Increase size of virtio_net rings
[qemu-kvm/fedora.git] / qemu-kvm-x86.c
blob5daedd1e3339af1f2e11d75c2d6595660b9c1b1a
1 /*
2 * qemu/kvm integration, x86 specific code
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
9 #include "config.h"
10 #include "config-host.h"
12 #include <string.h>
13 #include "hw/hw.h"
15 #include "qemu-kvm.h"
16 #include <libkvm.h>
17 #include <pthread.h>
18 #include <sys/utsname.h>
19 #include <linux/kvm_para.h>
21 #define MSR_IA32_TSC 0x10
23 static struct kvm_msr_list *kvm_msr_list;
24 extern unsigned int kvm_shadow_memory;
25 extern kvm_context_t kvm_context;
26 static int kvm_has_msr_star;
28 static int lm_capable_kernel;
30 int kvm_arch_qemu_create_context(void)
32 int i;
33 struct utsname utsname;
35 uname(&utsname);
36 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
38 if (kvm_shadow_memory)
39 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
41 kvm_msr_list = kvm_get_msr_list(kvm_context);
42 if (!kvm_msr_list)
43 return -1;
44 for (i = 0; i < kvm_msr_list->nmsrs; ++i)
45 if (kvm_msr_list->indices[i] == MSR_STAR)
46 kvm_has_msr_star = 1;
47 return 0;
50 static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
51 uint64_t data)
53 entry->index = index;
54 entry->data = data;
57 /* returns 0 on success, non-0 on failure */
58 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
60 switch (entry->index) {
61 case MSR_IA32_SYSENTER_CS:
62 env->sysenter_cs = entry->data;
63 break;
64 case MSR_IA32_SYSENTER_ESP:
65 env->sysenter_esp = entry->data;
66 break;
67 case MSR_IA32_SYSENTER_EIP:
68 env->sysenter_eip = entry->data;
69 break;
70 case MSR_STAR:
71 env->star = entry->data;
72 break;
73 #ifdef TARGET_X86_64
74 case MSR_CSTAR:
75 env->cstar = entry->data;
76 break;
77 case MSR_KERNELGSBASE:
78 env->kernelgsbase = entry->data;
79 break;
80 case MSR_FMASK:
81 env->fmask = entry->data;
82 break;
83 case MSR_LSTAR:
84 env->lstar = entry->data;
85 break;
86 #endif
87 case MSR_IA32_TSC:
88 env->tsc = entry->data;
89 break;
90 default:
91 printf("Warning unknown msr index 0x%x\n", entry->index);
92 return 1;
94 return 0;
97 #ifdef TARGET_X86_64
98 #define MSR_COUNT 9
99 #else
100 #define MSR_COUNT 5
101 #endif
103 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
105 lhs->selector = rhs->selector;
106 lhs->base = rhs->base;
107 lhs->limit = rhs->limit;
108 lhs->type = 3;
109 lhs->present = 1;
110 lhs->dpl = 3;
111 lhs->db = 0;
112 lhs->s = 1;
113 lhs->l = 0;
114 lhs->g = 0;
115 lhs->avl = 0;
116 lhs->unusable = 0;
119 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
121 unsigned flags = rhs->flags;
122 lhs->selector = rhs->selector;
123 lhs->base = rhs->base;
124 lhs->limit = rhs->limit;
125 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
126 lhs->present = (flags & DESC_P_MASK) != 0;
127 lhs->dpl = rhs->selector & 3;
128 lhs->db = (flags >> DESC_B_SHIFT) & 1;
129 lhs->s = (flags & DESC_S_MASK) != 0;
130 lhs->l = (flags >> DESC_L_SHIFT) & 1;
131 lhs->g = (flags & DESC_G_MASK) != 0;
132 lhs->avl = (flags & DESC_AVL_MASK) != 0;
133 lhs->unusable = 0;
136 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
138 lhs->selector = rhs->selector;
139 lhs->base = rhs->base;
140 lhs->limit = rhs->limit;
141 lhs->flags =
142 (rhs->type << DESC_TYPE_SHIFT)
143 | (rhs->present * DESC_P_MASK)
144 | (rhs->dpl << DESC_DPL_SHIFT)
145 | (rhs->db << DESC_B_SHIFT)
146 | (rhs->s * DESC_S_MASK)
147 | (rhs->l << DESC_L_SHIFT)
148 | (rhs->g * DESC_G_MASK)
149 | (rhs->avl * DESC_AVL_MASK);
152 void kvm_arch_load_regs(CPUState *env)
154 struct kvm_regs regs;
155 struct kvm_fpu fpu;
156 struct kvm_sregs sregs;
157 struct kvm_msr_entry msrs[MSR_COUNT];
158 int rc, n, i;
160 regs.rax = env->regs[R_EAX];
