /* The GDB remote protocol transfers values in target byte order. This means
478 we can use the raw memory access routines to access the value buffer.
479 Conveniently, these also handle the case where the buffer is mis-aligned.
481 #define GET_REG8(val) do { \
482 stb_p(mem_buf, val); \
483 return 1; \
484 } while(0)
485 #define GET_REG16(val) do { \
486 stw_p(mem_buf, val); \
487 return 2; \
488 } while(0)
489 #define GET_REG32(val) do { \
490 stl_p(mem_buf, val); \
491 return 4; \
492 } while(0)
493 #define GET_REG64(val) do { \
494 stq_p(mem_buf, val); \
495 return 8; \
496 } while(0)
498 #if TARGET_LONG_BITS == 64
499 #define GET_REGL(val) GET_REG64(val)
500 #define ldtul_p(addr) ldq_p(addr)
501 #else
502 #define GET_REGL(val) GET_REG32(val)
503 #define ldtul_p(addr) ldl_p(addr)
504 #endif
506 #if defined(TARGET_I386)
508 #ifdef TARGET_X86_64
509 static const int gpr_map[16] = {
510 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
511 8, 9, 10, 11, 12, 13, 14, 15
513 #else
514 #define gpr_map gpr_map32
515 #endif
516 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
518 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
520 #define IDX_IP_REG CPU_NB_REGS
521 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
522 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
523 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
524 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
525 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
527 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
529 if (n < CPU_NB_REGS) {
530 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
531 GET_REG64(env->regs[gpr_map[n]]);
532 } else if (n < CPU_NB_REGS32) {
533 GET_REG32(env->regs[gpr_map32[n]]);
535 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
536 #ifdef USE_X86LDOUBLE
537 /* FIXME: byteswap float values - after fixing fpregs layout. */
538 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
539 #else
540 memset(mem_buf, 0, 10);
541 #endif
542 return 10;
543 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
544 n -= IDX_XMM_REGS;
545 if (n < CPU_NB_REGS32 ||
546 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
547 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
548 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
549 return 16;
551 } else {
552 switch (n) {
553 case IDX_IP_REG:
554 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
555 GET_REG64(env->eip);
556 } else {
557 GET_REG32(env->eip);
559 case IDX_FLAGS_REG: GET_REG32(env->eflags);
561 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
562 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
563 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
564 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
565 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
566 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
568 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
569 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
570 (env->fpstt & 0x7) << 11);
571 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
572 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
573 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
574 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
575 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
576 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
578 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
581 return 0;
584 static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
586 uint16_t selector = ldl_p(mem_buf);
588 if (selector != env->segs[sreg].selector) {
589 #if defined(CONFIG_USER_ONLY)
590 cpu_x86_load_seg(env, sreg, selector);
591 #else
592 unsigned int limit, flags;
593 target_ulong base;
595 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
596 base = selector << 4;
597 limit = 0xffff;
598 flags = 0;
599 } else {
600 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
601 return 4;
603 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
604 #endif
606 return 4;
609 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
611 uint32_t tmp;
613 if (n < CPU_NB_REGS) {
614 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
615 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
616 return sizeof(target_ulong);
617 } else if (n < CPU_NB_REGS32) {
618 n = gpr_map32[n];
619 env->regs[n] &= ~0xffffffffUL;
620 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
621 return 4;
623 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
624 #ifdef USE_X86LDOUBLE
625 /* FIXME: byteswap float values - after fixing fpregs layout. */
626 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
627 #endif
628 return 10;
629 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
630 n -= IDX_XMM_REGS;
631 if (n < CPU_NB_REGS32 ||
632 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
633 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
634 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
635 return 16;
637 } else {
638 switch (n) {
639 case IDX_IP_REG:
640 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
641 env->eip = ldq_p(mem_buf);
642 return 8;
643 } else {
644 env->eip &= ~0xffffffffUL;
645 env->eip |= (uint32_t)ldl_p(mem_buf);
646 return 4;
648 case IDX_FLAGS_REG:
649 env->eflags = ldl_p(mem_buf);
650 return 4;
652 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
653 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
654 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
655 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
656 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
657 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
659 case IDX_FP_REGS + 8:
660 env->fpuc = ldl_p(mem_buf);
661 return 4;
662 case IDX_FP_REGS + 9:
663 tmp = ldl_p(mem_buf);
664 env->fpstt = (tmp >> 11) & 7;
665 env->fpus = tmp & ~0x3800;
666 return 4;
667 case IDX_FP_REGS + 10: /* ftag */ return 4;
668 case IDX_FP_REGS + 11: /* fiseg */ return 4;
669 case IDX_FP_REGS + 12: /* fioff */ return 4;
670 case IDX_FP_REGS + 13: /* foseg */ return 4;
671 case IDX_FP_REGS + 14: /* fooff */ return 4;
672 case IDX_FP_REGS + 15: /* fop */ return 4;
674 case IDX_MXCSR_REG:
675 env->mxcsr = ldl_p(mem_buf);
676 return 4;
679 /* Unrecognised register. */
680 return 0;
683 #elif defined (TARGET_PPC)
685 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
686 expects whatever the target description contains. Due to a
687 historical mishap the FP registers appear in between core integer
688 regs and PC, MSR, CR, and so forth. We hack round this by giving the
689 FP regs zero size when talking to a newer gdb. */
690 #define NUM_CORE_REGS 71
691 #if defined (TARGET_PPC64)
692 #define GDB_CORE_XML "power64-core.xml"
693 #else
694 #define GDB_CORE_XML "power-core.xml"
695 #endif
