softfloat: Rename float*_is_nan() functions to float*_is_quiet_nan()
[qemu/agraf.git] / hw / mips_malta.c
blob5ef3fcbea937a071658ad2432c89678060f6f161
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "usb-uhci.h"
37 #include "vmware_vga.h"
38 #include "qemu-char.h"
39 #include "sysemu.h"
40 #include "audio/audio.h"
41 #include "boards.h"
42 #include "qemu-log.h"
43 #include "mips-bios.h"
44 #include "ide.h"
45 #include "loader.h"
46 #include "elf.h"
47 #include "mc146818rtc.h"
48 #include "blockdev.h"
50 //#define DEBUG_BOARD_INIT
52 #define ENVP_ADDR 0x80002000l
53 #define ENVP_NB_ENTRIES 16
54 #define ENVP_ENTRY_SIZE 256
56 #define MAX_IDE_BUS 2
58 typedef struct {
59 uint32_t leds;
60 uint32_t brk;
61 uint32_t gpout;
62 uint32_t i2cin;
63 uint32_t i2coe;
64 uint32_t i2cout;
65 uint32_t i2csel;
66 CharDriverState *display;
67 char display_text[9];
68 SerialState *uart;
69 } MaltaFPGAState;
71 static PITState *pit;
73 static struct _loaderparams {
74 int ram_size;
75 const char *kernel_filename;
76 const char *kernel_cmdline;
77 const char *initrd_filename;
78 } loaderparams;
80 /* Malta FPGA */
81 static void malta_fpga_update_display(void *opaque)
83 char leds_text[9];
84 int i;
85 MaltaFPGAState *s = opaque;
87 for (i = 7 ; i >= 0 ; i--) {
88 if (s->leds & (1 << i))
89 leds_text[i] = '#';
90 else
91 leds_text[i] = ' ';
93 leds_text[8] = '\0';
95 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
96 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
100 * EEPROM 24C01 / 24C02 emulation.
102 * Emulation for serial EEPROMs:
103 * 24C01 - 1024 bit (128 x 8)
104 * 24C02 - 2048 bit (256 x 8)
106 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
109 //~ #define DEBUG
111 #if defined(DEBUG)
112 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
113 #else
114 # define logout(fmt, ...) ((void)0)
115 #endif
117 struct _eeprom24c0x_t {
118 uint8_t tick;
119 uint8_t address;
120 uint8_t command;
121 uint8_t ack;
122 uint8_t scl;
123 uint8_t sda;
124 uint8_t data;
125 //~ uint16_t size;
126 uint8_t contents[256];
129 typedef struct _eeprom24c0x_t eeprom24c0x_t;
131 static eeprom24c0x_t eeprom = {
132 .contents = {
133 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
134 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
135 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
136 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
137 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
138 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
141 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
152 static uint8_t eeprom24c0x_read(void)
154 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
155 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
156 return eeprom.sda;
159 static void eeprom24c0x_write(int scl, int sda)
161 if (eeprom.scl && scl && (eeprom.sda != sda)) {
162 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
163 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
164 if (!sda) {
165 eeprom.tick = 1;
166 eeprom.command = 0;
168 } else if (eeprom.tick == 0 && !eeprom.ack) {
169 /* Waiting for start. */
170 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
171 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
172 } else if (!eeprom.scl && scl) {
173 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
174 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
175 if (eeprom.ack) {
176 logout("\ti2c ack bit = 0\n");
177 sda = 0;
178 eeprom.ack = 0;
179 } else if (eeprom.sda == sda) {
180 uint8_t bit = (sda != 0);
