2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include "host-utils.h"
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
28 void do_raise_exception_err (uint32_t exception
, int error_code
)
31 if (logfile
&& exception
< 0x100)
32 fprintf(logfile
, "%s: %d %d\n", __func__
, exception
, error_code
);
34 env
->exception_index
= exception
;
35 env
->error_code
= error_code
;
39 void do_raise_exception (uint32_t exception
)
41 do_raise_exception_err(exception
, 0);
44 void do_interrupt_restart (void)
46 if (!(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
47 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
48 !(env
->hflags
& MIPS_HFLAG_DM
) &&
49 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
50 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
)) {
51 env
->CP0_Cause
&= ~(0x1f << CP0Ca_EC
);
52 do_raise_exception(EXCP_EXT_INTERRUPT
);
56 void do_restore_state (void *pc_ptr
)
59 unsigned long pc
= (unsigned long) pc_ptr
;
63 cpu_restore_state (tb
, env
, pc
, NULL
);
67 target_ulong
do_clo (target_ulong t0
)
72 target_ulong
do_clz (target_ulong t0
)
77 #if defined(TARGET_MIPS64)
78 target_ulong
do_dclo (target_ulong t0
)
83 target_ulong
do_dclz (target_ulong t0
)
87 #endif /* TARGET_MIPS64 */
89 /* 64 bits arithmetic for 32 bits hosts */
90 static inline uint64_t get_HILO (void)
92 return ((uint64_t)(env
->active_tc
.HI
[0]) << 32) | (uint32_t)env
->active_tc
.LO
[0];
95 static inline void set_HILO (uint64_t HILO
)
97 env
->active_tc
.LO
[0] = (int32_t)HILO
;
98 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
101 static inline void set_HIT0_LO (target_ulong t0
, uint64_t HILO
)
103 env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
104 t0
= env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
107 static inline void set_HI_LOT0 (target_ulong t0
, uint64_t HILO
)
109 t0
= env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
110 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
113 #if TARGET_LONG_BITS > HOST_LONG_BITS
114 void do_madd (target_ulong t0
, target_ulong t1
)
118 tmp
= ((int64_t)(int32_t)t0
* (int64_t)(int32_t)t1
);
119 set_HILO((int64_t)get_HILO() + tmp
);
122 void do_maddu (target_ulong t0
, target_ulong t1
)
126 tmp
= ((uint64_t)(uint32_t)t0
* (uint64_t)(uint32_t)t1
);
127 set_HILO(get_HILO() + tmp
);
130 void do_msub (target_ulong t0
, target_ulong t1
)
134 tmp
= ((int64_t)(int32_t)t0
* (int64_t)(int32_t)t1
);
135 set_HILO((int64_t)get_HILO() - tmp
);
138 void do_msubu (target_ulong t0
, target_ulong t1
)
142 tmp
= ((uint64_t)(uint32_t)t0
* (uint64_t)(uint32_t)t1
);
143 set_HILO(get_HILO() - tmp
);
145 #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
147 /* Multiplication variants of the vr54xx. */
148 target_ulong
do_muls (target_ulong t0
, target_ulong t1
)
150 set_HI_LOT0(t0
, 0 - ((int64_t)(int32_t)t0
* (int64_t)(int32_t)t1
));
155 target_ulong
do_mulsu (target_ulong t0
, target_ulong t1
)
157 set_HI_LOT0(t0
, 0 - ((uint64_t)(uint32_t)t0
* (uint64_t)(uint32_t)t1
));
162 target_ulong
do_macc (target_ulong t0
, target_ulong t1
)
164 set_HI_LOT0(t0
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0
* (int64_t)(int32_t)t1
));
169 target_ulong
do_macchi (target_ulong t0
, target_ulong t1
)
171 set_HIT0_LO(t0
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0
* (int64_t)(int32_t)t1
));
176 target_ulong
do_maccu (target_ulong t0
, target_ulong t1
)
178 set_HI_LOT0(t0
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0
* (uint64_t)(uint32_t)t1
));
183 target_ulong
do_macchiu (target_ulong t0
, target_ulong t1
)
185 set_HIT0_LO(t0
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0
* (uint64_t)(uint32_t)t1
));
190 target_ulong
do_msac (target_ulong t0
, target_ulong t1
)
192 set_HI_LOT0(t0
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0
* (int64_t)(int32_t)t1
));
197 target_ulong
do_msachi (target_ulong t0
, target_ulong t1
)
199 set_HIT0_LO(t0
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0
* (int64_t)(int32_t)t1
));
204 target_ulong
do_msacu (target_ulong t0
, target_ulong t1
)
206 set_HI_LOT0(t0
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0
* (uint64_t)(uint32_t)t1
));
211 target_ulong
do_msachiu (target_ulong t0
, target_ulong t1
)
213 set_HIT0_LO(t0
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0
* (uint64_t)(uint32_t)t1
));
218 target_ulong
do_mulhi (target_ulong t0
, target_ulong t1
)
220 set_HIT0_LO(t0
, (int64_t)(int32_t)t0
* (int64_t)(int32_t)t1
);
225 target_ulong
do_mulhiu (target_ulong t0
, target_ulong t1
)
227 set_HIT0_LO(t0
, (uint64_t)(uint32_t)t0
* (uint64_t)(uint32_t)t1
);
232 target_ulong
do_mulshi (target_ulong t0
, target_ulong t1
)
234 set_HIT0_LO(t0
, 0 - ((int64_t)(int32_t)t0
* (int64_t)(int32_t)t1
));
239 target_ulong
do_mulshiu (target_ulong t0
, target_ulong t1
)
241 set_HIT0_LO(t0
, 0 - ((uint64_t)(uint32_t)t0
* (uint64_t)(uint32_t)t1
));
247 void do_dmult (target_ulong t0
, target_ulong t1
)
249 muls64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), t0
, t1
);
252 void do_dmultu (target_ulong t0
, target_ulong t1
)
254 mulu64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), t0
, t1
);
258 #ifdef TARGET_WORDS_BIGENDIAN
259 #define GET_LMASK(v) ((v) & 3)
260 #define GET_OFFSET(addr, offset) (addr + (offset))
262 #define GET_LMASK(v) (((v) & 3) ^ 3)
263 #define GET_OFFSET(addr, offset) (addr - (offset))
266 target_ulong
do_lwl(target_ulong t0
, target_ulong t1
, int mem_idx
)
270 #ifdef CONFIG_USER_ONLY
271 #define ldfun ldub_raw
273 int (*ldfun
)(target_ulong
);
277 case 0: ldfun
= ldub_kernel
; break;
278 case 1: ldfun
= ldub_super
; break;
280 case 2: ldfun
= ldub_user
; break;
284 t1
= (t1
& 0x00FFFFFF) | (tmp
<< 24);
286 if (GET_LMASK(t0
) <= 2) {
287 tmp
= ldfun(GET_OFFSET(t0
, 1));
288 t1
= (t1
& 0xFF00FFFF) | (tmp
<< 16);
291 if (GET_LMASK(t0
) <= 1) {
292 tmp
= ldfun(GET_OFFSET(t0
, 2));
293 t1
= (t1
& 0xFFFF00FF) | (tmp
<< 8);
296 if (GET_LMASK(t0
) == 0) {
297 tmp
= ldfun(GET_OFFSET(t0
, 3));
298 t1
= (t1
& 0xFFFFFF00) | tmp
;
303 target_ulong
do_lwr(target_ulong t0
, target_ulong t1
, int mem_idx
)
307 #ifdef CONFIG_USER_ONLY
308 #define ldfun ldub_raw
310 int (*ldfun
)(target_ulong
);
314 case 0: ldfun
= ldub_kernel
; break;
315 case 1: ldfun
= ldub_super
; break;
317 case 2: ldfun
= ldub_user
; break;
321 t1
= (t1
& 0xFFFFFF00) | tmp
;
323 if (GET_LMASK(t0
) >= 1) {
324 tmp
= ldfun(GET_OFFSET(t0
, -1));
325 t1
= (t1
& 0xFFFF00FF) | (tmp
<< 8);
328 if (GET_LMASK(t0
) >= 2) {
329 tmp
= ldfun(GET_OFFSET(t0
, -2));
330 t1
= (t1
& 0xFF00FFFF) | (tmp
<< 16);
333 if (GET_LMASK(t0
) == 3) {
334 tmp
= ldfun(GET_OFFSET(t0
, -3));
335 t1
= (t1
& 0x00FFFFFF) | (tmp
<< 24);
340 void do_swl(target_ulong t0
, target_ulong t1
, int mem_idx
)
342 #ifdef CONFIG_USER_ONLY
343 #define stfun stb_raw
345 void (*stfun
)(target_ulong
, int);
349 case 0: stfun
= stb_kernel
; break;
350 case 1: stfun
= stb_super
; break;
352 case 2: stfun
= stb_user
; break;
355 stfun(t0
, (uint8_t)(t1
>> 24));
357 if (GET_LMASK(t0
) <= 2)
358 stfun(GET_OFFSET(t0
, 1), (uint8_t)(t1
>> 16));
360 if (GET_LMASK(t0
) <= 1)
361 stfun(GET_OFFSET(t0
, 2), (uint8_t)(t1
>> 8));
363 if (GET_LMASK(t0
) == 0)
364 stfun(GET_OFFSET(t0
, 3), (uint8_t)t1
);
367 void do_swr(target_ulong t0
, target_ulong t1
, int mem_idx
)
369 #ifdef CONFIG_USER_ONLY
370 #define stfun stb_raw
372 void (*stfun
)(target_ulong
, int);
376 case 0: stfun
= stb_kernel
; break;
377 case 1: stfun
= stb_super
; break;
379 case 2: stfun
= stb_user
; break;
382 stfun(t0
, (uint8_t)t1
);
384 if (GET_LMASK(t0
) >= 1)
385 stfun(GET_OFFSET(t0
, -1), (uint8_t)(t1
>> 8));
387 if (GET_LMASK(t0
) >= 2)
388 stfun(GET_OFFSET(t0
, -2), (uint8_t)(t1
>> 16));
390 if (GET_LMASK(t0
) == 3)
391 stfun(GET_OFFSET(t0
, -3), (uint8_t)(t1
>> 24));
394 #if defined(TARGET_MIPS64)
395 /* "half" load and stores. We must do the memory access inline,
396 or fault handling won't work. */
398 #ifdef TARGET_WORDS_BIGENDIAN
399 #define GET_LMASK64(v) ((v) & 7)
401 #define GET_LMASK64(v) (((v) & 7) ^ 7)
404 target_ulong
do_ldl(target_ulong t0
, target_ulong t1
, int mem_idx
)
408 #ifdef CONFIG_USER_ONLY
409 #define ldfun ldub_raw
411 int (*ldfun
)(target_ulong
);
415 case 0: ldfun
= ldub_kernel
; break;
416 case 1: ldfun
= ldub_super
; break;
418 case 2: ldfun
= ldub_user
; break;
422 t1
= (t1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
424 if (GET_LMASK64(t0
) <= 6) {
425 tmp
= ldfun(GET_OFFSET(t0
, 1));
426 t1
= (t1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
429 if (GET_LMASK64(t0
) <= 5) {
430 tmp
= ldfun(GET_OFFSET(t0
, 2));
431 t1
= (t1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
434 if (GET_LMASK64(t0
) <= 4) {
435 tmp
= ldfun(GET_OFFSET(t0
, 3));
436 t1
= (t1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
439 if (GET_LMASK64(t0
) <= 3) {
440 tmp
= ldfun(GET_OFFSET(t0
, 4));
441 t1
= (t1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
444 if (GET_LMASK64(t0
