Fix 32-bit overflow in parallels image support
[qemu-kvm/fedora.git] / hw / omap_dma.c
blob3122f42031d6c20ee2e46defce05115d90bf23b3
1 /*
2 * TI OMAP DMA gigacell.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 * Copyright (C) 2007-2008 Lauro Ramos Venancio <lauro.venancio@indt.org.br>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #include "qemu-timer.h"
22 #include "omap.h"
23 #include "irq.h"
24 #include "soc_dma.h"
26 struct omap_dma_channel_s {
27 /* transfer data */
28 int burst[2];
29 int pack[2];
30 int endian[2];
31 int endian_lock[2];
32 int translate[2];
33 enum omap_dma_port port[2];
34 target_phys_addr_t addr[2];
35 omap_dma_addressing_t mode[2];
36 uint32_t elements;
37 uint16_t frames;
38 int32_t frame_index[2];
39 int16_t element_index[2];
40 int data_type;
42 /* transfer type */
43 int transparent_copy;
44 int constant_fill;
45 uint32_t color;
46 int prefetch;
48 /* auto init and linked channel data */
49 int end_prog;
50 int repeat;
51 int auto_init;
52 int link_enabled;
53 int link_next_ch;
55 /* interruption data */
56 int interrupts;
57 int status;
58 int cstatus;
60 /* state data */
61 int active;
62 int enable;
63 int sync;
64 int src_sync;
65 int pending_request;
66 int waiting_end_prog;
67 uint16_t cpc;
68 int set_update;
70 /* sync type */
71 int fs;
72 int bs;
74 /* compatibility */
75 int omap_3_1_compatible_disable;
77 qemu_irq irq;
78 struct omap_dma_channel_s *sibling;
80 struct omap_dma_reg_set_s {
81 target_phys_addr_t src, dest;
82 int frame;
83 int element;
84 int pck_element;
85 int frame_delta[2];
86 int elem_delta[2];
87 int frames;
88 int elements;
89 int pck_elements;
90 } active_set;
92 struct soc_dma_ch_s *dma;
94 /* unused parameters */
95 int write_mode;
96 int priority;
97 int interleave_disabled;
98 int type;
99 int suspend;
100 int buf_disable;
103 struct omap_dma_s {
104 struct soc_dma_s *dma;
106 struct omap_mpu_state_s *mpu;
107 omap_clk clk;
108 qemu_irq irq[4];
109 void (*intr_update)(struct omap_dma_s *s);
110 enum omap_dma_model model;
111 int omap_3_1_mapping_disabled;
113 uint32_t gcr;
114 uint32_t ocp;
115 uint32_t caps[5];
116 uint32_t irqen[4];
117 uint32_t irqstat[4];
119 int chans;
120 struct omap_dma_channel_s ch[32];
121 struct omap_dma_lcd_channel_s lcd_ch;
124 /* Interrupts */
125 #define TIMEOUT_INTR (1 << 0)
126 #define EVENT_DROP_INTR (1 << 1)
127 #define HALF_FRAME_INTR (1 << 2)
128 #define END_FRAME_INTR (1 << 3)
129 #define LAST_FRAME_INTR (1 << 4)
130 #define END_BLOCK_INTR (1 << 5)
131 #define SYNC (1 << 6)
132 #define END_PKT_INTR (1 << 7)
133 #define TRANS_ERR_INTR (1 << 8)
134 #define MISALIGN_INTR (1 << 11)
136 static inline void omap_dma_interrupts_update(struct omap_dma_s *s)
138 return s->intr_update(s);
141 static void omap_dma_channel_load(struct omap_dma_channel_s *ch)
143 struct omap_dma_reg_set_s *a = &ch->active_set;
144 int i, normal;
145 int omap_3_1 = !ch->omap_3_1_compatible_disable;
148 * TODO: verify address ranges and alignment
149 * TODO: port endianness
152 a->src = ch->addr[0];
153 a->dest = ch->addr[1];
154 a->frames = ch->frames;
155 a->elements = ch->elements;
156 a->pck_elements = ch->frame_index[!ch->src_sync];
157 a->frame = 0;
158 a->element = 0;
159 a->pck_element = 0;
161 if (unlikely(!ch->elements || !ch->frames)) {
162 printf("%s: bad DMA request\n", __FUNCTION__);
163 return;
166 for (i = 0; i < 2; i ++)
167 switch (ch->mode[i]) {
168 case constant:
169 a->elem_delta[i] = 0;
170 a->frame_delta[i] = 0;
171 break;
172 case post_incremented:
173 a->elem_delta[i] = ch->data_type;
174 a->frame_delta[i] = 0;
175 break;
176 case single_index:
177 a->elem_delta[i] = ch->data_type +
178 ch->element_index[omap_3_1 ? 0 : i] - 1;
179 a->frame_delta[i] = 0;
180 break;
181 case double_index:
182 a->elem_delta[i] = ch->data_type +
183 ch->element_index[omap_3_1 ? 0 : i] - 1;
184 a->frame_delta[i] = ch->frame_index[omap_3_1 ? 0 : i] -
185 ch->element_index[omap_3_1 ? 0 : i];
186 break;
187 default:
188 break;
191 normal = !ch->transparent_copy && !ch->constant_fill &&
192 /* FIFO is big-endian so either (ch->endian[n] == 1) OR
193 * (ch->endian_lock[n] == 1) mean no endianism conversion. */
194 (ch->endian[0] | ch->endian_lock[0]) ==
195 (ch->endian[1] | ch->endian_lock[1]);
196 for (i = 0; i < 2; i ++) {
197 /* TODO: for a->frame_delta[i] > 0 still use the fast path, just
198 * limit min_elems in omap_dma_transfer_setup to the nearest frame
199 * end. */
200 if (!a->elem_delta[i] && normal &&
201 (a->frames == 1 || !a->frame_delta[i]))
202 ch->dma->type[i] = soc_dma_access_const;
203 else if (a->elem_delta[i] == ch->data_type && normal &&
204 (a->frames == 1 || !a->frame_delta[i]))
205 ch->dma->type[i] = soc_dma_access_linear;
206 else
207 ch->dma->type[i] = soc_dma_access_other;
209 ch->dma->vaddr[i] = ch->addr[i];
211 soc_dma_ch_update(ch->dma);
214 static void omap_dma_activate_channel(struct omap_dma_s *s,
215 struct omap_dma_channel_s *ch)
217 if (!ch->active) {
218 if (ch->set_update) {
219 /* It's not clear when the active set is supposed to be
220 * loaded from registers. We're already loading it when the
221 * channel is enabled, and for some guests this is not enough
222 * but that may be also because of a race condition (no
223 * delays in qemu) in the guest code, which we're just
224 * working around here. */
225 omap_dma_channel_load(ch);
226 ch->set_update = 0;
229 ch->active = 1;
230 soc_dma_set_request(ch->dma, 1);
231 if (ch->sync)
232 ch->status |= SYNC;
236 static void omap_dma_deactivate_channel(struct omap_dma_s *s,
237 struct omap_dma_channel_s *ch)
239 /* Update cpc */
240 ch->cpc = ch->active_set.dest & 0xffff;
242 if (ch->pending_request && !ch->waiting_end_prog && ch->enable) {
243 /* Don't deactivate the channel */
244 ch->pending_request = 0;
245 return;
248 /* Don't deactive the channel if it is synchronized and the DMA request is
249 active */
250 if (ch->sync && ch->enable && (s->dma->drqbmp & (1 << ch->sync)))
251 return;
253 if (ch->active) {
254 ch->active = 0;
255 ch->status &= ~SYNC;
256 soc_dma_set_request(ch->dma, 0);
260 static void omap_dma_enable_channel(struct omap_dma_s *s,
261 struct omap_dma_channel_s *ch)
263 if (!ch->enable) {
264 ch->enable = 1;
265 ch->waiting_end_prog = 0;
266 omap_dma_channel_load(ch);
267 /* TODO: theoretically if ch->sync && ch->prefetch &&
268 * !s->dma->drqbmp[ch->sync], we should also activate and fetch
269 * from source and then stall until signalled. */
270 if ((!ch->sync) || (s->dma->drqbmp & (1 << ch->sync)))
271 omap_dma_activate_channel(s, ch);
275 static void omap_dma_disable_channel(struct omap_dma_s *s,
276 struct omap_dma_channel_s *ch)
278 if (ch->enable) {
279 ch->enable = 0;
280 /* Discard any pending request */
281 ch->pending_request = 0;
282 omap_dma_deactivate_channel(s, ch);
286 static void omap_dma_channel_end_prog(struct omap_dma_s *s,