181 logout("\ti2c bit = %d\n", bit);
182 if (eeprom.tick < 9) {
183 eeprom.command <<= 1;
184 eeprom.command += bit;
185 eeprom.tick++;
186 if (eeprom.tick == 9) {
187 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
188 eeprom.ack = 1;
190 } else if (eeprom.tick < 17) {
191 if (eeprom.command & 1) {
192 sda = ((eeprom.data & 0x80) != 0);
194 eeprom.address <<= 1;
195 eeprom.address += bit;
196 eeprom.tick++;
197 eeprom.data <<= 1;
198 if (eeprom.tick == 17) {
199 eeprom.data = eeprom.contents[eeprom.address];
200 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
201 eeprom.ack = 1;
202 eeprom.tick = 0;
204 } else if (eeprom.tick >= 17) {
205 sda = 0;
207 } else {
208 logout("\tsda changed with raising scl\n");
210 } else {
211 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
213 eeprom.scl = scl;
214 eeprom.sda = sda;
217 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
219 MaltaFPGAState *s = opaque;
220 uint32_t val = 0;
221 uint32_t saddr;
223 saddr = (addr & 0xfffff);
225 switch (saddr) {
227 /* SWITCH Register */
228 case 0x00200:
229 val = 0x00000000; /* All switches closed */
230 break;
232 /* STATUS Register */
233 case 0x00208:
234 #ifdef TARGET_WORDS_BIGENDIAN
235 val = 0x00000012;
236 #else
237 val = 0x00000010;
238 #endif
239 break;
241 /* JMPRS Register */
242 case 0x00210:
243 val = 0x00;
244 break;
246 /* LEDBAR Register */
247 case 0x00408:
248 val = s->leds;
249 break;
251 /* BRKRES Register */
252 case 0x00508:
253 val = s->brk;
254 break;
256 /* UART Registers are handled directly by the serial device */
258 /* GPOUT Register */
259 case 0x00a00:
260 val = s->gpout;
261 break;
263 /* XXX: implement a real I2C controller */
265 /* GPINP Register */
266 case 0x00a08:
267 /* IN = OUT until a real I2C control is implemented */
268 if (s->i2csel)
269 val = s->i2cout;
270 else
271 val = 0x00;
272 break;
274 /* I2CINP Register */
275 case 0x00b00:
276 val = ((s->i2cin & ~1) | eeprom24c0x_read());
277 break;
279 /* I2COE Register */
280 case 0x00b08:
281 val = s->i2coe;
282 break;
284 /* I2COUT Register */
285 case 0x00b10:
286 val = s->i2cout;
287 break;
289 /* I2CSEL Register */
290 case 0x00b18:
291 val = s->i2csel;
292 break;
294 default:
295 #if 0
296 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
297 addr);
298 #endif
299 break;
301 return val;
304 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
305 uint32_t val)
307 MaltaFPGAState *s = opaque;
308 uint32_t saddr;
310 saddr = (addr & 0xfffff);
312 switch (saddr) {
314 /* SWITCH Register */
315 case 0x00200:
316 break;
318 /* JMPRS Register */
319 case 0x00210:
320 break;
322 /* LEDBAR Register */
323 /* XXX: implement a 8-LED array */
324 case 0x00408:
325 s->leds = val & 0xff;
326 break;
328 /* ASCIIWORD Register */
329 case 0x00410:
330 snprintf(s->display_text, 9, "%08X", val);
331 malta_fpga_update_display(s);
332 break;
334 /* ASCIIPOS0 to ASCIIPOS7 Registers */
335 case 0x00418:
336 case 0x00420:
337 case 0x00428:
338 case 0x00430:
339 case 0x00438:
340 case 0x00440:
341 case 0x00448:
342 case 0x00450:
343 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
344 malta_fpga_update_display(s);
345 break;
347 /* SOFTRES Register */
348 case 0x00500:
349 if (val == 0x42)
350 qemu_system_reset_request ();
351 break;
353 /* BRKRES Register */
354 case 0x00508:
355 s->brk = val & 0xff;
356 break;
358 /* UART Registers are handled directly by the serial device */
360 /* GPOUT Register */
361 case 0x00a00:
362 s->gpout = val & 0xff;
363 break;