697 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
699 if (n < 32) {
700 /* gprs */
701 GET_REGL(env->gpr[n]);
702 } else if (n < 64) {
703 /* fprs */
704 if (gdb_has_xml)
705 return 0;
706 stfq_p(mem_buf, env->fpr[n-32]);
707 return 8;
708 } else {
709 switch (n) {
710 case 64: GET_REGL(env->nip);
711 case 65: GET_REGL(env->msr);
712 case 66:
714 uint32_t cr = 0;
715 int i;
716 for (i = 0; i < 8; i++)
717 cr |= env->crf[i] << (32 - ((i + 1) * 4));
718 GET_REG32(cr);
720 case 67: GET_REGL(env->lr);
721 case 68: GET_REGL(env->ctr);
722 case 69: GET_REGL(env->xer);
723 case 70:
725 if (gdb_has_xml)
726 return 0;
727 GET_REG32(0); /* fpscr */
731 return 0;
734 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
736 if (n < 32) {
737 /* gprs */
738 env->gpr[n] = ldtul_p(mem_buf);
739 return sizeof(target_ulong);
740 } else if (n < 64) {
741 /* fprs */
742 if (gdb_has_xml)
743 return 0;
744 env->fpr[n-32] = ldfq_p(mem_buf);
745 return 8;
746 } else {
747 switch (n) {
748 case 64:
749 env->nip = ldtul_p(mem_buf);
750 return sizeof(target_ulong);
751 case 65:
752 ppc_store_msr(env, ldtul_p(mem_buf));
753 return sizeof(target_ulong);
754 case 66:
756 uint32_t cr = ldl_p(mem_buf);
757 int i;
758 for (i = 0; i < 8; i++)
759 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
760 return 4;
762 case 67:
763 env->lr = ldtul_p(mem_buf);
764 return sizeof(target_ulong);
765 case 68:
766 env->ctr = ldtul_p(mem_buf);
767 return sizeof(target_ulong);
768 case 69:
769 env->xer = ldtul_p(mem_buf);
770 return sizeof(target_ulong);
771 case 70:
772 /* fpscr */
773 if (gdb_has_xml)
774 return 0;
775 return 4;
778 return 0;
781 #elif defined (TARGET_SPARC)
783 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
784 #define NUM_CORE_REGS 86
785 #else
786 #define NUM_CORE_REGS 72
787 #endif
789 #ifdef TARGET_ABI32
790 #define GET_REGA(val) GET_REG32(val)
791 #else
792 #define GET_REGA(val) GET_REGL(val)
793 #endif
795 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
797 if (n < 8) {
798 /* g0..g7 */
799 GET_REGA(env->gregs[n]);
801 if (n < 32) {
802 /* register window */
803 GET_REGA(env->regwptr[n - 8]);
805 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
806 if (n < 64) {
807 /* fprs */
808 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
810 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
811 switch (n) {
812 case 64: GET_REGA(env->y);
813 case 65: GET_REGA(cpu_get_psr(env));
814 case 66: GET_REGA(env->wim);
815 case 67: GET_REGA(env->tbr);
816 case 68: GET_REGA(env->pc);
817 case 69: GET_REGA(env->npc);
818 case 70: GET_REGA(env->fsr);
819 case 71: GET_REGA(0); /* csr */
820 default: GET_REGA(0);
822 #else
823 if (n < 64) {
824 /* f0-f31 */
825 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
827 if (n < 80) {
828 /* f32-f62 (double width, even numbers only) */
829 uint64_t val;
831 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
832 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
833 GET_REG64(val);
835 switch (n) {
836 case 80: GET_REGL(env->pc);
837 case 81: GET_REGL(env->npc);
838 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
839 ((env->asi & 0xff) << 24) |
840 ((env->pstate & 0xfff) << 8) |
841 cpu_get_cwp64(env));
842 case 83: GET_REGL(env->fsr);
843 case 84: GET_REGL(env->fprs);
844 case 85: GET_REGL(env->y);
846 #endif
847 return 0;
850 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
852 #if defined(TARGET_ABI32)
853 abi_ulong tmp;
855 tmp = ldl_p(mem_buf);
856 #else
857 target_ulong tmp;
859 tmp = ldtul_p(mem_buf);
860 #endif
862 if (n < 8) {
863 /* g0..g7 */
864 env->gregs[n] = tmp;
865 } else if (n < 32) {
866 /* register window */
867 env->regwptr[n - 8] = tmp;
869 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
870 else if (n < 64) {
871 /* fprs */
872 *((uint32_t *)&env->fpr[n - 32]) = tmp;
873 } else {
874 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
875 switch (n) {
876 case 64: env->y = tmp; break;
877 case 65: cpu_put_psr(env, tmp); break;
878 case 66: env->wim = tmp; break;
879 case 67: env->tbr = tmp; break;
880 case 68: env->pc = tmp; break;
881 case 69: env->npc = tmp; break;
882 case 70: env->fsr = tmp; break;
883 default: return 0;
886 return 4;
887 #else
888 else if (n < 64) {
889 /* f0-f31 */
890 env->fpr[n] = ldfl_p(mem_buf);
891 return 4;
892 } else if (n < 80) {
893 /* f32-f62 (double width, even numbers only) */
894 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
895 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
896 } else {
897 switch (n) {
898 case 80: env->pc = tmp; break;
899 case 81: env->npc = tmp; break;
900 case 82:
901 cpu_put_ccr(env, tmp >> 32);
902 env->asi = (tmp >> 24) & 0xff;
903 env->pstate = (tmp >> 8) & 0xfff;
904 cpu_put_cwp64(env, tmp & 0xff);
905 break;
906 case 83: env->fsr = tmp; break;
907 case 84: env->fprs = tmp; break;
908 case 85: env->y = tmp; break;
909 default: return 0;
912 return 8;
913 #endif
915 #elif defined (TARGET_ARM)
917 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
918 whatever the target description contains. Due to a historical mishap
919 the FPA registers appear in between core integer regs and the CPSR.
920 We hack round this by giving the FPA regs zero size when talking to a
921 newer gdb. */
922 #define NUM_CORE_REGS 26
923 #define GDB_CORE_XML "arm-core.xml"
925 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
927 if (n < 16) {
928 /* Core integer register. */
929 GET_REG32(env->regs[n]);
931 if (n < 24) {
932 /* FPA registers. */
933 if (gdb_has_xml)
934 return 0;
935 memset(mem_buf, 0, 12);
936 return 12;
938 switch (n) {
939 case 24:
940 /* FPA status register. */
941 if (gdb_has_xml)
942 return 0;
943 GET_REG32(0);
944 case 25:
945 /* CPSR */
946 GET_REG32(cpsr_read(env));
948 /* Unknown register. */
949 return 0;
952 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
954 uint32_t tmp;
956 tmp = ldl_p(mem_buf);
958 /* Mask out low bit of PC to workaround gdb bugs. This will probably
959 cause problems if we ever implement the Jazelle DBX extensions. */
960 if (n == 15)
961 tmp &= ~1;
963 if (n < 16) {
964 /* Core integer register. */
965 env->regs[n] = tmp;
966 return 4;
968 if (n < 24) { /* 16-23 */
969 /* FPA registers (ignored). */
970 if (gdb_has_xml)
971 return 0;
972 return 12;
974 switch (n) {
975 case 24:
976 /* FPA status register (ignored). */
977 if (gdb_has_xml)
978 return 0;
979 return 4;
980 case 25:
981 /* CPSR */
982 cpsr_write (env, tmp, 0xffffffff);
983 return 4;
985 /* Unknown register. */
986 return 0;
989 #elif defined (TARGET_M68K)
991 #define NUM_CORE_REGS 18
993 #define GDB_CORE_XML "cf-core.xml"
995 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
997 if (n < 8) {
998 /* D0-D7 */
999 GET_REG32(env->dregs[n]);
1000 } else if (n < 16) {
1001 /* A0-A7 */
1002 GET_REG32(env->aregs[n - 8]);
