Move kvm memory registration inside qemu's
[qemu-kvm/fedora.git] / hw / pxa2xx_mmci.c
blob60e7ba4efc202d59196f3dfee83329b912b49f96
1 /*
2 * Intel XScale PXA255/270 MultiMediaCard/SD/SDIO Controller emulation.
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Written by Andrzej Zaborowski <balrog@zabor.org>
7 * This code is licensed under the GPLv2.
8 */
10 #include "hw.h"
11 #include "pxa.h"
12 #include "sd.h"
14 struct pxa2xx_mmci_s {
15 target_phys_addr_t base;
16 qemu_irq irq;
17 void *dma;
19 SDState *card;
21 uint32_t status;
22 uint32_t clkrt;
23 uint32_t spi;
24 uint32_t cmdat;
25 uint32_t resp_tout;
26 uint32_t read_tout;
27 int blklen;
28 int numblk;
29 uint32_t intmask;
30 uint32_t intreq;
31 int cmd;
32 uint32_t arg;
34 int active;
35 int bytesleft;
36 uint8_t tx_fifo[64];
37 int tx_start;
38 int tx_len;
39 uint8_t rx_fifo[32];
40 int rx_start;
41 int rx_len;
42 uint16_t resp_fifo[9];
43 int resp_len;
45 int cmdreq;
46 int ac_width;
49 #define MMC_STRPCL 0x00 /* MMC Clock Start/Stop register */
50 #define MMC_STAT 0x04 /* MMC Status register */
51 #define MMC_CLKRT 0x08 /* MMC Clock Rate register */
52 #define MMC_SPI 0x0c /* MMC SPI Mode register */
53 #define MMC_CMDAT 0x10 /* MMC Command/Data register */
54 #define MMC_RESTO 0x14 /* MMC Response Time-Out register */
55 #define MMC_RDTO 0x18 /* MMC Read Time-Out register */
56 #define MMC_BLKLEN 0x1c /* MMC Block Length register */
57 #define MMC_NUMBLK 0x20 /* MMC Number of Blocks register */
58 #define MMC_PRTBUF 0x24 /* MMC Buffer Partly Full register */
59 #define MMC_I_MASK 0x28 /* MMC Interrupt Mask register */
60 #define MMC_I_REG 0x2c /* MMC Interrupt Request register */
61 #define MMC_CMD 0x30 /* MMC Command register */
62 #define MMC_ARGH 0x34 /* MMC Argument High register */
63 #define MMC_ARGL 0x38 /* MMC Argument Low register */
64 #define MMC_RES 0x3c /* MMC Response FIFO */
65 #define MMC_RXFIFO 0x40 /* MMC Receive FIFO */
66 #define MMC_TXFIFO 0x44 /* MMC Transmit FIFO */
67 #define MMC_RDWAIT 0x48 /* MMC RD_WAIT register */
68 #define MMC_BLKS_REM 0x4c /* MMC Blocks Remaining register */
70 /* Bitfield masks */
71 #define STRPCL_STOP_CLK (1 << 0)
72 #define STRPCL_STRT_CLK (1 << 1)
73 #define STAT_TOUT_RES (1 << 1)
74 #define STAT_CLK_EN (1 << 8)
75 #define STAT_DATA_DONE (1 << 11)
76 #define STAT_PRG_DONE (1 << 12)
77 #define STAT_END_CMDRES (1 << 13)
78 #define SPI_SPI_MODE (1 << 0)
79 #define CMDAT_RES_TYPE (3 << 0)
80 #define CMDAT_DATA_EN (1 << 2)
81 #define CMDAT_WR_RD (1 << 3)
82 #define CMDAT_DMA_EN (1 << 7)
83 #define CMDAT_STOP_TRAN (1 << 10)
84 #define INT_DATA_DONE (1 << 0)
85 #define INT_PRG_DONE (1 << 1)
86 #define INT_END_CMD (1 << 2)
87 #define INT_STOP_CMD (1 << 3)
88 #define INT_CLK_OFF (1 << 4)