365 /* I2COE Register */
366 case 0x00b08:
367 s->i2coe = val & 0x03;
368 break;
370 /* I2COUT Register */
371 case 0x00b10:
372 eeprom24c0x_write(val & 0x02, val & 0x01);
373 s->i2cout = val;
374 break;
376 /* I2CSEL Register */
377 case 0x00b18:
378 s->i2csel = val & 0x01;
379 break;
381 default:
382 #if 0
383 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
384 addr);
385 #endif
386 break;
390 static CPUReadMemoryFunc * const malta_fpga_read[] = {
391 malta_fpga_readl,
392 malta_fpga_readl,
393 malta_fpga_readl
396 static CPUWriteMemoryFunc * const malta_fpga_write[] = {
397 malta_fpga_writel,
398 malta_fpga_writel,
399 malta_fpga_writel
402 static void malta_fpga_reset(void *opaque)
404 MaltaFPGAState *s = opaque;
406 s->leds = 0x00;
407 s->brk = 0x0a;
408 s->gpout = 0x00;
409 s->i2cin = 0x3;
410 s->i2coe = 0x0;
411 s->i2cout = 0x3;
412 s->i2csel = 0x1;
414 s->display_text[8] = '\0';
415 snprintf(s->display_text, 9, " ");
418 static void malta_fpga_led_init(CharDriverState *chr)
420 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
421 qemu_chr_printf(chr, "+--------+\r\n");
422 qemu_chr_printf(chr, "+ +\r\n");
423 qemu_chr_printf(chr, "+--------+\r\n");
424 qemu_chr_printf(chr, "\n");
425 qemu_chr_printf(chr, "Malta ASCII\r\n");
426 qemu_chr_printf(chr, "+--------+\r\n");
427 qemu_chr_printf(chr, "+ +\r\n");
428 qemu_chr_printf(chr, "+--------+\r\n");
431 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
433 MaltaFPGAState *s;
434 int malta;
436 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
438 malta = cpu_register_io_memory(malta_fpga_read,
439 malta_fpga_write, s,
440 DEVICE_NATIVE_ENDIAN);
442 cpu_register_physical_memory(base, 0x900, malta);
443 /* 0xa00 is less than a page, so will still get the right offsets. */
444 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
446 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
448 #ifdef TARGET_WORDS_BIGENDIAN
449 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 1);
450 #else
451 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 0);
452 #endif
454 malta_fpga_reset(s);
455 qemu_register_reset(malta_fpga_reset, s);
457 return s;
460 /* Audio support */
461 static void audio_init (PCIBus *pci_bus)
463 struct soundhw *c;
464 int audio_enabled = 0;
466 for (c = soundhw; !audio_enabled && c->name; ++c) {
467 audio_enabled = c->enabled;
470 if (audio_enabled) {
471 for (c = soundhw; c->name; ++c) {
472 if (c->enabled) {
473 c->init.init_pci(pci_bus);
479 /* Network support */
480 static void network_init(void)
482 int i;
484 for(i = 0; i < nb_nics; i++) {
485 NICInfo *nd = &nd_table[i];
486 const char *default_devaddr = NULL;
488 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
489 /* The malta board has a PCNet card using PCI SLOT 11 */
490 default_devaddr = "0b";
492 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
496 /* ROM and pseudo bootloader
498 The following code implements a very very simple bootloader. It first
499 loads the registers a0 to a3 to the values expected by the OS, and
500 then jump at the kernel address.
502 The bootloader should pass the locations of the kernel arguments and
503 environment variables tables. Those tables contain the 32-bit address
504 of NULL terminated strings. The environment variables table should be
505 terminated by a NULL address.
507 For a simpler implementation, the number of kernel arguments is fixed
508 to two (the name of the kernel and the command line), and the two
509 tables are actually the same one.