1003 } else {
1004 switch (n) {
1005 case 16: GET_REG32(env->sr);
1006 case 17: GET_REG32(env->pc);
1009 /* FP registers not included here because they vary between
1010 ColdFire and m68k. Use XML bits for these. */
1011 return 0;
1014 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1016 uint32_t tmp;
1018 tmp = ldl_p(mem_buf);
1020 if (n < 8) {
1021 /* D0-D7 */
1022 env->dregs[n] = tmp;
1023 } else if (n < 16) {
1024 /* A0-A7 */
1025 env->aregs[n - 8] = tmp;
1026 } else {
1027 switch (n) {
1028 case 16: env->sr = tmp; break;
1029 case 17: env->pc = tmp; break;
1030 default: return 0;
1033 return 4;
1035 #elif defined (TARGET_MIPS)
1037 #define NUM_CORE_REGS 73
1039 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1041 if (n < 32) {
1042 GET_REGL(env->active_tc.gpr[n]);
1044 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1045 if (n >= 38 && n < 70) {
1046 if (env->CP0_Status & (1 << CP0St_FR))
1047 GET_REGL(env->active_fpu.fpr[n - 38].d);
1048 else
1049 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1051 switch (n) {
1052 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1053 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1056 switch (n) {
1057 case 32: GET_REGL((int32_t)env->CP0_Status);
1058 case 33: GET_REGL(env->active_tc.LO[0]);
1059 case 34: GET_REGL(env->active_tc.HI[0]);
1060 case 35: GET_REGL(env->CP0_BadVAddr);
1061 case 36: GET_REGL((int32_t)env->CP0_Cause);
1062 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1063 case 72: GET_REGL(0); /* fp */
1064 case 89: GET_REGL((int32_t)env->CP0_PRid);
1066 if (n >= 73 && n <= 88) {
1067 /* 16 embedded regs. */
1068 GET_REGL(0);
1071 return 0;
1074 /* convert MIPS rounding mode in FCR31 to IEEE library */
1075 static unsigned int ieee_rm[] =
1077 float_round_nearest_even,
1078 float_round_to_zero,
1079 float_round_up,
1080 float_round_down
1082 #define RESTORE_ROUNDING_MODE \
1083 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1085 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1087 target_ulong tmp;
1089 tmp = ldtul_p(mem_buf);
1091 if (n < 32) {
1092 env->active_tc.gpr[n] = tmp;
1093 return sizeof(target_ulong);
1095 if (env->CP0_Config1 & (1 << CP0C1_FP)
1096 && n >= 38 && n < 73) {
1097 if (n < 70) {
1098 if (env->CP0_Status & (1 << CP0St_FR))
1099 env->active_fpu.fpr[n - 38].d = tmp;
1100 else
1101 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1103 switch (n) {
1104 case 70:
1105 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1106 /* set rounding mode */
1107 RESTORE_ROUNDING_MODE;
1108 break;
1109 case 71: env->active_fpu.fcr0 = tmp; break;
1111 return sizeof(target_ulong);
1113 switch (n) {
1114 case 32: env->CP0_Status = tmp; break;
1115 case 33: env->active_tc.LO[0] = tmp; break;
1116 case 34: env->active_tc.HI[0] = tmp; break;
1117 case 35: env->CP0_BadVAddr = tmp; break;
1118 case 36: env->CP0_Cause = tmp; break;
1119 case 37:
1120 env->active_tc.PC = tmp & ~(target_ulong)1;
1121 if (tmp & 1) {
1122 env->hflags |= MIPS_HFLAG_M16;
1123 } else {
1124 env->hflags &= ~(MIPS_HFLAG_M16);
1126 break;
1127 case 72: /* fp, ignored */ break;
1128 default:
1129 if (n > 89)
1130 return 0;
1131 /* Other registers are readonly. Ignore writes. */
1132 break;
1135 return sizeof(target_ulong);
1137 #elif defined (TARGET_SH4)
1139 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1140 /* FIXME: We should use XML for this. */
1142 #define NUM_CORE_REGS 59
1144 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1146 if (n < 8) {
1147 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1148 GET_REGL(env->gregs[n + 16]);
1149 } else {
1150 GET_REGL(env->gregs[n]);
1152 } else if (n < 16) {
1153 GET_REGL(env->gregs[n]);
1154 } else if (n >= 25 && n < 41) {
1155 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1156 } else if (n >= 43 && n < 51) {
1157 GET_REGL(env->gregs[n - 43]);
1158 } else if (n >= 51 && n < 59) {
1159 GET_REGL(env->gregs[n - (51 - 16)]);
1161 switch (n) {
1162 case 16: GET_REGL(env->pc);
1163 case 17: GET_REGL(env->pr);
1164 case 18: GET_REGL(env->gbr);
1165 case 19: GET_REGL(env->vbr);
1166 case 20: GET_REGL(env->mach);
1167 case 21: GET_REGL(env->macl);
1168 case 22: GET_REGL(env->sr);
1169 case 23: GET_REGL(env->fpul);
1170 case 24: GET_REGL(env->fpscr);
1171 case 41: GET_REGL(env->ssr);
1172 case 42: GET_REGL(env->spc);
1175 return 0;
1178 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1180 uint32_t tmp;
1182 tmp = ldl_p(mem_buf);
1184 if (n < 8) {
1185 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1186 env->gregs[n + 16] = tmp;
1187 } else {
1188 env->gregs[n] = tmp;
1190 return 4;
1191 } else if (n < 16) {
1192 env->gregs[n] = tmp;
1193 return 4;
1194 } else if (n >= 25 && n < 41) {
1195 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1196 return 4;
1197 } else if (n >= 43 && n < 51) {
1198 env->gregs[n - 43] = tmp;
1199 return 4;
1200 } else if (n >= 51 && n < 59) {
1201 env->gregs[n - (51 - 16)] = tmp;
1202 return 4;
1204 switch (n) {
1205 case 16: env->pc = tmp; break;
1206 case 17: env->pr = tmp; break;
1207 case 18: env->gbr = tmp; break;
1208 case 19: env->vbr = tmp; break;
1209 case 20: env->mach = tmp; break;
1210 case 21: env->macl = tmp; break;
1211 case 22: env->sr = tmp; break;
1212 case 23: env->fpul = tmp; break;
1213 case 24: env->fpscr = tmp; break;
1214 case 41: env->ssr = tmp; break;
1215 case 42: env->spc = tmp; break;
1216 default: return 0;
1219 return 4;
1221 #elif defined (TARGET_MICROBLAZE)
1223 #define NUM_CORE_REGS (32 + 5)
1225 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1227 if (n < 32) {
1228 GET_REG32(env->regs[n]);
1229 } else {
1230 GET_REG32(env->sregs[n - 32]);
1232 return 0;
1235 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1237 uint32_t tmp;
1239 if (n > NUM_CORE_REGS)
1240 return 0;
1242 tmp = ldl_p(mem_buf);
1244 if (n < 32) {
1245 env->regs[n] = tmp;
1246 } else {
1247 env->sregs[n - 32] = tmp;
1249 return 4;
1251 #elif defined (TARGET_CRIS)
1253 #define NUM_CORE_REGS 49
1255 static int
1256 read_register_crisv10(CPUState *env, uint8_t *mem_buf, int n)
1258 if (n < 15) {
1259 GET_REG32(env->regs[n]);
1262 if (n == 15) {
1263 GET_REG32(env->pc);
1266 if (n < 32) {
1267 switch (n) {
1268 case 16:
1269 GET_REG8(env->pregs[n - 16]);
1270 break;
1271 case 17:
1272 GET_REG8(env->pregs[n - 16]);
1273 break;
1274 case 20:
1275 case 21:
1276 GET_REG16(env->pregs[n - 16]);
1277 break;
1278 default:
1279 if (n >= 23) {
1280 GET_REG32(env->pregs[n - 16]);
1282 break;
1285 return 0;
1288 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1290 uint8_t srs;
1292 if (env->pregs[PR_VR] < 32)
1293 return read_register_crisv10(env, mem_buf, n);
1295 srs = env->pregs[PR_SRS];
1296 if (n < 16) {
1297 GET_REG32(env->regs[n]);
1300 if (n >= 21 && n < 32) {