287 struct omap_dma_channel_s *ch)
289 if (ch->waiting_end_prog) {
290 ch->waiting_end_prog = 0;
291 if (!ch->sync || ch->pending_request) {
292 ch->pending_request = 0;
293 omap_dma_activate_channel(s, ch);
298 static void omap_dma_interrupts_3_1_update(struct omap_dma_s *s)
300 struct omap_dma_channel_s *ch = s->ch;
302 /* First three interrupts are shared between two channels each. */
303 if (ch[0].status | ch[6].status)
304 qemu_irq_raise(ch[0].irq);
305 if (ch[1].status | ch[7].status)
306 qemu_irq_raise(ch[1].irq);
307 if (ch[2].status | ch[8].status)
308 qemu_irq_raise(ch[2].irq);
309 if (ch[3].status)
310 qemu_irq_raise(ch[3].irq);
311 if (ch[4].status)
312 qemu_irq_raise(ch[4].irq);
313 if (ch[5].status)
314 qemu_irq_raise(ch[5].irq);
317 static void omap_dma_interrupts_3_2_update(struct omap_dma_s *s)
319 struct omap_dma_channel_s *ch = s->ch;
320 int i;
322 for (i = s->chans; i; ch ++, i --)
323 if (ch->status)
324 qemu_irq_raise(ch->irq);
327 static void omap_dma_enable_3_1_mapping(struct omap_dma_s *s)
329 s->omap_3_1_mapping_disabled = 0;
330 s->chans = 9;
331 s->intr_update = omap_dma_interrupts_3_1_update;
334 static void omap_dma_disable_3_1_mapping(struct omap_dma_s *s)
336 s->omap_3_1_mapping_disabled = 1;
337 s->chans = 16;
338 s->intr_update = omap_dma_interrupts_3_2_update;
341 static void omap_dma_process_request(struct omap_dma_s *s, int request)
343 int channel;
344 int drop_event = 0;
345 struct omap_dma_channel_s *ch = s->ch;
347 for (channel = 0; channel < s->chans; channel ++, ch ++) {
348 if (ch->enable && ch->sync == request) {
349 if (!ch->active)
350 omap_dma_activate_channel(s, ch);
351 else if (!ch->pending_request)
352 ch->pending_request = 1;
353 else {
354 /* Request collision */
355 /* Second request received while processing other request */
356 ch->status |= EVENT_DROP_INTR;
357 drop_event = 1;
362 if (drop_event)
363 omap_dma_interrupts_update(s);
366 static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma)
368 uint8_t value[4];
369 struct omap_dma_channel_s *ch = dma->opaque;
370 struct omap_dma_reg_set_s *a = &ch->active_set;
371 int bytes = dma->bytes;
372 #ifdef MULTI_REQ
373 uint16_t status = ch->status;
374 #endif
376 do {
377 /* Transfer a single element */
378 /* FIXME: check the endianness */
379 if (!ch->constant_fill)
380 cpu_physical_memory_read(a->src, value, ch->data_type);
381 else
382 *(uint32_t *) value = ch->color;
384 if (!ch->transparent_copy || *(uint32_t *) value != ch->color)
385 cpu_physical_memory_write(a->dest, value, ch->data_type);
387 a->src += a->elem_delta[0];
388 a->dest += a->elem_delta[1];
389 a->element ++;
391 #ifndef MULTI_REQ
392 if (a->element == a->elements) {
393 /* End of Frame */
394 a->element = 0;
395 a->src += a->frame_delta[0];
396 a->dest += a->frame_delta[1];
397 a->frame ++;
399 /* If the channel is async, update cpc */
400 if (!ch->sync)
401 ch->cpc = a->dest & 0xffff;
403 } while ((bytes -= ch->data_type));
404 #else
405 /* If the channel is element synchronized, deactivate it */
406 if (ch->sync && !ch->fs && !ch->bs)
407 omap_dma_deactivate_channel(s, ch);
409 /* If it is the last frame, set the LAST_FRAME interrupt */
410 if (a->element == 1 && a->frame == a->frames - 1)
411 if (ch->interrupts & LAST_FRAME_INTR)
412 ch->status |= LAST_FRAME_INTR;
414 /* If the half of the frame was reached, set the HALF_FRAME
415 interrupt */
416 if (a->element == (a->elements >> 1))
417 if (ch->interrupts & HALF_FRAME_INTR)
418 ch->status |= HALF_FRAME_INTR;
420 if (ch->fs && ch->bs) {
421 a->pck_element ++;
422 /* Check if a full packet has beed transferred. */
423 if (a->pck_element == a->pck_elements) {
424 a->pck_element = 0;
426 /* Set the END_PKT interrupt */
427 if ((ch->interrupts & END_PKT_INTR) && !ch->src_sync)
428 ch->status |= END_PKT_INTR;
430 /* If the channel is packet-synchronized, deactivate it */
431 if (ch->sync)
432 omap_dma_deactivate_channel(s, ch);
436 if (a->element == a->elements) {
437 /* End of Frame */
438 a->element = 0;
439 a->src += a->frame_delta[0];
440 a->dest += a->frame_delta[1];
441 a->frame ++;
443 /* If the channel is frame synchronized, deactivate it */
444 if (ch->sync && ch->fs && !ch->bs)
445 omap_dma_deactivate_channel(s, ch);
447 /* If the channel is async, update cpc */
448 if (!ch->sync)
449 ch->cpc = a->dest & 0xffff;
451 /* Set the END_FRAME interrupt */
452 if (ch->interrupts & END_FRAME_INTR)
453 ch->status |= END_FRAME_INTR;
455 if (a->frame == a->frames) {
456 /* End of Block */
457 /* Disable the channel */
459 if (ch->omap_3_1_compatible_disable) {
460 omap_dma_disable_channel(s, ch);
461 if (ch->link_enabled)
462 omap_dma_enable_channel(s,
463 &s->ch[ch->link_next_ch]);
464 } else {
465 if (!ch->auto_init)
466 omap_dma_disable_channel(s, ch);
467 else if (ch->repeat || ch->end_prog)
468 omap_dma_channel_load(ch);
469 else {
470 ch->waiting_end_prog = 1;
471 omap_dma_deactivate_channel(s, ch);
475 if (ch->interrupts & END_BLOCK_INTR)
476 ch->status |= END_BLOCK_INTR;
479 } while (status == ch->status && ch->active);
481 omap_dma_interrupts_update(s);
482 #endif
485 enum {
486 omap_dma_intr_element_sync,
487 omap_dma_intr_last_frame,
488 omap_dma_intr_half_frame,
489 omap_dma_intr_frame,
490 omap_dma_intr_frame_sync,
491 omap_dma_intr_packet,
492 omap_dma_intr_packet_sync,
493 omap_dma_intr_block,
494 __omap_dma_intr_last,
497 static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma)
499 struct omap_dma_port_if_s *src_p, *dest_p;
500 struct omap_dma_reg_set_s *a;
501 struct omap_dma_channel_s *ch = dma->opaque;
502 struct omap_dma_s *s = dma->dma->opaque;
503 int frames, min_elems, elements[__omap_dma_intr_last];
505 a = &ch->active_set;
507 src_p = &s->mpu->port[ch->port[0]];
508 dest_p = &s->mpu->port[ch->port[1]];
509 if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) ||
510 (!dest_p->addr_valid(s->mpu, a->dest))) {
511 #if 0
512 /* Bus time-out */
513 if (ch->interrupts & TIMEOUT_INTR)
514 ch->status |= TIMEOUT_INTR;
515 omap_dma_deactivate_channel(s, ch);
516 continue;
517 #endif
518 printf("%s: Bus time-out in DMA%i operation\n",
519 __FUNCTION__, dma->num);
522 min_elems = INT_MAX;
524 /* Check all the conditions that terminate the transfer starting
525 * with those that can occur the soonest. */
526 #define INTR_CHECK(cond, id, nelements) \
527 if (cond) { \
528 elements[id] = nelements; \
529 if (elements[id] < min_elems) \
530 min_elems = elements[id]; \
531 } else \
532 elements[id] = INT_MAX;
534 /* Elements */
535 INTR_CHECK(
536 ch->sync && !ch->fs && !ch->bs,
537 omap_dma_intr_element_sync,
540 /* Frames */
541 /* TODO: for transfers where entire frames can be read and written
542 * using memcpy() but a->frame_delta is non-zero, try to still do
543 * transfers using soc_dma but limit min_elems to a->elements - ...