161 regs.rbx = env->regs[R_EBX];
162 regs.rcx = env->regs[R_ECX];
163 regs.rdx = env->regs[R_EDX];
164 regs.rsi = env->regs[R_ESI];
165 regs.rdi = env->regs[R_EDI];
166 regs.rsp = env->regs[R_ESP];
167 regs.rbp = env->regs[R_EBP];
168 #ifdef TARGET_X86_64
169 regs.r8 = env->regs[8];
170 regs.r9 = env->regs[9];
171 regs.r10 = env->regs[10];
172 regs.r11 = env->regs[11];
173 regs.r12 = env->regs[12];
174 regs.r13 = env->regs[13];
175 regs.r14 = env->regs[14];
176 regs.r15 = env->regs[15];
177 #endif
179 regs.rflags = env->eflags;
180 regs.rip = env->eip;
182 kvm_set_regs(kvm_context, env->cpu_index, &regs);
184 memset(&fpu, 0, sizeof fpu);
185 fpu.fsw = env->fpus & ~(7 << 11);
186 fpu.fsw |= (env->fpstt & 7) << 11;
187 fpu.fcw = env->fpuc;
188 for (i = 0; i < 8; ++i)
189 fpu.ftwx |= (!env->fptags[i]) << i;
190 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
191 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
192 fpu.mxcsr = env->mxcsr;
193 kvm_set_fpu(kvm_context, env->cpu_index, &fpu);
195 memcpy(sregs.interrupt_bitmap, env->kvm_interrupt_bitmap, sizeof(sregs.interrupt_bitmap));
197 if ((env->eflags & VM_MASK)) {
198 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
199 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
200 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
201 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
202 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
203 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
204 } else {
205 set_seg(&sregs.cs, &env->segs[R_CS]);
206 set_seg(&sregs.ds, &env->segs[R_DS]);
207 set_seg(&sregs.es, &env->segs[R_ES]);
208 set_seg(&sregs.fs, &env->segs[R_FS]);
209 set_seg(&sregs.gs, &env->segs[R_GS]);
210 set_seg(&sregs.ss, &env->segs[R_SS]);
212 if (env->cr[0] & CR0_PE_MASK) {
213 /* force ss cpl to cs cpl */
214 sregs.ss.selector = (sregs.ss.selector & ~3) |
215 (sregs.cs.selector & 3);
216 sregs.ss.dpl = sregs.ss.selector & 3;
220 set_seg(&sregs.tr, &env->tr);
221 set_seg(&sregs.ldt, &env->ldt);
223 sregs.idt.limit = env->idt.limit;
224 sregs.idt.base = env->idt.base;
225 sregs.gdt.limit = env->gdt.limit;
226 sregs.gdt.base = env->gdt.base;
228 sregs.cr0 = env->cr[0];
229 sregs.cr2 = env->cr[2];
230 sregs.cr3 = env->cr[3];
231 sregs.cr4 = env->cr[4];
233 sregs.cr8 = cpu_get_apic_tpr(env);
234 sregs.apic_base = cpu_get_apic_base(env);
236 sregs.efer = env->efer;
238 kvm_set_sregs(kvm_context, env->cpu_index, &sregs);
240 /* msrs */
241 n = 0;
242 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
243 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
244 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
245 if (kvm_has_msr_star)
246 set_msr_entry(&msrs[n++], MSR_STAR, env->star);
247 set_msr_entry(&msrs[n++], MSR_IA32_TSC, env->tsc);
248 #ifdef TARGET_X86_64
249 if (lm_capable_kernel) {
250 set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
251 set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
252 set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
253 set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
255 #endif
257 rc = kvm_set_msrs(kvm_context, env->cpu_index, msrs, n);
258 if (rc == -1)
259 perror("kvm_set_msrs FAILED");
262 void kvm_save_mpstate(CPUState *env)
264 #ifdef KVM_CAP_MP_STATE
265 int r;
266 struct kvm_mp_state mp_state;
268 r = kvm_get_mpstate(kvm_context, env->cpu_index, &mp_state);
269 if (r < 0)
270 env->mp_state = -1;
271 else
272 env->mp_state = mp_state.mp_state;
273 #endif
276 void kvm_load_mpstate(CPUState *env)
278 #ifdef KVM_CAP_MP_STATE
279 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
282 * -1 indicates that the host did not support GET_MP_STATE ioctl,
283 * so don't touch it.