89 #define INT_RXFIFO_REQ (1 << 5)
90 #define INT_TXFIFO_REQ (1 << 6)
91 #define INT_TINT (1 << 7)
92 #define INT_DAT_ERR (1 << 8)
93 #define INT_RES_ERR (1 << 9)
94 #define INT_RD_STALLED (1 << 10)
95 #define INT_SDIO_INT (1 << 11)
96 #define INT_SDIO_SACK (1 << 12)
97 #define PRTBUF_PRT_BUF (1 << 0)
99 /* Route internal interrupt lines to the global IC and DMA */
100 static void pxa2xx_mmci_int_update(struct pxa2xx_mmci_s *s)
102 uint32_t mask = s->intmask;
103 if (s->cmdat & CMDAT_DMA_EN) {
104 mask |= INT_RXFIFO_REQ | INT_TXFIFO_REQ;
106 pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma,
107 PXA2XX_RX_RQ_MMCI, !!(s->intreq & INT_RXFIFO_REQ));
108 pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma,
109 PXA2XX_TX_RQ_MMCI, !!(s->intreq & INT_TXFIFO_REQ));
112 qemu_set_irq(s->irq, !!(s->intreq & ~mask));
115 static void pxa2xx_mmci_fifo_update(struct pxa2xx_mmci_s *s)
117 if (!s->active)
118 return;
120 if (s->cmdat & CMDAT_WR_RD) {
121 while (s->bytesleft && s->tx_len) {
122 sd_write_data(s->card, s->tx_fifo[s->tx_start ++]);
123 s->tx_start &= 0x1f;
124 s->tx_len --;
125 s->bytesleft --;
127 if (s->bytesleft)
128 s->intreq |= INT_TXFIFO_REQ;
129 } else
130 while (s->bytesleft && s->rx_len < 32) {
131 s->rx_fifo[(s->rx_start + (s->rx_len ++)) & 0x1f] =
132 sd_read_data(s->card);
133 s->bytesleft --;
134 s->intreq |= INT_RXFIFO_REQ;
137 if (!s->bytesleft) {
138 s->active = 0;
139 s->intreq |= INT_DATA_DONE;
140 s->status |= STAT_DATA_DONE;
142 if (s->cmdat & CMDAT_WR_RD) {
143 s->intreq |= INT_PRG_DONE;
144 s->status |= STAT_PRG_DONE;
148 pxa2xx_mmci_int_update(s);
151 static void pxa2xx_mmci_wakequeues(struct pxa2xx_mmci_s *s)
153 int rsplen, i;
154 struct sd_request_s request;
155 uint8_t response[16];
157 s->active = 1;
158 s->rx_len = 0;
159 s->tx_len = 0;
160 s->cmdreq = 0;
162 request.cmd = s->cmd;
163 request.arg = s->arg;
164 request.crc = 0; /* FIXME */
166 rsplen = sd_do_command(s->card, &request, response);
167 s->intreq |= INT_END_CMD;
169 memset(s->resp_fifo, 0, sizeof(s->resp_fifo));
170 switch (s->cmdat & CMDAT_RES_TYPE) {
171 #define PXAMMCI_RESP(wd, value0, value1) \
172 s->resp_fifo[(wd) + 0] |= (value0); \
173 s->resp_fifo[(wd) + 1] |= (value1) << 8;
174 case 0: /* No response */
175 goto complete;
177 case 1: /* R1, R4, R5 or R6 */
178 if (rsplen < 4)
179 goto timeout;
180 goto complete;
182 case 2: /* R2 */
183 if (rsplen < 16)
184 goto timeout;
185 goto complete;
187 case 3: /* R3 */
188 if (rsplen < 4)
189 goto timeout;
190 goto complete;
192 complete:
193 for (i = 0; rsplen > 0; i ++, rsplen -= 2) {
194 PXAMMCI_RESP(i, response[i * 2], response[i * 2 + 1]);
196 s->status |= STAT_END_CMDRES;
198 if (!(s->cmdat & CMDAT_DATA_EN))
199 s->active = 0;
200 else
201 s->bytesleft = s->numblk * s->blklen;
