Disable recv notifications until avail buffers exhausted
[qemu-kvm/fedora.git] / hw / pl022.c
bloba9d20c517bdbd8e0cd9a870fe61e4a149bb23a9d
1 /*
2 * Arm PrimeCell PL022 Synchronous Serial Port
4 * Copyright (c) 2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL.
8 */
10 #include "hw.h"
11 #include "primecell.h"
13 //#define DEBUG_PL022 1
15 #ifdef DEBUG_PL022
16 #define DPRINTF(fmt, args...) \
17 do { printf("pl022: " fmt , ##args); } while (0)
18 #define BADF(fmt, args...) \
19 do { fprintf(stderr, "pl022: error: " fmt , ##args); exit(1);} while (0)
20 #else
21 #define DPRINTF(fmt, args...) do {} while(0)
22 #define BADF(fmt, args...) \
23 do { fprintf(stderr, "pl022: error: " fmt , ##args);} while (0)
24 #endif
26 #define PL022_CR1_LBM 0x01
27 #define PL022_CR1_SSE 0x02
28 #define PL022_CR1_MS 0x04
29 #define PL022_CR1_SDO 0x08
31 #define PL022_SR_TFE 0x01
32 #define PL022_SR_TNF 0x02
33 #define PL022_SR_RNE 0x04
34 #define PL022_SR_RFF 0x08
35 #define PL022_SR_BSY 0x10
37 #define PL022_INT_ROR 0x01
38 #define PL022_INT_RT 0x04
39 #define PL022_INT_RX 0x04
40 #define PL022_INT_TX 0x08
42 typedef struct {
43 uint32_t base;
44 uint32_t cr0;
45 uint32_t cr1;
46 uint32_t bitmask;
47 uint32_t sr;
48 uint32_t cpsr;
49 uint32_t is;
50 uint32_t im;
51 /* The FIFO head points to the next empty entry. */
52 int tx_fifo_head;
53 int rx_fifo_head;
54 int tx_fifo_len;
55 int rx_fifo_len;
56 uint16_t tx_fifo[8];
57 uint16_t rx_fifo[8];
58 qemu_irq irq;
59 int (*xfer_cb)(void *, int);
60 void *opaque;
61 } pl022_state;
63 static const unsigned char pl022_id[8] =
64 { 0x22, 0x10, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
66 static void pl022_update(pl022_state *s)
68 s->sr = 0;
69 if (s->tx_fifo_len == 0)
70 s->sr |= PL022_SR_TFE;
71 if (s->tx_fifo_len != 8)
72 s->sr |= PL022_SR_TNF;
73 if (s->rx_fifo_len != 0)
74 s->sr |= PL022_SR_RNE;
75 if (s->rx_fifo_len == 8)
76 s->sr |= PL022_SR_RFF;
77 if (s->tx_fifo_len)
78 s->sr |= PL022_SR_BSY;
79 s->is = 0;
80 if (s->rx_fifo_len >= 4)
81 s->is |= PL022_INT_RX;
82 if (s->tx_fifo_len <= 4)
83 s->is |= PL022_INT_TX;
85 qemu_set_irq(s->irq, (s->is & s->im) != 0);
88 static void pl022_xfer(pl022_state *s)
90 int i;
91 int o;
92 int val;
94 if ((s->cr1 & PL022_CR1_SSE) == 0) {
95 pl022_update(s);
96 DPRINTF("Disabled\n");
97 return;
100 DPRINTF("Maybe xfer %d/%d\n", s->tx_fifo_len, s->rx_fifo_len);
101 i = (s->tx_fifo_head - s->tx_fifo_len) & 7;
102 o = s->rx_fifo_head;
103 /* ??? We do not emulate the line speed.
104 This may break some applications. The are two problematic cases:
105 (a) A driver feeds data into the TX FIFO until it is full,
106 and only then drains the RX FIFO. On real hardware the CPU can
107 feed data fast enough that the RX fifo never gets chance to overflow.
108 (b) A driver transmits data, deliberately allowing the RX FIFO to
109 overflow because it ignores the RX data anyway.