544 * See also the TODO in omap_dma_channel_load. */
545 INTR_CHECK(
546 (ch->interrupts & LAST_FRAME_INTR) &&
547 ((a->frame < a->frames - 1) || !a->element),
548 omap_dma_intr_last_frame,
549 (a->frames - a->frame - 2) * a->elements +
550 (a->elements - a->element + 1))
551 INTR_CHECK(
552 ch->interrupts & HALF_FRAME_INTR,
553 omap_dma_intr_half_frame,
554 (a->elements >> 1) +
555 (a->element >= (a->elements >> 1) ? a->elements : 0) -
556 a->element)
557 INTR_CHECK(
558 ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR),
559 omap_dma_intr_frame,
560 a->elements - a->element)
561 INTR_CHECK(
562 ch->sync && ch->fs && !ch->bs,
563 omap_dma_intr_frame_sync,
564 a->elements - a->element)
566 /* Packets */
567 INTR_CHECK(
568 ch->fs && ch->bs &&
569 (ch->interrupts & END_PKT_INTR) && !ch->src_sync,
570 omap_dma_intr_packet,
571 a->pck_elements - a->pck_element)
572 INTR_CHECK(
573 ch->fs && ch->bs && ch->sync,
574 omap_dma_intr_packet_sync,
575 a->pck_elements - a->pck_element)
577 /* Blocks */
578 INTR_CHECK(
580 omap_dma_intr_block,
581 (a->frames - a->frame - 1) * a->elements +
582 (a->elements - a->element))
584 dma->bytes = min_elems * ch->data_type;
586 /* Set appropriate interrupts and/or deactivate channels */
588 #ifdef MULTI_REQ
589 /* TODO: should all of this only be done if dma->update, and otherwise
590 * inside omap_dma_transfer_generic below - check what's faster. */
591 if (dma->update) {
592 #endif
594 /* If the channel is element synchronized, deactivate it */
595 if (min_elems == elements[omap_dma_intr_element_sync])
596 omap_dma_deactivate_channel(s, ch);
598 /* If it is the last frame, set the LAST_FRAME interrupt */
599 if (min_elems == elements[omap_dma_intr_last_frame])
600 ch->status |= LAST_FRAME_INTR;
602 /* If exactly half of the frame was reached, set the HALF_FRAME
603 interrupt */
604 if (min_elems == elements[omap_dma_intr_half_frame])
605 ch->status |= HALF_FRAME_INTR;
607 /* If a full packet has been transferred, set the END_PKT interrupt */
608 if (min_elems == elements[omap_dma_intr_packet])
609 ch->status |= END_PKT_INTR;
611 /* If the channel is packet-synchronized, deactivate it */
612 if (min_elems == elements[omap_dma_intr_packet_sync])
613 omap_dma_deactivate_channel(s, ch);
615 /* If the channel is frame synchronized, deactivate it */
616 if (min_elems == elements[omap_dma_intr_frame_sync])
617 omap_dma_deactivate_channel(s, ch);
619 /* Set the END_FRAME interrupt */
620 if (min_elems == elements[omap_dma_intr_frame])
621 ch->status |= END_FRAME_INTR;
623 if (min_elems == elements[omap_dma_intr_block]) {
624 /* End of Block */
625 /* Disable the channel */
627 if (ch->omap_3_1_compatible_disable) {
628 omap_dma_disable_channel(s, ch);
629 if (ch->link_enabled)
630 omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]);
631 } else {
632 if (!ch->auto_init)
633 omap_dma_disable_channel(s, ch);
634 else if (ch->repeat || ch->end_prog)
635 omap_dma_channel_load(ch);
636 else {
637 ch->waiting_end_prog = 1;
638 omap_dma_deactivate_channel(s, ch);
642 if (ch->interrupts & END_BLOCK_INTR)
643 ch->status |= END_BLOCK_INTR;
646 /* Update packet number */
647 if (ch->fs && ch->bs) {
648 a->pck_element += min_elems;
649 a->pck_element %= a->pck_elements;
652 /* TODO: check if we really need to update anything here or perhaps we
653 * can skip part of this. */
654 #ifndef MULTI_REQ
655 if (dma->update) {
656 #endif
657 a->element += min_elems;
659 frames = a->element / a->elements;
660 a->element = a->element % a->elements;
661 a->frame += frames;
662 a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0];
663 a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1];
665 /* If the channel is async, update cpc */
666 if (!ch->sync && frames)
667 ch->cpc = a->dest & 0xffff;
669 /* TODO: if the destination port is IMIF or EMIFF, set the dirty
670 * bits on it. */
673 omap_dma_interrupts_update(s);
676 void omap_dma_reset(struct soc_dma_s *dma)
678 int i;
679 struct omap_dma_s *s = dma->opaque;
681 soc_dma_reset(s->dma);
682 if (s->model < omap_dma_4)
683 s->gcr = 0x0004;
684 else
685 s->gcr = 0x00010010;
686 s->ocp = 0x00000000;
687 memset(&s->irqstat, 0, sizeof(s->irqstat));
688 memset(&s->irqen, 0, sizeof(s->irqen));
689 s->lcd_ch.src = emiff;
690 s->lcd_ch.condition = 0;
691 s->lcd_ch.interrupts = 0;
692 s->lcd_ch.dual = 0;
693 if (s->model < omap_dma_4)
694 omap_dma_enable_3_1_mapping(s);
695 for (i = 0; i < s->chans; i ++) {
696 s->ch[i].suspend = 0;
697 s->ch[i].prefetch = 0;
698 s->ch[i].buf_disable = 0;
699 s->ch[i].src_sync = 0;
700 memset(&s->ch[i].burst, 0, sizeof(s->ch[i].burst));
701 memset(&s->ch[i].port, 0, sizeof(s->ch[i].port));
702 memset(&s->ch[i].mode, 0, sizeof(s->ch[i].mode));
703 memset(&s->ch[i].frame_index, 0, sizeof(s->ch[i].frame_index));
704 memset(&s->ch[i].element_index, 0, sizeof(s->ch[i].element_index));
705 memset(&s->ch[i].endian, 0, sizeof(s->ch[i].endian));
706 memset(&s->ch[i].endian_lock, 0, sizeof(s->ch[i].endian_lock));
707 memset(&s->ch[i].translate, 0, sizeof(s->ch[i].translate));
708 s->ch[i].write_mode = 0;
709 s->ch[i].data_type = 0;
710 s->ch[i].transparent_copy = 0;
711 s->ch[i].constant_fill = 0;
712 s->ch[i].color = 0x00000000;
713 s->ch[i].end_prog = 0;
714 s->ch[i].repeat = 0;
715 s->ch[i].auto_init = 0;
716 s->ch[i].link_enabled = 0;
717 if (s->model < omap_dma_4)
718 s->ch[i].interrupts = 0x0003;
719 else
720 s->ch[i].interrupts = 0x0000;
721 s->ch[i].status = 0;
722 s->ch[i].cstatus = 0;
723 s->ch[i].active = 0;
724 s->ch[i].enable = 0;
725 s->ch[i].sync = 0;
726 s->ch[i].pending_request = 0;
727 s->ch[i].waiting_end_prog = 0;
728 s->ch[i].cpc = 0x0000;
729 s->ch[i].fs = 0;
730 s->ch[i].bs = 0;
731 s->ch[i].omap_3_1_compatible_disable = 0;
732 memset(&s->ch[i].active_set, 0, sizeof(s->ch[i].active_set));
733 s->ch[i].priority = 0;
734 s->ch[i].interleave_disabled = 0;
735 s->ch[i].type = 0;
739 static int omap_dma_ch_reg_read(struct omap_dma_s *s,
740 struct omap_dma_channel_s *ch, int reg, uint16_t *value)
742 switch (reg) {
743 case 0x00: /* SYS_DMA_CSDP_CH0 */
744 *value = (ch->burst[1] << 14) |
745 (ch->pack[1] << 13) |
746 (ch->port[1] << 9) |
747 (ch->burst[0] << 7) |
748 (ch->pack[0] << 6) |
749 (ch->port[0] << 2) |
750 (ch->data_type >> 1);
751 break;
753 case 0x02: /* SYS_DMA_CCR_CH0 */
754 if (s->model <= omap_dma_3_1)
755 *value = 0 << 10; /* FIFO_FLUSH reads as 0 */
756 else
757 *value = ch->omap_3_1_compatible_disable << 10;
758 *value |= (ch->mode[1] << 14) |
759 (ch->mode[0] << 12) |
760 (ch->end_prog << 11) |
761 (ch->repeat << 9) |
762 (ch->auto_init << 8) |
763 (ch->enable << 7) |
764 (ch->priority << 6) |
765 (ch->fs << 5) | ch->sync;
766 break;