1301 GET_REG32(env->pregs[n - 16]);
1303 if (n >= 33 && n < 49) {
1304 GET_REG32(env->sregs[srs][n - 33]);
1306 switch (n) {
1307 case 16: GET_REG8(env->pregs[0]);
1308 case 17: GET_REG8(env->pregs[1]);
1309 case 18: GET_REG32(env->pregs[2]);
1310 case 19: GET_REG8(srs);
1311 case 20: GET_REG16(env->pregs[4]);
1312 case 32: GET_REG32(env->pc);
1315 return 0;
1318 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1320 uint32_t tmp;
1322 if (n > 49)
1323 return 0;
1325 tmp = ldl_p(mem_buf);
1327 if (n < 16) {
1328 env->regs[n] = tmp;
1331 if (n >= 21 && n < 32) {
1332 env->pregs[n - 16] = tmp;
1335 /* FIXME: Should support function regs be writable? */
1336 switch (n) {
1337 case 16: return 1;
1338 case 17: return 1;
1339 case 18: env->pregs[PR_PID] = tmp; break;
1340 case 19: return 1;
1341 case 20: return 2;
1342 case 32: env->pc = tmp; break;
1345 return 4;
1347 #elif defined (TARGET_ALPHA)
1349 #define NUM_CORE_REGS 67
1351 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1353 uint64_t val;
1354 CPU_DoubleU d;
1356 switch (n) {
1357 case 0 ... 30:
1358 val = env->ir[n];
1359 break;
1360 case 32 ... 62:
1361 d.d = env->fir[n - 32];
1362 val = d.ll;
1363 break;
1364 case 63:
1365 val = cpu_alpha_load_fpcr(env);
1366 break;
1367 case 64:
1368 val = env->pc;
1369 break;
1370 case 66:
1371 val = env->unique;
1372 break;
1373 case 31:
1374 case 65:
1375 /* 31 really is the zero register; 65 is unassigned in the
1376 gdb protocol, but is still required to occupy 8 bytes. */
1377 val = 0;
1378 break;
1379 default:
1380 return 0;
1382 GET_REGL(val);
1385 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1387 target_ulong tmp = ldtul_p(mem_buf);
1388 CPU_DoubleU d;
1390 switch (n) {
1391 case 0 ... 30:
1392 env->ir[n] = tmp;
1393 break;
1394 case 32 ... 62:
1395 d.ll = tmp;
1396 env->fir[n - 32] = d.d;
1397 break;
1398 case 63:
1399 cpu_alpha_store_fpcr(env, tmp);
1400 break;
1401 case 64:
1402 env->pc = tmp;
1403 break;
1404 case 66:
1405 env->unique = tmp;
1406 break;
1407 case 31:
1408 case 65:
1409 /* 31 really is the zero register; 65 is unassigned in the
1410 gdb protocol, but is still required to occupy 8 bytes. */
1411 break;
1412 default:
1413 return 0;
1415 return 8;
1417 #elif defined (TARGET_S390X)
1419 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1421 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1423 switch (n) {
1424 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1425 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1426 case S390_R0_REGNUM ... S390_R15_REGNUM:
1427 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1428 case S390_A0_REGNUM ... S390_A15_REGNUM:
1429 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1430 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1431 case S390_F0_REGNUM ... S390_F15_REGNUM:
1432 /* XXX */
1433 break;
1434 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1435 case S390_CC_REGNUM:
1436 env->cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst,
1437 env->cc_vr);
1438 GET_REG32(env->cc_op);
1439 break;
1442 return 0;
1445 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1447 target_ulong tmpl;
1448 uint32_t tmp32;
1449 int r = 8;
1450 tmpl = ldtul_p(mem_buf);
1451 tmp32 = ldl_p(mem_buf);
1453 switch (n) {
1454 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1455 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1456 case S390_R0_REGNUM ... S390_R15_REGNUM:
1457 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1458 case S390_A0_REGNUM ... S390_A15_REGNUM:
1459 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1460 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1461 case S390_F0_REGNUM ... S390_F15_REGNUM:
1462 /* XXX */
1463 break;
1464 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1465 case S390_CC_REGNUM: env->cc_op = tmp32; r=4; break;
1468 return r;
1470 #elif defined (TARGET_LM32)
1472 #include "hw/lm32_pic.h"
1473 #define NUM_CORE_REGS (32 + 7)
1475 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1477 if (n < 32) {
1478 GET_REG32(env->regs[n]);
1479 } else {
1480 switch (n) {
1481 case 32:
1482 GET_REG32(env->pc);
1483 break;
1484 /* FIXME: put in right exception ID */
1485 case 33:
1486 GET_REG32(0);
1487 break;
1488 case 34:
1489 GET_REG32(env->eba);
1490 break;
1491 case 35:
1492 GET_REG32(env->deba);
1493 break;
1494 case 36:
1495 GET_REG32(env->ie);
1496 break;
1497 case 37:
1498 GET_REG32(lm32_pic_get_im(env->pic_state));
1499 break;
1500 case 38:
1501 GET_REG32(lm32_pic_get_ip(env->pic_state));
1502 break;
1505 return 0;
1508 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1510 uint32_t tmp;
1512 if (n > NUM_CORE_REGS) {
1513 return 0;
1516 tmp = ldl_p(mem_buf);
1518 if (n < 32) {
1519 env->regs[n] = tmp;
1520 } else {
1521 switch (n) {
1522 case 32:
1523 env->pc = tmp;
1524 break;
1525 case 34:
1526 env->eba = tmp;
1527 break;
1528 case 35:
1529 env->deba = tmp;
1530 break;
1531 case 36:
1532 env->ie = tmp;
1533 break;
1534 case 37:
1535 lm32_pic_set_im(env->pic_state, tmp);
1536 break;
1537 case 38:
1538 lm32_pic_set_ip(env->pic_state, tmp);
1539 break;
1542 return 4;
1544 #else
1546 #define NUM_CORE_REGS 0
1548 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1550 return 0;
1553 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1555 return 0;
1558 #endif
1560 static int num_g_regs = NUM_CORE_REGS;
1562 #ifdef GDB_CORE_XML
1563 /* Encode data using the encoding for 'x' packets. */
1564 static int memtox(char *buf, const char *mem, int len)
1566 char *p = buf;
1567 char c;
1569 while (len--) {
1570 c = *(mem++);
1571 switch (c) {
1572 case '#': case '$': case '*': case '}':
1573 *(p++) = '}';
1574 *(p++) = c ^ 0x20;
1575 break;
1576 default:
1577 *(p++) = c;
1578 break;
1581 return p - buf;
1584 static const char *get_feature_xml(const char *p, const char **newp)
1586 size_t len;
1587 int i;
1588 const char *name;
1589 static char target_xml[1024];
1591 len = 0;
1592 while (p[len] && p[len] != ':')
1593 len++;
1594 *newp = p + len;
1596 name = NULL;
1597 if (strncmp(p, "target.xml", len) == 0) {
1598 /* Generate the XML description for this CPU. */
1599 if (!target_xml[0]) {
1600 GDBRegisterState *r;
1602 snprintf(target_xml, sizeof(target_xml),
1603 "<?xml version=\"1.0\"?>"
1604 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1605 "<target>"
1606 "<xi:include href=\"%s\"/>",
1607 GDB_CORE_XML);
1609 for (r = first_cpu->gdb_regs; r; r = r->next) {
1610 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1611 pstrcat(target_xml, sizeof(target_xml), r->xml);
1612 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1614 pstrcat(target_xml, sizeof(target_xml), "</target>");
1616 return target_xml;
1618 for (i = 0; ; i++) {
1619 name = xml_builtin[i][0];
1620 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1621 break;
