Move kvm memory registration inside qemu's
[qemu-kvm/fedora.git] / hw / esp.c
blob1df28894fb86d82f2c8f75632a25c0468128e13f
1 /*
2 * QEMU ESP/NCR53C9x emulation
4 * Copyright (c) 2005-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "scsi-disk.h"
27 #include "scsi.h"
29 /* debug ESP card */
30 //#define DEBUG_ESP
33 * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
34 * also produced as NCR89C100. See
35 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
36 * and
37 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
40 #ifdef DEBUG_ESP
41 #define DPRINTF(fmt, args...) \
42 do { printf("ESP: " fmt , ##args); } while (0)
43 #else
44 #define DPRINTF(fmt, args...) do {} while (0)
45 #endif
47 #define ESP_REGS 16
48 #define TI_BUFSZ 32
50 typedef struct ESPState ESPState;
52 struct ESPState {
53 uint32_t it_shift;
54 qemu_irq irq;
55 uint8_t rregs[ESP_REGS];
56 uint8_t wregs[ESP_REGS];
57 int32_t ti_size;
58 uint32_t ti_rptr, ti_wptr;
59 uint8_t ti_buf[TI_BUFSZ];
60 uint32_t sense;
61 uint32_t dma;
62 SCSIDevice *scsi_dev[ESP_MAX_DEVS];
63 SCSIDevice *current_dev;
64 uint8_t cmdbuf[TI_BUFSZ];
65 uint32_t cmdlen;
66 uint32_t do_cmd;
68 /* The amount of data left in the current DMA transfer. */
69 uint32_t dma_left;
70 /* The size of the current DMA transfer. Zero if no transfer is in
71 progress. */
72 uint32_t dma_counter;
73 uint8_t *async_buf;
74 uint32_t async_len;
76 espdma_memory_read_write dma_memory_read;
77 espdma_memory_read_write dma_memory_write;
78 void *dma_opaque;
81 #define ESP_TCLO 0x0
82 #define ESP_TCMID 0x1
83 #define ESP_FIFO 0x2
84 #define ESP_CMD 0x3
85 #define ESP_RSTAT 0x4
86 #define ESP_WBUSID 0x4
87 #define ESP_RINTR 0x5
88 #define ESP_WSEL 0x5
89 #define ESP_RSEQ 0x6
90 #define ESP_WSYNTP 0x6
91 #define ESP_RFLAGS 0x7
92 #define ESP_WSYNO 0x7
93 #define ESP_CFG1 0x8
94 #define ESP_RRES1 0x9
95 #define ESP_WCCF 0x9
96 #define ESP_RRES2 0xa
97 #define ESP_WTEST 0xa
98 #define ESP_CFG2 0xb
99 #define ESP_CFG3 0xc
100 #define ESP_RES3 0xd
101 #define ESP_TCHI 0xe
102 #define ESP_RES4 0xf
104 #define CMD_DMA 0x80
105 #define CMD_CMD 0x7f
107 #define CMD_NOP 0x00
108 #define CMD_FLUSH 0x01
109 #define CMD_RESET 0x02
110 #define CMD_BUSRESET 0x03
111 #define CMD_TI 0x10
112 #define CMD_ICCS 0x11
113 #define CMD_MSGACC 0x12
114 #define CMD_SATN 0x1a
115 #define CMD_SELATN 0x42
116 #define CMD_SELATNS 0x43
117 #define CMD_ENSEL 0x44
119 #define STAT_DO 0x00
120 #define STAT_DI 0x01
121 #define STAT_CD 0x02
122 #define STAT_ST 0x03
123 #define STAT_MI 0x06
124 #define STAT_MO 0x07
125 #define STAT_PIO_MASK 0x06
127 #define STAT_TC 0x10
128 #define STAT_PE 0x20
129 #define STAT_GE 0x40
130 #define STAT_INT 0x80
132 #define INTR_FC 0x08
133 #define INTR_BS 0x10
134 #define INTR_DC 0x20
135 #define INTR_RST 0x80
137 #define SEQ_0 0x0
138 #define SEQ_CD 0x4
140 #define CFG1_RESREPT 0x40
142 #define CFG2_MASK 0x15
144 #define TCHI_FAS100A 0x4
146 static void esp_raise_irq(ESPState *s)
148 if (!(s->rregs[ESP_RSTAT] & STAT_INT)) {
149 s->rregs[ESP_RSTAT] |= STAT_INT;
150 qemu_irq_raise(s->irq);
154 static void esp_lower_irq(ESPState *s)
156 if (s->rregs[ESP_RSTAT] & STAT_INT) {