768 case 0x04: /* SYS_DMA_CICR_CH0 */
769 *value = ch->interrupts;
770 break;
772 case 0x06: /* SYS_DMA_CSR_CH0 */
773 *value = ch->status;
774 ch->status &= SYNC;
775 if (!ch->omap_3_1_compatible_disable && ch->sibling) {
776 *value |= (ch->sibling->status & 0x3f) << 6;
777 ch->sibling->status &= SYNC;
779 qemu_irq_lower(ch->irq);
780 break;
782 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
783 *value = ch->addr[0] & 0x0000ffff;
784 break;
786 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
787 *value = ch->addr[0] >> 16;
788 break;
790 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
791 *value = ch->addr[1] & 0x0000ffff;
792 break;
794 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
795 *value = ch->addr[1] >> 16;
796 break;
798 case 0x10: /* SYS_DMA_CEN_CH0 */
799 *value = ch->elements;
800 break;
802 case 0x12: /* SYS_DMA_CFN_CH0 */
803 *value = ch->frames;
804 break;
806 case 0x14: /* SYS_DMA_CFI_CH0 */
807 *value = ch->frame_index[0];
808 break;
810 case 0x16: /* SYS_DMA_CEI_CH0 */
811 *value = ch->element_index[0];
812 break;
814 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
815 if (ch->omap_3_1_compatible_disable)
816 *value = ch->active_set.src & 0xffff; /* CSAC */
817 else
818 *value = ch->cpc;
819 break;
821 case 0x1a: /* DMA_CDAC */
822 *value = ch->active_set.dest & 0xffff; /* CDAC */
823 break;
825 case 0x1c: /* DMA_CDEI */
826 *value = ch->element_index[1];
827 break;
829 case 0x1e: /* DMA_CDFI */
830 *value = ch->frame_index[1];
831 break;
833 case 0x20: /* DMA_COLOR_L */
834 *value = ch->color & 0xffff;
835 break;
837 case 0x22: /* DMA_COLOR_U */
838 *value = ch->color >> 16;
839 break;
841 case 0x24: /* DMA_CCR2 */
842 *value = (ch->bs << 2) |
843 (ch->transparent_copy << 1) |
844 ch->constant_fill;
845 break;
847 case 0x28: /* DMA_CLNK_CTRL */
848 *value = (ch->link_enabled << 15) |
849 (ch->link_next_ch & 0xf);
850 break;
852 case 0x2a: /* DMA_LCH_CTRL */
853 *value = (ch->interleave_disabled << 15) |
854 ch->type;
855 break;
857 default:
858 return 1;
860 return 0;
863 static int omap_dma_ch_reg_write(struct omap_dma_s *s,
864 struct omap_dma_channel_s *ch, int reg, uint16_t value)
866 switch (reg) {
867 case 0x00: /* SYS_DMA_CSDP_CH0 */
868 ch->burst[1] = (value & 0xc000) >> 14;
869 ch->pack[1] = (value & 0x2000) >> 13;
870 ch->port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
871 ch->burst[0] = (value & 0x0180) >> 7;
872 ch->pack[0] = (value & 0x0040) >> 6;
873 ch->port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
874 ch->data_type = 1 << (value & 3);
875 if (ch->port[0] >= __omap_dma_port_last)
876 printf("%s: invalid DMA port %i\n", __FUNCTION__,
877 ch->port[0]);
878 if (ch->port[1] >= __omap_dma_port_last)
879 printf("%s: invalid DMA port %i\n", __FUNCTION__,
880 ch->port[1]);
881 if ((value & 3) == 3)
882 printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
883 break;
885 case 0x02: /* SYS_DMA_CCR_CH0 */
886 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
887 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
888 ch->end_prog = (value & 0x0800) >> 11;
889 if (s->model >= omap_dma_3_2)
890 ch->omap_3_1_compatible_disable = (value >> 10) & 0x1;
891 ch->repeat = (value & 0x0200) >> 9;
892 ch->auto_init = (value & 0x0100) >> 8;
893 ch->priority = (value & 0x0040) >> 6;
894 ch->fs = (value & 0x0020) >> 5;
895 ch->sync = value & 0x001f;
897 if (value & 0x0080)
898 omap_dma_enable_channel(s, ch);
899 else
900 omap_dma_disable_channel(s, ch);
902 if (ch->end_prog)
903 omap_dma_channel_end_prog(s, ch);
905 break;
907 case 0x04: /* SYS_DMA_CICR_CH0 */
908 ch->interrupts = value & 0x3f;
909 break;
911 case 0x06: /* SYS_DMA_CSR_CH0 */
912 OMAP_RO_REG((target_phys_addr_t) reg);
913 break;
915 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
916 ch->addr[0] &= 0xffff0000;
917 ch->addr[0] |= value;
918 break;
920 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
921 ch->addr[0] &= 0x0000ffff;
922 ch->addr[0] |= (uint32_t) value << 16;
923 break;
925 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
926 ch->addr[1] &= 0xffff0000;
927 ch->addr[1] |= value;
928 break;
930 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
931 ch->addr[1] &= 0x0000ffff;
932 ch->addr[1] |= (uint32_t) value << 16;
933 break;
935 case 0x10: /* SYS_DMA_CEN_CH0 */
936 ch->elements = value;
937 break;
939 case 0x12: /* SYS_DMA_CFN_CH0 */
940 ch->frames = value;
941 break;
943 case 0x14: /* SYS_DMA_CFI_CH0 */
944 ch->frame_index[0] = (int16_t) value;
945 break;
947 case 0x16: /* SYS_DMA_CEI_CH0 */
948 ch->element_index[0] = (int16_t) value;
949 break;
951 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
952 OMAP_RO_REG((target_phys_addr_t) reg);
953 break;
955 case 0x1c: /* DMA_CDEI */
956 ch->element_index[1] = (int16_t) value;
957 break;
959 case 0x1e: /* DMA_CDFI */
960 ch->frame_index[1] = (int16_t) value;
961 break;
963 case 0x20: /* DMA_COLOR_L */
964 ch->color &= 0xffff0000;
965 ch->color |= value;
966 break;
968 case 0x22: /* DMA_COLOR_U */
969 ch->color &= 0xffff;
970 ch->color |= value << 16;
971 break;
973 case 0x24: /* DMA_CCR2 */
974 ch->bs = (value >> 2) & 0x1;
975 ch->transparent_copy = (value >> 1) & 0x1;
976 ch->constant_fill = value & 0x1;
977 break;
979 case 0x28: /* DMA_CLNK_CTRL */
980 ch->link_enabled = (value >> 15) & 0x1;
981 if (value & (1 << 14)) { /* Stop_Lnk */
982 ch->link_enabled = 0;
983 omap_dma_disable_channel(s, ch);
985 ch->link_next_ch = value & 0x1f;
986 break;
988 case 0x2a: /* DMA_LCH_CTRL */
989 ch->interleave_disabled = (value >> 15) & 0x1;
990 ch->type = value & 0xf;
991 break;
993 default:
994 return 1;
996 return 0;
999 static int omap_dma_3_2_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1000 uint16_t value)
1002 switch (offset) {
1003 case 0xbc0: /* DMA_LCD_CSDP */
1004 s->brust_f2 = (value >> 14) & 0x3;
1005 s->pack_f2 = (value >> 13) & 0x1;
1006 s->data_type_f2 = (1 << ((value >> 11) & 0x3));
1007 s->brust_f1 = (value >> 7) & 0x3;
1008 s->pack_f1 = (value >> 6) & 0x1;
1009 s->data_type_f1 = (1 << ((value >> 0) & 0x3));
1010 break;
1012 case 0xbc2: /* DMA_LCD_CCR */
1013 s->mode_f2 = (value >> 14) & 0x3;
1014 s->mode_f1 = (value >> 12) & 0x3;
1015 s->end_prog = (value >> 11) & 0x1;
1016 s->omap_3_1_compatible_disable = (value >> 10) & 0x1;
1017 s->repeat = (value >> 9) & 0x1;
1018 s->auto_init = (value >> 8) & 0x1;
1019 s->running = (value >> 7) & 0x1;
1020 s->priority = (value >> 6) & 0x1;
1021 s->bs = (value >> 4) & 0x1;
1022 break;
1024 case 0xbc4: /* DMA_LCD_CTRL */
1025 s->dst = (value >> 8) & 0x1;
1026 s->src = ((value >> 6) & 0x3) << 1;
1027 s->condition = 0;
1028 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1029 s->interrupts = (value >> 1) & 1;