285 if (env->mp_state != -1)
286 kvm_set_mpstate(kvm_context, env->cpu_index, &mp_state);
287 #endif
290 void kvm_arch_save_regs(CPUState *env)
292 struct kvm_regs regs;
293 struct kvm_fpu fpu;
294 struct kvm_sregs sregs;
295 struct kvm_msr_entry msrs[MSR_COUNT];
296 uint32_t hflags;
297 uint32_t i, n, rc;
299 kvm_get_regs(kvm_context, env->cpu_index, &regs);
301 env->regs[R_EAX] = regs.rax;
302 env->regs[R_EBX] = regs.rbx;
303 env->regs[R_ECX] = regs.rcx;
304 env->regs[R_EDX] = regs.rdx;
305 env->regs[R_ESI] = regs.rsi;
306 env->regs[R_EDI] = regs.rdi;
307 env->regs[R_ESP] = regs.rsp;
308 env->regs[R_EBP] = regs.rbp;
309 #ifdef TARGET_X86_64
310 env->regs[8] = regs.r8;
311 env->regs[9] = regs.r9;
312 env->regs[10] = regs.r10;
313 env->regs[11] = regs.r11;
314 env->regs[12] = regs.r12;
315 env->regs[13] = regs.r13;
316 env->regs[14] = regs.r14;
317 env->regs[15] = regs.r15;
318 #endif
320 env->eflags = regs.rflags;
321 env->eip = regs.rip;
323 kvm_get_fpu(kvm_context, env->cpu_index, &fpu);
324 env->fpstt = (fpu.fsw >> 11) & 7;
325 env->fpus = fpu.fsw;
326 env->fpuc = fpu.fcw;
327 for (i = 0; i < 8; ++i)
328 env->fptags[i] = !((fpu.ftwx >> i) & 1);
329 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
330 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
331 env->mxcsr = fpu.mxcsr;
333 kvm_get_sregs(kvm_context, env->cpu_index, &sregs);
335 memcpy(env->kvm_interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->kvm_interrupt_bitmap));
337 get_seg(&env->segs[R_CS], &sregs.cs);
338 get_seg(&env->segs[R_DS], &sregs.ds);
339 get_seg(&env->segs[R_ES], &sregs.es);
340 get_seg(&env->segs[R_FS], &sregs.fs);
341 get_seg(&env->segs[R_GS], &sregs.gs);
342 get_seg(&env->segs[R_SS], &sregs.ss);
344 get_seg(&env->tr, &sregs.tr);
345 get_seg(&env->ldt, &sregs.ldt);
347 env->idt.limit = sregs.idt.limit;
348 env->idt.base = sregs.idt.base;
349 env->gdt.limit = sregs.gdt.limit;
350 env->gdt.base = sregs.gdt.base;
352 env->cr[0] = sregs.cr0;
353 env->cr[2] = sregs.cr2;
354 env->cr[3] = sregs.cr3;
355 env->cr[4] = sregs.cr4;
357 cpu_set_apic_base(env, sregs.apic_base);
359 env->efer = sregs.efer;
360 //cpu_set_apic_tpr(env, sregs.cr8);
362 #define HFLAG_COPY_MASK ~( \
363 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
364 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
365 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
366 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
370 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
371 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
372 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
373 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
374 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
375 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
376 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
378 if (env->efer & MSR_EFER_LMA) {
379 hflags |= HF_LMA_MASK;
382 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
383 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
384 } else {
385 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
386 (DESC_B_SHIFT - HF_CS32_SHIFT);
387 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
388 (DESC_B_SHIFT - HF_SS32_SHIFT);
389 if (!(env->cr[0] & CR0_PE_MASK) ||
390 (env->eflags & VM_MASK) ||
391 !(hflags & HF_CS32_MASK)) {
392 hflags |= HF_ADDSEG_MASK;
393 } else {
394 hflags |= ((env->segs[R_DS].base |
395 env->segs[R_ES].base |
396 env->segs[R_SS].base) != 0) <<
397 HF_ADDSEG_SHIFT;
400 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
401 env->cc_src = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
