Merge branch 'upstream-merge'
[qemu-kvm/markmc.git] / exec.c
blobfcffb0f305c628d780480a61847623e77931b5af
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "cache-utils.h"
39 #if !defined(TARGET_IA64)
40 #include "tcg.h"
41 #endif
42 #include "qemu-kvm.h"
44 #include "hw/hw.h"
45 #include "osdep.h"
46 #include "kvm.h"
47 #if defined(CONFIG_USER_ONLY)
48 #include <qemu.h>
49 #endif
51 //#define DEBUG_TB_INVALIDATE
52 //#define DEBUG_FLUSH
53 //#define DEBUG_TLB
54 //#define DEBUG_UNASSIGNED
56 /* make various TB consistency checks */
57 //#define DEBUG_TB_CHECK
58 //#define DEBUG_TLB_CHECK
60 //#define DEBUG_IOPORT
61 //#define DEBUG_SUBPAGE
63 #if !defined(CONFIG_USER_ONLY)
64 /* TB consistency checks only implemented for usermode emulation. */
65 #undef DEBUG_TB_CHECK
66 #endif
68 #define SMC_BITMAP_USE_THRESHOLD 10
70 #if defined(TARGET_SPARC64)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 41
72 #elif defined(TARGET_SPARC)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 36
74 #elif defined(TARGET_ALPHA)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #define TARGET_VIRT_ADDR_SPACE_BITS 42
77 #elif defined(TARGET_PPC64)
78 #define TARGET_PHYS_ADDR_SPACE_BITS 42
79 #elif defined(TARGET_X86_64)
80 #define TARGET_PHYS_ADDR_SPACE_BITS 42
81 #elif defined(TARGET_I386)
82 #define TARGET_PHYS_ADDR_SPACE_BITS 36
83 #elif defined(TARGET_IA64)
84 #define TARGET_PHYS_ADDR_SPACE_BITS 36
85 #else
86 #define TARGET_PHYS_ADDR_SPACE_BITS 32
87 #endif
89 static TranslationBlock *tbs;
90 int code_gen_max_blocks;
91 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
92 static int nb_tbs;
93 /* any access to the tbs or the page table must use this lock */
94 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
96 #if defined(__arm__) || defined(__sparc_v9__)
97 /* The prologue must be reachable with a direct jump. ARM and Sparc64
98 have limited branch ranges (possibly also PPC) so place it in a
99 section close to code segment. */
100 #define code_gen_section \
101 __attribute__((__section__(".gen_code"))) \
102 __attribute__((aligned (32)))
103 #elif defined(_WIN32)
104 /* Maximum alignment for Win32 is 16. */
105 #define code_gen_section \
106 __attribute__((aligned (16)))
107 #else
108 #define code_gen_section \
109 __attribute__((aligned (32)))
110 #endif
112 uint8_t code_gen_prologue[1024] code_gen_section;
113 static uint8_t *code_gen_buffer;
114 static unsigned long code_gen_buffer_size;
115 /* threshold to flush the translated code buffer */
116 static unsigned long code_gen_buffer_max_size;
117 uint8_t *code_gen_ptr;
119 #if !defined(CONFIG_USER_ONLY)
120 int phys_ram_fd;
121 uint8_t *phys_ram_dirty;
122 uint8_t *bios_mem;
123 static int in_migration;
125 typedef struct RAMBlock {
126 uint8_t *host;
127 ram_addr_t offset;
128 ram_addr_t length;
129 struct RAMBlock *next;
130 } RAMBlock;
132 static RAMBlock *ram_blocks;
133 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
134 then we can no longer assume contiguous ram offsets, and external uses
135 of this variable will break. */
136 ram_addr_t last_ram_offset;
137 #endif
139 CPUState *first_cpu;
140 /* current CPU in the current thread. It is only valid inside
141 cpu_exec() */
142 CPUState *cpu_single_env;
143 /* 0 = Do not count executed instructions.
144 1 = Precise instruction counting.
145 2 = Adaptive rate instruction counting. */
146 int use_icount = 0;
147 /* Current instruction counter. While executing translated code this may
148 include some instructions that have not yet been executed. */
149 int64_t qemu_icount;
151 typedef struct PageDesc {
152 /* list of TBs intersecting this ram page */
153 TranslationBlock *first_tb;
154 /* in order to optimize self modifying code, we count the number
155 of lookups we do to a given page to use a bitmap */
156 unsigned int code_write_count;
157 uint8_t *code_bitmap;
158 #if defined(CONFIG_USER_ONLY)
159 unsigned long flags;
160 #endif
161 } PageDesc;
163 typedef struct PhysPageDesc {
164 /* offset in host memory of the page + io_index in the low bits */
165 ram_addr_t phys_offset;
166 ram_addr_t region_offset;
167 } PhysPageDesc;
169 #define L2_BITS 10
170 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
171 /* XXX: this is a temporary hack for alpha target.
172 * In the future, this is to be replaced by a multi-level table
173 * to actually be able to handle the complete 64 bits address space.
175 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
176 #else
177 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
178 #endif
180 #define L1_SIZE (1 << L1_BITS)
181 #define L2_SIZE (1 << L2_BITS)
183 unsigned long qemu_real_host_page_size;
184 unsigned long qemu_host_page_bits;
185 unsigned long qemu_host_page_size;
186 unsigned long qemu_host_page_mask;
188 /* XXX: for system emulation, it could just be an array */
189 static PageDesc *l1_map[L1_SIZE];
190 static PhysPageDesc **l1_phys_map;
192 #if !defined(CONFIG_USER_ONLY)
193 static void io_mem_init(void);
195 /* io memory support */
196 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
197 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
198 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
199 static char io_mem_used[IO_MEM_NB_ENTRIES];
200 static int io_mem_watch;
201 #endif
203 /* log support */
204 static const char *logfilename = "/tmp/qemu.log";
205 FILE *logfile;
206 int loglevel;
207 static int log_append = 0;
209 /* statistics */
210 static int tlb_flush_count;
211 static int tb_flush_count;
212 static int tb_phys_invalidate_count;
214 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
215 typedef struct subpage_t {
216 target_phys_addr_t base;
217 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
218 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
219 void *opaque[TARGET_PAGE_SIZE][2][4];
220 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
221 } subpage_t;
223 #ifdef _WIN32
224 static void map_exec(void *addr, long size)
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
231 #else
232 static void map_exec(void *addr, long size)
234 unsigned long start, end, page_size;
236 page_size = getpagesize();
237 start = (unsigned long)addr;
238 start &= ~(page_size - 1);
240 end = (unsigned long)addr + size;
241 end += page_size - 1;
242 end &= ~(page_size - 1);
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
247 #endif
249 static void page_init(void)
251 /* NOTE: we can always suppose that qemu_host_page_size >=
252 TARGET_PAGE_SIZE */
253 #ifdef _WIN32
255 SYSTEM_INFO system_info;
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
260 #else
261 qemu_real_host_page_size = getpagesize();
262 #endif
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
267 qemu_host_page_bits = 0;
268 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
269 qemu_host_page_bits++;
270 qemu_host_page_mask = ~(qemu_host_page_size - 1);
271 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
272 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
274 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
276 long long startaddr, endaddr;
277 FILE *f;
278 int n;
280 mmap_lock();
281 last_brk = (unsigned long)sbrk(0);
282 f = fopen("/proc/self/maps", "r");
283 if (f) {
284 do {
285 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
286 if (n == 2) {
287 startaddr = MIN(startaddr,
288 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
289 endaddr = MIN(endaddr,
290 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
291 page_set_flags(startaddr & TARGET_PAGE_MASK,
292 TARGET_PAGE_ALIGN(endaddr),
293 PAGE_RESERVED);
295 } while (!feof(f));
296 fclose(f);
298 mmap_unlock();
300 #endif
303 static inline PageDesc **page_l1_map(target_ulong index)
305 #if TARGET_LONG_BITS > 32
306 /* Host memory outside guest VM. For 32-bit targets we have already
307 excluded high addresses. */
308 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
309 return NULL;
310 #endif
311 return &l1_map[index >> L2_BITS];
314 static inline PageDesc *page_find_alloc(target_ulong index)
316 PageDesc **lp, *p;
317 lp = page_l1_map(index);
318 if (!lp)
319 return NULL;
321 p = *lp;
322 if (!p) {
323 /* allocate if not found */
324 #if defined(CONFIG_USER_ONLY)
325 size_t len = sizeof(PageDesc) * L2_SIZE;
326 /* Don't use qemu_malloc because it may recurse. */
327 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
328 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
329 *lp = p;
330 if (h2g_valid(p)) {
331 unsigned long addr = h2g(p);
332 page_set_flags(addr & TARGET_PAGE_MASK,
333 TARGET_PAGE_ALIGN(addr + len),
334 PAGE_RESERVED);
336 #else
337 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
338 *lp = p;
339 #endif
341 return p + (index & (L2_SIZE - 1));
344 static inline PageDesc *page_find(target_ulong index)
346 PageDesc **lp, *p;
347 lp = page_l1_map(index);
348 if (!lp)
349 return NULL;
351 p = *lp;
352 if (!p) {
353 return NULL;
355 return p + (index & (L2_SIZE - 1));
358 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
360 void **lp, **p;
361 PhysPageDesc *pd;
363 p = (void **)l1_phys_map;
364 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
366 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
367 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
368 #endif
369 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
370 p = *lp;
371 if (!p) {
372 /* allocate if not found */
373 if (!alloc)
374 return NULL;
375 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
376 memset(p, 0, sizeof(void *) * L1_SIZE);
377 *lp = p;
379 #endif
380 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
381 pd = *lp;
382 if (!pd) {
383 int i;
384 /* allocate if not found */
385 if (!alloc)
386 return NULL;
387 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
388 *lp = pd;
389 for (i = 0; i < L2_SIZE; i++) {
390 pd[i].phys_offset = IO_MEM_UNASSIGNED;
391 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
394 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
397 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
399 return phys_page_find_alloc(index, 0);
402 #if !defined(CONFIG_USER_ONLY)
403 static void tlb_protect_code(ram_addr_t ram_addr);
404 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
405 target_ulong vaddr);
406 #define mmap_lock() do { } while(0)
407 #define mmap_unlock() do { } while(0)
408 #endif
410 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
412 #if defined(CONFIG_USER_ONLY)
413 /* Currently it is not recommended to allocate big chunks of data in
414 user mode. It will change when a dedicated libc will be used */
415 #define USE_STATIC_CODE_GEN_BUFFER
416 #endif
418 #ifdef USE_STATIC_CODE_GEN_BUFFER
419 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
420 #endif
422 static void code_gen_alloc(unsigned long tb_size)
424 if (kvm_enabled())
425 return;
427 #ifdef USE_STATIC_CODE_GEN_BUFFER
428 code_gen_buffer = static_code_gen_buffer;
429 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
430 map_exec(code_gen_buffer, code_gen_buffer_size);
431 #else
432 code_gen_buffer_size = tb_size;
433 if (code_gen_buffer_size == 0) {
434 #if defined(CONFIG_USER_ONLY)
435 /* in user mode, phys_ram_size is not meaningful */
436 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
437 #else
438 /* XXX: needs adjustments */