1030 s->dual = value & 1;
1031 break;
1033 case 0xbc8: /* TOP_B1_L */
1034 s->src_f1_top &= 0xffff0000;
1035 s->src_f1_top |= 0x0000ffff & value;
1036 break;
1038 case 0xbca: /* TOP_B1_U */
1039 s->src_f1_top &= 0x0000ffff;
1040 s->src_f1_top |= value << 16;
1041 break;
1043 case 0xbcc: /* BOT_B1_L */
1044 s->src_f1_bottom &= 0xffff0000;
1045 s->src_f1_bottom |= 0x0000ffff & value;
1046 break;
1048 case 0xbce: /* BOT_B1_U */
1049 s->src_f1_bottom &= 0x0000ffff;
1050 s->src_f1_bottom |= (uint32_t) value << 16;
1051 break;
1053 case 0xbd0: /* TOP_B2_L */
1054 s->src_f2_top &= 0xffff0000;
1055 s->src_f2_top |= 0x0000ffff & value;
1056 break;
1058 case 0xbd2: /* TOP_B2_U */
1059 s->src_f2_top &= 0x0000ffff;
1060 s->src_f2_top |= (uint32_t) value << 16;
1061 break;
1063 case 0xbd4: /* BOT_B2_L */
1064 s->src_f2_bottom &= 0xffff0000;
1065 s->src_f2_bottom |= 0x0000ffff & value;
1066 break;
1068 case 0xbd6: /* BOT_B2_U */
1069 s->src_f2_bottom &= 0x0000ffff;
1070 s->src_f2_bottom |= (uint32_t) value << 16;
1071 break;
1073 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1074 s->element_index_f1 = value;
1075 break;
1077 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1078 s->frame_index_f1 &= 0xffff0000;
1079 s->frame_index_f1 |= 0x0000ffff & value;
1080 break;
1082 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1083 s->frame_index_f1 &= 0x0000ffff;
1084 s->frame_index_f1 |= (uint32_t) value << 16;
1085 break;
1087 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1088 s->element_index_f2 = value;
1089 break;
1091 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1092 s->frame_index_f2 &= 0xffff0000;
1093 s->frame_index_f2 |= 0x0000ffff & value;
1094 break;
1096 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1097 s->frame_index_f2 &= 0x0000ffff;
1098 s->frame_index_f2 |= (uint32_t) value << 16;
1099 break;
1101 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1102 s->elements_f1 = value;
1103 break;
1105 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1106 s->frames_f1 = value;
1107 break;
1109 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1110 s->elements_f2 = value;
1111 break;
1113 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1114 s->frames_f2 = value;
1115 break;
1117 case 0xbea: /* DMA_LCD_LCH_CTRL */
1118 s->lch_type = value & 0xf;
1119 break;
1121 default:
1122 return 1;
1124 return 0;
1127 static int omap_dma_3_2_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1128 uint16_t *ret)
1130 switch (offset) {
1131 case 0xbc0: /* DMA_LCD_CSDP */
1132 *ret = (s->brust_f2 << 14) |
1133 (s->pack_f2 << 13) |
1134 ((s->data_type_f2 >> 1) << 11) |
1135 (s->brust_f1 << 7) |
1136 (s->pack_f1 << 6) |
1137 ((s->data_type_f1 >> 1) << 0);
1138 break;
1140 case 0xbc2: /* DMA_LCD_CCR */
1141 *ret = (s->mode_f2 << 14) |
1142 (s->mode_f1 << 12) |
1143 (s->end_prog << 11) |
1144 (s->omap_3_1_compatible_disable << 10) |
1145 (s->repeat << 9) |
1146 (s->auto_init << 8) |
1147 (s->running << 7) |
1148 (s->priority << 6) |
1149 (s->bs << 4);
1150 break;
1152 case 0xbc4: /* DMA_LCD_CTRL */
1153 qemu_irq_lower(s->irq);
1154 *ret = (s->dst << 8) |
1155 ((s->src & 0x6) << 5) |
1156 (s->condition << 3) |
1157 (s->interrupts << 1) |
1158 s->dual;
1159 break;
1161 case 0xbc8: /* TOP_B1_L */
1162 *ret = s->src_f1_top & 0xffff;
1163 break;
1165 case 0xbca: /* TOP_B1_U */
1166 *ret = s->src_f1_top >> 16;
1167 break;
1169 case 0xbcc: /* BOT_B1_L */
1170 *ret = s->src_f1_bottom & 0xffff;
1171 break;
1173 case 0xbce: /* BOT_B1_U */
1174 *ret = s->src_f1_bottom >> 16;
1175 break;
1177 case 0xbd0: /* TOP_B2_L */
1178 *ret = s->src_f2_top & 0xffff;
1179 break;
1181 case 0xbd2: /* TOP_B2_U */
1182 *ret = s->src_f2_top >> 16;
1183 break;
1185 case 0xbd4: /* BOT_B2_L */
1186 *ret = s->src_f2_bottom & 0xffff;
1187 break;
1189 case 0xbd6: /* BOT_B2_U */
1190 *ret = s->src_f2_bottom >> 16;
1191 break;
1193 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1194 *ret = s->element_index_f1;
1195 break;
1197 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1198 *ret = s->frame_index_f1 & 0xffff;
1199 break;
1201 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1202 *ret = s->frame_index_f1 >> 16;
1203 break;
1205 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1206 *ret = s->element_index_f2;
1207 break;
1209 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1210 *ret = s->frame_index_f2 & 0xffff;
1211 break;
1213 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1214 *ret = s->frame_index_f2 >> 16;
1215 break;
1217 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1218 *ret = s->elements_f1;
1219 break;
1221 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1222 *ret = s->frames_f1;
1223 break;
1225 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1226 *ret = s->elements_f2;
1227 break;
1229 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1230 *ret = s->frames_f2;
1231 break;
1233 case 0xbea: /* DMA_LCD_LCH_CTRL */
1234 *ret = s->lch_type;
1235 break;
1237 default:
1238 return 1;
1240 return 0;
1243 static int omap_dma_3_1_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1244 uint16_t value)
1246 switch (offset) {
1247 case 0x300: /* SYS_DMA_LCD_CTRL */
1248 s->src = (value & 0x40) ? imif : emiff;
1249 s->condition = 0;
1250 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1251 s->interrupts = (value >> 1) & 1;
1252 s->dual = value & 1;
1253 break;
1255 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1256 s->src_f1_top &= 0xffff0000;
1257 s->src_f1_top |= 0x0000ffff & value;
1258 break;
1260 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1261 s->src_f1_top &= 0x0000ffff;
1262 s->src_f1_top |= value << 16;
1263 break;
1265 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1266 s->src_f1_bottom &= 0xffff0000;
1267 s->src_f1_bottom |= 0x0000ffff & value;
1268 break;
1270 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1271 s->src_f1_bottom &= 0x0000ffff;
1272 s->src_f1_bottom |= value << 16;
1273 break;
1275 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1276 s->src_f2_top &= 0xffff0000;
1277 s->src_f2_top |= 0x0000ffff & value;
1278 break;
1280 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1281 s->src_f2_top &= 0x0000ffff;
1282 s->src_f2_top |= value << 16;
1283 break;
1285 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1286 s->src_f2_bottom &= 0xffff0000;
1287 s->src_f2_bottom |= 0x0000ffff & value;
1288 break;
1290 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1291 s->src_f2_bottom &= 0x0000ffff;
1292 s->src_f2_bottom |= value << 16;
1293 break;
1295 default:
1296 return 1;
1298 return 0;
1301 static int omap_dma_3_1_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1302 uint16_t *ret)