511 The registers a0 to a3 should contain the following values:
512 a0 - number of kernel arguments
513 a1 - 32-bit address of the kernel arguments table
514 a2 - 32-bit address of the environment variables table
515 a3 - RAM size in bytes
518 static void write_bootloader (CPUState *env, uint8_t *base,
519 int64_t kernel_entry)
521 uint32_t *p;
523 /* Small bootloader */
524 p = (uint32_t *)base;
525 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
526 stl_raw(p++, 0x00000000); /* nop */
528 /* YAMON service vector */
529 stl_raw(base + 0x500, 0xbfc00580); /* start: */
530 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
531 stl_raw(base + 0x520, 0xbfc00580); /* start: */
532 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
533 stl_raw(base + 0x534, 0xbfc00808); /* print: */
534 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
535 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
536 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
537 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
538 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
539 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
540 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
541 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
544 /* Second part of the bootloader */
545 p = (uint32_t *) (base + 0x580);
546 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
547 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
548 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
549 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
550 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
551 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
552 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
553 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
554 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
556 /* Load BAR registers as done by YAMON */
557 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
559 #ifdef TARGET_WORDS_BIGENDIAN
560 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
561 #else
562 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
563 #endif
564 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
566 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
568 #ifdef TARGET_WORDS_BIGENDIAN
569 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
570 #else
571 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
572 #endif
573 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
574 #ifdef TARGET_WORDS_BIGENDIAN
575 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
576 #else
577 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
578 #endif
579 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
581 #ifdef TARGET_WORDS_BIGENDIAN
582 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
583 #else
584 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
585 #endif
586 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
587 #ifdef TARGET_WORDS_BIGENDIAN
588 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
589 #else
590 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
591 #endif
592 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
594 #ifdef TARGET_WORDS_BIGENDIAN
595 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
596 #else
597 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
598 #endif
599 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
600 #ifdef TARGET_WORDS_BIGENDIAN
601 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
602 #else
603 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
604 #endif
605 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
607 /* Jump to kernel code */
608 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
609 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
610 stl_raw(p++, 0x03e00008); /* jr ra */
611 stl_raw(p++, 0x00000000); /* nop */
613 /* YAMON subroutines */
614 p = (uint32_t *) (base + 0x800);
615 stl_raw(p++, 0x03e00008); /* jr ra */
616 stl_raw(p++, 0x24020000); /* li v0,0 */
617 /* 808 YAMON print */
618 stl_raw(p++, 0x03e06821); /* move t5,ra */
619 stl_raw(p++, 0x00805821); /* move t3,a0 */
620 stl_raw(p++, 0x00a05021); /* move t2,a1 */
621 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
622 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
623 stl_raw(p++, 0x10800005); /* beqz a0,834 */
624 stl_raw(p++, 0x00000000); /* nop */
625 stl_raw(p++, 0x0ff0021c); /* jal 870 */
626 stl_raw(p++, 0x00000000); /* nop */
627 stl_raw(p++, 0x08000205); /* j 814 */
628 stl_raw(p++, 0x00000000); /* nop */
629 stl_raw(p++, 0x01a00008); /* jr t5 */
630 stl_raw(p++, 0x01602021); /* move a0,t3 */
631 /* 0x83c YAMON print_count */
632 stl_raw(p++, 0x03e06821); /* move t5,ra */
633 stl_raw(p++, 0x00805821); /* move t3,a0 */
634 stl_raw(p++, 0x00a05021); /* move t2,a1 */
635 stl_raw(p++, 0x00c06021); /* move t4,a2 */
636 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
637 stl_raw(p++, 0x0ff0021c); /* jal 870 */
638 stl_raw(p++, 0x00000000); /* nop */
639 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
640 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
641 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
642 stl_raw(p++, 0x00000000); /* nop */
643 stl_raw(p++, 0x01a00008); /* jr t5 */
644 stl_raw(p++, 0x01602021); /* move a0,t3 */
645 /* 0x870 */
646 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
647 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
648 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
649 stl_raw(p++, 0x00000000); /* nop */
650 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
651 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
652 stl_raw(p++, 0x00000000); /* nop */
653 stl_raw(p++, 0x03e00008); /* jr ra */
654 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
658 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
659 const char *string, ...)