203 s->resp_len = 0;
204 break;
206 timeout:
207 s->active = 0;
208 s->status |= STAT_TOUT_RES;
209 break;
212 pxa2xx_mmci_fifo_update(s);
215 static uint32_t pxa2xx_mmci_read(void *opaque, target_phys_addr_t offset)
217 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
218 uint32_t ret;
219 offset -= s->base;
221 switch (offset) {
222 case MMC_STRPCL:
223 return 0;
224 case MMC_STAT:
225 return s->status;
226 case MMC_CLKRT:
227 return s->clkrt;
228 case MMC_SPI:
229 return s->spi;
230 case MMC_CMDAT:
231 return s->cmdat;
232 case MMC_RESTO:
233 return s->resp_tout;
234 case MMC_RDTO:
235 return s->read_tout;
236 case MMC_BLKLEN:
237 return s->blklen;
238 case MMC_NUMBLK:
239 return s->numblk;
240 case MMC_PRTBUF:
241 return 0;
242 case MMC_I_MASK:
243 return s->intmask;
244 case MMC_I_REG:
245 return s->intreq;
246 case MMC_CMD:
247 return s->cmd | 0x40;
248 case MMC_ARGH:
249 return s->arg >> 16;
250 case MMC_ARGL:
251 return s->arg & 0xffff;
252 case MMC_RES:
253 if (s->resp_len < 9)
254 return s->resp_fifo[s->resp_len ++];
255 return 0;
256 case MMC_RXFIFO:
257 ret = 0;
258 while (s->ac_width -- && s->rx_len) {
259 ret |= s->rx_fifo[s->rx_start ++] << (s->ac_width << 3);
260 s->rx_start &= 0x1f;
261 s->rx_len --;
263 s->intreq &= ~INT_RXFIFO_REQ;
264 pxa2xx_mmci_fifo_update(s);
265 return ret;
266 case MMC_RDWAIT:
267 return 0;
268 case MMC_BLKS_REM:
269 return s->numblk;
270 default:
271 cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n",
272 __FUNCTION__, offset);
275 return 0;
278 static void pxa2xx_mmci_write(void *opaque,
279 target_phys_addr_t offset, uint32_t value)
281 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
282 offset -= s->base;
284 switch (offset) {
285 case MMC_STRPCL:
286 if (value & STRPCL_STRT_CLK) {
287 s->status |= STAT_CLK_EN;
288 s->intreq &= ~INT_CLK_OFF;
290 if (s->cmdreq && !(s->cmdat & CMDAT_STOP_TRAN)) {
291 s->status &= STAT_CLK_EN;
292 pxa2xx_mmci_wakequeues(s);
296 if (value & STRPCL_STOP_CLK) {
297 s->status &= ~STAT_CLK_EN;
298 s->intreq |= INT_CLK_OFF;
299 s->active = 0;
302 pxa2xx_mmci_int_update(s);
303 break;
305 case MMC_CLKRT:
306 s->clkrt = value & 7;
307 break;
309 case MMC_SPI:
310 s->spi = value & 0xf;
311 if (value & SPI_SPI_MODE)
312 printf("%s: attempted to use card in SPI mode\n", __FUNCTION__);
313 break;
315 case MMC_CMDAT:
316 s->cmdat = value & 0x3dff;
317 s->active = 0;
318 s->cmdreq = 1;
319 if (!(value & CMDAT_STOP_TRAN)) {
320 s->status &= STAT_CLK_EN;
322 if (s->status & STAT_CLK_EN)
323 pxa2xx_mmci_wakequeues(s);
326 pxa2xx_mmci_int_update(s);
327 break;
329 case MMC_RESTO:
330 s->resp_tout = value & 0x7f;
331 break;
333 case MMC_RDTO:
334 s->read_tout = value & 0xffff;
335 break;
337 case MMC_BLKLEN:
338 s->blklen = value & 0xfff;