) <= 2) {
445 tmp
= ldfun(GET_OFFSET(t0
, 5));
446 t1
= (t1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
449 if (GET_LMASK64(t0
) <= 1) {
450 tmp
= ldfun(GET_OFFSET(t0
, 6));
451 t1
= (t1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
454 if (GET_LMASK64(t0
) == 0) {
455 tmp
= ldfun(GET_OFFSET(t0
, 7));
456 t1
= (t1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
462 target_ulong
do_ldr(target_ulong t0
, target_ulong t1
, int mem_idx
)
466 #ifdef CONFIG_USER_ONLY
467 #define ldfun ldub_raw
469 int (*ldfun
)(target_ulong
);
473 case 0: ldfun
= ldub_kernel
; break;
474 case 1: ldfun
= ldub_super
; break;
476 case 2: ldfun
= ldub_user
; break;
480 t1
= (t1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
482 if (GET_LMASK64(t0
) >= 1) {
483 tmp
= ldfun(GET_OFFSET(t0
, -1));
484 t1
= (t1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
487 if (GET_LMASK64(t0
) >= 2) {
488 tmp
= ldfun(GET_OFFSET(t0
, -2));
489 t1
= (t1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
492 if (GET_LMASK64(t0
) >= 3) {
493 tmp
= ldfun(GET_OFFSET(t0
, -3));
494 t1
= (t1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
497 if (GET_LMASK64(t0
) >= 4) {
498 tmp
= ldfun(GET_OFFSET(t0
, -4));
499 t1
= (t1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
502 if (GET_LMASK64(t0
) >= 5) {
503 tmp
= ldfun(GET_OFFSET(t0
, -5));
504 t1
= (t1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
507 if (GET_LMASK64(t0
) >= 6) {
508 tmp
= ldfun(GET_OFFSET(t0
, -6));
509 t1
= (t1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
512 if (GET_LMASK64(t0
) == 7) {
513 tmp
= ldfun(GET_OFFSET(t0
, -7));
514 t1
= (t1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
520 void do_sdl(target_ulong t0
, target_ulong t1
, int mem_idx
)
522 #ifdef CONFIG_USER_ONLY
523 #define stfun stb_raw
525 void (*stfun
)(target_ulong
, int);
529 case 0: stfun
= stb_kernel
; break;
530 case 1: stfun
= stb_super
; break;
532 case 2: stfun
= stb_user
; break;
535 stfun(t0
, (uint8_t)(t1
>> 56));
537 if (GET_LMASK64(t0
) <= 6)
538 stfun(GET_OFFSET(t0
, 1), (uint8_t)(t1
>> 48));
540 if (GET_LMASK64(t0
) <= 5)
541 stfun(GET_OFFSET(t0
, 2), (uint8_t)(t1
>> 40));
543 if (GET_LMASK64(t0
) <= 4)
544 stfun(GET_OFFSET(t0
, 3), (uint8_t)(t1
>> 32));
546 if (GET_LMASK64(t0
) <= 3)
547 stfun(GET_OFFSET(t0
, 4), (uint8_t)(t1
>> 24));
549 if (GET_LMASK64(t0
) <= 2)
550 stfun(GET_OFFSET(t0
, 5), (uint8_t)(t1
>> 16));
552 if (GET_LMASK64(t0
) <= 1)
553 stfun(GET_OFFSET(t0
, 6), (uint8_t)(t1
>> 8));
555 if (GET_LMASK64(t0
) <= 0)
556 stfun(GET_OFFSET(t0
, 7), (uint8_t)t1
);
559 void do_sdr(target_ulong t0
, target_ulong t1
, int mem_idx
)
561 #ifdef CONFIG_USER_ONLY
562 #define stfun stb_raw
564 void (*stfun
)(target_ulong
, int);
568 case 0: stfun
= stb_kernel
; break;
569 case 1: stfun
= stb_super
; break;
571 case 2: stfun
= stb_user
; break;
574 stfun(t0
, (uint8_t)t1
);
576 if (GET_LMASK64(t0
) >= 1)
577 stfun(GET_OFFSET(t0
, -1), (uint8_t)(t1
>> 8));
579 if (GET_LMASK64(t0
) >= 2)
580 stfun(GET_OFFSET(t0
, -2), (uint8_t)(t1
>> 16));
582 if (GET_LMASK64(t0
) >= 3)
583 stfun(GET_OFFSET(t0
, -3), (uint8_t)(t1
>> 24));
585 if (GET_LMASK64(t0
) >= 4)
586 stfun(GET_OFFSET(t0
, -4), (uint8_t)(t1
>> 32));
588 if (GET_LMASK64(t0
) >= 5)
589 stfun(GET_OFFSET(t0
, -5), (uint8_t)(t1
>> 40));
591 if (GET_LMASK64(t0
) >= 6)
592 stfun(GET_OFFSET(t0
, -6), (uint8_t)(t1
>> 48));
594 if (GET_LMASK64(t0
) == 7)
595 stfun(GET_OFFSET(t0
, -7), (uint8_t)(t1
>> 56));
597 #endif /* TARGET_MIPS64 */
599 #ifndef CONFIG_USER_ONLY
601 target_ulong
do_mfc0_mvpcontrol (void)
603 return env
->mvp
->CP0_MVPControl
;
606 target_ulong
do_mfc0_mvpconf0 (void)
608 return env
->mvp
->CP0_MVPConf0
;
611 target_ulong
do_mfc0_mvpconf1 (void)
613 return env
->mvp
->CP0_MVPConf1
;
616 target_ulong
do_mfc0_random (void)
618 return (int32_t)cpu_mips_get_random(env
);
621 target_ulong
do_mfc0_tcstatus (void)
623 return env
->active_tc
.CP0_TCStatus
;
626 target_ulong
do_mftc0_tcstatus(void)
628 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
630 if (other_tc
== env
->current_tc
)
631 return env
->active_tc
.CP0_TCStatus
;
633 return env
->tcs
[other_tc
].CP0_TCStatus
;
636 target_ulong
do_mfc0_tcbind (void)
638 return env
->active_tc
.CP0_TCBind
;
641 target_ulong
do_mftc0_tcbind(void)
643 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
645 if (other_tc
== env
->current_tc
)
646 return env
->active_tc
.CP0_TCBind
;
648 return env
->tcs
[other_tc
].CP0_TCBind
;
651 target_ulong
do_mfc0_tcrestart (void)
653 return env
->active_tc
.PC
;
656 target_ulong
do_mftc0_tcrestart(void)
658 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
660 if (other_tc
== env
->current_tc
)
661 return env
->active_tc
.PC
;
663 return env
->tcs
[other_tc
].PC
;
666 target_ulong
do_mfc0_tchalt (void)
668 return env
->active_tc
.CP0_TCHalt
;
671 target_ulong
do_mftc0_tchalt(void)
673 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
675 if (other_tc
== env
->current_tc
)
676 return env
->active_tc
.CP0_TCHalt
;
678 return env
->tcs
[other_tc
].CP0_TCHalt
;
681 target_ulong
do_mfc0_tccontext (void)
683 return env
->active_tc
.CP0_TCContext
;
686 target_ulong
do_mftc0_tccontext(void)
688 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
690 if (other_tc
== env
->current_tc
)
691 return env
->active_tc
.CP0_TCContext
;
693 return env
->tcs
[other_tc
].CP0_TCContext
;
696 target_ulong
do_mfc0_tcschedule (void)
698 return env
->active_tc
.CP0_TCSchedule
;
701 target_ulong
do_mftc0_tcschedule(void)
703 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
705 if (other_tc
== env
->current_tc
)
706 return env
->active_tc
.CP0_TCSchedule
;
708 return env
->tcs
[other_tc
].CP0_TCSchedule
;
711 target_ulong
do_mfc0_tcschefback (void)
713 return env
->active_tc
.CP0_TCScheFBack
;
716 target_ulong
do_mftc0_tcschefback(void)
718 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
720 if (other_tc
== env
->current_tc
)
721 return env
->active_tc
.CP0_TCScheFBack
;
723 return env
->tcs
[other_tc
].CP0_TCScheFBack
;
726 target_ulong
do_mfc0_count (void)
728 return (int32_t)cpu_mips_get_count(env
);
731 target_ulong
do_mftc0_entryhi(void)
733 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
736 if (other_tc
== env
->current_tc
)
737 tcstatus
= env
->active_tc
.CP0_TCStatus
;
739 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
741 return (env
->CP0_EntryHi
& ~0xff) | (tcstatus
& 0xff);
744 target_ulong
do_mftc0_status(void)
746 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
750 if (other_tc
== env
->current_tc
)
751 tcstatus
= env
->active_tc
.CP0_TCStatus
;
753 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
755 t0
= env
->CP0_Status
& ~0xf1000018;
756 t0
|= tcstatus
& (0xf << CP0TCSt_TCU0
);
757 t0
|= (tcstatus
& (1 << CP0TCSt_TMX
)) >> (CP0TCSt_TMX
- CP0St_MX
);
758 t0
|= (tcstatus
& (0x3 << CP0TCSt_TKSU
)) >> (CP0TCSt_TKSU
- CP0St_KSU
);
763 target_ulong
do_mfc0_lladdr (void)
765 return (int32_t)env
->CP0_LLAddr
>> 4;
768 target_ulong
do_mfc0_watchlo (uint32_t sel
)
770 return (int32_t)env
->CP0_WatchLo
[sel
];
773 target_ulong
do_mfc0_watchhi (uint32_t sel
)
775 return env
->CP0_WatchHi
[sel
];
778 target_ulong
do_mfc0_debug (void)
780 target_ulong t0
= env
->CP0_Debug
;
781 if (env
->hflags
& MIPS_HFLAG_DM
)
787 target_ulong
do_mftc0_debug(void)
789 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
792 if (other_tc
== env
->current_tc
)
793 tcstatus
= env
->active_tc
.CP0_Debug_tcstatus
;
795 tcstatus
= env
->tcs
[other_tc
].CP0_Debug_tcstatus
;
797 /* XXX: Might be wrong, check with EJTAG spec. */
798 return (env
->CP0_Debug
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
799 (tcstatus
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
802 #if defined(TARGET_MIPS64)
803 target_ulong
do_dmfc0_tcrestart (void)
805 return env
->active_tc
.PC
;
808 target_ulong
do_dmfc0_tchalt (void)
810 return env
->active_tc
.CP0_TCHalt
;
813 target_ulong
do_dmfc0_tccontext (void)
815 return env
->active_tc
.CP0_TCContext
;
818 target_ulong
do_dmfc0_tcschedule (void)
820 return env
->active_tc
.CP0_TCSchedule
;
823 target_ulong
do_dmfc0_tcschefback (void)
825 return env
->active_tc
.CP0_TCScheFBack
;
828 target_ulong
do_dmfc0_lladdr (void)
830 return env
->CP0_LLAddr
>> 4;
833 target_ulong
do_dmfc0_watchlo (uint32_t sel
)
835 return env
->CP0_WatchLo
[sel
];
837 #endif /* TARGET_MIPS64 */
839 void do_mtc0_index (target_ulong t0
)
842 unsigned int tmp
= env
->tlb
->nb_tlb
;
848 env
->CP0_Index
= (env
->CP0_Index
& 0x80000000) | (t0
& (num
- 1));
851 void do_mtc0_mvpcontrol (target_ulong t0
)
856 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
))
857 mask
|= (1 << CP0MVPCo_CPA
) | (1 << CP0MVPCo_VPC
) |
859 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
860 mask
|= (1 << CP0MVPCo_STLB
);
861 newval
= (env
->mvp
->CP0_MVPControl
& ~mask
) | (t0
& mask
);
863 // TODO: Enable/disable shared TLB, enable/disable VPEs.