661 va_list ap;
662 int32_t table_addr;
664 if (index >= ENVP_NB_ENTRIES)
665 return;
667 if (string == NULL) {
668 prom_buf[index] = 0;
669 return;
672 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
673 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
675 va_start(ap, string);
676 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
677 va_end(ap);
680 /* Kernel */
681 static int64_t load_kernel (void)
683 int64_t kernel_entry, kernel_high;
684 long initrd_size;
685 ram_addr_t initrd_offset;
686 int big_endian;
687 uint32_t *prom_buf;
688 long prom_size;
689 int prom_index = 0;
691 #ifdef TARGET_WORDS_BIGENDIAN
692 big_endian = 1;
693 #else
694 big_endian = 0;
695 #endif
697 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
698 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
699 big_endian, ELF_MACHINE, 1) < 0) {
700 fprintf(stderr, "qemu: could not load kernel '%s'\n",
701 loaderparams.kernel_filename);
702 exit(1);
705 /* load initrd */
706 initrd_size = 0;
707 initrd_offset = 0;
708 if (loaderparams.initrd_filename) {
709 initrd_size = get_image_size (loaderparams.initrd_filename);
710 if (initrd_size > 0) {
711 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
712 if (initrd_offset + initrd_size > ram_size) {
713 fprintf(stderr,
714 "qemu: memory too small for initial ram disk '%s'\n",
715 loaderparams.initrd_filename);
716 exit(1);
718 initrd_size = load_image_targphys(loaderparams.initrd_filename,
719 initrd_offset,
720 ram_size - initrd_offset);
722 if (initrd_size == (target_ulong) -1) {
723 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
724 loaderparams.initrd_filename);
725 exit(1);
729 /* Setup prom parameters. */
730 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
731 prom_buf = qemu_malloc(prom_size);
733 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
734 if (initrd_size > 0) {
735 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
736 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
737 loaderparams.kernel_cmdline);
738 } else {
739 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
742 prom_set(prom_buf, prom_index++, "memsize");
743 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
744 prom_set(prom_buf, prom_index++, "modetty0");
745 prom_set(prom_buf, prom_index++, "38400n8r");
746 prom_set(prom_buf, prom_index++, NULL);
748 rom_add_blob_fixed("prom", prom_buf, prom_size,
749 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
751 return kernel_entry;
754 static void main_cpu_reset(void *opaque)
756 CPUState *env = opaque;
757 cpu_reset(env);
759 /* The bootloader does not need to be rewritten as it is located in a
760 read only location. The kernel location and the arguments table
761 location does not change. */
762 if (loaderparams.kernel_filename) {
763 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
767 static void cpu_request_exit(void *opaque, int irq, int level)
769 CPUState *env = cpu_single_env;
771 if (env && level) {
772 cpu_exit(env);
776 static
777 void mips_malta_init (ram_addr_t ram_size,
778 const char *boot_device,
779 const char *kernel_filename, const char *kernel_cmdline,
780 const char *initrd_filename, const char *cpu_model)
782 char *filename;
783 ram_addr_t ram_offset;
784 ram_addr_t bios_offset;
785 target_long bios_size;
786 int64_t kernel_entry;
787 PCIBus *pci_bus;
788 CPUState *env;
789 qemu_irq *i8259;
790 qemu_irq *cpu_exit_irq;
791 int piix4_devfn;
792 uint8_t *eeprom_buf;
793 i2c_bus *smbus;
794 int i;
795 DriveInfo *dinfo;
796 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
797 DriveInfo *fd[MAX_FD];
798 int fl_idx = 0;
799 int fl_sectors = 0;
800 int be;
802 /* Make sure the first 3 serial ports are associated with a device. */
803 for(i = 0; i < 3; i++) {
804 if (!serial_hds[i]) {
805 char label[32];
806 snprintf(label, sizeof(label), "serial%d", i);
807 serial_hds[i] = qemu_chr_open(label, "null", NULL);
811 /* init CPUs */
812 if (cpu_model == NULL) {
813 #ifdef TARGET_MIPS64
814 cpu_model = "20Kc";
815 #else
816 cpu_model = "24Kf";
817 #endif
819 env = cpu_init(cpu_model);
820 if (!env) {
821 fprintf(stderr, "Unable to find CPU definition\n");
822 exit(1);
824 qemu_register_reset(main_cpu_reset, env);
826 /* allocate RAM */
827 if (ram_size > (256 << 20)) {
828 fprintf(stderr,
829 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
830 ((unsigned int)ram_size / (1 << 20)));
831 exit(1);
833 ram_offset = qemu_ram_alloc(NULL, "mips_malta.ram", ram_size);
