Handle tap fds with IFF_VNET_HDR
[qemu-kvm/fedora.git] / hw / etraxfs_dma.c
bloba2750386f3490c24ee607e340b62f74ebccd7995
1 /*
2 * QEMU ETRAX DMA Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
28 #include "etraxfs_dma.h"
30 #define D(x)
32 #define RW_DATA 0x0
33 #define RW_SAVED_DATA 0x58
34 #define RW_SAVED_DATA_BUF 0x5c
35 #define RW_GROUP 0x60
36 #define RW_GROUP_DOWN 0x7c
37 #define RW_CMD 0x80
38 #define RW_CFG 0x84
39 #define RW_STAT 0x88
40 #define RW_INTR_MASK 0x8c
41 #define RW_ACK_INTR 0x90
42 #define R_INTR 0x94
43 #define R_MASKED_INTR 0x98
44 #define RW_STREAM_CMD 0x9c
46 #define DMA_REG_MAX 0x100
48 /* descriptors */
50 // ------------------------------------------------------------ dma_descr_group
51 typedef struct dma_descr_group {
52 struct dma_descr_group *next;
53 unsigned eol : 1;
54 unsigned tol : 1;
55 unsigned bol : 1;
56 unsigned : 1;
57 unsigned intr : 1;
58 unsigned : 2;
59 unsigned en : 1;
60 unsigned : 7;
61 unsigned dis : 1;
62 unsigned md : 16;
63 struct dma_descr_group *up;
64 union {
65 struct dma_descr_context *context;
66 struct dma_descr_group *group;
67 } down;
68 } dma_descr_group;
70 // ---------------------------------------------------------- dma_descr_context
71 typedef struct dma_descr_context {
72 struct dma_descr_context *next;
73 unsigned eol : 1;
74 unsigned : 3;
75 unsigned intr : 1;
76 unsigned : 1;
77 unsigned store_mode : 1;
78 unsigned en : 1;
79 unsigned : 7;
80 unsigned dis : 1;
81 unsigned md0 : 16;
82 unsigned md1;
83 unsigned md2;
84 unsigned md3;
85 unsigned md4;
86 struct dma_descr_data *saved_data;
87 char *saved_data_buf;
88 } dma_descr_context;
90 // ------------------------------------------------------------- dma_descr_data
91 typedef struct dma_descr_data {
92 struct dma_descr_data *next;
93 char *buf;
94 unsigned eol : 1;
95 unsigned : 2;
96 unsigned out_eop : 1;
97 unsigned intr : 1;
98 unsigned wait : 1;
99 unsigned : 2;
100 unsigned : 3;
101 unsigned in_eop : 1;
102 unsigned : 4;
103 unsigned md : 16;
104 char *after;
105 } dma_descr_data;
107 /* Constants */
108 enum {
109 regk_dma_ack_pkt = 0x00000100,
110 regk_dma_anytime = 0x00000001,
111 regk_dma_array = 0x00000008,
112 regk_dma_burst = 0x00000020,
113 regk_dma_client = 0x00000002,
114 regk_dma_copy_next = 0x00000010,
115 regk_dma_copy_up = 0x00000020,
116 regk_dma_data_at_eol = 0x00000001,
117 regk_dma_dis_c = 0x00000010,
118 regk_dma_dis_g = 0x00000020,
119 regk_dma_idle = 0x00000001,
120 regk_dma_intern = 0x00000004,
121 regk_dma_load_c = 0x00000200,
122 regk_dma_load_c_n = 0x00000280,
123 regk_dma_load_c_next = 0x00000240,
124 regk_dma_load_d = 0x00000140,
125 regk_dma_load_g = 0x00000300,
126 regk_dma_load_g_down = 0x000003c0,
127 regk_dma_load_g_next = 0x00000340,
128 regk_dma_load_g_up = 0x00000380,
129 regk_dma_next_en = 0x00000010,
130 regk_dma_next_pkt = 0x00000010,
131 regk_dma_no = 0x00000000,
132 regk_dma_only_at_wait = 0x00000000,
133 regk_dma_restore = 0x00000020,
134 regk_dma_rst = 0x00000001,
135 regk_dma_running = 0x00000004,
136 regk_dma_rw_cfg_default = 0x00000000,
137 regk_dma_rw_cmd_default = 0x00000000,
138 regk_dma_rw_intr_mask_default = 0x00000000,
139 regk_dma_rw_stat_default = 0x00000101,
140 regk_dma_rw_stream_cmd_default = 0x00000000,
141 regk_dma_save_down = 0x00000020,
142 regk_dma_save_up = 0x00000020,
143 regk_dma_set_reg = 0x00000050,
144 regk_dma_set_w_size1 = 0x00000190,
145 regk_dma_set_w_size2 = 0x000001a0,
146 regk_dma_set_w_size4 = 0x000001c0,
147 regk_dma_stopped = 0x00000002,
148 regk_dma_store_c = 0x00000002,
149 regk_dma_store_descr = 0x00000000,
150 regk_dma_store_g = 0x00000004,
151 regk_dma_store_md = 0x00000001,
152 regk_dma_sw = 0x00000008,