439 code_gen_buffer_size = (unsigned long)(ram_size / 4);
440 #endif
442 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
443 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
444 /* The code gen buffer location may have constraints depending on
445 the host cpu and OS */
446 #if defined(__linux__)
448 int flags;
449 void *start = NULL;
451 flags = MAP_PRIVATE | MAP_ANONYMOUS;
452 #if defined(__x86_64__)
453 flags |= MAP_32BIT;
454 /* Cannot map more than that */
455 if (code_gen_buffer_size > (800 * 1024 * 1024))
456 code_gen_buffer_size = (800 * 1024 * 1024);
457 #elif defined(__sparc_v9__)
458 // Map the buffer below 2G, so we can use direct calls and branches
459 flags |= MAP_FIXED;
460 start = (void *) 0x60000000UL;
461 if (code_gen_buffer_size > (512 * 1024 * 1024))
462 code_gen_buffer_size = (512 * 1024 * 1024);
463 #elif defined(__arm__)
464 /* Map the buffer below 32M, so we can use direct calls and branches */
465 flags |= MAP_FIXED;
466 start = (void *) 0x01000000UL;
467 if (code_gen_buffer_size > 16 * 1024 * 1024)
468 code_gen_buffer_size = 16 * 1024 * 1024;
469 #endif
470 code_gen_buffer = mmap(start, code_gen_buffer_size,
471 PROT_WRITE | PROT_READ | PROT_EXEC,
472 flags, -1, 0);
473 if (code_gen_buffer == MAP_FAILED) {
474 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
475 exit(1);
478 #elif defined(__FreeBSD__) || defined(__DragonFly__)
480 int flags;
481 void *addr = NULL;
482 flags = MAP_PRIVATE | MAP_ANONYMOUS;
483 #if defined(__x86_64__)
484 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
485 * 0x40000000 is free */
486 flags |= MAP_FIXED;
487 addr = (void *)0x40000000;
488 /* Cannot map more than that */
489 if (code_gen_buffer_size > (800 * 1024 * 1024))
490 code_gen_buffer_size = (800 * 1024 * 1024);
491 #endif
492 code_gen_buffer = mmap(addr, code_gen_buffer_size,
493 PROT_WRITE | PROT_READ | PROT_EXEC,
494 flags, -1, 0);
495 if (code_gen_buffer == MAP_FAILED) {
496 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
497 exit(1);
500 #else
501 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
502 map_exec(code_gen_buffer, code_gen_buffer_size);
503 #endif
504 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
505 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
506 code_gen_buffer_max_size = code_gen_buffer_size -
507 code_gen_max_block_size();
508 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
509 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
512 /* Must be called before using the QEMU cpus. 'tb_size' is the size
513 (in bytes) allocated to the translation buffer. Zero means default
514 size. */
515 void cpu_exec_init_all(unsigned long tb_size)
517 cpu_gen_init();
518 code_gen_alloc(tb_size);
519 code_gen_ptr = code_gen_buffer;
520 page_init();
521 #if !defined(CONFIG_USER_ONLY)
522 io_mem_init();
523 #endif
526 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
528 static void cpu_common_pre_save(void *opaque)
530 CPUState *env = opaque;
532 cpu_synchronize_state(env);
535 static int cpu_common_pre_load(void *opaque)
537 CPUState *env = opaque;
539 cpu_synchronize_state(env);
540 return 0;
543 static int cpu_common_post_load(void *opaque, int version_id)
545 CPUState *env = opaque;
547 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
548 version_id is increased. */
549 env->interrupt_request &= ~0x01;
550 tlb_flush(env, 1);
552 return 0;
555 static const VMStateDescription vmstate_cpu_common = {
556 .name = "cpu_common",
557 .version_id = 1,
558 .minimum_version_id = 1,
559 .minimum_version_id_old = 1,
560 .pre_save = cpu_common_pre_save,
561 .pre_load = cpu_common_pre_load,
562 .post_load = cpu_common_post_load,
563 .fields = (VMStateField []) {
564 VMSTATE_UINT32(halted, CPUState),
565 VMSTATE_UINT32(interrupt_request, CPUState),
566 VMSTATE_END_OF_LIST()
569 #endif
571 CPUState *qemu_get_cpu(int cpu)
573 CPUState *env = first_cpu;
575 while (env) {
576 if (env->cpu_index == cpu)
577 break;
578 env = env->next_cpu;
581 return env;
584 void cpu_exec_init(CPUState *env)
586 CPUState **penv;
587 int cpu_index;
589 #if defined(CONFIG_USER_ONLY)
590 cpu_list_lock();
591 #endif
592 env->next_cpu = NULL;
593 penv = &first_cpu;
594 cpu_index = 0;
595 while (*penv != NULL) {
596 penv = &(*penv)->next_cpu;
597 cpu_index++;
599 env->cpu_index = cpu_index;
600 env->numa_node = 0;
601 QTAILQ_INIT(&env->breakpoints);
602 QTAILQ_INIT(&env->watchpoints);
603 #ifdef __WIN32
604 env->thread_id = GetCurrentProcessId();
605 #else
606 env->thread_id = getpid();
607 #endif
608 *penv = env;
609 #if defined(CONFIG_USER_ONLY)
610 cpu_list_unlock();
611 #endif
612 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
613 vmstate_register(cpu_index, &vmstate_cpu_common, env);
614 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
615 cpu_save, cpu_load, env);
616 #endif
619 static inline void invalidate_page_bitmap(PageDesc *p)
621 if (p->code_bitmap) {
622 qemu_free(p->code_bitmap);
623 p->code_bitmap = NULL;
625 p->code_write_count = 0;
628 /* set to NULL all the 'first_tb' fields in all PageDescs */
629 static void page_flush_tb(void)
631 int i, j;
632 PageDesc *p;
634 for(i = 0; i < L1_SIZE; i++) {
635 p = l1_map[i];
636 if (p) {
637 for(j = 0; j < L2_SIZE; j++) {
638 p->first_tb = NULL;
639 invalidate_page_bitmap(p);
640 p++;
646 /* flush all the translation blocks */
647 /* XXX: tb_flush is currently not thread safe */
648 void tb_flush(CPUState *env1)
650 CPUState *env;
651 #if defined(DEBUG_FLUSH)
652 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
653 (unsigned long)(code_gen_ptr - code_gen_buffer),
654 nb_tbs, nb_tbs > 0 ?
655 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
656 #endif
657 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
658 cpu_abort(env1, "Internal error: code buffer overflow\n");
660 nb_tbs = 0;
662 for(env = first_cpu; env != NULL; env = env->next_cpu) {
663 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
666 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
667 page_flush_tb();
669 code_gen_ptr = code_gen_buffer;
670 /* XXX: flush processor icache at this point if cache flush is
671 expensive */
672 tb_flush_count++;
675 #ifdef DEBUG_TB_CHECK
677 static void tb_invalidate_check(target_ulong address)
679 TranslationBlock *tb;
680 int i;
681 address &= TARGET_PAGE_MASK;
682 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
683 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
684 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
685 address >= tb->pc + tb->size)) {
686 printf("ERROR invalidate: address=" TARGET_FMT_lx
687 " PC=%08lx size=%04x\n",
688 address, (long)tb->pc, tb->size);
694 /* verify that all the pages have correct rights for code */
695 static void tb_page_check(void)
697 TranslationBlock *tb;
698 int i, flags1, flags2;
700 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
701 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
702 flags1 = page_get_flags(tb->pc);
703 flags2 = page_get_flags(tb->pc + tb->size - 1);
704 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
705 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
706 (long)tb->pc, tb->size, flags1, flags2);
712 #endif
714 /* invalidate one TB */
715 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
716 int next_offset)
718 TranslationBlock *tb1;
719 for(;;) {
720 tb1 = *ptb;
721 if (tb1 == tb) {
722 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
723 break;
725 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
729 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
731 TranslationBlock *tb1;
732 unsigned int n1;
734 for(;;) {
735 tb1 = *ptb;
736 n1 = (long)tb1 & 3;
737 tb1 = (TranslationBlock *)((long)tb1 & ~3);
738 if (tb1 == tb) {
739 *ptb = tb1->page_next[n1];
740 break;
742 ptb = &tb1->page_next[n1];
746 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
748 TranslationBlock *tb1, **ptb;
749 unsigned int n1;
751 ptb = &tb->jmp_next[n];
752 tb1 = *ptb;
753 if (tb1) {
754 /* find tb(n) in circular list */
755 for(;;) {
756 tb1 = *ptb;
757 n1 = (long)tb1 & 3;
758 tb1 = (TranslationBlock *)((long)tb1 & ~3);
759 if (n1 == n && tb1 == tb)
760 break;
761 if (n1 == 2) {
762 ptb = &tb1->jmp_first;
763 } else {
764 ptb = &tb1->jmp_next[n1];
767 /* now we can suppress tb(n) from the list */
768 *ptb = tb->jmp_next[n];
770 tb->jmp_next[n] = NULL;
774 /* reset the jump entry 'n' of a TB so that it is not chained to
775 another TB */
776 static inline void tb_reset_jump(TranslationBlock *tb, int n)
778 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
781 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
783 CPUState *env;
784 PageDesc *p;
785 unsigned int h, n1;
786 target_phys_addr_t phys_pc;
787 TranslationBlock *tb1, *tb2;
789 /* remove the TB from the hash list */
790 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
791 h = tb_phys_hash_func(phys_pc);
792 tb_remove(&tb_phys_hash[h], tb,
793 offsetof(TranslationBlock, phys_hash_next));
795 /* remove the TB from the page list */
796 if (tb->page_addr[0] != page_addr) {
797 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
798 tb_page_remove(&p->first_tb, tb);
799 invalidate_page_bitmap(p);
801 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
802 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
803 tb_page_remove(&p->first_tb, tb);
804 invalidate_page_bitmap(p);
807 tb_invalidated_flag = 1;
809 /* remove the TB from the hash list */
810 h = tb_jmp_cache_hash_func(tb->pc);
811 for(env = first_cpu; env != NULL; env = env->next_cpu) {
812 if (env->tb_jmp_cache[h] == tb)
813 env->tb_jmp_cache[h] = NULL;
816 /* suppress this TB from the two jump lists */
817 tb_jmp_remove(tb, 0);
818 tb_jmp_remove(tb, 1);
820 /* suppress any remaining jumps to this TB */
821 tb1 = tb->jmp_first;
822 for(;;) {
823 n1 = (long)tb1 & 3;
824 if (n1 == 2)
825 break;
826 tb1 = (TranslationBlock *)((long)tb1 & ~3);
827 tb2 = tb1->jmp_next[n1];
828 tb_reset_jump(tb1, n1);
829 tb1->jmp_next[n1] = NULL;
830 tb1 = tb2;
832 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
834 tb_phys_invalidate_count++;
837 static inline void set_bits(uint8_t *tab, int start, int len)
839 int end, mask, end1;
841 end = start + len;
842 tab += start >> 3;
843 mask = 0xff << (start & 7);
844 if ((start & ~7) == (end & ~7)) {
845 if (start < end) {
846 mask &= ~(0xff << (end & 7));
847 *tab |= mask;
849 } else {
850 *tab++ |= mask;
851 start = (start + 8) & ~7;
852 end1 = end & ~7;
853 while (start < end1) {
854 *tab++ = 0xff;
855 start += 8;
857 if (start < end) {
858 mask = ~(0xff << (end & 7));
859 *tab |= mask;
864 static void build_page_bitmap(PageDesc *p)
866 int n, tb_start, tb_end;
867 TranslationBlock *tb;
869 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
871 tb = p->first_tb;
872 while (tb != NULL) {
873 n = (long)tb & 3;
874 tb = (TranslationBlock *)((long)tb & ~3);
875 /* NOTE: this is subtle as a TB may span two physical pages */
876 if (n == 0) {
877 /* NOTE: tb_end may be after the end of the page, but
878 it is not a problem */
879 tb_start = tb->pc & ~TARGET_PAGE_MASK;
880 tb_end = tb_start + tb->size;
881 if (tb_end > TARGET_PAGE_SIZE)
882 tb_end = TARGET_PAGE_SIZE;
883 } else {
884 tb_start = 0;
885 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