865 env
->mvp
->CP0_MVPControl
= newval
;
868 void do_mtc0_vpecontrol (target_ulong t0
)
873 mask
= (1 << CP0VPECo_YSI
) | (1 << CP0VPECo_GSI
) |
874 (1 << CP0VPECo_TE
) | (0xff << CP0VPECo_TargTC
);
875 newval
= (env
->CP0_VPEControl
& ~mask
) | (t0
& mask
);
877 /* Yield scheduler intercept not implemented. */
878 /* Gating storage scheduler intercept not implemented. */
880 // TODO: Enable/disable TCs.
882 env
->CP0_VPEControl
= newval
;
885 void do_mtc0_vpeconf0 (target_ulong t0
)
890 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
)) {
891 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_VPA
))
892 mask
|= (0xff << CP0VPEC0_XTC
);
893 mask
|= (1 << CP0VPEC0_MVP
) | (1 << CP0VPEC0_VPA
);
895 newval
= (env
->CP0_VPEConf0
& ~mask
) | (t0
& mask
);
897 // TODO: TC exclusive handling due to ERL/EXL.
899 env
->CP0_VPEConf0
= newval
;
902 void do_mtc0_vpeconf1 (target_ulong t0
)
907 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
908 mask
|= (0xff << CP0VPEC1_NCX
) | (0xff << CP0VPEC1_NCP2
) |
909 (0xff << CP0VPEC1_NCP1
);
910 newval
= (env
->CP0_VPEConf1
& ~mask
) | (t0
& mask
);
912 /* UDI not implemented. */
913 /* CP2 not implemented. */
915 // TODO: Handle FPU (CP1) binding.
917 env
->CP0_VPEConf1
= newval
;
920 void do_mtc0_yqmask (target_ulong t0
)
922 /* Yield qualifier inputs not implemented. */
923 env
->CP0_YQMask
= 0x00000000;
926 void do_mtc0_vpeopt (target_ulong t0
)
928 env
->CP0_VPEOpt
= t0
& 0x0000ffff;
931 void do_mtc0_entrylo0 (target_ulong t0
)
933 /* Large physaddr (PABITS) not implemented */
934 /* 1k pages not implemented */
935 env
->CP0_EntryLo0
= t0
& 0x3FFFFFFF;
938 void do_mtc0_tcstatus (target_ulong t0
)
940 uint32_t mask
= env
->CP0_TCStatus_rw_bitmask
;
943 newval
= (env
->active_tc
.CP0_TCStatus
& ~mask
) | (t0
& mask
);
945 // TODO: Sync with CP0_Status.
947 env
->active_tc
.CP0_TCStatus
= newval
;
950 void do_mttc0_tcstatus (target_ulong t0
)
952 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
954 // TODO: Sync with CP0_Status.
956 if (other_tc
== env
->current_tc
)
957 env
->active_tc
.CP0_TCStatus
= t0
;
959 env
->tcs
[other_tc
].CP0_TCStatus
= t0
;
962 void do_mtc0_tcbind (target_ulong t0
)
964 uint32_t mask
= (1 << CP0TCBd_TBE
);
967 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
968 mask
|= (1 << CP0TCBd_CurVPE
);
969 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (t0
& mask
);
970 env
->active_tc
.CP0_TCBind
= newval
;
973 void do_mttc0_tcbind (target_ulong t0
)
975 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
976 uint32_t mask
= (1 << CP0TCBd_TBE
);
979 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
980 mask
|= (1 << CP0TCBd_CurVPE
);
981 if (other_tc
== env
->current_tc
) {
982 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (t0
& mask
);
983 env
->active_tc
.CP0_TCBind
= newval
;
985 newval
= (env
->tcs
[other_tc
].CP0_TCBind
& ~mask
) | (t0
& mask
);
986 env
->tcs
[other_tc
].CP0_TCBind
= newval
;
990 void do_mtc0_tcrestart (target_ulong t0
)
992 env
->active_tc
.PC
= t0
;
993 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
994 env
->CP0_LLAddr
= 0ULL;
995 /* MIPS16 not implemented. */
998 void do_mttc0_tcrestart (target_ulong t0
)
1000 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1002 if (other_tc
== env
->current_tc
) {
1003 env
->active_tc
.PC
= t0
;
1004 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
1005 env
->CP0_LLAddr
= 0ULL;
1006 /* MIPS16 not implemented. */
1008 env
->tcs
[other_tc
].PC
= t0
;
1009 env
->tcs
[other_tc
].CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
1010 env
->CP0_LLAddr
= 0ULL;
1011 /* MIPS16 not implemented. */
1015 void do_mtc0_tchalt (target_ulong t0
)
1017 env
->active_tc
.CP0_TCHalt
= t0
& 0x1;
1019 // TODO: Halt TC / Restart (if allocated+active) TC.
1022 void do_mttc0_tchalt (target_ulong t0
)
1024 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1026 // TODO: Halt TC / Restart (if allocated+active) TC.
1028 if (other_tc
== env
->current_tc
)
1029 env
->active_tc
.CP0_TCHalt
= t0
;
1031 env
->tcs
[other_tc
].CP0_TCHalt
= t0
;
1034 void do_mtc0_tccontext (target_ulong t0
)
1036 env
->active_tc
.CP0_TCContext
= t0
;
1039 void do_mttc0_tccontext (target_ulong t0
)
1041 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1043 if (other_tc
== env
->current_tc
)
1044 env
->active_tc
.CP0_TCContext
= t0
;
1046 env
->tcs
[other_tc
].CP0_TCContext
= t0
;
1049 void do_mtc0_tcschedule (target_ulong t0
)
1051 env
->active_tc
.CP0_TCSchedule
= t0
;
1054 void do_mttc0_tcschedule (target_ulong t0
)
1056 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1058 if (other_tc
== env
->current_tc
)
1059 env
->active_tc
.CP0_TCSchedule
= t0
;
1061 env
->tcs
[other_tc
].CP0_TCSchedule
= t0
;
1064 void do_mtc0_tcschefback (target_ulong t0
)
1066 env
->active_tc
.CP0_TCScheFBack
= t0
;
1069 void do_mttc0_tcschefback (target_ulong t0
)
1071 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1073 if (other_tc
== env
->current_tc
)
1074 env
->active_tc
.CP0_TCScheFBack
= t0
;
1076 env
->tcs
[other_tc
].CP0_TCScheFBack
= t0
;
1079 void do_mtc0_entrylo1 (target_ulong t0
)
1081 /* Large physaddr (PABITS) not implemented */
1082 /* 1k pages not implemented */
1083 env
->CP0_EntryLo1
= t0
& 0x3FFFFFFF;
1086 void do_mtc0_context (target_ulong t0
)
1088 env
->CP0_Context
= (env
->CP0_Context
& 0x007FFFFF) | (t0
& ~0x007FFFFF);
1091 void do_mtc0_pagemask (target_ulong t0
)
1093 /* 1k pages not implemented */
1094 env
->CP0_PageMask
= t0
& (0x1FFFFFFF & (TARGET_PAGE_MASK
<< 1));
1097 void do_mtc0_pagegrain (target_ulong t0
)
1099 /* SmartMIPS not implemented */
1100 /* Large physaddr (PABITS) not implemented */
1101 /* 1k pages not implemented */
1102 env
->CP0_PageGrain
= 0;
1105 void do_mtc0_wired (target_ulong t0
)
1107 env
->CP0_Wired
= t0
% env
->tlb
->nb_tlb
;
1110 void do_mtc0_srsconf0 (target_ulong t0
)
1112 env
->CP0_SRSConf0
|= t0
& env
->CP0_SRSConf0_rw_bitmask
;
1115 void do_mtc0_srsconf1 (target_ulong t0
)
1117 env
->CP0_SRSConf1
|= t0
& env
->CP0_SRSConf1_rw_bitmask
;
1120 void do_mtc0_srsconf2 (target_ulong t0
)
1122 env
->CP0_SRSConf2
|= t0
& env
->CP0_SRSConf2_rw_bitmask
;
1125 void do_mtc0_srsconf3 (target_ulong t0
)
1127 env
->CP0_SRSConf3
|= t0
& env
->CP0_SRSConf3_rw_bitmask
;
1130 void do_mtc0_srsconf4 (target_ulong t0
)
1132 env
->CP0_SRSConf4
|= t0
& env
->CP0_SRSConf4_rw_bitmask
;
1135 void do_mtc0_hwrena (target_ulong t0
)
1137 env
->CP0_HWREna
= t0
& 0x0000000F;
1140 void do_mtc0_count (target_ulong t0
)
1142 cpu_mips_store_count(env
, t0
);
1145 void do_mtc0_entryhi (target_ulong t0
)
1147 target_ulong old
, val
;
1149 /* 1k pages not implemented */
1150 val
= t0
& ((TARGET_PAGE_MASK
<< 1) | 0xFF);
1151 #if defined(TARGET_MIPS64)
1152 val
&= env
->SEGMask
;
1154 old
= env
->CP0_EntryHi
;
1155 env
->CP0_EntryHi
= val
;
1156 if (env
->CP0_Config3
& (1 << CP0C3_MT
)) {
1157 uint32_t tcst
= env
->active_tc
.CP0_TCStatus
& ~0xff;
1158 env
->active_tc
.CP0_TCStatus
= tcst
| (val
& 0xff);
1160 /* If the ASID changes, flush qemu's TLB. */
1161 if ((old
& 0xFF) != (val
& 0xFF))
1162 cpu_mips_tlb_flush(env
, 1);
1165 void do_mttc0_entryhi(target_ulong t0
)
1167 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1170 env
->CP0_EntryHi
= (env
->CP0_EntryHi
& 0xff) | (t0
& ~0xff);
1171 if (other_tc
== env
->current_tc
) {
1172 tcstatus
= (env
->active_tc
.CP0_TCStatus
& ~0xff) | (t0
& 0xff);
1173 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1175 tcstatus
= (env
->tcs
[other_tc
].CP0_TCStatus
& ~0xff) | (t0
& 0xff);
1176 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1180 void do_mtc0_compare (target_ulong t0
)
1182 cpu_mips_store_compare(env
, t0
);
1185 void do_mtc0_status (target_ulong t0
)
1188 uint32_t mask
= env
->CP0_Status_rw_bitmask
;
1191 old
= env
->CP0_Status
;
1192 env
->CP0_Status
= (env
->CP0_Status
& ~mask
) | val
;
1193 compute_hflags(env
);
1194 if (loglevel
& CPU_LOG_EXEC
)
1195 do_mtc0_status_debug(old
, val
);
1196 cpu_mips_update_irq(env
);
1199 void do_mttc0_status(target_ulong t0
)
1201 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1202 int32_t tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
1204 env
->CP0_Status
= t0
& ~0xf1000018;
1205 tcstatus
= (tcstatus
& ~(0xf << CP0TCSt_TCU0
)) | (t0
& (0xf << CP0St_CU0
));
1206 tcstatus
= (tcstatus
& ~(1 << CP0TCSt_TMX
)) | ((t0
& (1 << CP0St_MX
)) << (CP0TCSt_TMX
- CP0St_MX
));
1207 tcstatus
= (tcstatus
& ~(0x3 << CP0TCSt_TKSU
)) | ((t0
& (0x3 << CP0St_KSU
)) << (CP0TCSt_TKSU
- CP0St_KSU
));
1208 if (other_tc
== env
->current_tc
)
1209 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1211 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1214 void do_mtc0_intctl (target_ulong t0
)
1216 /* vectored interrupts not implemented, no performance counters. */
1217 env
->CP0_IntCtl
= (env
->CP0_IntCtl
& ~0x000002e0) | (t0
& 0x000002e0);
1220 void do_mtc0_srsctl (target_ulong t0
)
1222 uint32_t mask
= (0xf << CP0SRSCtl_ESS
) | (0xf << CP0SRSCtl_PSS
);
1223 env
->CP0_SRSCtl
= (env
->CP0_SRSCtl
& ~mask
) | (t0
& mask
);
1226 void do_mtc0_cause (target_ulong t0
)
1228 uint32_t mask
= 0x00C00300;
1229 uint32_t old
= env
->CP0_Cause
;
1231 if (env
->insn_flags
& ISA_MIPS32R2
)
1232 mask
|= 1 << CP0Ca_DC
;
1234 env
->CP0_Cause
= (env
->CP0_Cause
& ~mask
) | (t0
& mask
);
1236 if ((old
^ env
->CP0_Cause
) & (1 << CP0Ca_DC
)) {
1237 if (env
->CP0_Cause
& (1 << CP0Ca_DC