1623 return name ? xml_builtin[i][1] : NULL;
1625 #endif
1627 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1629 GDBRegisterState *r;
1631 if (reg < NUM_CORE_REGS)
1632 return cpu_gdb_read_register(env, mem_buf, reg);
1634 for (r = env->gdb_regs; r; r = r->next) {
1635 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1636 return r->get_reg(env, mem_buf, reg - r->base_reg);
1639 return 0;
1642 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1644 GDBRegisterState *r;
1646 if (reg < NUM_CORE_REGS)
1647 return cpu_gdb_write_register(env, mem_buf, reg);
1649 for (r = env->gdb_regs; r; r = r->next) {
1650 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1651 return r->set_reg(env, mem_buf, reg - r->base_reg);
1654 return 0;
1657 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1658 specifies the first register number and these registers are included in
1659 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1660 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1663 void gdb_register_coprocessor(CPUState * env,
1664 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1665 int num_regs, const char *xml, int g_pos)
1667 GDBRegisterState *s;
1668 GDBRegisterState **p;
1669 static int last_reg = NUM_CORE_REGS;
1671 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1672 s->base_reg = last_reg;
1673 s->num_regs = num_regs;
1674 s->get_reg = get_reg;
1675 s->set_reg = set_reg;
1676 s->xml = xml;
1677 p = &env->gdb_regs;
1678 while (*p) {
1679 /* Check for duplicates. */
1680 if (strcmp((*p)->xml, xml) == 0)
1681 return;
1682 p = &(*p)->next;
1684 /* Add to end of list. */
1685 last_reg += num_regs;
1686 *p = s;
1687 if (g_pos) {
1688 if (g_pos != s->base_reg) {
1689 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1690 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1691 } else {
1692 num_g_regs = last_reg;
1697 #ifndef CONFIG_USER_ONLY
1698 static const int xlat_gdb_type[] = {
1699 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1700 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1701 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1703 #endif
1705 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1707 CPUState *env;
1708 int err = 0;
1710 if (kvm_enabled())
1711 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1713 switch (type) {
1714 case GDB_BREAKPOINT_SW:
1715 case GDB_BREAKPOINT_HW:
1716 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1717 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1718 if (err)
1719 break;
1721 return err;
1722 #ifndef CONFIG_USER_ONLY
1723 case GDB_WATCHPOINT_WRITE:
1724 case GDB_WATCHPOINT_READ:
1725 case GDB_WATCHPOINT_ACCESS:
1726 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1727 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1728 NULL);
1729 if (err)
1730 break;
1732 return err;
1733 #endif
1734 default:
1735 return -ENOSYS;
1739 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1741 CPUState *env;
1742 int err = 0;
1744 if (kvm_enabled())
1745 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1747 switch (type) {
1748 case GDB_BREAKPOINT_SW:
1749 case GDB_BREAKPOINT_HW:
1750 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1751 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1752 if (err)
1753 break;
1755 return err;
1756 #ifndef CONFIG_USER_ONLY
1757 case GDB_WATCHPOINT_WRITE:
1758 case GDB_WATCHPOINT_READ:
1759 case GDB_WATCHPOINT_ACCESS:
1760 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1761 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1762 if (err)
1763 break;
1765 return err;
1766 #endif
1767 default:
1768 return -ENOSYS;
1772 static void gdb_breakpoint_remove_all(void)
1774 CPUState *env;
1776 if (kvm_enabled()) {
1777 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1778 return;
1781 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1782 cpu_breakpoint_remove_all(env, BP_GDB);
1783 #ifndef CONFIG_USER_ONLY
1784 cpu_watchpoint_remove_all(env, BP_GDB);
1785 #endif
1789 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1791 #if defined(TARGET_I386)
1792 cpu_synchronize_state(s->c_cpu);
1793 s->c_cpu->eip = pc;
1794 #elif defined (TARGET_PPC)
1795 s->c_cpu->nip = pc;
1796 #elif defined (TARGET_SPARC)
1797 s->c_cpu->pc = pc;
1798 s->c_cpu->npc = pc + 4;
1799 #elif defined (TARGET_ARM)
1800 s->c_cpu->regs[15] = pc;
1801 #elif defined (TARGET_SH4)
1802 s->c_cpu->pc = pc;
1803 #elif defined (TARGET_MIPS)
1804 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
1805 if (pc & 1) {
1806 s->c_cpu->hflags |= MIPS_HFLAG_M16;
1807 } else {
1808 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
1810 #elif defined (TARGET_MICROBLAZE)
1811 s->c_cpu->sregs[SR_PC] = pc;
1812 #elif defined (TARGET_CRIS)
1813 s->c_cpu->pc = pc;
1814 #elif defined (TARGET_ALPHA)
1815 s->c_cpu->pc = pc;
1816 #elif defined (TARGET_S390X)
1817 cpu_synchronize_state(s->c_cpu);
1818 s->c_cpu->psw.addr = pc;
1819 #elif defined (TARGET_LM32)
1820 s->c_cpu->pc = pc;
1821 #endif
1824 static inline int gdb_id(CPUState *env)
1826 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1827 return env->host_tid;
1828 #else
1829 return env->cpu_index + 1;
1830 #endif
1833 static CPUState *find_cpu(uint32_t thread_id)
1835 CPUState *env;
1837 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1838 if (gdb_id(env) == thread_id) {
1839 return env;
1843 return NULL;
1846 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1848 CPUState *env;
1849 const char *p;
1850 uint32_t thread;
1851 int ch, reg_size, type, res;
1852 char buf[MAX_PACKET_LENGTH];
1853 uint8_t mem_buf[MAX_PACKET_LENGTH];
1854 uint8_t *registers;
1855 target_ulong addr, len;
1857 #ifdef DEBUG_GDB
1858 printf("command='%s'\n", line_buf);
1859 #endif
1860 p = line_buf;
1861 ch = *p++;
1862 switch(ch) {
1863 case '?':
1864 /* TODO: Make this return the correct value for user-mode. */
1865 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1866 gdb_id(s->c_cpu));
1867 put_packet(s, buf);
1868 /* Remove all the breakpoints when this query is issued,
1869 * because gdb is doing and initial connect and the state
1870 * should be cleaned up.
1872 gdb_breakpoint_remove_all();
1873 break;
1874 case 'c':
1875 if (*p != '\0') {
1876 addr = strtoull(p, (char **)&p, 16);
1877 gdb_set_cpu_pc(s, addr);
1879 s->signal = 0;
1880 gdb_continue(s);
1881 return RS_IDLE;
1882 case 'C':
1883 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1884 if (s->signal == -1)
1885 s->signal = 0;
1886 gdb_continue(s);
1887 return RS_IDLE;
1888 case 'v':
1889 if (strncmp(p, "Cont", 4) == 0) {
1890 int res_signal, res_thread;
1892 p += 4;
1893 if (*p == '?') {
1894 put_packet(s, "vCont;c;C;s;S");
1895 break;
1897 res = 0;
1898 res_signal = 0;
1899 res_thread = 0;
1900 while (*p) {
1901 int action, signal;