887 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
888 tb = tb->page_next[n];
892 TranslationBlock *tb_gen_code(CPUState *env,
893 target_ulong pc, target_ulong cs_base,
894 int flags, int cflags)
896 TranslationBlock *tb;
897 uint8_t *tc_ptr;
898 target_ulong phys_pc, phys_page2, virt_page2;
899 int code_gen_size;
901 phys_pc = get_phys_addr_code(env, pc);
902 tb = tb_alloc(pc);
903 if (!tb) {
904 /* flush must be done */
905 tb_flush(env);
906 /* cannot fail at this point */
907 tb = tb_alloc(pc);
908 /* Don't forget to invalidate previous TB info. */
909 tb_invalidated_flag = 1;
911 tc_ptr = code_gen_ptr;
912 tb->tc_ptr = tc_ptr;
913 tb->cs_base = cs_base;
914 tb->flags = flags;
915 tb->cflags = cflags;
916 cpu_gen_code(env, tb, &code_gen_size);
917 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
919 /* check next page if needed */
920 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
921 phys_page2 = -1;
922 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
923 phys_page2 = get_phys_addr_code(env, virt_page2);
925 tb_link_phys(tb, phys_pc, phys_page2);
926 return tb;
929 /* invalidate all TBs which intersect with the target physical page
930 starting in range [start;end[. NOTE: start and end must refer to
931 the same physical page. 'is_cpu_write_access' should be true if called
932 from a real cpu write access: the virtual CPU will exit the current
933 TB if code is modified inside this TB. */
934 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
935 int is_cpu_write_access)
937 TranslationBlock *tb, *tb_next, *saved_tb;
938 CPUState *env = cpu_single_env;
939 target_ulong tb_start, tb_end;
940 PageDesc *p;
941 int n;
942 #ifdef TARGET_HAS_PRECISE_SMC
943 int current_tb_not_found = is_cpu_write_access;
944 TranslationBlock *current_tb = NULL;
945 int current_tb_modified = 0;
946 target_ulong current_pc = 0;
947 target_ulong current_cs_base = 0;
948 int current_flags = 0;
949 #endif /* TARGET_HAS_PRECISE_SMC */
951 p = page_find(start >> TARGET_PAGE_BITS);
952 if (!p)
953 return;
954 if (!p->code_bitmap &&
955 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
956 is_cpu_write_access) {
957 /* build code bitmap */
958 build_page_bitmap(p);
961 /* we remove all the TBs in the range [start, end[ */
962 /* XXX: see if in some cases it could be faster to invalidate all the code */
963 tb = p->first_tb;
964 while (tb != NULL) {
965 n = (long)tb & 3;
966 tb = (TranslationBlock *)((long)tb & ~3);
967 tb_next = tb->page_next[n];
968 /* NOTE: this is subtle as a TB may span two physical pages */
969 if (n == 0) {
970 /* NOTE: tb_end may be after the end of the page, but
971 it is not a problem */
972 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
973 tb_end = tb_start + tb->size;
974 } else {
975 tb_start = tb->page_addr[1];
976 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
978 if (!(tb_end <= start || tb_start >= end)) {
979 #ifdef TARGET_HAS_PRECISE_SMC
980 if (current_tb_not_found) {
981 current_tb_not_found = 0;
982 current_tb = NULL;
983 if (env->mem_io_pc) {
984 /* now we have a real cpu fault */
985 current_tb = tb_find_pc(env->mem_io_pc);
988 if (current_tb == tb &&
989 (current_tb->cflags & CF_COUNT_MASK) != 1) {
990 /* If we are modifying the current TB, we must stop
991 its execution. We could be more precise by checking
992 that the modification is after the current PC, but it
993 would require a specialized function to partially
994 restore the CPU state */
996 current_tb_modified = 1;
997 cpu_restore_state(current_tb, env,
998 env->mem_io_pc, NULL);
999 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1000 &current_flags);
1002 #endif /* TARGET_HAS_PRECISE_SMC */
1003 /* we need to do that to handle the case where a signal
1004 occurs while doing tb_phys_invalidate() */
1005 saved_tb = NULL;
1006 if (env) {
1007 saved_tb = env->current_tb;
1008 env->current_tb = NULL;
1010 tb_phys_invalidate(tb, -1);
1011 if (env) {
1012 env->current_tb = saved_tb;
1013 if (env->interrupt_request && env->current_tb)
1014 cpu_interrupt(env, env->interrupt_request);
1017 tb = tb_next;
1019 #if !defined(CONFIG_USER_ONLY)
1020 /* if no code remaining, no need to continue to use slow writes */
1021 if (!p->first_tb) {
1022 invalidate_page_bitmap(p);
1023 if (is_cpu_write_access) {
1024 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1027 #endif
1028 #ifdef TARGET_HAS_PRECISE_SMC
1029 if (current_tb_modified) {
1030 /* we generate a block containing just the instruction
1031 modifying the memory. It will ensure that it cannot modify
1032 itself */
1033 env->current_tb = NULL;
1034 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1035 cpu_resume_from_signal(env, NULL);
1037 #endif
1040 /* len must be <= 8 and start must be a multiple of len */
1041 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1043 PageDesc *p;
1044 int offset, b;
1045 #if 0
1046 if (1) {
1047 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1048 cpu_single_env->mem_io_vaddr, len,
1049 cpu_single_env->eip,
1050 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1052 #endif
1053 p = page_find(start >> TARGET_PAGE_BITS);
1054 if (!p)
1055 return;
1056 if (p->code_bitmap) {
1057 offset = start & ~TARGET_PAGE_MASK;
1058 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1059 if (b & ((1 << len) - 1))
1060 goto do_invalidate;
1061 } else {
1062 do_invalidate:
1063 tb_invalidate_phys_page_range(start, start + len, 1);
1067 #if !defined(CONFIG_SOFTMMU)
1068 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1069 unsigned long pc, void *puc)
1071 TranslationBlock *tb;
1072 PageDesc *p;
1073 int n;
1074 #ifdef TARGET_HAS_PRECISE_SMC
1075 TranslationBlock *current_tb = NULL;
1076 CPUState *env = cpu_single_env;
1077 int current_tb_modified = 0;
1078 target_ulong current_pc = 0;
1079 target_ulong current_cs_base = 0;
1080 int current_flags = 0;
1081 #endif
1083 addr &= TARGET_PAGE_MASK;
1084 p = page_find(addr >> TARGET_PAGE_BITS);
1085 if (!p)
1086 return;
1087 tb = p->first_tb;
1088 #ifdef TARGET_HAS_PRECISE_SMC
1089 if (tb && pc != 0) {
1090 current_tb = tb_find_pc(pc);
1092 #endif
1093 while (tb != NULL) {
1094 n = (long)tb & 3;
1095 tb = (TranslationBlock *)((long)tb & ~3);
1096 #ifdef TARGET_HAS_PRECISE_SMC
1097 if (current_tb == tb &&
1098 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1099 /* If we are modifying the current TB, we must stop
1100 its execution. We could be more precise by checking
1101 that the modification is after the current PC, but it
1102 would require a specialized function to partially
1103 restore the CPU state */
1105 current_tb_modified = 1;
1106 cpu_restore_state(current_tb, env, pc, puc);
1107 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1108 &current_flags);
1110 #endif /* TARGET_HAS_PRECISE_SMC */
1111 tb_phys_invalidate(tb, addr);
1112 tb = tb->page_next[n];
1114 p->first_tb = NULL;
1115 #ifdef TARGET_HAS_PRECISE_SMC
1116 if (current_tb_modified) {
1117 /* we generate a block containing just the instruction
1118 modifying the memory. It will ensure that it cannot modify
1119 itself */
1120 env->current_tb = NULL;
1121 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1122 cpu_resume_from_signal(env, puc);
1124 #endif
1126 #endif
1128 /* add the tb in the target page and protect it if necessary */
1129 static inline void tb_alloc_page(TranslationBlock *tb,
1130 unsigned int n, target_ulong page_addr)
1132 PageDesc *p;
1133 TranslationBlock *last_first_tb;
1135 tb->page_addr[n] = page_addr;
1136 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1137 tb->page_next[n] = p->first_tb;
1138 last_first_tb = p->first_tb;
1139 p->first_tb = (TranslationBlock *)((long)tb | n);
1140 invalidate_page_bitmap(p);
1142 #if defined(TARGET_HAS_SMC) || 1
1144 #if defined(CONFIG_USER_ONLY)
1145 if (p->flags & PAGE_WRITE) {
1146 target_ulong addr;
1147 PageDesc *p2;
1148 int prot;
1150 /* force the host page as non writable (writes will have a
1151 page fault + mprotect overhead) */
1152 page_addr &= qemu_host_page_mask;
1153 prot = 0;
1154 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1155 addr += TARGET_PAGE_SIZE) {
1157 p2 = page_find (addr >> TARGET_PAGE_BITS);
1158 if (!p2)
1159 continue;
1160 prot |= p2->flags;
1161 p2->flags &= ~PAGE_WRITE;
1162 page_get_flags(addr);
1164 mprotect(g2h(page_addr), qemu_host_page_size,
1165 (prot & PAGE_BITS) & ~PAGE_WRITE);
1166 #ifdef DEBUG_TB_INVALIDATE
1167 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1168 page_addr);
1169 #endif
1171 #else
1172 /* if some code is already present, then the pages are already
1173 protected. So we handle the case where only the first TB is
1174 allocated in a physical page */
1175 if (!last_first_tb) {
1176 tlb_protect_code(page_addr);
1178 #endif
1180 #endif /* TARGET_HAS_SMC */
1183 /* Allocate a new translation block. Flush the translation buffer if
1184 too many translation blocks or too much generated code. */
1185 TranslationBlock *tb_alloc(target_ulong pc)
1187 TranslationBlock *tb;
1189 if (nb_tbs >= code_gen_max_blocks ||
1190 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1191 return NULL;
1192 tb = &tbs[nb_tbs++];
1193 tb->pc = pc;
1194 tb->cflags = 0;
1195 return tb;
1198 void tb_free(TranslationBlock *tb)
1200 /* In practice this is mostly used for single use temporary TB
1201 Ignore the hard cases and just back up if this TB happens to
1202 be the last one generated. */
1203 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1204 code_gen_ptr = tb->tc_ptr;
1205 nb_tbs--;
1209 /* add a new TB and link it to the physical page tables. phys_page2 is
1210 (-1) to indicate that only one page contains the TB. */
1211 void tb_link_phys(TranslationBlock *tb,
1212 target_ulong phys_pc, target_ulong phys_page2)
1214 unsigned int h;
1215 TranslationBlock **ptb;
1217 /* Grab the mmap lock to stop another thread invalidating this TB
1218 before we are done. */
1219 mmap_lock();
1220 /* add in the physical hash table */
1221 h = tb_phys_hash_func(phys_pc);
1222 ptb = &tb_phys_hash[h];
1223 tb->phys_hash_next = *ptb;
1224 *ptb = tb;
1226 /* add in the page list */
1227 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1228 if (phys_page2 != -1)
1229 tb_alloc_page(tb, 1, phys_page2);
1230 else
1231 tb->page_addr[1] = -1;
1233 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1234 tb->jmp_next[0] = NULL;
1235 tb->jmp_next[1] = NULL;
1237 /* init original jump addresses */
1238 if (tb->tb_next_offset[0] != 0xffff)
1239 tb_reset_jump(tb, 0);
1240 if (tb->tb_next_offset[1] != 0xffff)
1241 tb_reset_jump(tb, 1);
1243 #ifdef DEBUG_TB_CHECK
1244 tb_page_check();
1245 #endif
1246 mmap_unlock();
1249 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1250 tb[1].tc_ptr. Return NULL if not found */
1251 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1253 int m_min, m_max, m;
1254 unsigned long v;
1255 TranslationBlock *tb;
1257 if (nb_tbs <= 0)
1258 return NULL;
1259 if (tc_ptr < (unsigned long)code_gen_buffer ||
1260 tc_ptr >= (unsigned long)code_gen_ptr)
1261 return NULL;
1262 /* binary search (cf Knuth) */
1263 m_min = 0;
1264 m_max = nb_tbs - 1;
1265 while (m_min <= m_max) {
1266 m = (m_min + m_max) >> 1;
1267 tb = &tbs[m];
1268 v = (unsigned long)tb->tc_ptr;
1269 if (v == tc_ptr)
1270 return tb;