))
1238 cpu_mips_stop_count(env
);
1240 cpu_mips_start_count(env
);
1243 /* Handle the software interrupt as an hardware one, as they
1245 if (t0
& CP0Ca_IP_mask
) {
1246 cpu_mips_update_irq(env
);
1250 void do_mtc0_ebase (target_ulong t0
)
1252 /* vectored interrupts not implemented */
1253 /* Multi-CPU not implemented */
1254 env
->CP0_EBase
= 0x80000000 | (t0
& 0x3FFFF000);
1257 void do_mtc0_config0 (target_ulong t0
)
1259 env
->CP0_Config0
= (env
->CP0_Config0
& 0x81FFFFF8) | (t0
& 0x00000007);
1262 void do_mtc0_config2 (target_ulong t0
)
1264 /* tertiary/secondary caches not implemented */
1265 env
->CP0_Config2
= (env
->CP0_Config2
& 0x8FFF0FFF);
1268 void do_mtc0_watchlo (target_ulong t0
, uint32_t sel
)
1270 /* Watch exceptions for instructions, data loads, data stores
1272 env
->CP0_WatchLo
[sel
] = (t0
& ~0x7);
1275 void do_mtc0_watchhi (target_ulong t0
, uint32_t sel
)
1277 env
->CP0_WatchHi
[sel
] = (t0
& 0x40FF0FF8);
1278 env
->CP0_WatchHi
[sel
] &= ~(env
->CP0_WatchHi
[sel
] & t0
& 0x7);
1281 void do_mtc0_xcontext (target_ulong t0
)
1283 target_ulong mask
= (1ULL << (env
->SEGBITS
- 7)) - 1;
1284 env
->CP0_XContext
= (env
->CP0_XContext
& mask
) | (t0
& ~mask
);
1287 void do_mtc0_framemask (target_ulong t0
)
1289 env
->CP0_Framemask
= t0
; /* XXX */
1292 void do_mtc0_debug (target_ulong t0
)
1294 env
->CP0_Debug
= (env
->CP0_Debug
& 0x8C03FC1F) | (t0
& 0x13300120);
1295 if (t0
& (1 << CP0DB_DM
))
1296 env
->hflags
|= MIPS_HFLAG_DM
;
1298 env
->hflags
&= ~MIPS_HFLAG_DM
;
1301 void do_mttc0_debug(target_ulong t0
)
1303 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1304 uint32_t val
= t0
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
));
1306 /* XXX: Might be wrong, check with EJTAG spec. */
1307 if (other_tc
== env
->current_tc
)
1308 env
->active_tc
.CP0_Debug_tcstatus
= val
;
1310 env
->tcs
[other_tc
].CP0_Debug_tcstatus
= val
;
1311 env
->CP0_Debug
= (env
->CP0_Debug
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
1312 (t0
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
1315 void do_mtc0_performance0 (target_ulong t0
)
1317 env
->CP0_Performance0
= t0
& 0x000007ff;
1320 void do_mtc0_taglo (target_ulong t0
)
1322 env
->CP0_TagLo
= t0
& 0xFFFFFCF6;
1325 void do_mtc0_datalo (target_ulong t0
)
1327 env
->CP0_DataLo
= t0
; /* XXX */
1330 void do_mtc0_taghi (target_ulong t0
)
1332 env
->CP0_TagHi
= t0
; /* XXX */
1335 void do_mtc0_datahi (target_ulong t0
)
1337 env
->CP0_DataHi
= t0
; /* XXX */
1340 void do_mtc0_status_debug(uint32_t old
, uint32_t val
)
1342 fprintf(logfile
, "Status %08x (%08x) => %08x (%08x) Cause %08x",
1343 old
, old
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1344 val
, val
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1346 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1347 case MIPS_HFLAG_UM
: fputs(", UM\n", logfile
); break;
1348 case MIPS_HFLAG_SM
: fputs(", SM\n", logfile
); break;
1349 case MIPS_HFLAG_KM
: fputs("\n", logfile
); break;
1350 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1354 void do_mtc0_status_irqraise_debug(void)
1356 fprintf(logfile
, "Raise pending IRQs\n");
1358 #endif /* !CONFIG_USER_ONLY */
1360 /* MIPS MT functions */
1361 target_ulong
do_mftgpr(target_ulong t0
, uint32_t sel
)
1363 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1365 if (other_tc
== env
->current_tc
)
1366 return env
->active_tc
.gpr
[sel
];
1368 return env
->tcs
[other_tc
].gpr
[sel
];
1371 target_ulong
do_mftlo(target_ulong t0
, uint32_t sel
)
1373 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1375 if (other_tc
== env
->current_tc
)
1376 return env
->active_tc
.LO
[sel
];
1378 return env
->tcs
[other_tc
].LO
[sel
];
1381 target_ulong
do_mfthi(target_ulong t0
, uint32_t sel
)
1383 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1385 if (other_tc
== env
->current_tc
)
1386 return env
->active_tc
.HI
[sel
];
1388 return env
->tcs
[other_tc
].HI
[sel
];
1391 target_ulong
do_mftacx(target_ulong t0
, uint32_t sel
)
1393 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1395 if (other_tc
== env
->current_tc
)
1396 return env
->active_tc
.ACX
[sel
];
1398 return env
->tcs
[other_tc
].ACX
[sel
];
1401 target_ulong
do_mftdsp(target_ulong t0
)
1403 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1405 if (other_tc
== env
->current_tc
)
1406 return env
->active_tc
.DSPControl
;
1408 return env
->tcs
[other_tc
].DSPControl
;
1411 void do_mttgpr(target_ulong t0
, uint32_t sel
)
1413 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1415 if (other_tc
== env
->current_tc
)
1416 env
->active_tc
.gpr
[sel
] = t0
;
1418 env
->tcs
[other_tc
].gpr
[sel
] = t0
;
1421 void do_mttlo(target_ulong t0
, uint32_t sel
)
1423 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1425 if (other_tc
== env
->current_tc
)
1426 env
->active_tc
.LO
[sel
] = t0
;
1428 env
->tcs
[other_tc
].LO
[sel
] = t0
;
1431 void do_mtthi(target_ulong t0
, uint32_t sel
)
1433 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1435 if (other_tc
== env
->current_tc
)
1436 env
->active_tc
.HI
[sel
] = t0
;
1438 env
->tcs
[other_tc
].HI
[sel
] = t0
;
1441 void do_mttacx(target_ulong t0
, uint32_t sel
)
1443 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1445 if (other_tc
== env
->current_tc
)
1446 env
->active_tc
.ACX
[sel
] = t0
;
1448 env
->tcs
[other_tc
].ACX
[sel
] = t0
;
1451 void do_mttdsp(target_ulong t0
)
1453 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1455 if (other_tc
== env
->current_tc
)
1456 env
->active_tc
.DSPControl
= t0
;
1458 env
->tcs
[other_tc
].DSPControl
= t0
;
1461 /* MIPS MT functions */
1462 target_ulong
do_dmt(target_ulong t0
)
1471 target_ulong
do_emt(target_ulong t0
)
1480 target_ulong
do_dvpe(target_ulong t0
)
1489 target_ulong
do_evpe(target_ulong t0
)
1498 void do_fork(target_ulong t0
, target_ulong t1
)
1502 // TODO: store to TC register
1505 target_ulong
do_yield(target_ulong t0
)
1508 /* No scheduling policy implemented. */
1510 if (env
->CP0_VPEControl
& (1 << CP0VPECo_YSI
) &&
1511 env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_DT
)) {
1512 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1513 env
->CP0_VPEControl
|= 4 << CP0VPECo_EXCPT
;
1514 do_raise_exception(EXCP_THREAD
);
1517 } else if (t0
== 0) {
1518 if (0 /* TODO: TC underflow */) {
1519 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1520 do_raise_exception(EXCP_THREAD
);
1522 // TODO: Deallocate TC
1524 } else if (t0
> 0) {
1525 /* Yield qualifier inputs not implemented. */
1526 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1527 env
->CP0_VPEControl
|= 2 << CP0VPECo_EXCPT
;
1528 do_raise_exception(EXCP_THREAD
);
1530 return env
->CP0_YQMask
;
1533 #ifndef CONFIG_USER_ONLY
1534 /* TLB management */
1535 void cpu_mips_tlb_flush (CPUState
*env
, int flush_global
)
1537 /* Flush qemu's TLB and discard all shadowed entries. */
1538 tlb_flush (env
, flush_global
);
1539 env
->tlb
->tlb_in_use
= env
->tlb
->nb_tlb
;
1542 static void r4k_mips_tlb_flush_extra (CPUState
*env
, int first
)
1544 /* Discard entries from env->tlb[first] onwards. */
1545 while (env
->tlb
->tlb_in_use
> first
) {
1546 r4k_invalidate_tlb(env
, --env
->tlb
->tlb_in_use
, 0);
1550 static void r4k_fill_tlb (int idx
)
1554 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1555 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[idx
];
1556 tlb
->VPN
= env
->CP0_EntryHi
& (TARGET_PAGE_MASK
<< 1);
1557 #if defined(TARGET_MIPS64)
1558 tlb
->VPN
&= env
->SEGMask
;
1560 tlb
->ASID
= env
->CP0_EntryHi
& 0xFF;
1561 tlb
->PageMask
= env
->CP0_PageMask
;
1562 tlb
->G
= env
->CP0_EntryLo0
& env
->CP0_EntryLo1
& 1;
1563 tlb
->V0
= (env
->CP0_EntryLo0
& 2) != 0;
1564 tlb
->D0
= (env
->CP0_EntryLo0
& 4) != 0;
1565 tlb
->C0
= (env
->CP0_EntryLo0
>> 3) & 0x7;
1566 tlb
->PFN
[0] = (env
->CP0_EntryLo0
>> 6) << 12;
1567 tlb
->V1
= (env
->CP0_EntryLo1
& 2) != 0;
1568 tlb
->D1
= (env
->CP0_EntryLo1
& 4) != 0;
1569 tlb
->C1
= (env
->CP0_EntryLo1
>> 3) & 0x7;
1570 tlb
->PFN
[1] = (env
->CP0_EntryLo1
>> 6) << 12;
1573 void r4k_do_tlbwi (void)
1575 /* Discard cached TLB entries. We could avoid doing this if the
1576 tlbwi is just upgrading access permissions on the current entry;
1577 that might be a further win. */
1578 r4k_mips_tlb_flush_extra (env
, env
->tlb
->nb_tlb
);
1580 r4k_invalidate_tlb(env
, env
->CP0_Index
% env
->tlb
->nb_tlb
, 0);
1581 r4k_fill_tlb(env
->CP0_Index
% env
->tlb
->nb_tlb
);
1584 void r4k_do_tlbwr (void)
1586 int r
= cpu_mips_get_random(env
);
1588 r4k_invalidate_tlb(env
, r
, 1);
1592 void r4k_do_tlbp (void)
1601 ASID
= env
->CP0_EntryHi
& 0xFF;
1602 for (i
= 0; i
< env
->tlb
->nb_tlb
; i
++) {
1603 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1604 /* 1k pages are not supported. */
1605 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1606 tag
= env
->CP0_EntryHi
& ~mask
;
1607 VPN
= tlb
->VPN
& ~mask
;
1608 /* Check ASID, virtual page number & size */
1609 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1615 if (i
== env
->tlb
->nb_tlb
) {
1616 /* No match. Discard any shadow entries, if any of them match. */
1617 for (i
= env
->tlb
->nb_tlb
; i
< env
->tlb
->tlb_in_use
; i
++) {
1618 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1619 /* 1k pages are not supported. */
1620 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1621 tag
= env
->CP0_EntryHi
& ~mask
;
1622 VPN
= tlb
->VPN
& ~mask
;