1304 int i;
1306 switch (offset) {
1307 case 0x300: /* SYS_DMA_LCD_CTRL */
1308 i = s->condition;
1309 s->condition = 0;
1310 qemu_irq_lower(s->irq);
1311 *ret = ((s->src == imif) << 6) | (i << 3) |
1312 (s->interrupts << 1) | s->dual;
1313 break;
1315 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1316 *ret = s->src_f1_top & 0xffff;
1317 break;
1319 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1320 *ret = s->src_f1_top >> 16;
1321 break;
1323 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1324 *ret = s->src_f1_bottom & 0xffff;
1325 break;
1327 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1328 *ret = s->src_f1_bottom >> 16;
1329 break;
1331 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1332 *ret = s->src_f2_top & 0xffff;
1333 break;
1335 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1336 *ret = s->src_f2_top >> 16;
1337 break;
1339 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1340 *ret = s->src_f2_bottom & 0xffff;
1341 break;
1343 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1344 *ret = s->src_f2_bottom >> 16;
1345 break;
1347 default:
1348 return 1;
1350 return 0;
1353 static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value)
1355 switch (offset) {
1356 case 0x400: /* SYS_DMA_GCR */
1357 s->gcr = value;
1358 break;
1360 case 0x404: /* DMA_GSCR */
1361 if (value & 0x8)
1362 omap_dma_disable_3_1_mapping(s);
1363 else
1364 omap_dma_enable_3_1_mapping(s);
1365 break;
1367 case 0x408: /* DMA_GRST */
1368 if (value & 0x1)
1369 omap_dma_reset(s->dma);
1370 break;
1372 default:
1373 return 1;
1375 return 0;
1378 static int omap_dma_sys_read(struct omap_dma_s *s, int offset,
1379 uint16_t *ret)
1381 switch (offset) {
1382 case 0x400: /* SYS_DMA_GCR */
1383 *ret = s->gcr;
1384 break;
1386 case 0x404: /* DMA_GSCR */
1387 *ret = s->omap_3_1_mapping_disabled << 3;
1388 break;
1390 case 0x408: /* DMA_GRST */
1391 *ret = 0;
1392 break;
1394 case 0x442: /* DMA_HW_ID */
1395 case 0x444: /* DMA_PCh2_ID */
1396 case 0x446: /* DMA_PCh0_ID */
1397 case 0x448: /* DMA_PCh1_ID */
1398 case 0x44a: /* DMA_PChG_ID */
1399 case 0x44c: /* DMA_PChD_ID */
1400 *ret = 1;
1401 break;
1403 case 0x44e: /* DMA_CAPS_0_U */
1404 *ret = (s->caps[0] >> 16) & 0xffff;
1405 break;
1406 case 0x450: /* DMA_CAPS_0_L */
1407 *ret = (s->caps[0] >> 0) & 0xffff;
1408 break;
1410 case 0x452: /* DMA_CAPS_1_U */
1411 *ret = (s->caps[1] >> 16) & 0xffff;
1412 break;
1413 case 0x454: /* DMA_CAPS_1_L */
1414 *ret = (s->caps[1] >> 0) & 0xffff;
1415 break;
1417 case 0x456: /* DMA_CAPS_2 */
1418 *ret = s->caps[2];
1419 break;
1421 case 0x458: /* DMA_CAPS_3 */
1422 *ret = s->caps[3];
1423 break;
1425 case 0x45a: /* DMA_CAPS_4 */
1426 *ret = s->caps[4];
1427 break;
1429 case 0x460: /* DMA_PCh2_SR */
1430 case 0x480: /* DMA_PCh0_SR */
1431 case 0x482: /* DMA_PCh1_SR */
1432 case 0x4c0: /* DMA_PChD_SR_0 */
1433 printf("%s: Physical Channel Status Registers not implemented.\n",
1434 __FUNCTION__);
1435 *ret = 0xff;
1436 break;
1438 default:
1439 return 1;
1441 return 0;
1444 static uint32_t omap_dma_read(void *opaque, target_phys_addr_t addr)
1446 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1447 int reg, ch;
1448 uint16_t ret;
1450 switch (addr) {
1451 case 0x300 ... 0x3fe:
1452 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1453 if (omap_dma_3_1_lcd_read(&s->lcd_ch, addr, &ret))
1454 break;
1455 return ret;
1457 /* Fall through. */
1458 case 0x000 ... 0x2fe:
1459 reg = addr & 0x3f;
1460 ch = (addr >> 6) & 0x0f;
1461 if (omap_dma_ch_reg_read(s, &s->ch[ch], reg, &ret))
1462 break;
1463 return ret;
1465 case 0x404 ... 0x4fe:
1466 if (s->model <= omap_dma_3_1)
1467 break;
1468 /* Fall through. */
1469 case 0x400:
1470 if (omap_dma_sys_read(s, addr, &ret))
1471 break;
1472 return ret;
1474 case 0xb00 ... 0xbfe:
1475 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1476 if (omap_dma_3_2_lcd_read(&s->lcd_ch, addr, &ret))
1477 break;
1478 return ret;
1480 break;
1483 OMAP_BAD_REG(addr);
1484 return 0;
1487 static void omap_dma_write(void *opaque, target_phys_addr_t addr,
1488 uint32_t value)
1490 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1491 int reg, ch;
1493 switch (addr) {
1494 case 0x300 ... 0x3fe:
1495 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1496 if (omap_dma_3_1_lcd_write(&s->lcd_ch, addr, value))
1497 break;
1498 return;
1500 /* Fall through. */
1501 case 0x000 ... 0x2fe:
1502 reg = addr & 0x3f;
1503 ch = (addr >> 6) & 0x0f;
1504 if (omap_dma_ch_reg_write(s, &s->ch[ch], reg, value))
1505 break;
1506 return;
1508 case 0x404 ... 0x4fe:
1509 if (s->model <= omap_dma_3_1)
1510 break;
1511 case 0x400:
1512 /* Fall through. */
1513 if (omap_dma_sys_write(s, addr, value))
1514 break;
1515 return;
1517 case 0xb00 ... 0xbfe:
1518 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1519 if (omap_dma_3_2_lcd_write(&s->lcd_ch, addr, value))
1520 break;
1521 return;
1523 break;
1526 OMAP_BAD_REG(addr);
1529 static CPUReadMemoryFunc *omap_dma_readfn[] = {
1530 omap_badwidth_read16,
1531 omap_dma_read,
1532 omap_badwidth_read16,
1535 static CPUWriteMemoryFunc *omap_dma_writefn[] = {
1536 omap_badwidth_write16,
1537 omap_dma_write,
1538 omap_badwidth_write16,
1541 static void omap_dma_request(void *opaque, int drq, int req)
1543 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1544 /* The request pins are level triggered in QEMU. */
1545 if (req) {
1546 if (~s->dma->drqbmp & (1 << drq)) {
1547 s->dma->drqbmp |= 1 << drq;
1548 omap_dma_process_request(s, drq);
1550 } else
1551 s->dma->drqbmp &= ~(1 << drq);
1554 /* XXX: this won't be needed once soc_dma knows about clocks. */
1555 static void omap_dma_clk_update(void *opaque, int line, int on)
1557 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1558 int i;
1560 s->dma->freq = omap_clk_getrate(s->clk);
1562 for (i = 0; i < s->chans; i ++)
1563 if (s->ch[i].active)
1564 soc_dma_set_request(s->ch[i].dma, on);
1567 static void omap_dma_setcaps(struct omap_dma_s *s)
1569 switch (s->model) {
1570 default:
1571 case omap_dma_3_1:
1572 break;
1573 case omap_dma_3_2:
1574 case omap_dma_4:
1575 /* XXX Only available for sDMA */
1576 s->caps[0] =
1577 (1 << 19) | /* Constant Fill Capability */
1578 (1 << 18); /* Transparent BLT Capability */
1579 s->caps[1] =
1580 (1 << 1); /* 1-bit palettized capability (DMA 3.2 only) */
1581 s->caps[2] =
1582 (1 << 8) | /* SEPARATE_SRC_AND_DST_INDEX_CPBLTY */
1583 (1 << 7) | /* DST_DOUBLE_INDEX_ADRS_CPBLTY */
1584 (1 << 6) | /* DST_SINGLE_INDEX_ADRS_CPBLTY */
1585 (1 << 5) | /* DST_POST_INCRMNT_ADRS_CPBLTY */
1586 (1 << 4) | /* DST_CONST_ADRS_CPBLTY */
1587 (1 << 3) | /* SRC_DOUBLE_INDEX_ADRS_CPBLTY */