1271 else if (tc_ptr < v) {
1272 m_max = m - 1;
1273 } else {
1274 m_min = m + 1;
1277 return &tbs[m_max];
1280 static void tb_reset_jump_recursive(TranslationBlock *tb);
1282 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1284 TranslationBlock *tb1, *tb_next, **ptb;
1285 unsigned int n1;
1287 tb1 = tb->jmp_next[n];
1288 if (tb1 != NULL) {
1289 /* find head of list */
1290 for(;;) {
1291 n1 = (long)tb1 & 3;
1292 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1293 if (n1 == 2)
1294 break;
1295 tb1 = tb1->jmp_next[n1];
1297 /* we are now sure now that tb jumps to tb1 */
1298 tb_next = tb1;
1300 /* remove tb from the jmp_first list */
1301 ptb = &tb_next->jmp_first;
1302 for(;;) {
1303 tb1 = *ptb;
1304 n1 = (long)tb1 & 3;
1305 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1306 if (n1 == n && tb1 == tb)
1307 break;
1308 ptb = &tb1->jmp_next[n1];
1310 *ptb = tb->jmp_next[n];
1311 tb->jmp_next[n] = NULL;
1313 /* suppress the jump to next tb in generated code */
1314 tb_reset_jump(tb, n);
1316 /* suppress jumps in the tb on which we could have jumped */
1317 tb_reset_jump_recursive(tb_next);
1321 static void tb_reset_jump_recursive(TranslationBlock *tb)
1323 tb_reset_jump_recursive2(tb, 0);
1324 tb_reset_jump_recursive2(tb, 1);
1327 #if defined(TARGET_HAS_ICE)
1328 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1330 target_phys_addr_t addr;
1331 target_ulong pd;
1332 ram_addr_t ram_addr;
1333 PhysPageDesc *p;
1335 addr = cpu_get_phys_page_debug(env, pc);
1336 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1337 if (!p) {
1338 pd = IO_MEM_UNASSIGNED;
1339 } else {
1340 pd = p->phys_offset;
1342 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1343 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1345 #endif
1347 /* Add a watchpoint. */
1348 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1349 int flags, CPUWatchpoint **watchpoint)
1351 target_ulong len_mask = ~(len - 1);
1352 CPUWatchpoint *wp;
1354 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1355 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1356 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1357 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1358 return -EINVAL;
1360 wp = qemu_malloc(sizeof(*wp));
1362 wp->vaddr = addr;
1363 wp->len_mask = len_mask;
1364 wp->flags = flags;
1366 /* keep all GDB-injected watchpoints in front */
1367 if (flags & BP_GDB)
1368 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1369 else
1370 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1372 tlb_flush_page(env, addr);
1374 if (watchpoint)
1375 *watchpoint = wp;
1376 return 0;
1379 /* Remove a specific watchpoint. */
1380 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1381 int flags)
1383 target_ulong len_mask = ~(len - 1);
1384 CPUWatchpoint *wp;
1386 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1387 if (addr == wp->vaddr && len_mask == wp->len_mask
1388 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1389 cpu_watchpoint_remove_by_ref(env, wp);
1390 return 0;
1393 return -ENOENT;
1396 /* Remove a specific watchpoint by reference. */
1397 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1399 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1401 tlb_flush_page(env, watchpoint->vaddr);
1403 qemu_free(watchpoint);
1406 /* Remove all matching watchpoints. */
1407 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1409 CPUWatchpoint *wp, *next;
1411 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1412 if (wp->flags & mask)
1413 cpu_watchpoint_remove_by_ref(env, wp);
1417 /* Add a breakpoint. */
1418 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1419 CPUBreakpoint **breakpoint)
1421 #if defined(TARGET_HAS_ICE)
1422 CPUBreakpoint *bp;
1424 bp = qemu_malloc(sizeof(*bp));
1426 bp->pc = pc;
1427 bp->flags = flags;
1429 /* keep all GDB-injected breakpoints in front */
1430 if (flags & BP_GDB)
1431 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1432 else
1433 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1435 breakpoint_invalidate(env, pc);
1437 if (breakpoint)
1438 *breakpoint = bp;
1439 return 0;
1440 #else
1441 return -ENOSYS;
1442 #endif
1445 /* Remove a specific breakpoint. */
1446 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1448 #if defined(TARGET_HAS_ICE)
1449 CPUBreakpoint *bp;
1451 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1452 if (bp->pc == pc && bp->flags == flags) {
1453 cpu_breakpoint_remove_by_ref(env, bp);
1454 return 0;
1457 return -ENOENT;
1458 #else
1459 return -ENOSYS;
1460 #endif
1463 /* Remove a specific breakpoint by reference. */
1464 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1466 #if defined(TARGET_HAS_ICE)
1467 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1469 breakpoint_invalidate(env, breakpoint->pc);
1471 qemu_free(breakpoint);
1472 #endif
1475 /* Remove all matching breakpoints. */
1476 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1478 #if defined(TARGET_HAS_ICE)
1479 CPUBreakpoint *bp, *next;
1481 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1482 if (bp->flags & mask)
1483 cpu_breakpoint_remove_by_ref(env, bp);
1485 #endif
1488 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1489 CPU loop after each instruction */
1490 void cpu_single_step(CPUState *env, int enabled)
1492 #if defined(TARGET_HAS_ICE)
1493 if (env->singlestep_enabled != enabled) {
1494 env->singlestep_enabled = enabled;
1495 if (kvm_enabled())
1496 kvm_update_guest_debug(env, 0);
1497 else {
1498 /* must flush all the translated code to avoid inconsistencies */
1499 /* XXX: only flush what is necessary */
1500 tb_flush(env);
1503 #endif
1506 /* enable or disable low levels log */
1507 void cpu_set_log(int log_flags)
1509 loglevel = log_flags;
1510 if (loglevel && !logfile) {
1511 logfile = fopen(logfilename, log_append ? "a" : "w");
1512 if (!logfile) {
1513 perror(logfilename);
1514 _exit(1);
1516 #if !defined(CONFIG_SOFTMMU)
1517 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1519 static char logfile_buf[4096];
1520 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1522 #elif !defined(_WIN32)
1523 /* Win32 doesn't support line-buffering and requires size >= 2 */
1524 setvbuf(logfile, NULL, _IOLBF, 0);
1525 #endif
1526 log_append = 1;
1528 if (!loglevel && logfile) {
1529 fclose(logfile);
1530 logfile = NULL;
1534 void cpu_set_log_filename(const char *filename)
1536 logfilename = strdup(filename);
1537 if (logfile) {
1538 fclose(logfile);
1539 logfile = NULL;
1541 cpu_set_log(loglevel);
1544 static void cpu_unlink_tb(CPUState *env)
1546 #if defined(CONFIG_USE_NPTL)
1547 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1548 problem and hope the cpu will stop of its own accord. For userspace
1549 emulation this often isn't actually as bad as it sounds. Often
1550 signals are used primarily to interrupt blocking syscalls. */
1551 #else
1552 TranslationBlock *tb;
1553 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1555 tb = env->current_tb;
1556 /* if the cpu is currently executing code, we must unlink it and
1557 all the potentially executing TB */
1558 if (tb && !testandset(&interrupt_lock)) {
1559 env->current_tb = NULL;
1560 tb_reset_jump_recursive(tb);
1561 resetlock(&interrupt_lock);
1563 #endif
1566 /* mask must never be zero, except for A20 change call */
1567 void cpu_interrupt(CPUState *env, int mask)
1569 int old_mask;
1571 old_mask = env->interrupt_request;
1572 env->interrupt_request |= mask;
1573 if (kvm_enabled() && !kvm_irqchip_in_kernel())
1574 kvm_update_interrupt_request(env);
1576 #ifndef CONFIG_USER_ONLY
1578 * If called from iothread context, wake the target cpu in
1579 * case its halted.
1581 if (!qemu_cpu_self(env)) {
1582 qemu_cpu_kick(env);
1583 return;
1585 #endif
1587 if (use_icount) {
1588 env->icount_decr.u16.high = 0xffff;
1589 #ifndef CONFIG_USER_ONLY
1590 if (!can_do_io(env)
1591 && (mask & ~old_mask) != 0) {
1592 cpu_abort(env, "Raised interrupt while not in I/O function");
1594 #endif
1595 } else {
1596 cpu_unlink_tb(env);
1600 void cpu_reset_interrupt(CPUState *env, int mask)
1602 env->interrupt_request &= ~mask;
1605 void cpu_exit(CPUState *env)
1607 env->exit_request = 1;
1608 cpu_unlink_tb(env);
1611 const CPULogItem cpu_log_items[] = {
1612 { CPU_LOG_TB_OUT_ASM, "out_asm",
1613 "show generated host assembly code for each compiled TB" },
1614 { CPU_LOG_TB_IN_ASM, "in_asm",
1615 "show target assembly code for each compiled TB" },
1616 { CPU_LOG_TB_OP, "op",
1617 "show micro ops for each compiled TB" },
1618 { CPU_LOG_TB_OP_OPT, "op_opt",
1619 "show micro ops "
1620 #ifdef TARGET_I386
1621 "before eflags optimization and "
1622 #endif
1623 "after liveness analysis" },
1624 { CPU_LOG_INT, "int",
1625 "show interrupts/exceptions in short format" },
1626 { CPU_LOG_EXEC, "exec",
1627 "show trace before each executed TB (lots of logs)" },
1628 { CPU_LOG_TB_CPU, "cpu",
1629 "show CPU state before block translation" },
1630 #ifdef TARGET_I386
1631 { CPU_LOG_PCALL, "pcall",
1632 "show protected mode far calls/returns/exceptions" },
1633 { CPU_LOG_RESET, "cpu_reset",
1634 "show CPU state before CPU resets" },
1635 #endif
1636 #ifdef DEBUG_IOPORT
1637 { CPU_LOG_IOPORT, "ioport",
1638 "show all i/o ports accesses" },
1639 #endif
1640 { 0, NULL, NULL },
1643 static int cmp1(const char *s1, int n, const char *s2)
1645 if (strlen(s2) != n)
1646 return 0;
1647 return memcmp(s1, s2, n) == 0;
1650 /* takes a comma separated list of log masks. Return 0 if error. */
1651 int cpu_str_to_log_mask(const char *str)
1653 const CPULogItem *item;
1654 int mask;
1655 const char *p, *p1;
1657 p = str;
1658 mask = 0;
1659 for(;;) {
1660 p1 = strchr(p, ',');
1661 if (!p1)
1662 p1 = p + strlen(p);
1663 if(cmp1(p,p1-p,"all")) {
1664 for(item = cpu_log_items; item->mask != 0; item++) {
1665 mask |= item->mask;
1667 } else {
1668 for(item = cpu_log_items; item->mask != 0; item++) {
1669 if (cmp1(p, p1 - p, item->name))
1670 goto found;
1672 return 0;
1674 found:
1675 mask |= item->mask;
1676 if (*p1 != ',')
1677 break;
1678 p = p1 + 1;
1680 return mask;
1683 void cpu_abort(CPUState *env, const char *fmt, ...)
1685 va_list ap;
1686 va_list ap2;
1688 va_start(ap, fmt);
1689 va_copy(ap2, ap);
1690 fprintf(stderr, "qemu: fatal: ");
1691 vfprintf(stderr, fmt, ap);
1692 fprintf(stderr, "\n");
1693 #ifdef TARGET_I386
1694 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1695 #else
1696 cpu_dump_state(env, stderr, fprintf, 0);
1697 #endif
1698 if (qemu_log_enabled()) {
1699 qemu_log("qemu: fatal: ");
1700 qemu_log_vprintf(fmt, ap2);
1701 qemu_log("\n");
1702 #ifdef TARGET_I386
1703 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1704 #else
1705 log_cpu_state(env, 0);
1706 #endif
1707 qemu_log_flush();
1708 qemu_log_close();
1710 va_end(ap2);
1711 va_end(ap);
1712 abort();
1715 CPUState *cpu_copy(CPUState *env)
1717 CPUState *new_env = cpu_init(env->cpu_model_str);
1718 CPUState *next_cpu = new_env->next_cpu;
1719 int cpu_index = new_env->cpu_index;
1720 #if defined(TARGET_HAS_ICE)
1721 CPUBreakpoint *bp;
1722 CPUWatchpoint *wp;
1723 #endif
1725 memcpy(new_env, env, sizeof(CPUState));
1727 /* Preserve chaining and index. */
1728 new_env->next_cpu = next_cpu;
1729 new_env->cpu_index = cpu_index;
1731 /* Clone all break/watchpoints.