1903 if (*p++ != ';') {
1904 res = 0;
1905 break;
1907 action = *p++;
1908 signal = 0;
1909 if (action == 'C' || action == 'S') {
1910 signal = strtoul(p, (char **)&p, 16);
1911 } else if (action != 'c' && action != 's') {
1912 res = 0;
1913 break;
1915 thread = 0;
1916 if (*p == ':') {
1917 thread = strtoull(p+1, (char **)&p, 16);
1919 action = tolower(action);
1920 if (res == 0 || (res == 'c' && action == 's')) {
1921 res = action;
1922 res_signal = signal;
1923 res_thread = thread;
1926 if (res) {
1927 if (res_thread != -1 && res_thread != 0) {
1928 env = find_cpu(res_thread);
1929 if (env == NULL) {
1930 put_packet(s, "E22");
1931 break;
1933 s->c_cpu = env;
1935 if (res == 's') {
1936 cpu_single_step(s->c_cpu, sstep_flags);
1938 s->signal = res_signal;
1939 gdb_continue(s);
1940 return RS_IDLE;
1942 break;
1943 } else {
1944 goto unknown_command;
1946 case 'k':
1947 /* Kill the target */
1948 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1949 exit(0);
1950 case 'D':
1951 /* Detach packet */
1952 gdb_breakpoint_remove_all();
1953 gdb_syscall_mode = GDB_SYS_DISABLED;
1954 gdb_continue(s);
1955 put_packet(s, "OK");
1956 break;
1957 case 's':
1958 if (*p != '\0') {
1959 addr = strtoull(p, (char **)&p, 16);
1960 gdb_set_cpu_pc(s, addr);
1962 cpu_single_step(s->c_cpu, sstep_flags);
1963 gdb_continue(s);
1964 return RS_IDLE;
1965 case 'F':
1967 target_ulong ret;
1968 target_ulong err;
1970 ret = strtoull(p, (char **)&p, 16);
1971 if (*p == ',') {
1972 p++;
1973 err = strtoull(p, (char **)&p, 16);
1974 } else {
1975 err = 0;
1977 if (*p == ',')
1978 p++;
1979 type = *p;
1980 if (gdb_current_syscall_cb)
1981 gdb_current_syscall_cb(s->c_cpu, ret, err);
1982 if (type == 'C') {
1983 put_packet(s, "T02");
1984 } else {
1985 gdb_continue(s);
1988 break;
1989 case 'g':
1990 cpu_synchronize_state(s->g_cpu);
1991 len = 0;
1992 for (addr = 0; addr < num_g_regs; addr++) {
1993 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1994 len += reg_size;
1996 memtohex(buf, mem_buf, len);
1997 put_packet(s, buf);
1998 break;
1999 case 'G':
2000 cpu_synchronize_state(s->g_cpu);
2001 registers = mem_buf;
2002 len = strlen(p) / 2;
2003 hextomem((uint8_t *)registers, p, len);
2004 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2005 reg_size = gdb_write_register(s->g_cpu, registers, addr);
2006 len -= reg_size;
2007 registers += reg_size;
2009 put_packet(s, "OK");
2010 break;
2011 case 'm':
2012 addr = strtoull(p, (char **)&p, 16);
2013 if (*p == ',')
2014 p++;
2015 len = strtoull(p, NULL, 16);
2016 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2017 put_packet (s, "E14");
2018 } else {
2019 memtohex(buf, mem_buf, len);
2020 put_packet(s, buf);
2022 break;
2023 case 'M':
2024 addr = strtoull(p, (char **)&p, 16);
2025 if (*p == ',')
2026 p++;
2027 len = strtoull(p, (char **)&p, 16);
2028 if (*p == ':')
2029 p++;
2030 hextomem(mem_buf, p, len);
2031 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
2032 put_packet(s, "E14");
2033 else
2034 put_packet(s, "OK");
2035 break;
2036 case 'p':
2037 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2038 This works, but can be very slow. Anything new enough to
2039 understand XML also knows how to use this properly. */
2040 if (!gdb_has_xml)
2041 goto unknown_command;
2042 addr = strtoull(p, (char **)&p, 16);
2043 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
2044 if (reg_size) {
2045 memtohex(buf, mem_buf, reg_size);
2046 put_packet(s, buf);
2047 } else {
2048 put_packet(s, "E14");
2050 break;
2051 case 'P':
2052 if (!gdb_has_xml)
2053 goto unknown_command;
2054 addr = strtoull(p, (char **)&p, 16);
2055 if (*p == '=')
2056 p++;
2057 reg_size = strlen(p) / 2;
2058 hextomem(mem_buf, p, reg_size);
2059 gdb_write_register(s->g_cpu, mem_buf, addr);
2060 put_packet(s, "OK");
2061 break;
2062 case 'Z':
2063 case 'z':
2064 type = strtoul(p, (char **)&p, 16);
2065 if (*p == ',')
2066 p++;
2067 addr = strtoull(p, (char **)&p, 16);
2068 if (*p == ',')
2069 p++;
2070 len = strtoull(p, (char **)&p, 16);
2071 if (ch == 'Z')
2072 res = gdb_breakpoint_insert(addr, len, type);
2073 else
2074 res = gdb_breakpoint_remove(addr, len, type);
2075 if (res >= 0)
2076 put_packet(s, "OK");
2077 else if (res == -ENOSYS)
2078 put_packet(s, "");
2079 else
2080 put_packet(s, "E22");
2081 break;
2082 case 'H':
2083 type = *p++;
2084 thread = strtoull(p, (char **)&p, 16);
2085 if (thread == -1 || thread == 0) {
2086 put_packet(s, "OK");
2087 break;
2089 env = find_cpu(thread);
2090 if (env == NULL) {
2091 put_packet(s, "E22");
2092 break;
2094 switch (type) {
2095 case 'c':
2096 s->c_cpu = env;
2097 put_packet(s, "OK");
2098 break;
2099 case 'g':
2100 s->g_cpu = env;
2101 put_packet(s, "OK");
2102 break;
2103 default:
2104 put_packet(s, "E22");
2105 break;
2107 break;
2108 case 'T':
2109 thread = strtoull(p, (char **)&p, 16);
2110 env = find_cpu(thread);
2112 if (env != NULL) {
2113 put_packet(s, "OK");
2114 } else {
2115 put_packet(s, "E22");
2117 break;
2118 case 'q':
2119 case 'Q':
2120 /* parse any 'q' packets here */
2121 if (!strcmp(p,"qemu.sstepbits")) {
2122 /* Query Breakpoint bit definitions */
2123 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2124 SSTEP_ENABLE,
2125 SSTEP_NOIRQ,
2126 SSTEP_NOTIMER);
2127 put_packet(s, buf);
2128 break;
2129 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2130 /* Display or change the sstep_flags */
2131 p += 10;
2132 if (*p != '=') {
2133 /* Display current setting */
2134 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2135 put_packet(s, buf);
2136 break;
2138 p++;
2139 type = strtoul(p, (char **)&p, 16);
2140 sstep_flags = type;
2141 put_packet(s, "OK");
2142 break;
2143 } else if (strcmp(p,"C") == 0) {
2144 /* "Current thread" remains vague in the spec, so always return
2145 * the first CPU (gdb returns the first thread). */
2146 put_packet(s, "QC1");
2147 break;
2148 } else if (strcmp(p,"fThreadInfo") == 0) {
2149 s->query_cpu = first_cpu;
2150 goto report_cpuinfo;
2151 } else if (strcmp(p,"sThreadInfo") == 0) {
2152 report_cpuinfo:
2153 if (s->query_cpu) {
2154 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
2155 put_packet(s, buf);
2156 s->query_cpu = s->query_cpu->next_cpu;
2157 } else
2158 put_packet(s, "l");
2159 break;
2160 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2161 thread = strtoull(p+16, (char **)&p, 16);
2162 env = find_cpu(thread);
2163 if (env != NULL) {
2164 cpu_synchronize_state(env);
2165 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2166 "CPU#%d [%s]", env->cpu_index,
2167 env->halted ? "halted " : "running");
2168 memtohex(buf, mem_buf, len);
2169 put_packet(s, buf);
2171 break;
2173 #ifdef CONFIG_USER_ONLY
2174 else if (strncmp(p, "Offsets", 7) == 0) {
2175 TaskState *ts = s->c_cpu->opaque;
2177 snprintf(buf, sizeof(buf),