153 regk_dma_update_down = 0x00000020,
154 regk_dma_yes = 0x00000001
157 enum dma_ch_state
159 RST = 0,
160 STOPPED = 2,
161 RUNNING = 4
164 struct fs_dma_channel
166 int regmap;
167 qemu_irq *irq;
168 struct etraxfs_dma_client *client;
171 /* Internal status. */
172 int stream_cmd_src;
173 enum dma_ch_state state;
175 unsigned int input : 1;
176 unsigned int eol : 1;
178 struct dma_descr_group current_g;
179 struct dma_descr_context current_c;
180 struct dma_descr_data current_d;
182 /* Controll registers. */
183 uint32_t regs[DMA_REG_MAX];
186 struct fs_dma_ctrl
188 CPUState *env;
189 target_phys_addr_t base;
191 int nr_channels;
192 struct fs_dma_channel *channels;
195 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
197 return ctrl->channels[c].regs[reg];
200 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
202 return channel_reg(ctrl, c, RW_CFG) & 2;
205 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
207 return (channel_reg(ctrl, c, RW_CFG) & 1)
208 && ctrl->channels[c].client;
211 static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
213 /* Every channel has a 0x2000 ctrl register map. */
214 return (addr - base) >> 13;
217 #ifdef USE_THIS_DEAD_CODE
218 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
220 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
222 /* Load and decode. FIXME: handle endianness. */
223 cpu_physical_memory_read (addr,
224 (void *) &ctrl->channels[c].current_g,
225 sizeof ctrl->channels[c].current_g);
228 static void dump_c(int ch, struct dma_descr_context *c)
230 printf("%s ch=%d\n", __func__, ch);
231 printf("next=%p\n", c->next);
232 printf("saved_data=%p\n", c->saved_data);
233 printf("saved_data_buf=%p\n", c->saved_data_buf);
234 printf("eol=%x\n", (uint32_t) c->eol);
237 static void dump_d(int ch, struct dma_descr_data *d)
239 printf("%s ch=%d\n", __func__, ch);
240 printf("next=%p\n", d->next);
241 printf("buf=%p\n", d->buf);
242 printf("after=%p\n", d->after);
243 printf("intr=%x\n", (uint32_t) d->intr);
244 printf("out_eop=%x\n", (uint32_t) d->out_eop);
245 printf("in_eop=%x\n", (uint32_t) d->in_eop);
246 printf("eol=%x\n", (uint32_t) d->eol);
248 #endif
250 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
252 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
254 /* Load and decode. FIXME: handle endianness. */
255 cpu_physical_memory_read (addr,
256 (void *) &ctrl->channels[c].current_c,
257 sizeof ctrl->channels[c].current_c);
259 D(dump_c(c, &ctrl->channels[c].current_c));
260 /* I guess this should update the current pos. */
261 ctrl->channels[c].regs[RW_SAVED_DATA] =
262 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
263 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
264 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
267 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
269 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
271 /* Load and decode. FIXME: handle endianness. */
272 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
273 cpu_physical_memory_read (addr,
274 (void *) &ctrl->channels[c].current_d,
275 sizeof ctrl->channels[c].current_d);
277 D(dump_d(c, &ctrl->channels[c].current_d));
278 ctrl->channels[c].regs[RW_DATA] = addr;
281 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
283 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
285 /* Encode and store. FIXME: handle endianness. */
286 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
287 D(dump_d(c, &ctrl->channels[c].current_d));
288 cpu_physical_memory_write (addr,
289 (void *) &ctrl->channels[c].current_c,
290 sizeof ctrl->channels[c].current_c);
293 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