1732 Note: Once we support ptrace with hw-debug register access, make sure
1733 BP_CPU break/watchpoints are handled correctly on clone. */
1734 QTAILQ_INIT(&env->breakpoints);
1735 QTAILQ_INIT(&env->watchpoints);
1736 #if defined(TARGET_HAS_ICE)
1737 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1738 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1740 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1741 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1742 wp->flags, NULL);
1744 #endif
1746 return new_env;
1749 #if !defined(CONFIG_USER_ONLY)
1751 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1753 unsigned int i;
1755 /* Discard jump cache entries for any tb which might potentially
1756 overlap the flushed page. */
1757 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1758 memset (&env->tb_jmp_cache[i], 0,
1759 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1761 i = tb_jmp_cache_hash_page(addr);
1762 memset (&env->tb_jmp_cache[i], 0,
1763 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1766 static CPUTLBEntry s_cputlb_empty_entry = {
1767 .addr_read = -1,
1768 .addr_write = -1,
1769 .addr_code = -1,
1770 .addend = -1,
1773 /* NOTE: if flush_global is true, also flush global entries (not
1774 implemented yet) */
1775 void tlb_flush(CPUState *env, int flush_global)
1777 int i;
1779 #if defined(DEBUG_TLB)
1780 printf("tlb_flush:\n");
1781 #endif
1782 /* must reset current TB so that interrupts cannot modify the
1783 links while we are modifying them */
1784 env->current_tb = NULL;
1786 for(i = 0; i < CPU_TLB_SIZE; i++) {
1787 int mmu_idx;
1788 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1789 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1793 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1795 tlb_flush_count++;
1798 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1800 if (addr == (tlb_entry->addr_read &
1801 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1802 addr == (tlb_entry->addr_write &
1803 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1804 addr == (tlb_entry->addr_code &
1805 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1806 *tlb_entry = s_cputlb_empty_entry;
1810 void tlb_flush_page(CPUState *env, target_ulong addr)
1812 int i;
1813 int mmu_idx;
1815 #if defined(DEBUG_TLB)
1816 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1817 #endif
1818 /* must reset current TB so that interrupts cannot modify the
1819 links while we are modifying them */
1820 env->current_tb = NULL;
1822 addr &= TARGET_PAGE_MASK;
1823 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1824 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1825 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1827 tlb_flush_jmp_cache(env, addr);
1830 /* update the TLBs so that writes to code in the virtual page 'addr'
1831 can be detected */
1832 static void tlb_protect_code(ram_addr_t ram_addr)
1834 cpu_physical_memory_reset_dirty(ram_addr,
1835 ram_addr + TARGET_PAGE_SIZE,
1836 CODE_DIRTY_FLAG);
1839 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1840 tested for self modifying code */
1841 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1842 target_ulong vaddr)
1844 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1847 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1848 unsigned long start, unsigned long length)
1850 unsigned long addr;
1851 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1852 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1853 if ((addr - start) < length) {
1854 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1859 /* Note: start and end must be within the same ram block. */
1860 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1861 int dirty_flags)
1863 CPUState *env;
1864 unsigned long length, start1;
1865 int i, mask, len;
1866 uint8_t *p;
1868 start &= TARGET_PAGE_MASK;
1869 end = TARGET_PAGE_ALIGN(end);
1871 length = end - start;
1872 if (length == 0)
1873 return;
1874 len = length >> TARGET_PAGE_BITS;
1875 mask = ~dirty_flags;
1876 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1877 for(i = 0; i < len; i++)
1878 p[i] &= mask;
1880 /* we modify the TLB cache so that the dirty bit will be set again
1881 when accessing the range */
1882 start1 = (unsigned long)qemu_get_ram_ptr(start);
1883 /* Chek that we don't span multiple blocks - this breaks the
1884 address comparisons below. */
1885 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1886 != (end - 1) - start) {
1887 abort();
1890 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1891 int mmu_idx;
1892 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1893 for(i = 0; i < CPU_TLB_SIZE; i++)
1894 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1895 start1, length);
1900 int cpu_physical_memory_set_dirty_tracking(int enable)
1902 if (kvm_enabled()) {
1903 return kvm_set_migration_log(enable);
1905 return 0;
1908 int cpu_physical_memory_get_dirty_tracking(void)
1910 return in_migration;
1913 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1914 target_phys_addr_t end_addr)
1916 int ret = 0;
1918 if (kvm_enabled())
1919 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1920 return ret;
1923 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1925 ram_addr_t ram_addr;
1926 void *p;
1928 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1929 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1930 + tlb_entry->addend);
1931 ram_addr = qemu_ram_addr_from_host(p);
1932 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1933 tlb_entry->addr_write |= TLB_NOTDIRTY;
1938 /* update the TLB according to the current state of the dirty bits */
1939 void cpu_tlb_update_dirty(CPUState *env)
1941 int i;
1942 int mmu_idx;
1943 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1944 for(i = 0; i < CPU_TLB_SIZE; i++)
1945 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1949 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1951 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1952 tlb_entry->addr_write = vaddr;
1955 /* update the TLB corresponding to virtual page vaddr
1956 so that it is no longer dirty */
1957 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1959 int i;
1960 int mmu_idx;
1962 vaddr &= TARGET_PAGE_MASK;
1963 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1964 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1965 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
1968 /* add a new TLB entry. At most one entry for a given virtual address
1969 is permitted. Return 0 if OK or 2 if the page could not be mapped
1970 (can only happen in non SOFTMMU mode for I/O pages or pages
1971 conflicting with the host address space). */
1972 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1973 target_phys_addr_t paddr, int prot,
1974 int mmu_idx, int is_softmmu)
1976 PhysPageDesc *p;
1977 unsigned long pd;
1978 unsigned int index;
1979 target_ulong address;
1980 target_ulong code_address;
1981 target_phys_addr_t addend;
1982 int ret;
1983 CPUTLBEntry *te;
1984 CPUWatchpoint *wp;
1985 target_phys_addr_t iotlb;
1987 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1988 if (!p) {
1989 pd = IO_MEM_UNASSIGNED;
1990 } else {
1991 pd = p->phys_offset;
1993 #if defined(DEBUG_TLB)
1994 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1995 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1996 #endif
1998 ret = 0;
1999 address = vaddr;
2000 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2001 /* IO memory case (romd handled later) */
2002 address |= TLB_MMIO;
2004 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2005 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2006 /* Normal RAM. */
2007 iotlb = pd & TARGET_PAGE_MASK;
2008 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2009 iotlb |= IO_MEM_NOTDIRTY;
2010 else
2011 iotlb |= IO_MEM_ROM;
2012 } else {
2013 /* IO handlers are currently passed a physical address.
2014 It would be nice to pass an offset from the base address
2015 of that region. This would avoid having to special case RAM,
2016 and avoid full address decoding in every device.
2017 We can't use the high bits of pd for this because
2018 IO_MEM_ROMD uses these as a ram address. */
2019 iotlb = (pd & ~TARGET_PAGE_MASK);
2020 if (p) {
2021 iotlb += p->region_offset;
2022 } else {
2023 iotlb += paddr;
2027 code_address = address;
2028 /* Make accesses to pages with watchpoints go via the
2029 watchpoint trap routines. */
2030 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2031 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2032 iotlb = io_mem_watch + paddr;
2033 /* TODO: The memory case can be optimized by not trapping
2034 reads of pages with a write breakpoint. */
2035 address |= TLB_MMIO;
2039 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2040 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2041 te = &env->tlb_table[mmu_idx][index];
2042 te->addend = addend - vaddr;
2043 if (prot & PAGE_READ) {
2044 te->addr_read = address;
2045 } else {
2046 te->addr_read = -1;
2049 if (prot & PAGE_EXEC) {
2050 te->addr_code = code_address;
2051 } else {
2052 te->addr_code = -1;
2054 if (prot & PAGE_WRITE) {
2055 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2056 (pd & IO_MEM_ROMD)) {
2057 /* Write access calls the I/O callback. */
2058 te->addr_write = address | TLB_MMIO;
2059 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2060 !cpu_physical_memory_is_dirty(pd)) {
2061 te->addr_write = address | TLB_NOTDIRTY;
2062 } else {
2063 te->addr_write = address;
2065 } else {
2066 te->addr_write = -1;
2068 return ret;
2071 #else
2073 void tlb_flush(CPUState *env, int flush_global)
2077 void tlb_flush_page(CPUState *env, target_ulong addr)
2081 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2082 target_phys_addr_t paddr, int prot,
2083 int mmu_idx, int is_softmmu)
2085 return 0;
2089 * Walks guest process memory "regions" one by one
2090 * and calls callback function 'fn' for each region.
2092 int walk_memory_regions(void *priv,
2093 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2095 unsigned long start, end;
2096 PageDesc *p = NULL;
2097 int i, j, prot, prot1;
2098 int rc = 0;
2100 start = end = -1;
2101 prot = 0;
2103 for (i = 0; i <= L1_SIZE; i++) {
2104 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2105 for (j = 0; j < L2_SIZE; j++) {
2106 prot1 = (p == NULL) ? 0 : p[j].flags;
2108 * "region" is one continuous chunk of memory
2109 * that has same protection flags set.
2111 if (prot1 != prot) {
2112 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2113 if (start != -1) {
2114 rc = (*fn)(priv, start, end, prot);
2115 /* callback can stop iteration by returning != 0 */
2116 if (rc != 0)
2117 return (rc);
2119 if (prot1 != 0)
2120 start = end;
2121 else
2122 start = -1;
2123 prot = prot1;
2125 if (p == NULL)
2126 break;
2129 return (rc);
2132 static int dump_region(void *priv, unsigned long start,
2133 unsigned long end, unsigned long prot)
2135 FILE *f = (FILE *)priv;
2137 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2138 start, end, end - start,
2139 ((prot & PAGE_READ) ? 'r' : '-'),
2140 ((prot & PAGE_WRITE) ? 'w' : '-'),
2141 ((prot & PAGE_EXEC) ? 'x' : '-'));
2143 return (0);
2146 /* dump memory mappings */
2147 void page_dump(FILE *f)
2149 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2150 "start", "end", "size", "prot");
2151 walk_memory_regions(f, dump_region);
2154 int page_get_flags(target_ulong address)
2156 PageDesc *p;
2158 p = page_find(address >> TARGET_PAGE_BITS);
2159 if (!p)
2160 return 0;
2161 return p->flags;
2164 /* modify the flags of a page and invalidate the code if
2165 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2166 depending on PAGE_WRITE */
2167 void page_set_flags(target_ulong start, target_ulong end, int flags)
2169 PageDesc *p;
2170 target_ulong addr;
2172 /* mmap_lock should already be held. */
2173 start = start & TARGET_PAGE_MASK;
2174 end = TARGET_PAGE_ALIGN(end);
2175 if (flags & PAGE_WRITE)
2176 flags |= PAGE_WRITE_ORG;
2177 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2178 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2179 /* We may be called for host regions that are outside guest
2180 address space. */
2181 if (!p)
2182 return;
2183 /* if the write protection is set, then we invalidate the code
2184 inside */
2185 if (!(p->flags & PAGE_WRITE) &&
2186 (flags & PAGE_WRITE) &&
2187 p->first_tb) {
2188 tb_invalidate_phys_page(addr, 0, NULL);
2190 p->flags = flags;
2194 int page_check_range(target_ulong start, target_ulong len, int flags)
2196 PageDesc *p;
2197 target_ulong end;
2198 target_ulong addr;
2200 if (start + len < start)
2201 /* we've wrapped around */
2202 return -1;
2204 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2205 start = start & TARGET_PAGE_MASK;
2207 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2208 p = page_find(addr >> TARGET_PAGE_BITS);
2209 if( !p )
2210 return -1;
2211 if( !(p->flags & PAGE_VALID) )
2212 return -1;
2214 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2215 return -1;
2216 if (flags & PAGE_WRITE) {
2217 if (!(p->flags & PAGE_WRITE_ORG))
2218 return -1;
2219 /* unprotect the page if it was put read-only because it
2220 contains translated code */
2221 if (!(p->flags & PAGE_WRITE)) {
2222 if (!page_unprotect(addr, 0, NULL))
2223 return -1;
2225 return 0;
2228 return 0;
2231 /* called from signal handler: invalidate the code and unprotect the
2232 page. Return TRUE if the fault was successfully handled. */
2233 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2235 unsigned int page_index, prot, pindex;
2236 PageDesc *p, *p1;
2237 target_ulong host_start, host_end, addr;
2239 /* Technically this isn't safe inside a signal handler. However we
2240 know this only ever happens in a synchronous SEGV handler, so in
2241 practice it seems to be ok. */
2242 mmap_lock();
2244 host_start = address & qemu_host_page_mask;
2245 page_index = host_start >> TARGET_PAGE_BITS;
2246 p1 = page_find(page_index);
2247 if (!p1) {
2248 mmap_unlock();
2249 return 0;
2251 host_end = host_start + qemu_host_page_size;
2252 p = p1;
2253 prot = 0;
2254 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2255 prot |= p->flags;
2256 p++;
2258 /* if the page was really writable, then we change its
2259 protection back to writable */
2260 if (prot & PAGE_WRITE_ORG) {
2261 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2262 if (!(p1[pindex].flags & PAGE_WRITE)) {
2263 mprotect((void *)g2h(host_start), qemu_host_page_size,
2264 (prot & PAGE_BITS) | PAGE_WRITE);
2265 p1[pindex].flags |= PAGE_WRITE;
2266 /* and since the content will be modified, we must invalidate
2267 the corresponding translated code. */
2268 tb_invalidate_phys_page(address, pc, puc);
2269 #ifdef DEBUG_TB_CHECK
2270 tb_invalidate_check(address);
2271 #endif
2272 mmap_unlock();
2273 return 1;
2276 mmap_unlock();
2277 return 0;
2280 static inline void tlb_set_dirty(CPUState *env,
2281 unsigned long addr, target_ulong vaddr)
2284 #endif /* defined(CONFIG_USER_ONLY) */
2286 #if !defined(CONFIG_USER_ONLY)
2288 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2289 ram_addr_t memory, ram_addr_t region_offset);
2290 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2291 ram_addr_t orig_memory, ram_addr_t region_offset);
2292 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2293 need_subpage) \
2294 do { \
2295 if (addr > start_addr) \
2296 start_addr2 = 0; \
2297 else { \
2298 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2299 if (start_addr2 > 0) \
2300 need_subpage = 1; \
2303 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2304 end_addr2 = TARGET_PAGE_SIZE - 1; \
2305 else { \
2306 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2307 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2308 need_subpage = 1; \
2310 } while (0)
2312 /* register physical memory.