339 break;
341 case MMC_NUMBLK:
342 s->numblk = value & 0xffff;
343 break;
345 case MMC_PRTBUF:
346 if (value & PRTBUF_PRT_BUF) {
347 s->tx_start ^= 32;
348 s->tx_len = 0;
350 pxa2xx_mmci_fifo_update(s);
351 break;
353 case MMC_I_MASK:
354 s->intmask = value & 0x1fff;
355 pxa2xx_mmci_int_update(s);
356 break;
358 case MMC_CMD:
359 s->cmd = value & 0x3f;
360 break;
362 case MMC_ARGH:
363 s->arg &= 0x0000ffff;
364 s->arg |= value << 16;
365 break;
367 case MMC_ARGL:
368 s->arg &= 0xffff0000;
369 s->arg |= value & 0x0000ffff;
370 break;
372 case MMC_TXFIFO:
373 while (s->ac_width -- && s->tx_len < 0x20)
374 s->tx_fifo[(s->tx_start + (s->tx_len ++)) & 0x1f] =
375 (value >> (s->ac_width << 3)) & 0xff;
376 s->intreq &= ~INT_TXFIFO_REQ;
377 pxa2xx_mmci_fifo_update(s);
378 break;
380 case MMC_RDWAIT:
381 case MMC_BLKS_REM:
382 break;
384 default:
385 cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n",
386 __FUNCTION__, offset);
390 static uint32_t pxa2xx_mmci_readb(void *opaque, target_phys_addr_t offset)
392 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
393 s->ac_width = 1;
394 return pxa2xx_mmci_read(opaque, offset);
397 static uint32_t pxa2xx_mmci_readh(void *opaque, target_phys_addr_t offset)
399 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
400 s->ac_width = 2;
401 return pxa2xx_mmci_read(opaque, offset);
404 static uint32_t pxa2xx_mmci_readw(void *opaque, target_phys_addr_t offset)
406 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
407 s->ac_width = 4;
408 return pxa2xx_mmci_read(opaque, offset);
411 static CPUReadMemoryFunc *pxa2xx_mmci_readfn[] = {
412 pxa2xx_mmci_readb,
413 pxa2xx_mmci_readh,
414 pxa2xx_mmci_readw
417 static void pxa2xx_mmci_writeb(void *opaque,
418 target_phys_addr_t offset, uint32_t value)
420 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
421 s->ac_width = 1;
422 pxa2xx_mmci_write(opaque, offset, value);
425 static void pxa2xx_mmci_writeh(void *opaque,
426 target_phys_addr_t offset, uint32_t value)
428 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
429 s->ac_width = 2;
430 pxa2xx_mmci_write(opaque, offset, value);
433 static void pxa2xx_mmci_writew(void *opaque,
434 target_phys_addr_t offset, uint32_t value)
436 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
437 s->ac_width = 4;
438 pxa2xx_mmci_write(opaque, offset, value);
441 static CPUWriteMemoryFunc *pxa2xx_mmci_writefn[] = {
442 pxa2xx_mmci_writeb,
443 pxa2xx_mmci_writeh,
444 pxa2xx_mmci_writew
447 static void pxa2xx_mmci_save(QEMUFile *f, void *opaque)
449 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
450 int i;
452 qemu_put_be32s(f, &s->status);
453 qemu_put_be32s(f, &s->clkrt);
454 qemu_put_be32s(f, &s->spi);
455 qemu_put_be32s(f, &s->cmdat);
456 qemu_put_be32s(f, &s->resp_tout);