157 s->rregs[ESP_RSTAT] &= ~STAT_INT;
158 qemu_irq_lower(s->irq);
162 static uint32_t get_cmd(ESPState *s, uint8_t *buf)
164 uint32_t dmalen;
165 int target;
167 dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
168 target = s->wregs[ESP_WBUSID] & 7;
169 DPRINTF("get_cmd: len %d target %d\n", dmalen, target);
170 if (s->dma) {
171 s->dma_memory_read(s->dma_opaque, buf, dmalen);
172 } else {
173 buf[0] = 0;
174 memcpy(&buf[1], s->ti_buf, dmalen);
175 dmalen++;
178 s->ti_size = 0;
179 s->ti_rptr = 0;
180 s->ti_wptr = 0;
182 if (s->current_dev) {
183 /* Started a new command before the old one finished. Cancel it. */
184 s->current_dev->cancel_io(s->current_dev, 0);
185 s->async_len = 0;
188 if (target >= ESP_MAX_DEVS || !s->scsi_dev[target]) {
189 // No such drive
190 s->rregs[ESP_RSTAT] = 0;
191 s->rregs[ESP_RINTR] = INTR_DC;
192 s->rregs[ESP_RSEQ] = SEQ_0;
193 esp_raise_irq(s);
194 return 0;
196 s->current_dev = s->scsi_dev[target];
197 return dmalen;
200 static void do_cmd(ESPState *s, uint8_t *buf)
202 int32_t datalen;
203 int lun;
205 DPRINTF("do_cmd: busid 0x%x\n", buf[0]);
206 lun = buf[0] & 7;
207 datalen = s->current_dev->send_command(s->current_dev, 0, &buf[1], lun);
208 s->ti_size = datalen;
209 if (datalen != 0) {
210 s->rregs[ESP_RSTAT] = STAT_TC;
211 s->dma_left = 0;
212 s->dma_counter = 0;
213 if (datalen > 0) {
214 s->rregs[ESP_RSTAT] |= STAT_DI;
215 s->current_dev->read_data(s->current_dev, 0);
216 } else {
217 s->rregs[ESP_RSTAT] |= STAT_DO;
218 s->current_dev->write_data(s->current_dev, 0);
221 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
222 s->rregs[ESP_RSEQ] = SEQ_CD;
223 esp_raise_irq(s);
226 static void handle_satn(ESPState *s)
228 uint8_t buf[32];
229 int len;
231 len = get_cmd(s, buf);
232 if (len)
233 do_cmd(s, buf);
236 static void handle_satn_stop(ESPState *s)
238 s->cmdlen = get_cmd(s, s->cmdbuf);
239 if (s->cmdlen) {
240 DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen);
241 s->do_cmd = 1;
242 s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
243 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
244 s->rregs[ESP_RSEQ] = SEQ_CD;
245 esp_raise_irq(s);
249 static void write_response(ESPState *s)
251 DPRINTF("Transfer status (sense=%d)\n", s->sense);
252 s->ti_buf[0] = s->sense;
253 s->ti_buf[1] = 0;
254 if (s->dma) {
255 s->dma_memory_write(s->dma_opaque, s->ti_buf, 2);
256 s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST;
257 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
258 s->rregs[ESP_RSEQ] = SEQ_CD;
259 } else {
260 s->ti_size = 2;
261 s->ti_rptr = 0;
262 s->ti_wptr = 0;
263 s->rregs[ESP_RFLAGS] = 2;
265 esp_raise_irq(s);
268 static void esp_dma_done(ESPState *s)
270 s->rregs[ESP_RSTAT] |= STAT_TC;
271 s->rregs[ESP_RINTR] = INTR_BS;
272 s->rregs[ESP_RSEQ] = 0;
273 s->rregs[ESP_RFLAGS] = 0;
274 s->rregs[ESP_TCLO] = 0;
275 s->rregs[ESP_TCMID] = 0;
276 esp_raise_irq(s);
279 static void esp_do_dma(ESPState *s)
281 uint32_t len;
282 int to_device;
284 to_device = (s->ti_size < 0);
285 len = s->dma_left;
286 if (s->do_cmd) {
287 DPRINTF("command len %d + %d\n", s->cmdlen, len);
288 s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
289 s->ti_size = 0;