1623 /* Check ASID, virtual page number & size */
1624 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1625 r4k_mips_tlb_flush_extra (env
, i
);
1630 env
->CP0_Index
|= 0x80000000;
1634 void r4k_do_tlbr (void)
1639 ASID
= env
->CP0_EntryHi
& 0xFF;
1640 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[env
->CP0_Index
% env
->tlb
->nb_tlb
];
1642 /* If this will change the current ASID, flush qemu's TLB. */
1643 if (ASID
!= tlb
->ASID
)
1644 cpu_mips_tlb_flush (env
, 1);
1646 r4k_mips_tlb_flush_extra(env
, env
->tlb
->nb_tlb
);
1648 env
->CP0_EntryHi
= tlb
->VPN
| tlb
->ASID
;
1649 env
->CP0_PageMask
= tlb
->PageMask
;
1650 env
->CP0_EntryLo0
= tlb
->G
| (tlb
->V0
<< 1) | (tlb
->D0
<< 2) |
1651 (tlb
->C0
<< 3) | (tlb
->PFN
[0] >> 6);
1652 env
->CP0_EntryLo1
= tlb
->G
| (tlb
->V1
<< 1) | (tlb
->D1
<< 2) |
1653 (tlb
->C1
<< 3) | (tlb
->PFN
[1] >> 6);
1657 target_ulong
do_di (void)
1659 target_ulong t0
= env
->CP0_Status
;
1661 env
->CP0_Status
= t0
& ~(1 << CP0St_IE
);
1662 cpu_mips_update_irq(env
);
1667 target_ulong
do_ei (void)
1669 target_ulong t0
= env
->CP0_Status
;
1671 env
->CP0_Status
= t0
| (1 << CP0St_IE
);
1672 cpu_mips_update_irq(env
);
1677 void debug_pre_eret (void)
1679 fprintf(logfile
, "ERET: PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1680 env
->active_tc
.PC
, env
->CP0_EPC
);
1681 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1682 fprintf(logfile
, " ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1683 if (env
->hflags
& MIPS_HFLAG_DM
)
1684 fprintf(logfile
, " DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1685 fputs("\n", logfile
);
1688 void debug_post_eret (void)
1690 fprintf(logfile
, " => PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1691 env
->active_tc
.PC
, env
->CP0_EPC
);
1692 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1693 fprintf(logfile
, " ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1694 if (env
->hflags
& MIPS_HFLAG_DM
)
1695 fprintf(logfile
, " DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1696 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1697 case MIPS_HFLAG_UM
: fputs(", UM\n", logfile
); break;
1698 case MIPS_HFLAG_SM
: fputs(", SM\n", logfile
); break;
1699 case MIPS_HFLAG_KM
: fputs("\n", logfile
); break;
1700 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1706 if (loglevel
& CPU_LOG_EXEC
)
1708 if (env
->CP0_Status
& (1 << CP0St_ERL
)) {
1709 env
->active_tc
.PC
= env
->CP0_ErrorEPC
;
1710 env
->CP0_Status
&= ~(1 << CP0St_ERL
);
1712 env
->active_tc
.PC
= env
->CP0_EPC
;
1713 env
->CP0_Status
&= ~(1 << CP0St_EXL
);
1715 compute_hflags(env
);
1716 if (loglevel
& CPU_LOG_EXEC
)
1718 env
->CP0_LLAddr
= 1;
1721 void do_deret (void)
1723 if (loglevel
& CPU_LOG_EXEC
)
1725 env
->active_tc
.PC
= env
->CP0_DEPC
;
1726 env
->hflags
&= MIPS_HFLAG_DM
;
1727 compute_hflags(env
);
1728 if (loglevel
& CPU_LOG_EXEC
)
1730 env
->CP0_LLAddr
= 1;
1732 #endif /* !CONFIG_USER_ONLY */
1734 target_ulong
do_rdhwr_cpunum(void)
1736 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1737 (env
->CP0_HWREna
& (1 << 0)))
1738 return env
->CP0_EBase
& 0x3ff;
1740 do_raise_exception(EXCP_RI
);
1745 target_ulong
do_rdhwr_synci_step(void)
1747 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1748 (env
->CP0_HWREna
& (1 << 1)))
1749 return env
->SYNCI_Step
;
1751 do_raise_exception(EXCP_RI
);
1756 target_ulong
do_rdhwr_cc(void)
1758 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1759 (env
->CP0_HWREna
& (1 << 2)))
1760 return env
->CP0_Count
;
1762 do_raise_exception(EXCP_RI
);
1767 target_ulong
do_rdhwr_ccres(void)
1769 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1770 (env
->CP0_HWREna
& (1 << 3)))
1773 do_raise_exception(EXCP_RI
);
1778 /* Bitfield operations. */
1779 target_ulong
do_ext(target_ulong t1
, uint32_t pos
, uint32_t size
)
1781 return (int32_t)((t1
>> pos
) & ((size
< 32) ? ((1 << size
) - 1) : ~0));
1784 target_ulong
do_ins(target_ulong t0
, target_ulong t1
, uint32_t pos
, uint32_t size
)
1786 target_ulong mask
= ((size
< 32) ? ((1 << size
) - 1) : ~0) << pos
;
1788 return (int32_t)((t0
& ~mask
) | ((t1
<< pos
) & mask
));
1791 target_ulong
do_wsbh(target_ulong t1
)
1793 return (int32_t)(((t1
<< 8) & ~0x00FF00FF) | ((t1
>> 8) & 0x00FF00FF));
1796 #if defined(TARGET_MIPS64)
1797 target_ulong
do_dext(target_ulong t1
, uint32_t pos
, uint32_t size
)
1799 return (t1
>> pos
) & ((size
< 64) ? ((1ULL << size
) - 1) : ~0ULL);
1802 target_ulong
do_dins(target_ulong t0
, target_ulong t1
, uint32_t pos
, uint32_t size
)
1804 target_ulong mask
= ((size
< 64) ? ((1ULL << size
) - 1) : ~0ULL) << pos
;
1806 return (t0
& ~mask
) | ((t1
<< pos
) & mask
);
1809 target_ulong
do_dsbh(target_ulong t1
)
1811 return ((t1
<< 8) & ~0x00FF00FF00FF00FFULL
) | ((t1
>> 8) & 0x00FF00FF00FF00FFULL
);
1814 target_ulong
do_dshd(target_ulong t1
)
1816 t1
= ((t1
<< 16) & ~0x0000FFFF0000FFFFULL
) | ((t1
>> 16) & 0x0000FFFF0000FFFFULL
);
1817 return (t1
<< 32) | (t1
>> 32);
1821 void do_pmon (int function
)
1825 case 2: /* TODO: char inbyte(int waitflag); */
1826 if (env
->active_tc
.gpr
[4] == 0)
1827 env
->active_tc
.gpr
[2] = -1;
1829 case 11: /* TODO: char inbyte (void); */
1830 env
->active_tc
.gpr
[2] = -1;
1834 printf("%c", (char)(env
->active_tc
.gpr
[4] & 0xFF));
1840 unsigned char *fmt
= (void *)(unsigned long)env
->active_tc
.gpr
[4];
1850 do_raise_exception(EXCP_HLT
);
1853 #if !defined(CONFIG_USER_ONLY)
1855 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
);
1857 #define MMUSUFFIX _mmu
1858 #define ALIGNED_ONLY
1861 #include "softmmu_template.h"
1864 #include "softmmu_template.h"
1867 #include "softmmu_template.h"
1870 #include "softmmu_template.h"
1872 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
)
1874 env
->CP0_BadVAddr
= addr
;
1875 do_restore_state (retaddr
);
1876 do_raise_exception ((is_write
== 1) ? EXCP_AdES
: EXCP_AdEL
);
1879 void tlb_fill (target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
1881 TranslationBlock
*tb
;
1882 CPUState
*saved_env
;
1886 /* XXX: hack to restore env in all cases, even if not called from
1889 env
= cpu_single_env
;
1890 ret
= cpu_mips_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
1893 /* now we have a real cpu fault */
1894 pc
= (unsigned long)retaddr
;
1895 tb
= tb_find_pc(pc
);
1897 /* the PC is inside the translated code. It means that we have
1898 a virtual CPU fault */
1899 cpu_restore_state(tb
, env
, pc
, NULL
);
1902 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1907 void do_unassigned_access(target_phys_addr_t addr
, int is_write
, int is_exec
,
1911 do_raise_exception(EXCP_IBE
);
1913 do_raise_exception(EXCP_DBE
);
1915 #endif /* !CONFIG_USER_ONLY */
1917 /* Complex FPU operations which may need stack space. */
1919 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1920 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1921 #define FLOAT_TWO32 make_float32(1 << 30)
1922 #define FLOAT_TWO64 make_float64(1ULL << 62)
1923 #define FLOAT_QNAN32 0x7fbfffff
1924 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
1925 #define FLOAT_SNAN32 0x7fffffff
1926 #define FLOAT_SNAN64 0x7fffffffffffffffULL
1928 /* convert MIPS rounding mode in FCR31 to IEEE library */
1929 unsigned int ieee_rm
[] = {
1930 float_round_nearest_even
,
1931 float_round_to_zero
,
1936 #define RESTORE_ROUNDING_MODE \
1937 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
1939 target_ulong
do_cfc1 (uint32_t reg
)
1945 t0
= (int32_t)env
->fpu
->fcr0
;
1948 t0
= ((env
->fpu
->fcr31
>> 24) & 0xfe) | ((env
->fpu
->fcr31
>> 23) & 0x1);
1951 t0
= env
->fpu
->fcr31
& 0x0003f07c;
1954 t0
= (env
->fpu
->fcr31
& 0x00000f83) | ((env
->fpu
->fcr31
>> 22) & 0x4);
1957 t0
= (int32_t)env
->fpu
->fcr31
;
1964 void do_ctc1 (target_ulong t0
, uint32_t reg
)
1968 if (t0
& 0xffffff00)
1970 env
->fpu
->fcr31
= (env
->fpu
->fcr31
& 0x017fffff) | ((t0
& 0xfe) << 24) |
1974 if (t0
& 0x007c0000)
1976 env
->fpu
->fcr31
= (env
->fpu
->fcr31
& 0xfffc0f83) | (t0
& 0x0003f07c);
1979 if (t0
& 0x007c0000)
1981 env
->fpu
->fcr31
= (env
->fpu
->fcr31
& 0xfefff07c) | (t0
& 0x00000f83) |
1985 if (t0
& 0x007c0000)
1987 env
->fpu
->fcr31
= t0
;
1992 /* set rounding mode */
1993 RESTORE_ROUNDING_MODE
;
1994 set_float_exception_flags(0, &env
->fpu
->fp_status
);
1995 if ((GET_FP_ENABLE(env
->fpu
->fcr31
) | 0x20) & GET_FP_CAUSE(env
->fpu
->fcr31
))
1996 do_raise_exception(EXCP_FPE
);
1999 static inline char ieee_ex_to_mips(char xcpt
)
2001 return (xcpt
& float_flag_inexact
) >> 5 |
2002 (xcpt
& float_flag_underflow
) >> 3 |
2003 (xcpt
& float_flag_overflow
) >> 1 |
2004 (xcpt
& float_flag_divbyzero
) << 1 |
2005 (xcpt
& float_flag_invalid
) << 4;
2008 static inline char mips_ex_to_ieee(char xcpt
)
2010 return (xcpt
& FP_INEXACT
) << 5 |
2011 (xcpt
& FP_UNDERFLOW
) << 3 |
2012 (xcpt
& FP_OVERFLOW
) << 1 |
2013 (xcpt
& FP_DIV0
) >> 1 |
2014 (xcpt
& FP_INVALID
) >> 4;
2017 static inline void update_fcr31(void)
2019 int tmp
= ieee_ex_to_mips(get_float_exception_flags(&env
->fpu
->fp_status
));
2021 SET_FP_CAUSE(env
->fpu
->fcr31
, tmp
);
2022 if (GET_FP_ENABLE(env
->fpu
->fcr31
) & tmp
)
2023 do_raise_exception(EXCP_FPE
);
2025 UPDATE_FP_FLAGS(env
->fpu
->fcr31
, tmp
);
2029 Single precition routines have a "s" suffix, double precision a
2030 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2031 paired single lower "pl", paired single upper "pu". */
2033 /* unary operations, modifying fp status */