402 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
403 env->cc_op = CC_OP_EFLAGS;
404 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
406 /* msrs */
407 n = 0;
408 msrs[n++].index = MSR_IA32_SYSENTER_CS;
409 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
410 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
411 if (kvm_has_msr_star)
412 msrs[n++].index = MSR_STAR;
413 msrs[n++].index = MSR_IA32_TSC;
414 #ifdef TARGET_X86_64
415 if (lm_capable_kernel) {
416 msrs[n++].index = MSR_CSTAR;
417 msrs[n++].index = MSR_KERNELGSBASE;
418 msrs[n++].index = MSR_FMASK;
419 msrs[n++].index = MSR_LSTAR;
421 #endif
422 rc = kvm_get_msrs(kvm_context, env->cpu_index, msrs, n);
423 if (rc == -1) {
424 perror("kvm_get_msrs FAILED");
426 else {
427 n = rc; /* actual number of MSRs */
428 for (i=0 ; i<n; i++) {
429 if (get_msr_entry(&msrs[i], env))
430 return;
435 static void host_cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx,
436 uint32_t *ecx, uint32_t *edx)
438 uint32_t vec[4];
440 #ifdef __x86_64__
441 asm volatile("cpuid"
442 : "=a"(vec[0]), "=b"(vec[1]),
443 "=c"(vec[2]), "=d"(vec[3])
444 : "0"(function) : "cc");
445 #else
446 asm volatile("pusha \n\t"
447 "cpuid \n\t"
448 "mov %%eax, 0(%1) \n\t"
449 "mov %%ebx, 4(%1) \n\t"
450 "mov %%ecx, 8(%1) \n\t"
451 "mov %%edx, 12(%1) \n\t"
452 "popa"
453 : : "a"(function), "S"(vec)
454 : "memory", "cc");
455 #endif
457 if (eax)
458 *eax = vec[0];
459 if (ebx)
460 *ebx = vec[1];
461 if (ecx)
462 *ecx = vec[2];
463 if (edx)
464 *edx = vec[3];
468 static void do_cpuid_ent(struct kvm_cpuid_entry *e, uint32_t function,
469 CPUState *env)
471 env->regs[R_EAX] = function;
472 qemu_kvm_cpuid_on_env(env);
473 e->function = function;
474 e->eax = env->regs[R_EAX];
475 e->ebx = env->regs[R_EBX];
476 e->ecx = env->regs[R_ECX];
477 e->edx = env->regs[R_EDX];
478 if (function == 0x80000001) {
479 uint32_t h_eax, h_edx;
481 host_cpuid(function, &h_eax, NULL, NULL, &h_edx);
483 // long mode
484 if ((h_edx & 0x20000000) == 0 || !lm_capable_kernel)
485 e->edx &= ~0x20000000u;
486 // syscall
487 if ((h_edx & 0x00000800) == 0)
488 e->edx &= ~0x00000800u;
489 // nx
490 if ((h_edx & 0x00100000) == 0)
491 e->edx &= ~0x00100000u;
492 // svm
493 if (e->ecx & 4)
494 e->ecx &= ~4u;
496 // sysenter isn't supported on compatibility mode on AMD. and syscall
497 // isn't supported in compatibility mode on Intel. so advertise the
498 // actuall cpu, and say goodbye to migration between different vendors
499 // is you use compatibility mode.
500 if (function == 0) {
501 uint32_t bcd[3];
503 host_cpuid(0, NULL, &bcd[0], &bcd[1], &bcd[2]);
504 e->ebx = bcd[0];
505 e->ecx = bcd[1];
506 e->edx = bcd[2];
508 // "Hypervisor present" bit for Microsoft guests
509 if (function == 1)
510 e->ecx |= (1u << 31);
512 // 3dnow isn't properly emulated yet
513 if (function == 0x80000001)
514 e->edx &= ~0xc0000000;
517 struct kvm_para_features {
518 int cap;
519 int feature;
520 } para_features[] = {
521 #ifdef KVM_CAP_CLOCKSOURCE
522 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
523 #endif
524 #ifdef KVM_CAP_NOP_IO_DELAY
525 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
526 #endif
527 #ifdef KVM_CAP_PV_MMU
528 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
529 #endif
530 #ifdef KVM_CAP_CR3_CACHE
531 { KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE },
532 #endif
533 { -1, -1 }
536 static int get_para_features(kvm_context_t kvm_context)
538 int i, features = 0;
540 for (i = 0; i < ARRAY_SIZE(para_features)-1; i++) {
541 if (kvm_check_extension(kvm_context, para_features[i].cap))