290 s->cmdlen = 0;
291 s->do_cmd = 0;
292 do_cmd(s, s->cmdbuf);
293 return;
295 if (s->async_len == 0) {
296 /* Defer until data is available. */
297 return;
299 if (len > s->async_len) {
300 len = s->async_len;
302 if (to_device) {
303 s->dma_memory_read(s->dma_opaque, s->async_buf, len);
304 } else {
305 s->dma_memory_write(s->dma_opaque, s->async_buf, len);
307 s->dma_left -= len;
308 s->async_buf += len;
309 s->async_len -= len;
310 if (to_device)
311 s->ti_size += len;
312 else
313 s->ti_size -= len;
314 if (s->async_len == 0) {
315 if (to_device) {
316 // ti_size is negative
317 s->current_dev->write_data(s->current_dev, 0);
318 } else {
319 s->current_dev->read_data(s->current_dev, 0);
320 /* If there is still data to be read from the device then
321 complete the DMA operation immeriately. Otherwise defer
322 until the scsi layer has completed. */
323 if (s->dma_left == 0 && s->ti_size > 0) {
324 esp_dma_done(s);
327 } else {
328 /* Partially filled a scsi buffer. Complete immediately. */
329 esp_dma_done(s);
333 static void esp_command_complete(void *opaque, int reason, uint32_t tag,
334 uint32_t arg)
336 ESPState *s = (ESPState *)opaque;
338 if (reason == SCSI_REASON_DONE) {
339 DPRINTF("SCSI Command complete\n");
340 if (s->ti_size != 0)
341 DPRINTF("SCSI command completed unexpectedly\n");
342 s->ti_size = 0;
343 s->dma_left = 0;
344 s->async_len = 0;
345 if (arg)
346 DPRINTF("Command failed\n");
347 s->sense = arg;
348 s->rregs[ESP_RSTAT] = STAT_ST;
349 esp_dma_done(s);
350 s->current_dev = NULL;
351 } else {
352 DPRINTF("transfer %d/%d\n", s->dma_left, s->ti_size);
353 s->async_len = arg;
354 s->async_buf = s->current_dev->get_buf(s->current_dev, 0);
355 if (s->dma_left) {
356 esp_do_dma(s);
357 } else if (s->dma_counter != 0 && s->ti_size <= 0) {
358 /* If this was the last part of a DMA transfer then the
359 completion interrupt is deferred to here. */
360 esp_dma_done(s);
365 static void handle_ti(ESPState *s)
367 uint32_t dmalen, minlen;
369 dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
370 if (dmalen==0) {
371 dmalen=0x10000;
373 s->dma_counter = dmalen;
375 if (s->do_cmd)
376 minlen = (dmalen < 32) ? dmalen : 32;
377 else if (s->ti_size < 0)
378 minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
379 else
380 minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
381 DPRINTF("Transfer Information len %d\n", minlen);
382 if (s->dma) {
383 s->dma_left = minlen;
384 s->rregs[ESP_RSTAT] &= ~STAT_TC;
385 esp_do_dma(s);
386 } else if (s->do_cmd) {
387 DPRINTF("command len %d\n", s->cmdlen);
388 s->ti_size = 0;
389 s->cmdlen = 0;
390 s->do_cmd = 0;
391 do_cmd(s, s->cmdbuf);
392 return;
396 static void esp_reset(void *opaque)
398 ESPState *s = opaque;
400 esp_lower_irq(s);
402 memset(s->rregs, 0, ESP_REGS);
403 memset(s->wregs, 0, ESP_REGS);
404 s->rregs[ESP_TCHI] = TCHI_FAS100A; // Indicate fas100a
405 s->ti_size = 0;
406 s->ti_rptr = 0;
407 s->ti_wptr = 0;
408 s->dma = 0;
409 s->do_cmd = 0;
412 static void parent_esp_reset(void *opaque, int irq, int level)
414 if (level)
415 esp_reset(opaque);
418 static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
420 ESPState *s = opaque;