1588 (1 << 2) | /* SRC_SINGLE_INDEX_ADRS_CPBLTY */
1589 (1 << 1) | /* SRC_POST_INCRMNT_ADRS_CPBLTY */
1590 (1 << 0); /* SRC_CONST_ADRS_CPBLTY */
1591 s->caps[3] =
1592 (1 << 6) | /* BLOCK_SYNCHR_CPBLTY (DMA 4 only) */
1593 (1 << 7) | /* PKT_SYNCHR_CPBLTY (DMA 4 only) */
1594 (1 << 5) | /* CHANNEL_CHAINING_CPBLTY */
1595 (1 << 4) | /* LCh_INTERLEAVE_CPBLTY */
1596 (1 << 3) | /* AUTOINIT_REPEAT_CPBLTY (DMA 3.2 only) */
1597 (1 << 2) | /* AUTOINIT_ENDPROG_CPBLTY (DMA 3.2 only) */
1598 (1 << 1) | /* FRAME_SYNCHR_CPBLTY */
1599 (1 << 0); /* ELMNT_SYNCHR_CPBLTY */
1600 s->caps[4] =
1601 (1 << 7) | /* PKT_INTERRUPT_CPBLTY (DMA 4 only) */
1602 (1 << 6) | /* SYNC_STATUS_CPBLTY */
1603 (1 << 5) | /* BLOCK_INTERRUPT_CPBLTY */
1604 (1 << 4) | /* LAST_FRAME_INTERRUPT_CPBLTY */
1605 (1 << 3) | /* FRAME_INTERRUPT_CPBLTY */
1606 (1 << 2) | /* HALF_FRAME_INTERRUPT_CPBLTY */
1607 (1 << 1) | /* EVENT_DROP_INTERRUPT_CPBLTY */
1608 (1 << 0); /* TIMEOUT_INTERRUPT_CPBLTY (DMA 3.2 only) */
1609 break;
1613 struct soc_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq *irqs,
1614 qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk,
1615 enum omap_dma_model model)
1617 int iomemtype, num_irqs, memsize, i;
1618 struct omap_dma_s *s = (struct omap_dma_s *)
1619 qemu_mallocz(sizeof(struct omap_dma_s));
1621 if (model <= omap_dma_3_1) {
1622 num_irqs = 6;
1623 memsize = 0x800;
1624 } else {
1625 num_irqs = 16;
1626 memsize = 0xc00;
1628 s->model = model;
1629 s->mpu = mpu;
1630 s->clk = clk;
1631 s->lcd_ch.irq = lcd_irq;
1632 s->lcd_ch.mpu = mpu;
1634 s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16);
1635 s->dma->freq = omap_clk_getrate(clk);
1636 s->dma->transfer_fn = omap_dma_transfer_generic;
1637 s->dma->setup_fn = omap_dma_transfer_setup;
1638 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
1639 s->dma->opaque = s;
1641 while (num_irqs --)
1642 s->ch[num_irqs].irq = irqs[num_irqs];
1643 for (i = 0; i < 3; i ++) {
1644 s->ch[i].sibling = &s->ch[i + 6];
1645 s->ch[i + 6].sibling = &s->ch[i];
1647 for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) {
1648 s->ch[i].dma = &s->dma->ch[i];
1649 s->dma->ch[i].opaque = &s->ch[i];
1652 omap_dma_setcaps(s);
1653 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
1654 omap_dma_reset(s->dma);
1655 omap_dma_clk_update(s, 0, 1);
1657 iomemtype = cpu_register_io_memory(omap_dma_readfn,
1658 omap_dma_writefn, s);
1659 cpu_register_physical_memory(base, memsize, iomemtype);
1661 mpu->drq = s->dma->drq;
1663 return s->dma;
1666 static void omap_dma_interrupts_4_update(struct omap_dma_s *s)
1668 struct omap_dma_channel_s *ch = s->ch;
1669 uint32_t bmp, bit;
1671 for (bmp = 0, bit = 1; bit; ch ++, bit <<= 1)
1672 if (ch->status) {
1673 bmp |= bit;
1674 ch->cstatus |= ch->status;
1675 ch->status = 0;
1677 if ((s->irqstat[0] |= s->irqen[0] & bmp))
1678 qemu_irq_raise(s->irq[0]);
1679 if ((s->irqstat[1] |= s->irqen[1] & bmp))
1680 qemu_irq_raise(s->irq[1]);
1681 if ((s->irqstat[2] |= s->irqen[2] & bmp))
1682 qemu_irq_raise(s->irq[2]);
1683 if ((s->irqstat[3] |= s->irqen[3] & bmp))
1684 qemu_irq_raise(s->irq[3]);
1687 static uint32_t omap_dma4_read(void *opaque, target_phys_addr_t addr)
1689 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1690 int irqn = 0, chnum;
1691 struct omap_dma_channel_s *ch;
1693 switch (addr) {
1694 case 0x00: /* DMA4_REVISION */
1695 return 0x40;
1697 case 0x14: /* DMA4_IRQSTATUS_L3 */
1698 irqn ++;
1699 case 0x10: /* DMA4_IRQSTATUS_L2 */
1700 irqn ++;
1701 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1702 irqn ++;
1703 case 0x08: /* DMA4_IRQSTATUS_L0 */
1704 return s->irqstat[irqn];
1706 case 0x24: /* DMA4_IRQENABLE_L3 */
1707 irqn ++;
1708 case 0x20: /* DMA4_IRQENABLE_L2 */
1709 irqn ++;
1710 case 0x1c: /* DMA4_IRQENABLE_L1 */
1711 irqn ++;
1712 case 0x18: /* DMA4_IRQENABLE_L0 */
1713 return s->irqen[irqn];
1715 case 0x28: /* DMA4_SYSSTATUS */
1716 return 1; /* RESETDONE */
1718 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1719 return s->ocp;
1721 case 0x64: /* DMA4_CAPS_0 */
1722 return s->caps[0];
1723 case 0x6c: /* DMA4_CAPS_2 */
1724 return s->caps[2];
1725 case 0x70: /* DMA4_CAPS_3 */
1726 return s->caps[3];
1727 case 0x74: /* DMA4_CAPS_4 */
1728 return s->caps[4];
1730 case 0x78: /* DMA4_GCR */
1731 return s->gcr;
1733 case 0x80 ... 0xfff:
1734 addr -= 0x80;
1735 chnum = addr / 0x60;
1736 ch = s->ch + chnum;
1737 addr -= chnum * 0x60;
1738 break;
1740 default:
1741 OMAP_BAD_REG(addr);
1742 return 0;
1745 /* Per-channel registers */
1746 switch (addr) {
1747 case 0x00: /* DMA4_CCR */
1748 return (ch->buf_disable << 25) |
1749 (ch->src_sync << 24) |
1750 (ch->prefetch << 23) |
1751 ((ch->sync & 0x60) << 14) |
1752 (ch->bs << 18) |
1753 (ch->transparent_copy << 17) |
1754 (ch->constant_fill << 16) |
1755 (ch->mode[1] << 14) |
1756 (ch->mode[0] << 12) |
1757 (0 << 10) | (0 << 9) |
1758 (ch->suspend << 8) |
1759 (ch->enable << 7) |
1760 (ch->priority << 6) |
1761 (ch->fs << 5) | (ch->sync & 0x1f);
1763 case 0x04: /* DMA4_CLNK_CTRL */
1764 return (ch->link_enabled << 15) | ch->link_next_ch;
1766 case 0x08: /* DMA4_CICR */
1767 return ch->interrupts;
1769 case 0x0c: /* DMA4_CSR */
1770 return ch->cstatus;
1772 case 0x10: /* DMA4_CSDP */
1773 return (ch->endian[0] << 21) |
1774 (ch->endian_lock[0] << 20) |
1775 (ch->endian[1] << 19) |
1776 (ch->endian_lock[1] << 18) |
1777 (ch->write_mode << 16) |
1778 (ch->burst[1] << 14) |
1779 (ch->pack[1] << 13) |
1780 (ch->translate[1] << 9) |
1781 (ch->burst[0] << 7) |
1782 (ch->pack[0] << 6) |
1783 (ch->translate[0] << 2) |
1784 (ch->data_type >> 1);
1786 case 0x14: /* DMA4_CEN */
1787 return ch->elements;
1789 case 0x18: /* DMA4_CFN */
1790 return ch->frames;
1792 case 0x1c: /* DMA4_CSSA */
1793 return ch->addr[0];
1795 case 0x20: /* DMA4_CDSA */
1796 return ch->addr[1];
1798 case 0x24: /* DMA4_CSEI */
1799 return ch->element_index[0];
1801 case 0x28: /* DMA4_CSFI */
1802 return ch->frame_index[0];
1804 case 0x2c: /* DMA4_CDEI */
1805 return ch->element_index[1];
1807 case 0x30: /* DMA4_CDFI */
1808 return ch->frame_index[1];
1810 case 0x34: /* DMA4_CSAC */
1811 return ch->active_set.src & 0xffff;
1813 case 0x38: /* DMA4_CDAC */
1814 return ch->active_set.dest & 0xffff;
1816 case 0x3c: /* DMA4_CCEN */
1817 return ch->active_set.element;
1819 case 0x40: /* DMA4_CCFN */
1820 return ch->active_set.frame;
1822 case 0x44: /* DMA4_COLOR */
1823 /* XXX only in sDMA */
1824 return ch->color;
1826 default:
1827 OMAP_BAD_REG(addr);
1828 return 0;
1832 static void omap_dma4_write(void *opaque, target_phys_addr_t addr,
1833 uint32_t value)
1835 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1836 int chnum, irqn = 0;
1837 struct omap_dma_channel_s *ch;