2034 uint64_t do_float_sqrt_d(uint64_t fdt0
)
2036 return float64_sqrt(fdt0
, &env
->fpu
->fp_status
);
2039 uint32_t do_float_sqrt_s(uint32_t fst0
)
2041 return float32_sqrt(fst0
, &env
->fpu
->fp_status
);
2044 uint64_t do_float_cvtd_s(uint32_t fst0
)
2048 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2049 fdt2
= float32_to_float64(fst0
, &env
->fpu
->fp_status
);
2054 uint64_t do_float_cvtd_w(uint32_t wt0
)
2058 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2059 fdt2
= int32_to_float64(wt0
, &env
->fpu
->fp_status
);
2064 uint64_t do_float_cvtd_l(uint64_t dt0
)
2068 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2069 fdt2
= int64_to_float64(dt0
, &env
->fpu
->fp_status
);
2074 uint64_t do_float_cvtl_d(uint64_t fdt0
)
2078 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2079 dt2
= float64_to_int64(fdt0
, &env
->fpu
->fp_status
);
2081 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2086 uint64_t do_float_cvtl_s(uint32_t fst0
)
2090 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2091 dt2
= float32_to_int64(fst0
, &env
->fpu
->fp_status
);
2093 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2098 uint64_t do_float_cvtps_pw(uint64_t dt0
)
2103 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2104 fst2
= int32_to_float32(dt0
& 0XFFFFFFFF, &env
->fpu
->fp_status
);
2105 fsth2
= int32_to_float32(dt0
>> 32, &env
->fpu
->fp_status
);
2107 return ((uint64_t)fsth2
<< 32) | fst2
;
2110 uint64_t do_float_cvtpw_ps(uint64_t fdt0
)
2115 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2116 wt2
= float32_to_int32(fdt0
& 0XFFFFFFFF, &env
->fpu
->fp_status
);
2117 wth2
= float32_to_int32(fdt0
>> 32, &env
->fpu
->fp_status
);
2119 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
)) {
2121 wth2
= FLOAT_SNAN32
;
2123 return ((uint64_t)wth2
<< 32) | wt2
;
2126 uint32_t do_float_cvts_d(uint64_t fdt0
)
2130 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2131 fst2
= float64_to_float32(fdt0
, &env
->fpu
->fp_status
);
2136 uint32_t do_float_cvts_w(uint32_t wt0
)
2140 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2141 fst2
= int32_to_float32(wt0
, &env
->fpu
->fp_status
);
2146 uint32_t do_float_cvts_l(uint64_t dt0
)
2150 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2151 fst2
= int64_to_float32(dt0
, &env
->fpu
->fp_status
);
2156 uint32_t do_float_cvts_pl(uint32_t wt0
)
2160 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2166 uint32_t do_float_cvts_pu(uint32_t wth0
)
2170 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2176 uint32_t do_float_cvtw_s(uint32_t fst0
)
2180 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2181 wt2
= float32_to_int32(fst0
, &env
->fpu
->fp_status
);
2183 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2188 uint32_t do_float_cvtw_d(uint64_t fdt0
)
2192 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2193 wt2
= float64_to_int32(fdt0
, &env
->fpu
->fp_status
);
2195 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2200 uint64_t do_float_roundl_d(uint64_t fdt0
)
2204 set_float_rounding_mode(float_round_nearest_even
, &env
->fpu
->fp_status
);
2205 dt2
= float64_to_int64(fdt0
, &env
->fpu
->fp_status
);
2206 RESTORE_ROUNDING_MODE
;
2208 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2213 uint64_t do_float_roundl_s(uint32_t fst0
)
2217 set_float_rounding_mode(float_round_nearest_even
, &env
->fpu
->fp_status
);
2218 dt2
= float32_to_int64(fst0
, &env
->fpu
->fp_status
);
2219 RESTORE_ROUNDING_MODE
;
2221 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2226 uint32_t do_float_roundw_d(uint64_t fdt0
)
2230 set_float_rounding_mode(float_round_nearest_even
, &env
->fpu
->fp_status
);
2231 wt2
= float64_to_int32(fdt0
, &env
->fpu
->fp_status
);
2232 RESTORE_ROUNDING_MODE
;
2234 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2239 uint32_t do_float_roundw_s(uint32_t fst0
)
2243 set_float_rounding_mode(float_round_nearest_even
, &env
->fpu
->fp_status
);
2244 wt2
= float32_to_int32(fst0
, &env
->fpu
->fp_status
);
2245 RESTORE_ROUNDING_MODE
;
2247 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2252 uint64_t do_float_truncl_d(uint64_t fdt0
)
2256 dt2
= float64_to_int64_round_to_zero(fdt0
, &env
->fpu
->fp_status
);
2258 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2263 uint64_t do_float_truncl_s(uint32_t fst0
)
2267 dt2
= float32_to_int64_round_to_zero(fst0
, &env
->fpu
->fp_status
);
2269 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2274 uint32_t do_float_truncw_d(uint64_t fdt0
)
2278 wt2
= float64_to_int32_round_to_zero(fdt0
, &env
->fpu
->fp_status
);
2280 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2285 uint32_t do_float_truncw_s(uint32_t fst0
)
2289 wt2
= float32_to_int32_round_to_zero(fst0
, &env
->fpu
->fp_status
);
2291 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2296 uint64_t do_float_ceill_d(uint64_t fdt0
)
2300 set_float_rounding_mode(float_round_up
, &env
->fpu
->fp_status
);
2301 dt2
= float64_to_int64(fdt0
, &env
->fpu
->fp_status
);
2302 RESTORE_ROUNDING_MODE
;
2304 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2309 uint64_t do_float_ceill_s(uint32_t fst0
)
2313 set_float_rounding_mode(float_round_up
, &env
->fpu
->fp_status
);
2314 dt2
= float32_to_int64(fst0
, &env
->fpu
->fp_status
);
2315 RESTORE_ROUNDING_MODE
;
2317 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2322 uint32_t do_float_ceilw_d(uint64_t fdt0
)
2326 set_float_rounding_mode(float_round_up
, &env
->fpu
->fp_status
);
2327 wt2
= float64_to_int32(fdt0
, &env
->fpu
->fp_status
);
2328 RESTORE_ROUNDING_MODE
;
2330 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2335 uint32_t do_float_ceilw_s(uint32_t fst0
)
2339 set_float_rounding_mode(float_round_up
, &env
->fpu
->fp_status
);
2340 wt2
= float32_to_int32(fst0
, &env
->fpu
->fp_status
);
2341 RESTORE_ROUNDING_MODE
;
2343 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2348 uint64_t do_float_floorl_d(uint64_t fdt0
)
2352 set_float_rounding_mode(float_round_down
, &env
->fpu
->fp_status
);
2353 dt2
= float64_to_int64(fdt0
, &env
->fpu
->fp_status
);
2354 RESTORE_ROUNDING_MODE
;
2356 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2361 uint64_t do_float_floorl_s(uint32_t fst0
)
2365 set_float_rounding_mode(float_round_down
, &env
->fpu
->fp_status
);
2366 dt2
= float32_to_int64(fst0
, &env
->fpu
->fp_status
);
2367 RESTORE_ROUNDING_MODE
;
2369 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2374 uint32_t do_float_floorw_d(uint64_t fdt0
)
2378 set_float_rounding_mode(float_round_down
, &env
->fpu
->fp_status
);
2379 wt2
= float64_to_int32(fdt0
, &env
->fpu
->fp_status
);
2380 RESTORE_ROUNDING_MODE
;
2382 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2387 uint32_t do_float_floorw_s(uint32_t fst0
)
2391 set_float_rounding_mode(float_round_down
, &env
->fpu
->fp_status
);
2392 wt2
= float32_to_int32(fst0
, &env
->fpu
->fp_status
);
2393 RESTORE_ROUNDING_MODE
;
2395 if (GET_FP_CAUSE(env
->fpu
->fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2400 /* unary operations, not modifying fp status */
2401 #define FLOAT_UNOP(name) \
2402 uint64_t do_float_ ## name ## _d(uint64_t fdt0) \
2404 return float64_ ## name(fdt0); \
2406 uint32_t do_float_ ## name ## _s(uint32_t fst0) \
2408 return float32_ ## name(fst0); \
2410 uint64_t do_float_ ## name ## _ps(uint64_t fdt0) \
2415 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2416 wth0 = float32_ ## name(fdt0 >> 32); \
2417 return ((uint64_t)wth0 << 32) | wt0; \
2423 /* MIPS specific unary operations */
2424 uint64_t do_float_recip_d(uint64_t fdt0
)
2428 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2429 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->fpu
->fp_status
);
2434 uint32_t do_float_recip_s(uint32_t fst0
)
2438 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2439 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->fpu
->fp_status
);
2444 uint64_t do_float_rsqrt_d(uint64_t fdt0
)
2448 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2449 fdt2
= float64_sqrt(fdt0
, &env
->fpu
->fp_status
);
2450 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->fpu
->fp_status
);
2455 uint32_t do_float_rsqrt_s(uint32_t fst0
)
2459 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2460 fst2
= float32_sqrt(fst0
, &env
->fpu
->fp_status
);
2461 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->fpu
->fp_status
);
2466 uint64_t do_float_recip1_d(uint64_t fdt0
)
2470 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2471 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->fpu
->fp_status
);
2476 uint32_t do_float_recip1_s(uint32_t fst0
)
2480 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2481 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->fpu
->fp_status
);
2486 uint64_t do_float_recip1_ps(uint64_t fdt0
)
2491 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2492 fst2
= float32_div(FLOAT_ONE32
, fdt0
& 0XFFFFFFFF, &env
->fpu
->fp_status
);
2493 fsth2
= float32_div(FLOAT_ONE32
, fdt0
>> 32, &env
->fpu
->fp_status
);
2495 return ((uint64_t)fsth2
<< 32) | fst2
;
2498 uint64_t do_float_rsqrt1_d(uint64_t fdt0
)
2502 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2503 fdt2
= float64_sqrt(fdt0
, &env
->fpu
->fp_status
);
2504 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->fpu
->fp_status
);
2509 uint32_t do_float_rsqrt1_s(uint32_t fst0
)
2513 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2514 fst2