2178 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2179 ";Bss=" TARGET_ABI_FMT_lx,
2180 ts->info->code_offset,
2181 ts->info->data_offset,
2182 ts->info->data_offset);
2183 put_packet(s, buf);
2184 break;
2186 #else /* !CONFIG_USER_ONLY */
2187 else if (strncmp(p, "Rcmd,", 5) == 0) {
2188 int len = strlen(p + 5);
2190 if ((len % 2) != 0) {
2191 put_packet(s, "E01");
2192 break;
2194 hextomem(mem_buf, p + 5, len);
2195 len = len / 2;
2196 mem_buf[len++] = 0;
2197 qemu_chr_read(s->mon_chr, mem_buf, len);
2198 put_packet(s, "OK");
2199 break;
2201 #endif /* !CONFIG_USER_ONLY */
2202 if (strncmp(p, "Supported", 9) == 0) {
2203 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2204 #ifdef GDB_CORE_XML
2205 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2206 #endif
2207 put_packet(s, buf);
2208 break;
2210 #ifdef GDB_CORE_XML
2211 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2212 const char *xml;
2213 target_ulong total_len;
2215 gdb_has_xml = 1;
2216 p += 19;
2217 xml = get_feature_xml(p, &p);
2218 if (!xml) {
2219 snprintf(buf, sizeof(buf), "E00");
2220 put_packet(s, buf);
2221 break;
2224 if (*p == ':')
2225 p++;
2226 addr = strtoul(p, (char **)&p, 16);
2227 if (*p == ',')
2228 p++;
2229 len = strtoul(p, (char **)&p, 16);
2231 total_len = strlen(xml);
2232 if (addr > total_len) {
2233 snprintf(buf, sizeof(buf), "E00");
2234 put_packet(s, buf);
2235 break;
2237 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2238 len = (MAX_PACKET_LENGTH - 5) / 2;
2239 if (len < total_len - addr) {
2240 buf[0] = 'm';
2241 len = memtox(buf + 1, xml + addr, len);
2242 } else {
2243 buf[0] = 'l';
2244 len = memtox(buf + 1, xml + addr, total_len - addr);
2246 put_packet_binary(s, buf, len + 1);
2247 break;
2249 #endif
2250 /* Unrecognised 'q' command. */
2251 goto unknown_command;
2253 default:
2254 unknown_command:
2255 /* put empty packet */
2256 buf[0] = '\0';
2257 put_packet(s, buf);
2258 break;
2260 return RS_IDLE;
2263 void gdb_set_stop_cpu(CPUState *env)
2265 gdbserver_state->c_cpu = env;
2266 gdbserver_state->g_cpu = env;
2269 #ifndef CONFIG_USER_ONLY
2270 static void gdb_vm_state_change(void *opaque, int running, int reason)
2272 GDBState *s = gdbserver_state;
2273 CPUState *env = s->c_cpu;
2274 char buf[256];
2275 const char *type;
2276 int ret;
2278 if (running || s->state == RS_INACTIVE || s->state == RS_SYSCALL) {
2279 return;
2281 switch (reason) {
2282 case VMSTOP_DEBUG:
2283 if (env->watchpoint_hit) {
2284 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2285 case BP_MEM_READ:
2286 type = "r";
2287 break;
2288 case BP_MEM_ACCESS:
2289 type = "a";
2290 break;
2291 default:
2292 type = "";
2293 break;
2295 snprintf(buf, sizeof(buf),
2296 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2297 GDB_SIGNAL_TRAP, gdb_id(env), type,
2298 env->watchpoint_hit->vaddr);
2299 env->watchpoint_hit = NULL;
2300 goto send_packet;
2302 tb_flush(env);
2303 ret = GDB_SIGNAL_TRAP;
2304 break;
2305 case VMSTOP_USER:
2306 ret = GDB_SIGNAL_INT;
2307 break;
2308 case VMSTOP_SHUTDOWN:
2309 ret = GDB_SIGNAL_QUIT;
2310 break;
2311 case VMSTOP_DISKFULL:
2312 ret = GDB_SIGNAL_IO;
2313 break;
2314 case VMSTOP_WATCHDOG:
2315 ret = GDB_SIGNAL_ALRM;
2316 break;
2317 case VMSTOP_PANIC:
2318 ret = GDB_SIGNAL_ABRT;
2319 break;
2320 case VMSTOP_SAVEVM:
2321 case VMSTOP_LOADVM:
2322 return;
2323 case VMSTOP_MIGRATE:
2324 ret = GDB_SIGNAL_XCPU;
2325 break;
2326 default:
2327 ret = GDB_SIGNAL_UNKNOWN;
2328 break;
2330 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2332 send_packet:
2333 put_packet(s, buf);
2335 /* disable single step if it was enabled */
2336 cpu_single_step(env, 0);
2338 #endif
2340 /* Send a gdb syscall request.
2341 This accepts limited printf-style format specifiers, specifically:
2342 %x - target_ulong argument printed in hex.
2343 %lx - 64-bit argument printed in hex.
2344 %s - string pointer (target_ulong) and length (int) pair. */
2345 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2347 va_list va;
2348 char buf[256];
2349 char *p;
2350 target_ulong addr;
2351 uint64_t i64;
2352 GDBState *s;
2354 s = gdbserver_state;
2355 if (!s)
2356 return;
2357 gdb_current_syscall_cb = cb;
2358 s->state = RS_SYSCALL;
2359 #ifndef CONFIG_USER_ONLY
2360 vm_stop(VMSTOP_DEBUG);
2361 #endif
2362 s->state = RS_IDLE;
2363 va_start(va, fmt);
2364 p = buf;
2365 *(p++) = 'F';
2366 while (*fmt) {
2367 if (*fmt == '%') {
2368 fmt++;
2369 switch (*fmt++) {
2370 case 'x':
2371 addr = va_arg(va, target_ulong);
2372 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2373 break;
2374 case 'l':
2375 if (*(fmt++) != 'x')
2376 goto bad_format;
2377 i64 = va_arg(va, uint64_t);
2378 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2379 break;
2380 case 's':
2381 addr = va_arg(va, target_ulong);
2382 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2383 addr, va_arg(va, int));
2384 break;
2385 default:
2386 bad_format:
2387 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2388 fmt - 1);
2389 break;
2391 } else {
2392 *(p++) = *(fmt++);
2395 *p = 0;
2396 va_end(va);
2397 put_packet(s, buf);
2398 #ifdef CONFIG_USER_ONLY
2399 gdb_handlesig(s->c_cpu, 0);
2400 #else
2401 cpu_exit(s->c_cpu);
2402 #endif
2405 static void gdb_read_byte(GDBState *s, int ch)
2407 int i, csum;
2408 uint8_t reply;
2410 #ifndef CONFIG_USER_ONLY
2411 if (s->last_packet_len) {
2412 /* Waiting for a response to the last packet. If we see the start
2413 of a new command then abandon the previous response. */
2414 if (ch == '-') {
2415 #ifdef DEBUG_GDB
2416 printf("Got NACK, retransmitting\n");
2417 #endif
2418 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2420 #ifdef DEBUG_GDB
2421 else if (ch == '+')
2422 printf("Got ACK\n");
2423 else
2424 printf("Got '%c' when expecting ACK/NACK\n", ch);
2425 #endif
2426 if (ch == '+' || ch == '$')
2427 s->last_packet_len = 0;
2428 if (ch != '$')
2429 return;
2431 if (vm_running) {
2432 /* when the CPU is running, we cannot do anything except stop
2433 it when receiving a char */
2434 vm_stop(VMSTOP_USER);
2435 } else
2436 #endif
2438 switch(s->state) {
2439 case RS_IDLE:
2440 if (ch == '$') {
2441 s->line_buf_index = 0;
2442 s->state = RS_GETLINE;
2444 break;
2445 case RS_GETLINE:
2446 if (ch == '#') {
2447 s->state = RS_CHKSUM1;
2448 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2449 s->state = RS_IDLE;
2450 } else {
2451 s->line_buf[s->line_buf_index++] = ch;
2453 break;
2454 case RS_CHKSUM1:
2455 s->line_buf[s->line_buf_index] = '\0';
2456 s->line_csum = fromhex(ch) << 4;
2457 s->state = RS_CHKSUM2;
2458 break;
2459 case RS_CHKSUM2:
2460 s->line_csum |= fromhex(ch);
2461 csum = 0;
2462 for(i = 0; i < s->line_buf_index; i++) {
2463 csum += s->line_buf[i];
2465 if (s->line_csum != (csum & 0xff)) {
2466 reply = '-';
2467 put_buffer(s, &reply, 1);