295 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
297 /* Encode and store. FIXME: handle endianness. */
298 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
299 cpu_physical_memory_write (addr,
300 (void *) &ctrl->channels[c].current_d,
301 sizeof ctrl->channels[c].current_d);
304 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
306 /* FIXME: */
309 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
311 if (ctrl->channels[c].client)
313 ctrl->channels[c].eol = 0;
314 ctrl->channels[c].state = RUNNING;
315 } else
316 printf("WARNING: starting DMA ch %d with no client\n", c);
319 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
321 if (!channel_en(ctrl, c)
322 || channel_stopped(ctrl, c)
323 || ctrl->channels[c].state != RUNNING
324 /* Only reload the current data descriptor if it has eol set. */
325 || !ctrl->channels[c].current_d.eol) {
326 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
327 c, ctrl->channels[c].state,
328 channel_stopped(ctrl, c),
329 channel_en(ctrl,c),
330 ctrl->channels[c].eol));
331 D(dump_d(c, &ctrl->channels[c].current_d));
332 return;
335 /* Reload the current descriptor. */
336 channel_load_d(ctrl, c);
338 /* If the current descriptor cleared the eol flag and we had already
339 reached eol state, do the continue. */
340 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
341 D(printf("continue %d ok %p\n", c,
342 ctrl->channels[c].current_d.next));
343 ctrl->channels[c].regs[RW_SAVED_DATA] =
344 (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
345 channel_load_d(ctrl, c);
346 channel_start(ctrl, c);
348 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
349 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
352 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
354 unsigned int cmd = v & ((1 << 10) - 1);
356 D(printf("%s ch=%d cmd=%x\n",
357 __func__, c, cmd));
358 if (cmd & regk_dma_load_d) {
359 channel_load_d(ctrl, c);
360 if (cmd & regk_dma_burst)
361 channel_start(ctrl, c);
364 if (cmd & regk_dma_load_c) {
365 channel_load_c(ctrl, c);
366 channel_start(ctrl, c);
370 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
372 D(printf("%s %d\n", __func__, c));
373 ctrl->channels[c].regs[R_INTR] &=
374 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
376 ctrl->channels[c].regs[R_MASKED_INTR] =
377 ctrl->channels[c].regs[R_INTR]
378 & ctrl->channels[c].regs[RW_INTR_MASK];
380 D(printf("%s: chan=%d masked_intr=%x\n", __func__,
382 ctrl->channels[c].regs[R_MASKED_INTR]));
384 if (ctrl->channels[c].regs[R_MASKED_INTR])
385 qemu_irq_raise(ctrl->channels[c].irq[0]);
386 else
387 qemu_irq_lower(ctrl->channels[c].irq[0]);
390 static void channel_out_run(struct fs_dma_ctrl *ctrl, int c)
392 uint32_t len;
393 uint32_t saved_data_buf;
394 unsigned char buf[2 * 1024];
396 if (ctrl->channels[c].eol == 1)
397 return;
399 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
401 D(fprintf(logfile, "ch=%d buf=%x after=%x saved_data_buf=%x\n",
403 (uint32_t)ctrl->channels[c].current_d.buf,
404 (uint32_t)ctrl->channels[c].current_d.after,
405 saved_data_buf));
407 len = (uint32_t)(unsigned long) ctrl->channels[c].current_d.after;
408 len -= saved_data_buf;
410 if (len > sizeof buf)
411 len = sizeof buf;
412 cpu_physical_memory_read (saved_data_buf, buf, len);
414 D(printf("channel %d pushes %x %u bytes\n", c,
415 saved_data_buf, len));
417 if (ctrl->channels[c].client->client.push)
418 ctrl->channels[c].client->client.push(
419 ctrl->channels[c].client->client.opaque, buf, len);
420 else
421 printf("WARNING: DMA ch%d dataloss, no attached client.\n", c);
423 saved_data_buf += len;
425 if (saved_data_buf ==