2313 For RAM, 'size' must be a multiple of the target page size.
2314 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2315 io memory page. The address used when calling the IO function is
2316 the offset from the start of the region, plus region_offset. Both
2317 start_addr and region_offset are rounded down to a page boundary
2318 before calculating this offset. This should not be a problem unless
2319 the low bits of start_addr and region_offset differ. */
2320 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2321 ram_addr_t size,
2322 ram_addr_t phys_offset,
2323 ram_addr_t region_offset)
2325 target_phys_addr_t addr, end_addr;
2326 PhysPageDesc *p;
2327 CPUState *env;
2328 ram_addr_t orig_size = size;
2329 void *subpage;
2331 if (kvm_enabled())
2332 kvm_set_phys_mem(start_addr, size, phys_offset);
2334 if (phys_offset == IO_MEM_UNASSIGNED) {
2335 region_offset = start_addr;
2337 region_offset &= TARGET_PAGE_MASK;
2338 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2339 end_addr = start_addr + (target_phys_addr_t)size;
2340 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2341 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2342 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2343 ram_addr_t orig_memory = p->phys_offset;
2344 target_phys_addr_t start_addr2, end_addr2;
2345 int need_subpage = 0;
2347 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2348 need_subpage);
2349 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2350 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2351 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2352 &p->phys_offset, orig_memory,
2353 p->region_offset);
2354 } else {
2355 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2356 >> IO_MEM_SHIFT];
2358 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2359 region_offset);
2360 p->region_offset = 0;
2361 } else {
2362 p->phys_offset = phys_offset;
2363 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2364 (phys_offset & IO_MEM_ROMD))
2365 phys_offset += TARGET_PAGE_SIZE;
2367 } else {
2368 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2369 p->phys_offset = phys_offset;
2370 p->region_offset = region_offset;
2371 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2372 (phys_offset & IO_MEM_ROMD)) {
2373 phys_offset += TARGET_PAGE_SIZE;
2374 } else {
2375 target_phys_addr_t start_addr2, end_addr2;
2376 int need_subpage = 0;
2378 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2379 end_addr2, need_subpage);
2381 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2382 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2383 &p->phys_offset, IO_MEM_UNASSIGNED,
2384 addr & TARGET_PAGE_MASK);
2385 subpage_register(subpage, start_addr2, end_addr2,
2386 phys_offset, region_offset);
2387 p->region_offset = 0;
2391 region_offset += TARGET_PAGE_SIZE;
2394 /* since each CPU stores ram addresses in its TLB cache, we must
2395 reset the modified entries */
2396 /* XXX: slow ! */
2397 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2398 tlb_flush(env, 1);
2402 /* XXX: temporary until new memory mapping API */
2403 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2405 PhysPageDesc *p;
2407 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2408 if (!p)
2409 return IO_MEM_UNASSIGNED;
2410 return p->phys_offset;
2413 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2415 if (kvm_enabled())
2416 kvm_coalesce_mmio_region(addr, size);
2419 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2421 if (kvm_enabled())
2422 kvm_uncoalesce_mmio_region(addr, size);
2425 #ifdef __linux__
2427 #include <sys/vfs.h>
2429 #define HUGETLBFS_MAGIC 0x958458f6
2431 static long gethugepagesize(const char *path)
2433 struct statfs fs;
2434 int ret;
2436 do {
2437 ret = statfs(path, &fs);
2438 } while (ret != 0 && errno == EINTR);
2440 if (ret != 0) {
2441 perror("statfs");
2442 return 0;
2445 if (fs.f_type != HUGETLBFS_MAGIC)
2446 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2448 return fs.f_bsize;
2451 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2453 char *filename;
2454 void *area;
2455 int fd;
2456 #ifdef MAP_POPULATE
2457 int flags;
2458 #endif
2459 unsigned long hpagesize;
2460 extern int mem_prealloc;
2462 if (!path) {
2463 return NULL;
2466 hpagesize = gethugepagesize(path);
2467 if (!hpagesize) {
2468 return NULL;
2471 if (memory < hpagesize) {
2472 return NULL;
2475 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2476 fprintf(stderr, "host lacks mmu notifiers, disabling --mem-path\n");
2477 return NULL;
2480 if (asprintf(&filename, "%s/kvm.XXXXXX", path) == -1) {
2481 return NULL;
2484 fd = mkstemp(filename);
2485 if (fd < 0) {
2486 perror("mkstemp");
2487 free(filename);
2488 return NULL;
2490 unlink(filename);
2491 free(filename);
2493 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2496 * ftruncate is not supported by hugetlbfs in older
2497 * hosts, so don't bother checking for errors.
2498 * If anything goes wrong with it under other filesystems,
2499 * mmap will fail.
2501 ftruncate(fd, memory);
2503 #ifdef MAP_POPULATE
2504 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2505 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2506 * to sidestep this quirk.
2508 flags = mem_prealloc ? MAP_POPULATE|MAP_SHARED : MAP_PRIVATE;
2509 area = mmap(0, memory, PROT_READ|PROT_WRITE, flags, fd, 0);
2510 #else
2511 area = mmap(0, memory, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
2512 #endif
2513 if (area == MAP_FAILED) {
2514 perror("alloc_mem_area: can't mmap hugetlbfs pages");
2515 close(fd);
2516 return (NULL);
2518 return area;
2521 #else
2523 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2525 return NULL;
2528 #endif
2530 extern const char *mem_path;
2532 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2534 RAMBlock *new_block;
2536 size = TARGET_PAGE_ALIGN(size);
2537 new_block = qemu_malloc(sizeof(*new_block));
2539 new_block->host = file_ram_alloc(size, mem_path);
2540 if (!new_block->host) {
2541 new_block->host = qemu_vmalloc(size);
2542 #ifdef MADV_MERGEABLE
2543 madvise(new_block->host, size, MADV_MERGEABLE);
2544 #endif
2546 new_block->offset = last_ram_offset;
2547 new_block->length = size;
2549 new_block->next = ram_blocks;
2550 ram_blocks = new_block;
2552 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2553 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2554 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2555 0xff, size >> TARGET_PAGE_BITS);
2557 last_ram_offset += size;
2559 if (kvm_enabled())
2560 kvm_setup_guest_memory(new_block->host, size);
2562 return new_block->offset;
2565 void qemu_ram_free(ram_addr_t addr)
2567 /* TODO: implement this. */
2570 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2571 With the exception of the softmmu code in this file, this should
2572 only be used for local memory (e.g. video ram) that the device owns,
2573 and knows it isn't going to access beyond the end of the block.
2575 It should not be used for general purpose DMA.
2576 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2578 void *qemu_get_ram_ptr(ram_addr_t addr)
2580 RAMBlock *prev;
2581 RAMBlock **prevp;
2582 RAMBlock *block;
2584 prev = NULL;
2585 prevp = &ram_blocks;
2586 block = ram_blocks;
2587 while (block && (block->offset > addr
2588 || block->offset + block->length <= addr)) {
2589 if (prev)
2590 prevp = &prev->next;
2591 prev = block;
2592 block = block->next;
2594 if (!block) {
2595 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2596 abort();
2598 /* Move this entry to to start of the list. */
2599 if (prev) {
2600 prev->next = block->next;
2601 block->next = *prevp;
2602 *prevp = block;
2604 return block->host + (addr - block->offset);
2607 int do_qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2609 RAMBlock *prev;
2610 RAMBlock **prevp;
2611 RAMBlock *block;
2612 uint8_t *host = ptr;
2614 prev = NULL;
2615 prevp = &ram_blocks;
2616 block = ram_blocks;
2617 while (block && (block->host > host
2618 || block->host + block->length <= host)) {
2619 if (prev)
2620 prevp = &prev->next;
2621 prev = block;
2622 block = block->next;
2624 if (!block)
2625 return -1;
2626 *ram_addr = block->offset + (host - block->host);
2627 return 0;
2630 /* Some of the softmmu routines need to translate from a host pointer
2631 (typically a TLB entry) back to a ram offset. */
2632 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2634 ram_addr_t ram_addr;
2636 if (do_qemu_ram_addr_from_host(ptr, &ram_addr)) {
2637 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2638 abort();
2640 return ram_addr;
2643 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2645 #ifdef DEBUG_UNASSIGNED
2646 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2647 #endif
2648 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2649 do_unassigned_access(addr, 0, 0, 0, 1);
2650 #endif
2651 return 0;
2654 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2656 #ifdef DEBUG_UNASSIGNED
2657 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2658 #endif
2659 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2660 do_unassigned_access(addr, 0, 0, 0, 2);
2661 #endif
2662 return 0;
2665 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2667 #ifdef DEBUG_UNASSIGNED
2668 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2669 #endif
2670 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2671 do_unassigned_access(addr, 0, 0, 0, 4);
2672 #endif
2673 return 0;
2676 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2678 #ifdef DEBUG_UNASSIGNED
2679 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2680 #endif
2681 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2682 do_unassigned_access(addr, 1, 0, 0, 1);
2683 #endif
2686 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2688 #ifdef DEBUG_UNASSIGNED
2689 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2690 #endif
2691 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2692 do_unassigned_access(addr, 1, 0, 0, 2);
2693 #endif
2696 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2698 #ifdef DEBUG_UNASSIGNED
2699 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2700 #endif
2701 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2702 do_unassigned_access(addr, 1, 0, 0, 4);
2703 #endif
2706 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2707 unassigned_mem_readb,
2708 unassigned_mem_readw,
2709 unassigned_mem_readl,
2712 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2713 unassigned_mem_writeb,
2714 unassigned_mem_writew,
2715 unassigned_mem_writel,
2718 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2719 uint32_t val)
2721 int dirty_flags;
2722 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2723 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2724 #if !defined(CONFIG_USER_ONLY)
2725 tb_invalidate_phys_page_fast(ram_addr, 1);
2726 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2727 #endif
2729 stb_p(qemu_get_ram_ptr(ram_addr), val);
2730 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2731 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2732 /* we remove the notdirty callback only if the code has been
2733 flushed */
2734 if (dirty_flags == 0xff)
2735 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2738 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2739 uint32_t val)
2741 int dirty_flags;
2742 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2743 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2744 #if !defined(CONFIG_USER_ONLY)
2745 tb_invalidate_phys_page_fast(ram_addr, 2);
2746 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2747 #endif
2749 stw_p(qemu_get_ram_ptr(ram_addr), val);
2750 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2751 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2752 /* we remove the notdirty callback only if the code has been
2753 flushed */
2754 if (dirty_flags == 0xff)
2755 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2758 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2759 uint32_t val)
2761 int dirty_flags;
2762 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2763 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2764 #if !defined(CONFIG_USER_ONLY)
2765 tb_invalidate_phys_page_fast(ram_addr, 4);
2766 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2767 #endif
2769 stl_p(qemu_get_ram_ptr(ram_addr), val);
2770 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2771 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2772 /* we remove the notdirty callback only if the code has been
2773 flushed */
2774 if (dirty_flags == 0xff)
2775 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2778 static CPUReadMemoryFunc * const error_mem_read[3] = {
2779 NULL, /* never used */
2780 NULL, /* never used */
2781 NULL, /* never used */
2784 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2785 notdirty_mem_writeb,
2786 notdirty_mem_writew,
2787 notdirty_mem_writel,
2790 /* Generate a debug exception if a watchpoint has been hit. */
2791 static void check_watchpoint(int offset, int len_mask, int flags)
2793 CPUState *env = cpu_single_env;
2794 target_ulong pc, cs_base;
2795 TranslationBlock *tb;
2796 target_ulong vaddr;
2797 CPUWatchpoint *wp;
2798 int cpu_flags;
2800 if (env->watchpoint_hit) {
2801 /* We re-entered the check after replacing the TB. Now raise
2802 * the debug interrupt so that is will trigger after the
2803 * current instruction. */
2804 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2805 return;
2807 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2808 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2809 if ((vaddr == (wp->vaddr & len_mask) ||
2810 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2811 wp->flags |= BP_WATCHPOINT_HIT;
2812 if (!env->watchpoint_hit) {
2813 env->watchpoint_hit = wp;
2814 tb = tb_find_pc(env->mem_io_pc);
2815 if (!tb) {
2816 cpu_abort(env, "check_watchpoint: could not find TB for "
2817 "pc=%p", (void *)env->mem_io_pc);
2819 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2820 tb_phys_invalidate(tb, -1);