542 features |= (1 << para_features[i].feature);
545 return features;
548 int kvm_arch_qemu_init_env(CPUState *cenv)
550 struct kvm_cpuid_entry cpuid_ent[100];
551 #ifdef KVM_CPUID_SIGNATURE
552 struct kvm_cpuid_entry *pv_ent;
553 uint32_t signature[3];
554 #endif
555 int cpuid_nent = 0;
556 CPUState copy;
557 uint32_t i, limit;
559 copy = *cenv;
561 #ifdef KVM_CPUID_SIGNATURE
562 /* Paravirtualization CPUIDs */
563 memcpy(signature, "KVMKVMKVM", 12);
564 pv_ent = &cpuid_ent[cpuid_nent++];
565 memset(pv_ent, 0, sizeof(*pv_ent));
566 pv_ent->function = KVM_CPUID_SIGNATURE;
567 pv_ent->eax = 0;
568 pv_ent->ebx = signature[0];
569 pv_ent->ecx = signature[1];
570 pv_ent->edx = signature[2];
572 pv_ent = &cpuid_ent[cpuid_nent++];
573 memset(pv_ent, 0, sizeof(*pv_ent));
574 pv_ent->function = KVM_CPUID_FEATURES;
575 pv_ent->eax = get_para_features(kvm_context);
576 #endif
578 copy.regs[R_EAX] = 0;
579 qemu_kvm_cpuid_on_env(&copy);
580 limit = copy.regs[R_EAX];
582 for (i = 0; i <= limit; ++i)
583 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
585 copy.regs[R_EAX] = 0x80000000;
586 qemu_kvm_cpuid_on_env(&copy);
587 limit = copy.regs[R_EAX];
589 for (i = 0x80000000; i <= limit; ++i)
590 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
592 kvm_setup_cpuid(kvm_context, cenv->cpu_index, cpuid_nent, cpuid_ent);
593 return 0;
596 int kvm_arch_halt(void *opaque, int vcpu)
598 CPUState *env = cpu_single_env;
600 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
601 (env->eflags & IF_MASK))) {
602 env->halted = 1;
603 env->exception_index = EXCP_HLT;
605 return 1;
608 void kvm_arch_pre_kvm_run(void *opaque, int vcpu)
610 CPUState *env = cpu_single_env;
612 if (!kvm_irqchip_in_kernel(kvm_context))
613 kvm_set_cr8(kvm_context, vcpu, cpu_get_apic_tpr(env));
616 void kvm_arch_post_kvm_run(void *opaque, int vcpu)
618 CPUState *env = qemu_kvm_cpu_env(vcpu);
619 cpu_single_env = env;
621 env->eflags = kvm_get_interrupt_flag(kvm_context, vcpu)
622 ? env->eflags | IF_MASK : env->eflags & ~IF_MASK;
624 cpu_set_apic_tpr(env, kvm_get_cr8(kvm_context, vcpu));
625 cpu_set_apic_base(env, kvm_get_apic_base(kvm_context, vcpu));
628 int kvm_arch_has_work(CPUState *env)
630 if ((env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT)) &&
631 (env->eflags & IF_MASK))
632 return 1;
633 return 0;
636 int kvm_arch_try_push_interrupts(void *opaque)
638 CPUState *env = cpu_single_env;
639 int r, irq;
641 if (kvm_is_ready_for_interrupt_injection(kvm_context, env->cpu_index) &&
642 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
643 (env->eflags & IF_MASK)) {
644 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
645 irq = cpu_get_pic_interrupt(env);
646 if (irq >= 0) {
647 r = kvm_inject_irq(kvm_context, env->cpu_index, irq);
648 if (r < 0)
649 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
653 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
656 void kvm_arch_update_regs_for_sipi(CPUState *env)
658 SegmentCache cs = env->segs[R_CS];
660 kvm_arch_save_regs(env);
661 env->segs[R_CS] = cs;
662 env->eip = 0;
663 kvm_arch_load_regs(env);
666 int handle_tpr_access(void *opaque, int vcpu,
667 uint64_t rip, int is_write)
669 kvm_tpr_access_report(cpu_single_env, rip, is_write);
670 return 0;
673 void kvm_arch_cpu_reset(CPUState *env)
675 kvm_arch_load_regs(env);
676 if (env->cpu_index != 0) {
677 if (kvm_irqchip_in_kernel(kvm_context)) {
678 #ifdef KVM_CAP_MP_STATE
679 kvm_reset_mpstate(kvm_context, env->cpu_index);
680 #endif
681 } else {
682 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
683 env->halted = 1;
684 env->exception_index = EXCP_HLT;