426 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after) {
427 /* Done. Step to next. */
428 if (ctrl->channels[c].current_d.out_eop) {
429 /* TODO: signal eop to the client. */
430 D(printf("signal eop\n"));
432 if (ctrl->channels[c].current_d.intr) {
433 /* TODO: signal eop to the client. */
434 /* data intr. */
435 D(printf("signal intr\n"));
436 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
437 channel_update_irq(ctrl, c);
439 if (ctrl->channels[c].current_d.eol) {
440 D(printf("channel %d EOL\n", c));
441 ctrl->channels[c].eol = 1;
443 /* Mark the context as disabled. */
444 ctrl->channels[c].current_c.dis = 1;
445 channel_store_c(ctrl, c);
447 channel_stop(ctrl, c);
448 } else {
449 ctrl->channels[c].regs[RW_SAVED_DATA] =
450 (uint32_t)(unsigned long) ctrl->channels[c].current_d.next;
451 /* Load new descriptor. */
452 channel_load_d(ctrl, c);
453 saved_data_buf = (uint32_t)(unsigned long)
454 ctrl->channels[c].current_d.buf;
457 channel_store_d(ctrl, c);
458 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
459 D(dump_d(c, &ctrl->channels[c].current_d));
461 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
464 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
465 unsigned char *buf, int buflen, int eop)
467 uint32_t len;
468 uint32_t saved_data_buf;
470 if (ctrl->channels[c].eol == 1)
471 return 0;
473 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
474 len = (uint32_t)(unsigned long) ctrl->channels[c].current_d.after;
475 len -= saved_data_buf;
477 if (len > buflen)
478 len = buflen;
480 cpu_physical_memory_write (saved_data_buf, buf, len);
481 saved_data_buf += len;
483 if (saved_data_buf ==
484 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
485 || eop) {
486 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
488 D(printf("in dscr end len=%d\n",
489 ctrl->channels[c].current_d.after
490 - ctrl->channels[c].current_d.buf));
491 ctrl->channels[c].current_d.after =
492 (void *)(unsigned long) saved_data_buf;
494 /* Done. Step to next. */
495 if (ctrl->channels[c].current_d.intr) {
496 /* TODO: signal eop to the client. */
497 /* data intr. */
498 ctrl->channels[c].regs[R_INTR] |= 3;
500 if (eop) {
501 ctrl->channels[c].current_d.in_eop = 1;
502 ctrl->channels[c].regs[R_INTR] |= 8;
504 if (r_intr != ctrl->channels[c].regs[R_INTR])
505 channel_update_irq(ctrl, c);
507 channel_store_d(ctrl, c);
508 D(dump_d(c, &ctrl->channels[c].current_d));
510 if (ctrl->channels[c].current_d.eol) {
511 D(printf("channel %d EOL\n", c));
512 ctrl->channels[c].eol = 1;
514 /* Mark the context as disabled. */
515 ctrl->channels[c].current_c.dis = 1;
516 channel_store_c(ctrl, c);
518 channel_stop(ctrl, c);
519 } else {
520 ctrl->channels[c].regs[RW_SAVED_DATA] =
521 (uint32_t)(unsigned long) ctrl->channels[c].current_d.next;
522 /* Load new descriptor. */
523 channel_load_d(ctrl, c);
524 saved_data_buf = (uint32_t)(unsigned long)
525 ctrl->channels[c].current_d.buf;
529 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
530 return len;
533 static inline void channel_in_run(struct fs_dma_ctrl *ctrl, int c)
535 if (ctrl->channels[c].client->client.pull)
536 ctrl->channels[c].client->client.pull(
537 ctrl->channels[c].client->client.opaque);
540 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
542 struct fs_dma_ctrl *ctrl = opaque;
543 CPUState *env = ctrl->env;
544 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
545 addr);
546 return 0;
549 static uint32_t
550 dma_readl (void *opaque, target_phys_addr_t addr)
552 struct fs_dma_ctrl *ctrl = opaque;
553 int c;
554 uint32_t r = 0;
556 /* Make addr relative to this instances base. */
557 c = fs_channel(ctrl->base, addr);
558 addr &= 0x1fff;