= float32_sqrt(fst0
, &env
->fpu
->fp_status
);
2515 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->fpu
->fp_status
);
2520 uint64_t do_float_rsqrt1_ps(uint64_t fdt0
)
2525 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2526 fst2
= float32_sqrt(fdt0
& 0XFFFFFFFF, &env
->fpu
->fp_status
);
2527 fsth2
= float32_sqrt(fdt0
>> 32, &env
->fpu
->fp_status
);
2528 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->fpu
->fp_status
);
2529 fsth2
= float32_div(FLOAT_ONE32
, fsth2
, &env
->fpu
->fp_status
);
2531 return ((uint64_t)fsth2
<< 32) | fst2
;
2534 #define FLOAT_OP(name, p) void do_float_##name##_##p(void)
2536 /* binary operations */
2537 #define FLOAT_BINOP(name) \
2538 uint64_t do_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2542 set_float_exception_flags(0, &env->fpu->fp_status); \
2543 dt2 = float64_ ## name (fdt0, fdt1, &env->fpu->fp_status); \
2545 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
2546 dt2 = FLOAT_QNAN64; \
2550 uint32_t do_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2554 set_float_exception_flags(0, &env->fpu->fp_status); \
2555 wt2 = float32_ ## name (fst0, fst1, &env->fpu->fp_status); \
2557 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
2558 wt2 = FLOAT_QNAN32; \
2562 uint64_t do_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2564 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2565 uint32_t fsth0 = fdt0 >> 32; \
2566 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2567 uint32_t fsth1 = fdt1 >> 32; \
2571 set_float_exception_flags(0, &env->fpu->fp_status); \
2572 wt2 = float32_ ## name (fst0, fst1, &env->fpu->fp_status); \
2573 wth2 = float32_ ## name (fsth0, fsth1, &env->fpu->fp_status); \
2575 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) { \
2576 wt2 = FLOAT_QNAN32; \
2577 wth2 = FLOAT_QNAN32; \
2579 return ((uint64_t)wth2 << 32) | wt2; \
2588 /* ternary operations */
2589 #define FLOAT_TERNOP(name1, name2) \
2590 uint64_t do_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2593 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->fpu->fp_status); \
2594 return float64_ ## name2 (fdt0, fdt2, &env->fpu->fp_status); \
2597 uint32_t do_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2600 fst0 = float32_ ## name1 (fst0, fst1, &env->fpu->fp_status); \
2601 return float32_ ## name2 (fst0, fst2, &env->fpu->fp_status); \
2604 uint64_t do_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2607 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2608 uint32_t fsth0 = fdt0 >> 32; \
2609 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2610 uint32_t fsth1 = fdt1 >> 32; \
2611 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2612 uint32_t fsth2 = fdt2 >> 32; \
2614 fst0 = float32_ ## name1 (fst0, fst1, &env->fpu->fp_status); \
2615 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->fpu->fp_status); \
2616 fst2 = float32_ ## name2 (fst0, fst2, &env->fpu->fp_status); \
2617 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->fpu->fp_status); \
2618 return ((uint64_t)fsth2 << 32) | fst2; \
2621 FLOAT_TERNOP(mul
, add
)
2622 FLOAT_TERNOP(mul
, sub
)
2625 /* negated ternary operations */
2626 #define FLOAT_NTERNOP(name1, name2) \
2627 uint64_t do_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2630 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->fpu->fp_status); \
2631 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->fpu->fp_status); \
2632 return float64_chs(fdt2); \
2635 uint32_t do_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2638 fst0 = float32_ ## name1 (fst0, fst1, &env->fpu->fp_status); \
2639 fst2 = float32_ ## name2 (fst0, fst2, &env->fpu->fp_status); \
2640 return float32_chs(fst2); \
2643 uint64_t do_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2646 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2647 uint32_t fsth0 = fdt0 >> 32; \
2648 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2649 uint32_t fsth1 = fdt1 >> 32; \
2650 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2651 uint32_t fsth2 = fdt2 >> 32; \
2653 fst0 = float32_ ## name1 (fst0, fst1, &env->fpu->fp_status); \
2654 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->fpu->fp_status); \
2655 fst2 = float32_ ## name2 (fst0, fst2, &env->fpu->fp_status); \
2656 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->fpu->fp_status); \
2657 fst2 = float32_chs(fst2); \
2658 fsth2 = float32_chs(fsth2); \
2659 return ((uint64_t)fsth2 << 32) | fst2; \
2662 FLOAT_NTERNOP(mul
, add
)
2663 FLOAT_NTERNOP(mul
, sub
)
2664 #undef FLOAT_NTERNOP
2666 /* MIPS specific binary operations */
2667 uint64_t do_float_recip2_d(uint64_t fdt0
, uint64_t fdt2
)
2669 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2670 fdt2
= float64_mul(fdt0
, fdt2
, &env
->fpu
->fp_status
);
2671 fdt2
= float64_chs(float64_sub(fdt2
, FLOAT_ONE64
, &env
->fpu
->fp_status
));
2676 uint32_t do_float_recip2_s(uint32_t fst0
, uint32_t fst2
)
2678 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2679 fst2
= float32_mul(fst0
, fst2
, &env
->fpu
->fp_status
);
2680 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->fpu
->fp_status
));
2685 uint64_t do_float_recip2_ps(uint64_t fdt0
, uint64_t fdt2
)
2687 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2688 uint32_t fsth0
= fdt0
>> 32;
2689 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2690 uint32_t fsth2
= fdt2
>> 32;
2692 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2693 fst2
= float32_mul(fst0
, fst2
, &env
->fpu
->fp_status
);
2694 fsth2
= float32_mul(fsth0
, fsth2
, &env
->fpu
->fp_status
);
2695 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->fpu
->fp_status
));
2696 fsth2
= float32_chs(float32_sub(fsth2
, FLOAT_ONE32
, &env
->fpu
->fp_status
));
2698 return ((uint64_t)fsth2
<< 32) | fst2
;
2701 uint64_t do_float_rsqrt2_d(uint64_t fdt0
, uint64_t fdt2
)
2703 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2704 fdt2
= float64_mul(fdt0
, fdt2
, &env
->fpu
->fp_status
);
2705 fdt2
= float64_sub(fdt2
, FLOAT_ONE64
, &env
->fpu
->fp_status
);
2706 fdt2
= float64_chs(float64_div(fdt2
, FLOAT_TWO64
, &env
->fpu
->fp_status
));
2711 uint32_t do_float_rsqrt2_s(uint32_t fst0
, uint32_t fst2
)
2713 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2714 fst2
= float32_mul(fst0
, fst2
, &env
->fpu
->fp_status
);
2715 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->fpu
->fp_status
);
2716 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->fpu
->fp_status
));
2721 uint64_t do_float_rsqrt2_ps(uint64_t fdt0
, uint64_t fdt2
)
2723 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2724 uint32_t fsth0
= fdt0
>> 32;
2725 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2726 uint32_t fsth2
= fdt2
>> 32;
2728 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2729 fst2
= float32_mul(fst0
, fst2
, &env
->fpu
->fp_status
);
2730 fsth2
= float32_mul(fsth0
, fsth2
, &env
->fpu
->fp_status
);
2731 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->fpu
->fp_status
);
2732 fsth2
= float32_sub(fsth2
, FLOAT_ONE32
, &env
->fpu
->fp_status
);
2733 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->fpu
->fp_status
));
2734 fsth2
= float32_chs(float32_div(fsth2
, FLOAT_TWO32
, &env
->fpu
->fp_status
));
2736 return ((uint64_t)fsth2
<< 32) | fst2
;
2739 uint64_t do_float_addr_ps(uint64_t fdt0
, uint64_t fdt1
)
2741 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2742 uint32_t fsth0
= fdt0
>> 32;
2743 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2744 uint32_t fsth1
= fdt1
>> 32;
2748 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2749 fst2
= float32_add (fst0
, fsth0
, &env
->fpu
->fp_status
);
2750 fsth2
= float32_add (fst1
, fsth1
, &env
->fpu
->fp_status
);
2752 return ((uint64_t)fsth2
<< 32) | fst2
;
2755 uint64_t do_float_mulr_ps(uint64_t fdt0
, uint64_t fdt1
)
2757 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2758 uint32_t fsth0
= fdt0
>> 32;
2759 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2760 uint32_t fsth1
= fdt1
>> 32;
2764 set_float_exception_flags(0, &env
->fpu
->fp_status
);
2765 fst2
= float32_mul (fst0
, fsth0
, &env
->fpu
->fp_status
);
2766 fsth2
= float32_mul (fst1
, fsth1
, &env
->fpu
->fp_status
);
2768 return ((uint64_t)fsth2
<< 32) | fst2
;
2771 /* compare operations */
2772 #define FOP_COND_D(op, cond) \
2773 void do_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2778 SET_FP_COND(cc, env->fpu); \
2780 CLEAR_FP_COND(cc, env->fpu); \
2782 void do_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2785 fdt0 = float64_abs(fdt0); \
2786 fdt1 = float64_abs(fdt1); \
2790 SET_FP_COND(cc, env->fpu); \
2792 CLEAR_FP_COND(cc, env->fpu); \
2795 int float64_is_unordered(int sig
, float64 a
, float64 b STATUS_PARAM
)
2797 if (float64_is_signaling_nan(a
) ||
2798 float64_is_signaling_nan(b
) ||
2799 (sig
&& (float64_is_nan(a
) || float64_is_nan(b
)))) {
2800 float_raise(float_flag_invalid
, status
);
2802 } else if (float64_is_nan(a
) || float64_is_nan(b
)) {
2809 /* NOTE: the comma operator will make "cond" to eval to false,
2810 * but float*_is_unordered() is still called. */
2811 FOP_COND_D(f
, (float64_is_unordered(0, fdt1
, fdt0
, &env
->fpu
->fp_status
), 0))
2812 FOP_COND_D(un
, float64_is_unordered(0, fdt1
, fdt0
, &env
->fpu
->fp_status
))
2813 FOP_COND_D(eq
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->fpu
->fp_status