2821 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2822 env->exception_index = EXCP_DEBUG;
2823 } else {
2824 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2825 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2827 cpu_resume_from_signal(env, NULL);
2829 } else {
2830 wp->flags &= ~BP_WATCHPOINT_HIT;
2835 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2836 so these check for a hit then pass through to the normal out-of-line
2837 phys routines. */
2838 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2840 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2841 return ldub_phys(addr);
2844 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2846 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2847 return lduw_phys(addr);
2850 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2852 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2853 return ldl_phys(addr);
2856 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2857 uint32_t val)
2859 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2860 stb_phys(addr, val);
2863 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2864 uint32_t val)
2866 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2867 stw_phys(addr, val);
2870 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2871 uint32_t val)
2873 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2874 stl_phys(addr, val);
2877 static CPUReadMemoryFunc * const watch_mem_read[3] = {
2878 watch_mem_readb,
2879 watch_mem_readw,
2880 watch_mem_readl,
2883 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
2884 watch_mem_writeb,
2885 watch_mem_writew,
2886 watch_mem_writel,
2889 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2890 unsigned int len)
2892 uint32_t ret;
2893 unsigned int idx;
2895 idx = SUBPAGE_IDX(addr);
2896 #if defined(DEBUG_SUBPAGE)
2897 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2898 mmio, len, addr, idx);
2899 #endif
2900 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2901 addr + mmio->region_offset[idx][0][len]);
2903 return ret;
2906 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2907 uint32_t value, unsigned int len)
2909 unsigned int idx;
2911 idx = SUBPAGE_IDX(addr);
2912 #if defined(DEBUG_SUBPAGE)
2913 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2914 mmio, len, addr, idx, value);
2915 #endif
2916 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2917 addr + mmio->region_offset[idx][1][len],
2918 value);
2921 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2923 #if defined(DEBUG_SUBPAGE)
2924 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2925 #endif
2927 return subpage_readlen(opaque, addr, 0);
2930 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2931 uint32_t value)
2933 #if defined(DEBUG_SUBPAGE)
2934 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2935 #endif
2936 subpage_writelen(opaque, addr, value, 0);
2939 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2941 #if defined(DEBUG_SUBPAGE)
2942 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2943 #endif
2945 return subpage_readlen(opaque, addr, 1);
2948 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2949 uint32_t value)
2951 #if defined(DEBUG_SUBPAGE)
2952 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2953 #endif
2954 subpage_writelen(opaque, addr, value, 1);
2957 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2959 #if defined(DEBUG_SUBPAGE)
2960 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2961 #endif
2963 return subpage_readlen(opaque, addr, 2);
2966 static void subpage_writel (void *opaque,
2967 target_phys_addr_t addr, uint32_t value)
2969 #if defined(DEBUG_SUBPAGE)
2970 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2971 #endif
2972 subpage_writelen(opaque, addr, value, 2);
2975 static CPUReadMemoryFunc * const subpage_read[] = {
2976 &subpage_readb,
2977 &subpage_readw,
2978 &subpage_readl,
2981 static CPUWriteMemoryFunc * const subpage_write[] = {
2982 &subpage_writeb,
2983 &subpage_writew,
2984 &subpage_writel,
2987 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2988 ram_addr_t memory, ram_addr_t region_offset)
2990 int idx, eidx;
2991 unsigned int i;
2993 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2994 return -1;
2995 idx = SUBPAGE_IDX(start);
2996 eidx = SUBPAGE_IDX(end);
2997 #if defined(DEBUG_SUBPAGE)
2998 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
2999 mmio, start, end, idx, eidx, memory);
3000 #endif
3001 memory >>= IO_MEM_SHIFT;
3002 for (; idx <= eidx; idx++) {
3003 for (i = 0; i < 4; i++) {
3004 if (io_mem_read[memory][i]) {
3005 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3006 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3007 mmio->region_offset[idx][0][i] = region_offset;
3009 if (io_mem_write[memory][i]) {
3010 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3011 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3012 mmio->region_offset[idx][1][i] = region_offset;
3017 return 0;
3020 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3021 ram_addr_t orig_memory, ram_addr_t region_offset)
3023 subpage_t *mmio;
3024 int subpage_memory;
3026 mmio = qemu_mallocz(sizeof(subpage_t));
3028 mmio->base = base;
3029 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3030 #if defined(DEBUG_SUBPAGE)
3031 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3032 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3033 #endif
3034 *phys = subpage_memory | IO_MEM_SUBPAGE;
3035 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3036 region_offset);
3038 return mmio;
3041 static int get_free_io_mem_idx(void)
3043 int i;
3045 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3046 if (!io_mem_used[i]) {
3047 io_mem_used[i] = 1;
3048 return i;
3051 return -1;
3054 /* mem_read and mem_write are arrays of functions containing the
3055 function to access byte (index 0), word (index 1) and dword (index
3056 2). Functions can be omitted with a NULL function pointer.
3057 If io_index is non zero, the corresponding io zone is
3058 modified. If it is zero, a new io zone is allocated. The return
3059 value can be used with cpu_register_physical_memory(). (-1) is
3060 returned if error. */
3061 static int cpu_register_io_memory_fixed(int io_index,
3062 CPUReadMemoryFunc * const *mem_read,
3063 CPUWriteMemoryFunc * const *mem_write,
3064 void *opaque)
3066 int i, subwidth = 0;
3068 if (io_index <= 0) {
3069 io_index = get_free_io_mem_idx();
3070 if (io_index == -1)
3071 return io_index;
3072 } else {
3073 io_index >>= IO_MEM_SHIFT;
3074 if (io_index >= IO_MEM_NB_ENTRIES)
3075 return -1;
3078 for(i = 0;i < 3; i++) {
3079 if (!mem_read[i] || !mem_write[i])
3080 subwidth = IO_MEM_SUBWIDTH;
3081 io_mem_read[io_index][i] = mem_read[i];
3082 io_mem_write[io_index][i] = mem_write[i];
3084 io_mem_opaque[io_index] = opaque;
3085 return (io_index << IO_MEM_SHIFT) | subwidth;
3088 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3089 CPUWriteMemoryFunc * const *mem_write,
3090 void *opaque)
3092 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3095 void cpu_unregister_io_memory(int io_table_address)
3097 int i;
3098 int io_index = io_table_address >> IO_MEM_SHIFT;
3100 for (i=0;i < 3; i++) {
3101 io_mem_read[io_index][i] = unassigned_mem_read[i];
3102 io_mem_write[io_index][i] = unassigned_mem_write[i];
3104 io_mem_opaque[io_index] = NULL;
3105 io_mem_used[io_index] = 0;
3108 static void io_mem_init(void)
3110 int i;
3112 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3113 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3114 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3115 for (i=0; i<5; i++)
3116 io_mem_used[i] = 1;
3118 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3119 watch_mem_write, NULL);
3122 #endif /* !defined(CONFIG_USER_ONLY) */
3124 /* physical memory access (slow version, mainly for debug) */
3125 #if defined(CONFIG_USER_ONLY)
3126 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3127 int len, int is_write)
3129 int l, flags;
3130 target_ulong page;
3131 void * p;
3133 while (len > 0) {
3134 page = addr & TARGET_PAGE_MASK;
3135 l = (page + TARGET_PAGE_SIZE) - addr;
3136 if (l > len)
3137 l = len;
3138 flags = page_get_flags(page);
3139 if (!(flags & PAGE_VALID))
3140 return;
3141 if (is_write) {
3142 if (!(flags & PAGE_WRITE))
3143 return;
3144 /* XXX: this code should not depend on lock_user */
3145 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3146 /* FIXME - should this return an error rather than just fail? */
3147 return;
3148 memcpy(p, buf, l);
3149 unlock_user(p, addr, l);
3150 } else {
3151 if (!(flags & PAGE_READ))
3152 return;
3153 /* XXX: this code should not depend on lock_user */
3154 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3155 /* FIXME - should this return an error rather than just fail? */
3156 return;
3157 memcpy(buf, p, l);
3158 unlock_user(p, addr, 0);
3160 len -= l;
3161 buf += l;
3162 addr += l;
3166 #else
3167 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3168 int len, int is_write)
3170 int l, io_index;
3171 uint8_t *ptr;
3172 uint32_t val;
3173 target_phys_addr_t page;
3174 unsigned long pd;
3175 PhysPageDesc *p;
3177 while (len > 0) {
3178 page = addr & TARGET_PAGE_MASK;
3179 l = (page + TARGET_PAGE_SIZE) - addr;
3180 if (l > len)
3181 l = len;
3182 p = phys_page_find(page >> TARGET_PAGE_BITS);
3183 if (!p) {
3184 pd = IO_MEM_UNASSIGNED;
3185 } else {
3186 pd = p->phys_offset;
3189 if (is_write) {
3190 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3191 target_phys_addr_t addr1 = addr;
3192 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3193 if (p)
3194 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3195 /* XXX: could force cpu_single_env to NULL to avoid
3196 potential bugs */
3197 if (l >= 4 && ((addr1 & 3) == 0)) {
3198 /* 32 bit write access */
3199 val = ldl_p(buf);
3200 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3201 l = 4;
3202 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3203 /* 16 bit write access */
3204 val = lduw_p(buf);
3205 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3206 l = 2;
3207 } else {
3208 /* 8 bit write access */
3209 val = ldub_p(buf);
3210 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3211 l = 1;
3213 } else {
3214 unsigned long addr1;
3215 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3216 /* RAM case */
3217 ptr = qemu_get_ram_ptr(addr1);
3218 memcpy(ptr, buf, l);
3219 if (!cpu_physical_memory_is_dirty(addr1)) {
3220 /* invalidate code */
3221 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3222 /* set dirty bit */
3223 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3224 (0xff & ~CODE_DIRTY_FLAG);
3226 /* qemu doesn't execute guest code directly, but kvm does
3227 therefore flush instruction caches */
3228 if (kvm_enabled())
3229 flush_icache_range((unsigned long)ptr,
3230 ((unsigned long)ptr)+l);
3232 } else {
3233 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3234 !(pd & IO_MEM_ROMD)) {
3235 target_phys_addr_t addr1 = addr;
3236 /* I/O case */
3237 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3238 if (p)
3239 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3240 if (l >= 4 && ((addr1 & 3) == 0)) {
3241 /* 32 bit read access */
3242 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3243 stl_p(buf, val);
3244 l = 4;
3245 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3246 /* 16 bit read access */
3247 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3248 stw_p(buf, val);
3249 l = 2;
3250 } else {
3251 /* 8 bit read access */
3252 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3253 stb_p(buf, val);
3254 l = 1;
3256 } else {
3257 /* RAM case */
3258 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3259 (addr & ~TARGET_PAGE_MASK);
3260 memcpy(buf, ptr, l);
3263 len -= l;
3264 buf += l;
3265 addr += l;
3269 /* used for ROM loading : can write in RAM and ROM */
3270 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3271 const uint8_t *buf, int len)
3273 int l;
3274 uint8_t *ptr;
3275 target_phys_addr_t page;
3276 unsigned long pd;
3277 PhysPageDesc *p;
3279 while (len > 0) {
3280 page = addr & TARGET_PAGE_MASK;
3281 l = (page + TARGET_PAGE_SIZE) - addr;
3282 if (l > len)
3283 l = len;
3284 p = phys_page_find(page >> TARGET_PAGE_BITS);
3285 if (!p) {
3286 pd = IO_MEM_UNASSIGNED;
3287 } else {
3288 pd = p->phys_offset;
3291 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3292 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3293 !(pd & IO_MEM_ROMD)) {
3294 /* do nothing */
3295 } else {
3296 unsigned long addr1;
3297 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3298 /* ROM/RAM case */
3299 ptr = qemu_get_ram_ptr(addr1);
3300 memcpy(ptr, buf, l);
3302 len -= l;
3303 buf += l;
3304 addr += l;
3308 typedef struct {
3309 void *buffer;
3310 target_phys_addr_t addr;
3311 target_phys_addr_t len;
3312 } BounceBuffer;
3314 static BounceBuffer bounce;
3316 typedef struct MapClient {
3317 void *opaque;
3318 void (*callback)(void *opaque);
3319 QLIST_ENTRY(MapClient) link;
3320 } MapClient;
3322 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3323 = QLIST_HEAD_INITIALIZER(map_client_list);
3325 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3327 MapClient *client = qemu_malloc(sizeof(*client));
3329 client->opaque = opaque;
3330 client->callback = callback;
3331 QLIST_INSERT_HEAD(&map_client_list, client, link);
3332 return client;
3335 void cpu_unregister_map_client(void *_client)
3337 MapClient *client = (MapClient *)_client;
3339 QLIST_REMOVE(client, link);
3340 qemu_free(client);
3343 static void cpu_notify_map_clients(void)
3345 MapClient *client;
3347 while (!QLIST_EMPTY(&map_client_list)) {
3348 client = QLIST_FIRST(&map_client_list);
3349 client->callback(client->opaque);
3350 cpu_unregister_map_client(client);
3354 /* Map a physical memory region into a host virtual address.
3355 * May map a subset of the requested range, given by and returned in *plen.
3356 * May return NULL if resources needed to perform the mapping are exhausted.
3357 * Use only for reads OR writes - not for read-modify-write operations.