1839 switch (addr) {
1840 case 0x14: /* DMA4_IRQSTATUS_L3 */
1841 irqn ++;
1842 case 0x10: /* DMA4_IRQSTATUS_L2 */
1843 irqn ++;
1844 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1845 irqn ++;
1846 case 0x08: /* DMA4_IRQSTATUS_L0 */
1847 s->irqstat[irqn] &= ~value;
1848 if (!s->irqstat[irqn])
1849 qemu_irq_lower(s->irq[irqn]);
1850 return;
1852 case 0x24: /* DMA4_IRQENABLE_L3 */
1853 irqn ++;
1854 case 0x20: /* DMA4_IRQENABLE_L2 */
1855 irqn ++;
1856 case 0x1c: /* DMA4_IRQENABLE_L1 */
1857 irqn ++;
1858 case 0x18: /* DMA4_IRQENABLE_L0 */
1859 s->irqen[irqn] = value;
1860 return;
1862 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1863 if (value & 2) /* SOFTRESET */
1864 omap_dma_reset(s->dma);
1865 s->ocp = value & 0x3321;
1866 if (((s->ocp >> 12) & 3) == 3) /* MIDLEMODE */
1867 fprintf(stderr, "%s: invalid DMA power mode\n", __FUNCTION__);
1868 return;
1870 case 0x78: /* DMA4_GCR */
1871 s->gcr = value & 0x00ff00ff;
1872 if ((value & 0xff) == 0x00) /* MAX_CHANNEL_FIFO_DEPTH */
1873 fprintf(stderr, "%s: wrong FIFO depth in GCR\n", __FUNCTION__);
1874 return;
1876 case 0x80 ... 0xfff:
1877 addr -= 0x80;
1878 chnum = addr / 0x60;
1879 ch = s->ch + chnum;
1880 addr -= chnum * 0x60;
1881 break;
1883 case 0x00: /* DMA4_REVISION */
1884 case 0x28: /* DMA4_SYSSTATUS */
1885 case 0x64: /* DMA4_CAPS_0 */
1886 case 0x6c: /* DMA4_CAPS_2 */
1887 case 0x70: /* DMA4_CAPS_3 */
1888 case 0x74: /* DMA4_CAPS_4 */
1889 OMAP_RO_REG(addr);
1890 return;
1892 default:
1893 OMAP_BAD_REG(addr);
1894 return;
1897 /* Per-channel registers */
1898 switch (addr) {
1899 case 0x00: /* DMA4_CCR */
1900 ch->buf_disable = (value >> 25) & 1;
1901 ch->src_sync = (value >> 24) & 1; /* XXX For CamDMA must be 1 */
1902 if (ch->buf_disable && !ch->src_sync)
1903 fprintf(stderr, "%s: Buffering disable is not allowed in "
1904 "destination synchronised mode\n", __FUNCTION__);
1905 ch->prefetch = (value >> 23) & 1;
1906 ch->bs = (value >> 18) & 1;
1907 ch->transparent_copy = (value >> 17) & 1;
1908 ch->constant_fill = (value >> 16) & 1;
1909 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
1910 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
1911 ch->suspend = (value & 0x0100) >> 8;
1912 ch->priority = (value & 0x0040) >> 6;
1913 ch->fs = (value & 0x0020) >> 5;
1914 if (ch->fs && ch->bs && ch->mode[0] && ch->mode[1])
1915 fprintf(stderr, "%s: For a packet transfer at least one port "
1916 "must be constant-addressed\n", __FUNCTION__);
1917 ch->sync = (value & 0x001f) | ((value >> 14) & 0x0060);
1918 /* XXX must be 0x01 for CamDMA */
1920 if (value & 0x0080)
1921 omap_dma_enable_channel(s, ch);
1922 else
1923 omap_dma_disable_channel(s, ch);
1925 break;
1927 case 0x04: /* DMA4_CLNK_CTRL */
1928 ch->link_enabled = (value >> 15) & 0x1;
1929 ch->link_next_ch = value & 0x1f;
1930 break;
1932 case 0x08: /* DMA4_CICR */
1933 ch->interrupts = value & 0x09be;
1934 break;
1936 case 0x0c: /* DMA4_CSR */
1937 ch->cstatus &= ~value;
1938 break;
1940 case 0x10: /* DMA4_CSDP */
1941 ch->endian[0] =(value >> 21) & 1;
1942 ch->endian_lock[0] =(value >> 20) & 1;
1943 ch->endian[1] =(value >> 19) & 1;
1944 ch->endian_lock[1] =(value >> 18) & 1;
1945 if (ch->endian[0] != ch->endian[1])
1946 fprintf(stderr, "%s: DMA endiannes conversion enable attempt\n",
1947 __FUNCTION__);
1948 ch->write_mode = (value >> 16) & 3;
1949 ch->burst[1] = (value & 0xc000) >> 14;
1950 ch->pack[1] = (value & 0x2000) >> 13;
1951 ch->translate[1] = (value & 0x1e00) >> 9;
1952 ch->burst[0] = (value & 0x0180) >> 7;
1953 ch->pack[0] = (value & 0x0040) >> 6;
1954 ch->translate[0] = (value & 0x003c) >> 2;
1955 if (ch->translate[0] | ch->translate[1])
1956 fprintf(stderr, "%s: bad MReqAddressTranslate sideband signal\n",
1957 __FUNCTION__);
1958 ch->data_type = 1 << (value & 3);
1959 if ((value & 3) == 3)
1960 printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
1961 break;
1963 case 0x14: /* DMA4_CEN */
1964 ch->set_update = 1;
1965 ch->elements = value & 0xffffff;
1966 break;
1968 case 0x18: /* DMA4_CFN */
1969 ch->frames = value & 0xffff;
1970 ch->set_update = 1;
1971 break;
1973 case 0x1c: /* DMA4_CSSA */
1974 ch->addr[0] = (target_phys_addr_t) (uint32_t) value;
1975 ch->set_update = 1;
1976 break;
1978 case 0x20: /* DMA4_CDSA */
1979 ch->addr[1] = (target_phys_addr_t) (uint32_t) value;
1980 ch->set_update = 1;
1981 break;
1983 case 0x24: /* DMA4_CSEI */
1984 ch->element_index[0] = (int16_t) value;
1985 ch->set_update = 1;
1986 break;
1988 case 0x28: /* DMA4_CSFI */
1989 ch->frame_index[0] = (int32_t) value;
1990 ch->set_update = 1;
1991 break;
1993 case 0x2c: /* DMA4_CDEI */
1994 ch->element_index[1] = (int16_t) value;
1995 ch->set_update = 1;
1996 break;
1998 case 0x30: /* DMA4_CDFI */
1999 ch->frame_index[1] = (int32_t) value;
2000 ch->set_update = 1;
2001 break;
2003 case 0x44: /* DMA4_COLOR */
2004 /* XXX only in sDMA */
2005 ch->color = value;
2006 break;
2008 case 0x34: /* DMA4_CSAC */
2009 case 0x38: /* DMA4_CDAC */
2010 case 0x3c: /* DMA4_CCEN */
2011 case 0x40: /* DMA4_CCFN */
2012 OMAP_RO_REG(addr);
2013 break;
2015 default:
2016 OMAP_BAD_REG(addr);
2020 static CPUReadMemoryFunc *omap_dma4_readfn[] = {
2021 omap_badwidth_read16,
2022 omap_dma4_read,
2023 omap_dma4_read,
2026 static CPUWriteMemoryFunc *omap_dma4_writefn[] = {
2027 omap_badwidth_write16,
2028 omap_dma4_write,
2029 omap_dma4_write,
2032 struct soc_dma_s *omap_dma4_init(target_phys_addr_t base, qemu_irq *irqs,
2033 struct omap_mpu_state_s *mpu, int fifo,
2034 int chans, omap_clk iclk, omap_clk fclk)
2036 int iomemtype, i;
2037 struct omap_dma_s *s = (struct omap_dma_s *)
2038 qemu_mallocz(sizeof(struct omap_dma_s));
2040 s->model = omap_dma_4;
2041 s->chans = chans;
2042 s->mpu = mpu;
2043 s->clk = fclk;
2045 s->dma = soc_dma_init(s->chans);
2046 s->dma->freq = omap_clk_getrate(fclk);
2047 s->dma->transfer_fn = omap_dma_transfer_generic;
2048 s->dma->setup_fn = omap_dma_transfer_setup;
2049 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 64);
2050 s->dma->opaque = s;
2051 for (i = 0; i < s->chans; i ++) {
2052 s->ch[i].dma = &s->dma->ch[i];
2053 s->dma->ch[i].opaque = &s->ch[i];
2056 memcpy(&s->irq, irqs, sizeof(s->irq));
2057 s->intr_update = omap_dma_interrupts_4_update;
2059 omap_dma_setcaps(s);
2060 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
2061 omap_dma_reset(s->dma);
2062 omap_dma_clk_update(s, 0, !!s->dma->freq);
2064 iomemtype = cpu_register_io_memory(omap_dma4_readfn,
2065 omap_dma4_writefn, s);
2066 cpu_register_physical_memory(base, 0x1000, iomemtype);
2068 mpu->drq = s->dma->drq;
2070 return s->dma;
2073 struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma)
2075 struct omap_dma_s *s = dma->opaque;
2077 return &s->lcd_ch;