2468 s->state = RS_IDLE;
2469 } else {
2470 reply = '+';
2471 put_buffer(s, &reply, 1);
2472 s->state = gdb_handle_packet(s, s->line_buf);
2474 break;
2475 default:
2476 abort();
2481 /* Tell the remote gdb that the process has exited. */
2482 void gdb_exit(CPUState *env, int code)
2484 GDBState *s;
2485 char buf[4];
2487 s = gdbserver_state;
2488 if (!s) {
2489 return;
2491 #ifdef CONFIG_USER_ONLY
2492 if (gdbserver_fd < 0 || s->fd < 0) {
2493 return;
2495 #endif
2497 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2498 put_packet(s, buf);
2500 #ifndef CONFIG_USER_ONLY
2501 if (s->chr) {
2502 qemu_chr_close(s->chr);
2504 #endif
2507 #ifdef CONFIG_USER_ONLY
2509 gdb_queuesig (void)
2511 GDBState *s;
2513 s = gdbserver_state;
2515 if (gdbserver_fd < 0 || s->fd < 0)
2516 return 0;
2517 else
2518 return 1;
2522 gdb_handlesig (CPUState *env, int sig)
2524 GDBState *s;
2525 char buf[256];
2526 int n;
2528 s = gdbserver_state;
2529 if (gdbserver_fd < 0 || s->fd < 0)
2530 return sig;
2532 /* disable single step if it was enabled */
2533 cpu_single_step(env, 0);
2534 tb_flush(env);
2536 if (sig != 0)
2538 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2539 put_packet(s, buf);
2541 /* put_packet() might have detected that the peer terminated the
2542 connection. */
2543 if (s->fd < 0)
2544 return sig;
2546 sig = 0;
2547 s->state = RS_IDLE;
2548 s->running_state = 0;
2549 while (s->running_state == 0) {
2550 n = read (s->fd, buf, 256);
2551 if (n > 0)
2553 int i;
2555 for (i = 0; i < n; i++)
2556 gdb_read_byte (s, buf[i]);
2558 else if (n == 0 || errno != EAGAIN)
2560 /* XXX: Connection closed. Should probably wait for annother
2561 connection before continuing. */
2562 return sig;
2565 sig = s->signal;
2566 s->signal = 0;
2567 return sig;
2570 /* Tell the remote gdb that the process has exited due to SIG. */
2571 void gdb_signalled(CPUState *env, int sig)
2573 GDBState *s;
2574 char buf[4];
2576 s = gdbserver_state;
2577 if (gdbserver_fd < 0 || s->fd < 0)
2578 return;
2580 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2581 put_packet(s, buf);
2584 static void gdb_accept(void)
2586 GDBState *s;
2587 struct sockaddr_in sockaddr;
2588 socklen_t len;
2589 int val, fd;
2591 for(;;) {
2592 len = sizeof(sockaddr);
2593 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2594 if (fd < 0 && errno != EINTR) {
2595 perror("accept");
2596 return;
2597 } else if (fd >= 0) {
2598 #ifndef _WIN32
2599 fcntl(fd, F_SETFD, FD_CLOEXEC);
2600 #endif
2601 break;
2605 /* set short latency */
2606 val = 1;
2607 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2609 s = qemu_mallocz(sizeof(GDBState));
2610 s->c_cpu = first_cpu;
2611 s->g_cpu = first_cpu;
2612 s->fd = fd;
2613 gdb_has_xml = 0;
2615 gdbserver_state = s;
2617 fcntl(fd, F_SETFL, O_NONBLOCK);
2620 static int gdbserver_open(int port)
2622 struct sockaddr_in sockaddr;
2623 int fd, val, ret;
2625 fd = socket(PF_INET, SOCK_STREAM, 0);
2626 if (fd < 0) {
2627 perror("socket");
2628 return -1;
2630 #ifndef _WIN32
2631 fcntl(fd, F_SETFD, FD_CLOEXEC);
2632 #endif
2634 /* allow fast reuse */
2635 val = 1;
2636 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2638 sockaddr.sin_family = AF_INET;
2639 sockaddr.sin_port = htons(port);
2640 sockaddr.sin_addr.s_addr = 0;
2641 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2642 if (ret < 0) {
2643 perror("bind");
2644 return -1;
2646 ret = listen(fd, 0);
2647 if (ret < 0) {
2648 perror("listen");
2649 return -1;
2651 return fd;
2654 int gdbserver_start(int port)
2656 gdbserver_fd = gdbserver_open(port);
2657 if (gdbserver_fd < 0)
2658 return -1;
2659 /* accept connections */
2660 gdb_accept();
2661 return 0;
2664 /* Disable gdb stub for child processes. */
2665 void gdbserver_fork(CPUState *env)
2667 GDBState *s = gdbserver_state;
2668 if (gdbserver_fd < 0 || s->fd < 0)
2669 return;
2670 close(s->fd);
2671 s->fd = -1;
2672 cpu_breakpoint_remove_all(env, BP_GDB);
2673 cpu_watchpoint_remove_all(env, BP_GDB);
2675 #else
2676 static int gdb_chr_can_receive(void *opaque)
2678 /* We can handle an arbitrarily large amount of data.
2679 Pick the maximum packet size, which is as good as anything. */
2680 return MAX_PACKET_LENGTH;
2683 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2685 int i;
2687 for (i = 0; i < size; i++) {
2688 gdb_read_byte(gdbserver_state, buf[i]);
2692 static void gdb_chr_event(void *opaque, int event)
2694 switch (event) {
2695 case CHR_EVENT_OPENED:
2696 vm_stop(VMSTOP_USER);
2697 gdb_has_xml = 0;
2698 break;
2699 default:
2700 break;
2704 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2706 char buf[MAX_PACKET_LENGTH];
2708 buf[0] = 'O';
2709 if (len > (MAX_PACKET_LENGTH/2) - 1)
2710 len = (MAX_PACKET_LENGTH/2) - 1;
2711 memtohex(buf + 1, (uint8_t *)msg, len);
2712 put_packet(s, buf);
2715 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2717 const char *p = (const char *)buf;
2718 int max_sz;
2720 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2721 for (;;) {
2722 if (len <= max_sz) {
2723 gdb_monitor_output(gdbserver_state, p, len);
2724 break;
2726 gdb_monitor_output(gdbserver_state, p, max_sz);
2727 p += max_sz;
2728 len -= max_sz;
2730 return len;
2733 #ifndef _WIN32
2734 static void gdb_sigterm_handler(int signal)
2736 if (vm_running) {
2737 vm_stop(VMSTOP_USER);
2740 #endif
2742 int gdbserver_start(const char *device)
2744 GDBState *s;
2745 char gdbstub_device_name[128];
2746 CharDriverState *chr = NULL;
2747 CharDriverState *mon_chr;
2749 if (!device)
2750 return -1;
2751 if (strcmp(device, "none") != 0) {
2752 if (strstart(device, "tcp:", NULL)) {
2753 /* enforce required TCP attributes */
2754 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2755 "%s,nowait,nodelay,server", device);
2756 device = gdbstub_device_name;
2758 #ifndef _WIN32
2759 else if (strcmp(device, "stdio") == 0) {
2760 struct sigaction act;
2762 memset(&act, 0, sizeof(act));
2763 act.sa_handler = gdb_sigterm_handler;
2764 sigaction(SIGINT, &act, NULL);
2766 #endif
2767 chr = qemu_chr_open("gdb", device, NULL);
2768 if (!chr)
2769 return -1;
2771 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2772 gdb_chr_event, NULL);
2775 s = gdbserver_state;
2776 if (!s) {
2777 s = qemu_mallocz(sizeof(GDBState));
2778 gdbserver_state = s;
2780 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2782 /* Initialize a monitor terminal for gdb */
2783 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2784 mon_chr->chr_write = gdb_monitor_write;
2785 monitor_init(mon_chr, 0);
2786 } else {
2787 if (s->chr)
2788 qemu_chr_close(s->chr);
2789 mon_chr = s->mon_chr;
2790 memset(s, 0, sizeof(GDBState));
2792 s->c_cpu = first_cpu;
2793 s->g_cpu = first_cpu;
2794 s->chr = chr;
2795 s->state = chr ? RS_IDLE : RS_INACTIVE;
2796 s->mon_chr = mon_chr;
2798 return 0;
2800 #endif