111 We choose to support (a) by stalling the transmit engine if it would
112 cause the RX FIFO to overflow. In practice much transmit-only code
113 falls into (a) because it flushes the RX FIFO to determine when
114 the transfer has completed. */
115 while (s->tx_fifo_len && s->rx_fifo_len < 8) {
116 DPRINTF("xfer\n");
117 val = s->tx_fifo[i];
118 if (s->cr1 & PL022_CR1_LBM) {
119 /* Loopback mode. */
120 } else if (s->xfer_cb) {
121 val = s->xfer_cb(s->opaque, val);
122 } else {
123 val = 0;
125 s->rx_fifo[o] = val & s->bitmask;
126 i = (i + 1) & 7;
127 o = (o + 1) & 7;
128 s->tx_fifo_len--;
129 s->rx_fifo_len++;
131 s->rx_fifo_head = o;
132 pl022_update(s);
135 static uint32_t pl022_read(void *opaque, target_phys_addr_t offset)
137 pl022_state *s = (pl022_state *)opaque;
138 int val;
140 offset -= s->base;
141 if (offset >= 0xfe0 && offset < 0x1000) {
142 return pl022_id[(offset - 0xfe0) >> 2];
144 switch (offset) {
145 case 0x00: /* CR0 */
146 return s->cr0;
147 case 0x04: /* CR1 */
148 return s->cr1;
149 case 0x08: /* DR */
150 if (s->rx_fifo_len) {
151 val = s->rx_fifo[(s->rx_fifo_head - s->rx_fifo_len) & 7];
152 DPRINTF("RX %02x\n", val);
153 s->rx_fifo_len--;
154 pl022_xfer(s);
155 } else {
156 val = 0;
158 return val;
159 case 0x0c: /* SR */
160 return s->sr;
161 case 0x10: /* CPSR */
162 return s->cpsr;
163 case 0x14: /* IMSC */
164 return s->im;
165 case 0x18: /* RIS */
166 return s->is;
167 case 0x1c: /* MIS */
168 return s->im & s->is;
169 case 0x20: /* DMACR */
170 /* Not implemented. */
171 return 0;
172 default:
173 cpu_abort (cpu_single_env, "pl022_read: Bad offset %x\n",
174 (int)offset);
175 return 0;
179 static void pl022_write(void *opaque, target_phys_addr_t offset,
180 uint32_t value)
182 pl022_state *s = (pl022_state *)opaque;
184 offset -= s->base;
185 switch (offset) {
186 case 0x00: /* CR0 */
187 s->cr0 = value;
188 /* Clock rate and format are ignored. */
189 s->bitmask = (1 << ((value & 15) + 1)) - 1;
190 break;
191 case 0x04: /* CR1 */
192 s->cr1 = value;
193 if ((s->cr1 & (PL022_CR1_MS | PL022_CR1_SSE))
194 == (PL022_CR1_MS | PL022_CR1_SSE)) {
195 BADF("SPI slave mode not implemented\n");
197 pl022_xfer(s);
198 break;
199 case 0x08: /* DR */
200 if (s->tx_fifo_len < 8) {
201 DPRINTF("TX %02x\n", value);
202 s->tx_fifo[s->tx_fifo_head] = value & s->bitmask;
203 s->tx_fifo_head = (s->tx_fifo_head + 1) & 7;
204 s->tx_fifo_len++;
205 pl022_xfer(s);
207 break;
208 case 0x10: /* CPSR */
209 /* Prescaler. Ignored. */
210 s->cpsr = value & 0xff;
211 break;
212 case 0x14: /* IMSC */
213 s->im = value;
214 pl022_update(s);
215 break;
216 case 0x20: /* DMACR */
217 if (value)
218 cpu_abort (cpu_single_env, "pl022: DMA not implemented\n");
219 break;
220 default:
221 cpu_abort (cpu_single_env, "pl022_write: Bad offset %x\n",
222 (int)offset);
226 static void pl022_reset(pl022_state *s)
228 s->rx_fifo_len = 0;
229 s->tx_fifo_len = 0;
230 s->im = 0;
231 s->is = PL022_INT_TX;
232 s->sr = PL022_SR_TFE | PL022_SR_TNF;
235 static CPUReadMemoryFunc *pl022_readfn[] = {
236 pl022_read,
237 pl022_read,
238 pl022_read
241 static CPUWriteMemoryFunc *pl022_writefn[] = {
242 pl022_write,
243 pl022_write,
244 pl022_write
247 static void pl022_save(QEMUFile *f, void *opaque)
249 pl022_state *s = (pl022_state *)opaque;
250 int i;
252 qemu_put_be32(f, s->cr0);
253 qemu_put_be32(f, s->cr1);
254 qemu_put_be32(f, s->bitmask);
255 qemu_put_be32(f, s->sr);
256 qemu_put_be32(f, s->cpsr);
257 qemu_put_be32(f, s->is);
258 qemu_put_be32(f, s->im);
259 qemu_put_be32(f, s->tx_fifo_head);
260 qemu_put_be32(f, s->rx_fifo_head);
261 qemu_put_be32(f, s->tx_fifo_len);
262 qemu_put_be32(f, s->rx_fifo_len);
263 for (i = 0; i < 8; i++) {
264 qemu_put_be16(f, s->tx_fifo[i]);
265 qemu_put_be16(f, s->rx_fifo[i]);
269 static int pl022_load(QEMUFile *f, void *opaque, int version_id)
271 pl022_state *s = (pl022_state *)opaque;
272 int i;
274 if (version_id != 1)
275 return -EINVAL;
277 s->cr0 = qemu_get_be32(f);
278 s->cr1 = qemu_get_be32(f);
279 s->bitmask = qemu_get_be32(f);
280 s->sr = qemu_get_be32(f);
281 s->cpsr = qemu_get_be32(f);
282 s->is = qemu_get_be32(f);
283 s->im = qemu_get_be32(f);
284 s->tx_fifo_head = qemu_get_be32(f);
285 s->rx_fifo_head = qemu_get_be32(f);
286 s->tx_fifo_len = qemu_get_be32(f);
287 s->rx_fifo_len = qemu_get_be32(f);
288 for (i = 0; i < 8; i++) {
289 s->tx_fifo[i] = qemu_get_be16(f);
290 s->rx_fifo[i] = qemu_get_be16(f);
293 return 0;
296 void pl022_init(uint32_t base, qemu_irq irq, int (*xfer_cb)(void *, int),
297 void * opaque)
299 int iomemtype;
300 pl022_state *s;
302 s = (pl022_state *)qemu_mallocz(sizeof(pl022_state));
303 iomemtype = cpu_register_io_memory(0, pl022_readfn,
304 pl022_writefn, s);
305 cpu_register_physical_memory(base, 0x00001000, iomemtype);
306 s->base = base;
307 s->irq = irq;
308 s->xfer_cb = xfer_cb;
309 s->opaque = opaque;
310 pl022_reset(s);
311 register_savevm("pl022_ssp", -1, 1, pl022_save, pl022_load, s);