421 uint32_t saddr;
423 saddr = (addr >> s->it_shift) & (ESP_REGS - 1);
424 DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
425 switch (saddr) {
426 case ESP_FIFO:
427 if (s->ti_size > 0) {
428 s->ti_size--;
429 if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
430 /* Data in/out. */
431 fprintf(stderr, "esp: PIO data read not implemented\n");
432 s->rregs[ESP_FIFO] = 0;
433 } else {
434 s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++];
436 esp_raise_irq(s);
438 if (s->ti_size == 0) {
439 s->ti_rptr = 0;
440 s->ti_wptr = 0;
442 break;
443 case ESP_RINTR:
444 // Clear interrupt/error status bits
445 s->rregs[ESP_RSTAT] &= ~(STAT_GE | STAT_PE);
446 esp_lower_irq(s);
447 break;
448 default:
449 break;
451 return s->rregs[saddr];
454 static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
456 ESPState *s = opaque;
457 uint32_t saddr;
459 saddr = (addr >> s->it_shift) & (ESP_REGS - 1);
460 DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr],
461 val);
462 switch (saddr) {
463 case ESP_TCLO:
464 case ESP_TCMID:
465 s->rregs[ESP_RSTAT] &= ~STAT_TC;
466 break;
467 case ESP_FIFO:
468 if (s->do_cmd) {
469 s->cmdbuf[s->cmdlen++] = val & 0xff;
470 } else if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
471 uint8_t buf;
472 buf = val & 0xff;
473 s->ti_size--;
474 fprintf(stderr, "esp: PIO data write not implemented\n");
475 } else {
476 s->ti_size++;
477 s->ti_buf[s->ti_wptr++] = val & 0xff;
479 break;
480 case ESP_CMD:
481 s->rregs[saddr] = val;
482 if (val & CMD_DMA) {
483 s->dma = 1;
484 /* Reload DMA counter. */
485 s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO];
486 s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID];
487 } else {
488 s->dma = 0;
490 switch(val & CMD_CMD) {
491 case CMD_NOP:
492 DPRINTF("NOP (%2.2x)\n", val);
493 break;
494 case CMD_FLUSH:
495 DPRINTF("Flush FIFO (%2.2x)\n", val);
496 //s->ti_size = 0;
497 s->rregs[ESP_RINTR] = INTR_FC;
498 s->rregs[ESP_RSEQ] = 0;
499 s->rregs[ESP_RFLAGS] = 0;
500 break;
501 case CMD_RESET:
502 DPRINTF("Chip reset (%2.2x)\n", val);
503 esp_reset(s);
504 break;
505 case CMD_BUSRESET:
506 DPRINTF("Bus reset (%2.2x)\n", val);
507 s->rregs[ESP_RINTR] = INTR_RST;
508 if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
509 esp_raise_irq(s);
511 break;
512 case CMD_TI:
513 handle_ti(s);
514 break;
515 case CMD_ICCS:
516 DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
517 write_response(s);
518 break;
519 case CMD_MSGACC:
520 DPRINTF("Message Accepted (%2.2x)\n", val);
521 write_response(s);
522 s->rregs[ESP_RINTR] = INTR_DC;
523 s->rregs[ESP_RSEQ] = 0;
524 break;
525 case CMD_SATN:
526 DPRINTF("Set ATN (%2.2x)\n", val);
527 break;
528 case CMD_SELATN:
529 DPRINTF("Set ATN (%2.2x)\n", val);
530 handle_satn(s);
531 break;
532 case CMD_SELATNS:
533 DPRINTF("Set ATN & stop (%2.2x)\n", val);
534 handle_satn_stop(s);
535 break;
536 case CMD_ENSEL:
537 DPRINTF("Enable selection (%2.2x)\n", val);
538 break;
539 default:
540 DPRINTF("Unhandled ESP command (%2.2x)\n", val);
541 break;
543 break;
544 case ESP_WBUSID ... ESP_WSYNO:
545 break;
546 case ESP_CFG1:
547 s->rregs[saddr] = val;
548 break;
549 case ESP_WCCF ... ESP_WTEST:
550 break;
551 case ESP_CFG2:
552 s->rregs[saddr] = val & CFG2_MASK;
553 break;
554 case ESP_CFG3 ... ESP_RES4:
555 s->rregs[saddr] = val;
556 break;
557 default:
558 break;
560 s->wregs[saddr] = val;
563 static CPUReadMemoryFunc *esp_mem_read[3] = {
564 esp_mem_readb,
565 NULL,
566 NULL,
569 static CPUWriteMemoryFunc *esp_mem_write[3] = {
570 esp_mem_writeb,
571 NULL,
572 NULL,
575 static void esp_save(QEMUFile *f, void *opaque)
577 ESPState *s = opaque;
579 qemu_put_buffer(f, s->rregs, ESP_REGS);
580 qemu_put_buffer(f, s->wregs, ESP_REGS);
581 qemu_put_sbe32s(f, &s->ti_size);
582 qemu_put_be32s(f, &s->ti_rptr);
583 qemu_put_be32s(f, &s->ti_wptr);
584 qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
585 qemu_put_be32s(f, &s->sense);
586 qemu_put_be32s(f, &s->dma);
587 qemu_put_buffer(f, s->cmdbuf, TI_BUFSZ);
588 qemu_put_be32s(f, &s->cmdlen);
589 qemu_put_be32s(f, &s->do_cmd);
590 qemu_put_be32s(f, &s->dma_left);
591 // There should be no transfers in progress, so dma_counter is not saved
594 static int esp_load(QEMUFile *f, void *opaque, int version_id)
596 ESPState *s = opaque;
598 if (version_id != 3)
599 return -EINVAL; // Cannot emulate 2
601 qemu_get_buffer(f, s->rregs, ESP_REGS);
602 qemu_get_buffer(f, s->wregs, ESP_REGS);
603 qemu_get_sbe32s(f, &s->ti_size);
604 qemu_get_be32s(f, &s->ti_rptr);
605 qemu_get_be32s(f, &s->ti_wptr);
606 qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
607 qemu_get_be32s(f, &s->sense);
608 qemu_get_be32s(f, &s->dma);
609 qemu_get_buffer(f, s->cmdbuf, TI_BUFSZ);
610 qemu_get_be32s(f, &s->cmdlen);
611 qemu_get_be32s(f, &s->do_cmd);
612 qemu_get_be32s(f, &s->dma_left);
614 return 0;
617 void esp_scsi_attach(void *opaque, BlockDriverState *bd, int id)
619 ESPState *s = (ESPState *)opaque;
621 if (id < 0) {
622 for (id = 0; id < ESP_MAX_DEVS; id++) {
623 if (s->scsi_dev[id] == NULL)
624 break;
627 if (id >= ESP_MAX_DEVS) {
628 DPRINTF("Bad Device ID %d\n", id);
629 return;
631 if (s->scsi_dev[id]) {
632 DPRINTF("Destroying device %d\n", id);
633 s->scsi_dev[id]->destroy(s->scsi_dev[id]);
635 DPRINTF("Attaching block device %d\n", id);
636 /* Command queueing is not implemented. */
637 s->scsi_dev[id] = scsi_generic_init(bd, 0, esp_command_complete, s);
638 if (s->scsi_dev[id] == NULL)
639 s->scsi_dev[id] = scsi_disk_init(bd, 0, esp_command_complete, s);
642 void *esp_init(target_phys_addr_t espaddr, int it_shift,
643 espdma_memory_read_write dma_memory_read,
644 espdma_memory_read_write dma_memory_write,
645 void *dma_opaque, qemu_irq irq, qemu_irq *reset)
647 ESPState *s;
648 int esp_io_memory;
650 s = qemu_mallocz(sizeof(ESPState));
651 if (!s)
652 return NULL;
654 s->irq = irq;
655 s->it_shift = it_shift;
656 s->dma_memory_read = dma_memory_read;
657 s->dma_memory_write = dma_memory_write;
658 s->dma_opaque = dma_opaque;
660 esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
661 cpu_register_physical_memory(espaddr, ESP_REGS << it_shift, esp_io_memory);
663 esp_reset(s);
665 register_savevm("esp", espaddr, 3, esp_save, esp_load, s);
666 qemu_register_reset(esp_reset, s);
668 *reset = *qemu_allocate_irqs(parent_esp_reset, s, 1);
670 return s;