) && float64_eq(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2814 FOP_COND_D(ueq
, float64_is_unordered(0, fdt1
, fdt0
, &env
->fpu
->fp_status
) || float64_eq(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2815 FOP_COND_D(olt
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->fpu
->fp_status
) && float64_lt(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2816 FOP_COND_D(ult
, float64_is_unordered(0, fdt1
, fdt0
, &env
->fpu
->fp_status
) || float64_lt(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2817 FOP_COND_D(ole
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->fpu
->fp_status
) && float64_le(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2818 FOP_COND_D(ule
, float64_is_unordered(0, fdt1
, fdt0
, &env
->fpu
->fp_status
) || float64_le(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2819 /* NOTE: the comma operator will make "cond" to eval to false,
2820 * but float*_is_unordered() is still called. */
2821 FOP_COND_D(sf
, (float64_is_unordered(1, fdt1
, fdt0
, &env
->fpu
->fp_status
), 0))
2822 FOP_COND_D(ngle
,float64_is_unordered(1, fdt1
, fdt0
, &env
->fpu
->fp_status
))
2823 FOP_COND_D(seq
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->fpu
->fp_status
) && float64_eq(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2824 FOP_COND_D(ngl
, float64_is_unordered(1, fdt1
, fdt0
, &env
->fpu
->fp_status
) || float64_eq(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2825 FOP_COND_D(lt
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->fpu
->fp_status
) && float64_lt(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2826 FOP_COND_D(nge
, float64_is_unordered(1, fdt1
, fdt0
, &env
->fpu
->fp_status
) || float64_lt(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2827 FOP_COND_D(le
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->fpu
->fp_status
) && float64_le(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2828 FOP_COND_D(ngt
, float64_is_unordered(1, fdt1
, fdt0
, &env
->fpu
->fp_status
) || float64_le(fdt0
, fdt1
, &env
->fpu
->fp_status
))
2830 #define FOP_COND_S(op, cond) \
2831 void do_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2836 SET_FP_COND(cc, env->fpu); \
2838 CLEAR_FP_COND(cc, env->fpu); \
2840 void do_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2843 fst0 = float32_abs(fst0); \
2844 fst1 = float32_abs(fst1); \
2848 SET_FP_COND(cc, env->fpu); \
2850 CLEAR_FP_COND(cc, env->fpu); \
2853 flag
float32_is_unordered(int sig
, float32 a
, float32 b STATUS_PARAM
)
2855 if (float32_is_signaling_nan(a
) ||
2856 float32_is_signaling_nan(b
) ||
2857 (sig
&& (float32_is_nan(a
) || float32_is_nan(b
)))) {
2858 float_raise(float_flag_invalid
, status
);
2860 } else if (float32_is_nan(a
) || float32_is_nan(b
)) {
2867 /* NOTE: the comma operator will make "cond" to eval to false,
2868 * but float*_is_unordered() is still called. */
2869 FOP_COND_S(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
), 0))
2870 FOP_COND_S(un
, float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
))
2871 FOP_COND_S(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_eq(fst0
, fst1
, &env
->fpu
->fp_status
))
2872 FOP_COND_S(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_eq(fst0
, fst1
, &env
->fpu
->fp_status
))
2873 FOP_COND_S(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_lt(fst0
, fst1
, &env
->fpu
->fp_status
))
2874 FOP_COND_S(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_lt(fst0
, fst1
, &env
->fpu
->fp_status
))
2875 FOP_COND_S(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_le(fst0
, fst1
, &env
->fpu
->fp_status
))
2876 FOP_COND_S(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_le(fst0
, fst1
, &env
->fpu
->fp_status
))
2877 /* NOTE: the comma operator will make "cond" to eval to false,
2878 * but float*_is_unordered() is still called. */
2879 FOP_COND_S(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
), 0))
2880 FOP_COND_S(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
))
2881 FOP_COND_S(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_eq(fst0
, fst1
, &env
->fpu
->fp_status
))
2882 FOP_COND_S(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_eq(fst0
, fst1
, &env
->fpu
->fp_status
))
2883 FOP_COND_S(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_lt(fst0
, fst1
, &env
->fpu
->fp_status
))
2884 FOP_COND_S(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_lt(fst0
, fst1
, &env
->fpu
->fp_status
))
2885 FOP_COND_S(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_le(fst0
, fst1
, &env
->fpu
->fp_status
))
2886 FOP_COND_S(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_le(fst0
, fst1
, &env
->fpu
->fp_status
))
2888 #define FOP_COND_PS(op, condl, condh) \
2889 void do_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2891 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2892 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2893 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2894 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2900 SET_FP_COND(cc, env->fpu); \
2902 CLEAR_FP_COND(cc, env->fpu); \
2904 SET_FP_COND(cc + 1, env->fpu); \
2906 CLEAR_FP_COND(cc + 1, env->fpu); \
2908 void do_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2910 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2911 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2912 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2913 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2919 SET_FP_COND(cc, env->fpu); \
2921 CLEAR_FP_COND(cc, env->fpu); \
2923 SET_FP_COND(cc + 1, env->fpu); \
2925 CLEAR_FP_COND(cc + 1, env->fpu); \
2928 /* NOTE: the comma operator will make "cond" to eval to false,
2929 * but float*_is_unordered() is still called. */
2930 FOP_COND_PS(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
), 0),
2931 (float32_is_unordered(0, fsth1
, fsth0
, &env
->fpu
->fp_status
), 0))
2932 FOP_COND_PS(un
, float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
),
2933 float32_is_unordered(0, fsth1
, fsth0
, &env
->fpu
->fp_status
))
2934 FOP_COND_PS(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_eq(fst0
, fst1
, &env
->fpu
->fp_status
),
2935 !float32_is_unordered(0, fsth1
, fsth0
, &env
->fpu
->fp_status
) && float32_eq(fsth0
, fsth1
, &env
->fpu
->fp_status
))
2936 FOP_COND_PS(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_eq(fst0
, fst1
, &env
->fpu
->fp_status
),
2937 float32_is_unordered(0, fsth1
, fsth0
, &env
->fpu
->fp_status
) || float32_eq(fsth0
, fsth1
, &env
->fpu
->fp_status
))
2938 FOP_COND_PS(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_lt(fst0
, fst1
, &env
->fpu
->fp_status
),
2939 !float32_is_unordered(0, fsth1
, fsth0
, &env
->fpu
->fp_status
) && float32_lt(fsth0
, fsth1
, &env
->fpu
->fp_status
))
2940 FOP_COND_PS(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_lt(fst0
, fst1
, &env
->fpu
->fp_status
),
2941 float32_is_unordered(0, fsth1
, fsth0
, &env
->fpu
->fp_status
) || float32_lt(fsth0
, fsth1
, &env
->fpu
->fp_status
))
2942 FOP_COND_PS(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_le(fst0
, fst1
, &env
->fpu
->fp_status
),
2943 !float32_is_unordered(0, fsth1
, fsth0
, &env
->fpu
->fp_status
) && float32_le(fsth0
, fsth1
, &env
->fpu
->fp_status
))
2944 FOP_COND_PS(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_le(fst0
, fst1
, &env
->fpu
->fp_status
),
2945 float32_is_unordered(0, fsth1
, fsth0
, &env
->fpu
->fp_status
) || float32_le(fsth0
, fsth1
, &env
->fpu
->fp_status
))
2946 /* NOTE: the comma operator will make "cond" to eval to false,
2947 * but float*_is_unordered() is still called. */
2948 FOP_COND_PS(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
), 0),
2949 (float32_is_unordered(1, fsth1
, fsth0
, &env
->fpu
->fp_status
), 0))
2950 FOP_COND_PS(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
),
2951 float32_is_unordered(1, fsth1
, fsth0
, &env
->fpu
->fp_status
))
2952 FOP_COND_PS(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_eq(fst0
, fst1
, &env
->fpu
->fp_status
),
2953 !float32_is_unordered(1, fsth1
, fsth0
, &env
->fpu
->fp_status
) && float32_eq(fsth0
, fsth1
, &env
->fpu
->fp_status
))
2954 FOP_COND_PS(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_eq(fst0
, fst1
, &env
->fpu
->fp_status
),
2955 float32_is_unordered(1, fsth1
, fsth0
, &env
->fpu
->fp_status
) || float32_eq(fsth0
, fsth1
, &env
->fpu
->fp_status
))
2956 FOP_COND_PS(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_lt(fst0
, fst1
, &env
->fpu
->fp_status
),
2957 !float32_is_unordered(1, fsth1
, fsth0
, &env
->fpu
->fp_status
) && float32_lt(fsth0
, fsth1
, &env
->fpu
->fp_status
))
2958 FOP_COND_PS(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_lt(fst0
, fst1
, &env
->fpu
->fp_status
),
2959 float32_is_unordered(1, fsth1
, fsth0
, &env
->fpu
->fp_status
) || float32_lt(fsth0
, fsth1
, &env
->fpu
->fp_status
))
2960 FOP_COND_PS(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) && float32_le(fst0
, fst1
, &env
->fpu
->fp_status
),
2961 !float32_is_unordered(1, fsth1
, fsth0
, &env
->fpu
->fp_status
) && float32_le(fsth0
, fsth1
, &env
->fpu
->fp_status
))
2962 FOP_COND_PS(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->fpu
->fp_status
) || float32_le(fst0
, fst1
, &env
->fpu
->fp_status
),
2963 float32_is_unordered(1, fsth1
, fsth0
, &env
->fpu
->fp_status
) || float32_le(fsth0
, fsth1
, &env
->fpu
->fp_status
))