457 qemu_put_be32s(f, &s->read_tout);
458 qemu_put_be32(f, s->blklen);
459 qemu_put_be32(f, s->numblk);
460 qemu_put_be32s(f, &s->intmask);
461 qemu_put_be32s(f, &s->intreq);
462 qemu_put_be32(f, s->cmd);
463 qemu_put_be32s(f, &s->arg);
464 qemu_put_be32(f, s->cmdreq);
465 qemu_put_be32(f, s->active);
466 qemu_put_be32(f, s->bytesleft);
468 qemu_put_byte(f, s->tx_len);
469 for (i = 0; i < s->tx_len; i ++)
470 qemu_put_byte(f, s->tx_fifo[(s->tx_start + i) & 63]);
472 qemu_put_byte(f, s->rx_len);
473 for (i = 0; i < s->rx_len; i ++)
474 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 31]);
476 qemu_put_byte(f, s->resp_len);
477 for (i = s->resp_len; i < 9; i ++)
478 qemu_put_be16s(f, &s->resp_fifo[i]);
481 static int pxa2xx_mmci_load(QEMUFile *f, void *opaque, int version_id)
483 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
484 int i;
486 qemu_get_be32s(f, &s->status);
487 qemu_get_be32s(f, &s->clkrt);
488 qemu_get_be32s(f, &s->spi);
489 qemu_get_be32s(f, &s->cmdat);
490 qemu_get_be32s(f, &s->resp_tout);
491 qemu_get_be32s(f, &s->read_tout);
492 s->blklen = qemu_get_be32(f);
493 s->numblk = qemu_get_be32(f);
494 qemu_get_be32s(f, &s->intmask);
495 qemu_get_be32s(f, &s->intreq);
496 s->cmd = qemu_get_be32(f);
497 qemu_get_be32s(f, &s->arg);
498 s->cmdreq = qemu_get_be32(f);
499 s->active = qemu_get_be32(f);
500 s->bytesleft = qemu_get_be32(f);
502 s->tx_len = qemu_get_byte(f);
503 s->tx_start = 0;
504 if (s->tx_len >= sizeof(s->tx_fifo) || s->tx_len < 0)
505 return -EINVAL;
506 for (i = 0; i < s->tx_len; i ++)
507 s->tx_fifo[i] = qemu_get_byte(f);
509 s->rx_len = qemu_get_byte(f);
510 s->rx_start = 0;
511 if (s->rx_len >= sizeof(s->rx_fifo) || s->rx_len < 0)
512 return -EINVAL;
513 for (i = 0; i < s->rx_len; i ++)
514 s->rx_fifo[i] = qemu_get_byte(f);
516 s->resp_len = qemu_get_byte(f);
517 if (s->resp_len > 9 || s->resp_len < 0)
518 return -EINVAL;
519 for (i = s->resp_len; i < 9; i ++)
520 qemu_get_be16s(f, &s->resp_fifo[i]);
522 return 0;
525 struct pxa2xx_mmci_s *pxa2xx_mmci_init(target_phys_addr_t base,
526 BlockDriverState *bd, qemu_irq irq, void *dma)
528 int iomemtype;
529 struct pxa2xx_mmci_s *s;
531 s = (struct pxa2xx_mmci_s *) qemu_mallocz(sizeof(struct pxa2xx_mmci_s));
532 s->base = base;
533 s->irq = irq;
534 s->dma = dma;
536 iomemtype = cpu_register_io_memory(0, pxa2xx_mmci_readfn,
537 pxa2xx_mmci_writefn, s);
538 cpu_register_physical_memory(base, 0x00100000, iomemtype);
540 /* Instantiate the actual storage */
541 s->card = sd_init(bd, 0);
543 register_savevm("pxa2xx_mmci", 0, 0,
544 pxa2xx_mmci_save, pxa2xx_mmci_load, s);
546 return s;
549 void pxa2xx_mmci_handlers(struct pxa2xx_mmci_s *s, qemu_irq readonly,
550 qemu_irq coverswitch)
552 sd_set_cb(s->card, readonly, coverswitch);