559 switch (addr)
561 case RW_STAT:
562 r = ctrl->channels[c].state & 7;
563 r |= ctrl->channels[c].eol << 5;
564 r |= ctrl->channels[c].stream_cmd_src << 8;
565 break;
567 default:
568 r = ctrl->channels[c].regs[addr];
569 D(printf ("%s c=%d addr=%x\n",
570 __func__, c, addr));
571 break;
573 return r;
576 static void
577 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
579 struct fs_dma_ctrl *ctrl = opaque;
580 CPUState *env = ctrl->env;
581 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
582 addr);
585 static void
586 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
588 struct fs_dma_ctrl *ctrl = opaque;
589 int c;
591 /* Make addr relative to this instances base. */
592 c = fs_channel(ctrl->base, addr);
593 addr &= 0x1fff;
594 switch (addr)
596 case RW_DATA:
597 ctrl->channels[c].regs[addr] = value;
598 break;
600 case RW_CFG:
601 ctrl->channels[c].regs[addr] = value;
602 break;
603 case RW_CMD:
604 /* continue. */
605 ctrl->channels[c].regs[addr] = value;
606 channel_continue(ctrl, c);
607 break;
609 case RW_SAVED_DATA:
610 case RW_SAVED_DATA_BUF:
611 case RW_GROUP:
612 case RW_GROUP_DOWN:
613 ctrl->channels[c].regs[addr] = value;
614 break;
616 case RW_ACK_INTR:
617 case RW_INTR_MASK:
618 ctrl->channels[c].regs[addr] = value;
619 channel_update_irq(ctrl, c);
620 if (addr == RW_ACK_INTR)
621 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
622 break;
624 case RW_STREAM_CMD:
625 ctrl->channels[c].regs[addr] = value;
626 D(printf("stream_cmd ch=%d\n", c));
627 channel_stream_cmd(ctrl, c, value);
628 break;
630 default:
631 D(printf ("%s c=%d %x %x\n", __func__, c, addr));
632 break;
636 static CPUReadMemoryFunc *dma_read[] = {
637 &dma_rinvalid,
638 &dma_rinvalid,
639 &dma_readl,
642 static CPUWriteMemoryFunc *dma_write[] = {
643 &dma_winvalid,
644 &dma_winvalid,
645 &dma_writel,
648 void etraxfs_dmac_run(void *opaque)
650 struct fs_dma_ctrl *ctrl = opaque;
651 int i;
652 int p = 0;
654 for (i = 0;
655 i < ctrl->nr_channels;
656 i++)
658 if (ctrl->channels[i].state == RUNNING)
660 p++;
661 if (ctrl->channels[i].input)
662 channel_in_run(ctrl, i);
663 else
664 channel_out_run(ctrl, i);
669 int etraxfs_dmac_input(struct etraxfs_dma_client *client,
670 void *buf, int len, int eop)
672 return channel_in_process(client->ctrl, client->channel,
673 buf, len, eop);
676 /* Connect an IRQ line with a channel. */
677 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
679 struct fs_dma_ctrl *ctrl = opaque;
680 ctrl->channels[c].irq = line;
681 ctrl->channels[c].input = input;
684 void etraxfs_dmac_connect_client(void *opaque, int c,
685 struct etraxfs_dma_client *cl)
687 struct fs_dma_ctrl *ctrl = opaque;
688 cl->ctrl = ctrl;
689 cl->channel = c;
690 ctrl->channels[c].client = cl;
694 static void *etraxfs_dmac;
695 void DMA_run(void)
697 if (etraxfs_dmac)
698 etraxfs_dmac_run(etraxfs_dmac);
701 void *etraxfs_dmac_init(CPUState *env,
702 target_phys_addr_t base, int nr_channels)
704 struct fs_dma_ctrl *ctrl = NULL;
705 int i;
707 ctrl = qemu_mallocz(sizeof *ctrl);
708 if (!ctrl)
709 return NULL;
711 ctrl->base = base;
712 ctrl->env = env;
713 ctrl->nr_channels = nr_channels;
714 ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
715 if (!ctrl->channels)
716 goto err;
718 for (i = 0; i < nr_channels; i++)
720 ctrl->channels[i].regmap = cpu_register_io_memory(0,
721 dma_read,
722 dma_write,
723 ctrl);
724 cpu_register_physical_memory (base + i * 0x2000,
725 sizeof ctrl->channels[i].regs,
726 ctrl->channels[i].regmap);
729 /* Hax, we only support one DMA controller at a time. */
730 etraxfs_dmac = ctrl;
731 return ctrl;
732 err:
733 qemu_free(ctrl->channels);
734 qemu_free(ctrl);
735 return NULL;