3358 * Use cpu_register_map_client() to know when retrying the map operation is
3359 * likely to succeed.
3361 void *cpu_physical_memory_map(target_phys_addr_t addr,
3362 target_phys_addr_t *plen,
3363 int is_write)
3365 target_phys_addr_t len = *plen;
3366 target_phys_addr_t done = 0;
3367 int l;
3368 uint8_t *ret = NULL;
3369 uint8_t *ptr;
3370 target_phys_addr_t page;
3371 unsigned long pd;
3372 PhysPageDesc *p;
3373 unsigned long addr1;
3375 while (len > 0) {
3376 page = addr & TARGET_PAGE_MASK;
3377 l = (page + TARGET_PAGE_SIZE) - addr;
3378 if (l > len)
3379 l = len;
3380 p = phys_page_find(page >> TARGET_PAGE_BITS);
3381 if (!p) {
3382 pd = IO_MEM_UNASSIGNED;
3383 } else {
3384 pd = p->phys_offset;
3387 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3388 if (done || bounce.buffer) {
3389 break;
3391 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3392 bounce.addr = addr;
3393 bounce.len = l;
3394 if (!is_write) {
3395 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3397 ptr = bounce.buffer;
3398 } else {
3399 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3400 ptr = qemu_get_ram_ptr(addr1);
3402 if (!done) {
3403 ret = ptr;
3404 } else if (ret + done != ptr) {
3405 break;
3408 len -= l;
3409 addr += l;
3410 done += l;
3412 *plen = done;
3413 return ret;
3416 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3417 * Will also mark the memory as dirty if is_write == 1. access_len gives
3418 * the amount of memory that was actually read or written by the caller.
3420 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3421 int is_write, target_phys_addr_t access_len)
3423 unsigned long flush_len = (unsigned long)access_len;
3425 if (buffer != bounce.buffer) {
3426 if (is_write) {
3427 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3428 while (access_len) {
3429 unsigned l;
3430 l = TARGET_PAGE_SIZE;
3431 if (l > access_len)
3432 l = access_len;
3433 if (!cpu_physical_memory_is_dirty(addr1)) {
3434 /* invalidate code */
3435 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3436 /* set dirty bit */
3437 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3438 (0xff & ~CODE_DIRTY_FLAG);
3440 addr1 += l;
3441 access_len -= l;
3443 dma_flush_range((unsigned long)buffer,
3444 (unsigned long)buffer + flush_len);
3446 return;
3448 if (is_write) {
3449 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3451 qemu_free(bounce.buffer);
3452 bounce.buffer = NULL;
3453 cpu_notify_map_clients();
3456 /* warning: addr must be aligned */
3457 uint32_t ldl_phys(target_phys_addr_t addr)
3459 int io_index;
3460 uint8_t *ptr;
3461 uint32_t val;
3462 unsigned long pd;
3463 PhysPageDesc *p;
3465 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3466 if (!p) {
3467 pd = IO_MEM_UNASSIGNED;
3468 } else {
3469 pd = p->phys_offset;
3472 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3473 !(pd & IO_MEM_ROMD)) {
3474 /* I/O case */
3475 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3476 if (p)
3477 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3478 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3479 } else {
3480 /* RAM case */
3481 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3482 (addr & ~TARGET_PAGE_MASK);
3483 val = ldl_p(ptr);
3485 return val;
3488 /* warning: addr must be aligned */
3489 uint64_t ldq_phys(target_phys_addr_t addr)
3491 int io_index;
3492 uint8_t *ptr;
3493 uint64_t val;
3494 unsigned long pd;
3495 PhysPageDesc *p;
3497 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3498 if (!p) {
3499 pd = IO_MEM_UNASSIGNED;
3500 } else {
3501 pd = p->phys_offset;
3504 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3505 !(pd & IO_MEM_ROMD)) {
3506 /* I/O case */
3507 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3508 if (p)
3509 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3510 #ifdef TARGET_WORDS_BIGENDIAN
3511 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3512 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3513 #else
3514 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3515 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3516 #endif
3517 } else {
3518 /* RAM case */
3519 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3520 (addr & ~TARGET_PAGE_MASK);
3521 val = ldq_p(ptr);
3523 return val;
3526 /* XXX: optimize */
3527 uint32_t ldub_phys(target_phys_addr_t addr)
3529 uint8_t val;
3530 cpu_physical_memory_read(addr, &val, 1);
3531 return val;
3534 /* XXX: optimize */
3535 uint32_t lduw_phys(target_phys_addr_t addr)
3537 uint16_t val;
3538 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3539 return tswap16(val);
3542 /* warning: addr must be aligned. The ram page is not masked as dirty
3543 and the code inside is not invalidated. It is useful if the dirty
3544 bits are used to track modified PTEs */
3545 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3547 int io_index;
3548 uint8_t *ptr;
3549 unsigned long pd;
3550 PhysPageDesc *p;
3552 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3553 if (!p) {
3554 pd = IO_MEM_UNASSIGNED;
3555 } else {
3556 pd = p->phys_offset;
3559 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3560 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3561 if (p)
3562 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3563 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3564 } else {
3565 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3566 ptr = qemu_get_ram_ptr(addr1);
3567 stl_p(ptr, val);
3569 if (unlikely(in_migration)) {
3570 if (!cpu_physical_memory_is_dirty(addr1)) {
3571 /* invalidate code */
3572 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3573 /* set dirty bit */
3574 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3575 (0xff & ~CODE_DIRTY_FLAG);
3581 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3583 int io_index;
3584 uint8_t *ptr;
3585 unsigned long pd;
3586 PhysPageDesc *p;
3588 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3589 if (!p) {
3590 pd = IO_MEM_UNASSIGNED;
3591 } else {
3592 pd = p->phys_offset;
3595 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3596 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3597 if (p)
3598 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3599 #ifdef TARGET_WORDS_BIGENDIAN
3600 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3601 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3602 #else
3603 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3604 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3605 #endif
3606 } else {
3607 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3608 (addr & ~TARGET_PAGE_MASK);
3609 stq_p(ptr, val);
3613 /* warning: addr must be aligned */
3614 void stl_phys(target_phys_addr_t addr, uint32_t val)
3616 int io_index;
3617 uint8_t *ptr;
3618 unsigned long pd;
3619 PhysPageDesc *p;
3621 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3622 if (!p) {
3623 pd = IO_MEM_UNASSIGNED;
3624 } else {
3625 pd = p->phys_offset;
3628 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3629 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3630 if (p)
3631 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3632 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3633 } else {
3634 unsigned long addr1;
3635 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3636 /* RAM case */
3637 ptr = qemu_get_ram_ptr(addr1);
3638 stl_p(ptr, val);
3639 if (!cpu_physical_memory_is_dirty(addr1)) {
3640 /* invalidate code */
3641 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3642 /* set dirty bit */
3643 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3644 (0xff & ~CODE_DIRTY_FLAG);
3649 /* XXX: optimize */
3650 void stb_phys(target_phys_addr_t addr, uint32_t val)
3652 uint8_t v = val;
3653 cpu_physical_memory_write(addr, &v, 1);
3656 /* XXX: optimize */
3657 void stw_phys(target_phys_addr_t addr, uint32_t val)
3659 uint16_t v = tswap16(val);
3660 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3663 /* XXX: optimize */
3664 void stq_phys(target_phys_addr_t addr, uint64_t val)
3666 val = tswap64(val);
3667 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3670 #endif
3672 /* virtual memory access for debug (includes writing to ROM) */
3673 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3674 uint8_t *buf, int len, int is_write)
3676 int l;
3677 target_phys_addr_t phys_addr;
3678 target_ulong page;
3680 while (len > 0) {
3681 page = addr & TARGET_PAGE_MASK;
3682 phys_addr = cpu_get_phys_page_debug(env, page);
3683 /* if no physical page mapped, return an error */
3684 if (phys_addr == -1)
3685 return -1;
3686 l = (page + TARGET_PAGE_SIZE) - addr;
3687 if (l > len)
3688 l = len;
3689 phys_addr += (addr & ~TARGET_PAGE_MASK);
3690 #if !defined(CONFIG_USER_ONLY)
3691 if (is_write)
3692 cpu_physical_memory_write_rom(phys_addr, buf, l);
3693 else
3694 #endif
3695 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3696 len -= l;
3697 buf += l;
3698 addr += l;
3700 return 0;
3703 /* in deterministic execution mode, instructions doing device I/Os
3704 must be at the end of the TB */
3705 void cpu_io_recompile(CPUState *env, void *retaddr)
3707 TranslationBlock *tb;
3708 uint32_t n, cflags;
3709 target_ulong pc, cs_base;
3710 uint64_t flags;
3712 tb = tb_find_pc((unsigned long)retaddr);
3713 if (!tb) {
3714 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3715 retaddr);
3717 n = env->icount_decr.u16.low + tb->icount;
3718 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3719 /* Calculate how many instructions had been executed before the fault
3720 occurred. */
3721 n = n - env->icount_decr.u16.low;
3722 /* Generate a new TB ending on the I/O insn. */
3723 n++;
3724 /* On MIPS and SH, delay slot instructions can only be restarted if
3725 they were already the first instruction in the TB. If this is not
3726 the first instruction in a TB then re-execute the preceding
3727 branch. */
3728 #if defined(TARGET_MIPS)
3729 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3730 env->active_tc.PC -= 4;
3731 env->icount_decr.u16.low++;
3732 env->hflags &= ~MIPS_HFLAG_BMASK;
3734 #elif defined(TARGET_SH4)
3735 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3736 && n > 1) {
3737 env->pc -= 2;
3738 env->icount_decr.u16.low++;
3739 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3741 #endif
3742 /* This should never happen. */
3743 if (n > CF_COUNT_MASK)
3744 cpu_abort(env, "TB too big during recompile");
3746 cflags = n | CF_LAST_IO;
3747 pc = tb->pc;
3748 cs_base = tb->cs_base;
3749 flags = tb->flags;
3750 tb_phys_invalidate(tb, -1);
3751 /* FIXME: In theory this could raise an exception. In practice
3752 we have already translated the block once so it's probably ok. */
3753 tb_gen_code(env, pc, cs_base, flags, cflags);
3754 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3755 the first in the TB) then we end up generating a whole new TB and
3756 repeating the fault, which is horribly inefficient.
3757 Better would be to execute just this insn uncached, or generate a
3758 second new TB. */
3759 cpu_resume_from_signal(env, NULL);
3762 void dump_exec_info(FILE *f,
3763 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3765 int i, target_code_size, max_target_code_size;
3766 int direct_jmp_count, direct_jmp2_count, cross_page;
3767 TranslationBlock *tb;
3769 target_code_size = 0;
3770 max_target_code_size = 0;
3771 cross_page = 0;
3772 direct_jmp_count = 0;
3773 direct_jmp2_count = 0;
3774 for(i = 0; i < nb_tbs; i++) {
3775 tb = &tbs[i];
3776 target_code_size += tb->size;
3777 if (tb->size > max_target_code_size)
3778 max_target_code_size = tb->size;
3779 if (tb->page_addr[1] != -1)
3780 cross_page++;
3781 if (tb->tb_next_offset[0] != 0xffff) {
3782 direct_jmp_count++;
3783 if (tb->tb_next_offset[1] != 0xffff) {
3784 direct_jmp2_count++;
3788 /* XXX: avoid using doubles ? */
3789 cpu_fprintf(f, "Translation buffer state:\n");
3790 cpu_fprintf(f, "gen code size %ld/%ld\n",
3791 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3792 cpu_fprintf(f, "TB count %d/%d\n",
3793 nb_tbs, code_gen_max_blocks);
3794 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3795 nb_tbs ? target_code_size / nb_tbs : 0,
3796 max_target_code_size);
3797 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3798 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3799 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3800 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3801 cross_page,
3802 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3803 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3804 direct_jmp_count,
3805 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3806 direct_jmp2_count,
3807 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3808 cpu_fprintf(f, "\nStatistics:\n");
3809 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3810 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3811 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3812 #ifdef CONFIG_PROFILER
3813 tcg_dump_info(f, cpu_fprintf);
3814 #endif
3817 #if !defined(CONFIG_USER_ONLY)
3819 #define MMUSUFFIX _cmmu
3820 #define GETPC() NULL
3821 #define env cpu_single_env
3822 #define SOFTMMU_CODE_ACCESS
3824 #define SHIFT 0
3825 #include "softmmu_template.h"
3827 #define SHIFT 1
3828 #include "softmmu_template.h"
3830 #define SHIFT 2
3831 #include "softmmu_template.h"
3833 #define SHIFT 3
3834 #include "softmmu_template.h"
3836 #undef env
3838 #endif