834 bios_offset = qemu_ram_alloc(NULL, "mips_malta.bios", BIOS_SIZE);
837 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
839 /* Map the bios at two physical locations, as on the real board. */
840 cpu_register_physical_memory(0x1e000000LL,
841 BIOS_SIZE, bios_offset | IO_MEM_ROM);
842 cpu_register_physical_memory(0x1fc00000LL,
843 BIOS_SIZE, bios_offset | IO_MEM_ROM);
845 #ifdef TARGET_WORDS_BIGENDIAN
846 be = 1;
847 #else
848 be = 0;
849 #endif
850 /* FPGA */
851 malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
853 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
854 if (kernel_filename) {
855 /* Write a small bootloader to the flash location. */
856 loaderparams.ram_size = ram_size;
857 loaderparams.kernel_filename = kernel_filename;
858 loaderparams.kernel_cmdline = kernel_cmdline;
859 loaderparams.initrd_filename = initrd_filename;
860 kernel_entry = load_kernel();
861 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
862 } else {
863 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
864 if (dinfo) {
865 /* Load firmware from flash. */
866 bios_size = 0x400000;
867 fl_sectors = bios_size >> 16;
868 #ifdef DEBUG_BOARD_INIT
869 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
870 "offset %08lx addr %08llx '%s' %x\n",
871 fl_idx, bios_size, bios_offset, 0x1e000000LL,
872 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
873 #endif
874 pflash_cfi01_register(0x1e000000LL, bios_offset,
875 dinfo->bdrv, 65536, fl_sectors,
876 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
877 fl_idx++;
878 } else {
879 /* Load a BIOS image. */
880 if (bios_name == NULL)
881 bios_name = BIOS_FILENAME;
882 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
883 if (filename) {
884 bios_size = load_image_targphys(filename, 0x1fc00000LL,
885 BIOS_SIZE);
886 qemu_free(filename);
887 } else {
888 bios_size = -1;
890 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
891 fprintf(stderr,
892 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
893 bios_name);
894 exit(1);
897 /* In little endian mode the 32bit words in the bios are swapped,
898 a neat trick which allows bi-endian firmware. */
899 #ifndef TARGET_WORDS_BIGENDIAN
901 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
902 uint32_t *end = addr + bios_size;
903 while (addr < end) {
904 bswap32s(addr);
907 #endif
910 /* Board ID = 0x420 (Malta Board with CoreLV)
911 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
912 map to the board ID. */
913 stl_phys(0x1fc00010LL, 0x00000420);
915 /* Init internal devices */
916 cpu_mips_irq_init_cpu(env);
917 cpu_mips_clock_init(env);
919 /* Interrupt controller */
920 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
921 i8259 = i8259_init(env->irq[2]);
923 /* Northbridge */
924 pci_bus = pci_gt64120_init(i8259);
926 /* Southbridge */
928 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
929 fprintf(stderr, "qemu: too many IDE bus\n");
930 exit(1);
933 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
934 hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
937 piix4_devfn = piix4_init(pci_bus, 80);
938 isa_bus_irqs(i8259);
939 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
940 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
941 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_reserve_irq(9),
942 NULL, NULL, 0);
943 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
944 for (i = 0; i < 8; i++) {
945 /* TODO: Populate SPD eeprom data. */
946 DeviceState *eeprom;
947 eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
948 qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
949 qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
950 qdev_init_nofail(eeprom);
952 pit = pit_init(0x40, isa_reserve_irq(0));
953 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
954 DMA_init(0, cpu_exit_irq);
956 /* Super I/O */
957 isa_create_simple("i8042");
959 rtc_init(2000, NULL);
960 serial_isa_init(0, serial_hds[0]);
961 serial_isa_init(1, serial_hds[1]);
962 if (parallel_hds[0])
963 parallel_init(0, parallel_hds[0]);
964 for(i = 0; i < MAX_FD; i++) {
965 fd[i] = drive_get(IF_FLOPPY, 0, i);
967 fdctrl_init_isa(fd);
969 /* Sound card */
970 audio_init(pci_bus);
972 /* Network card */
973 network_init();
975 /* Optional PCI video card */
976 if (cirrus_vga_enabled) {
977 pci_cirrus_vga_init(pci_bus);
978 } else if (vmsvga_enabled) {
979 pci_vmsvga_init(pci_bus);
980 } else if (std_vga_enabled) {
981 pci_vga_init(pci_bus);
985 static QEMUMachine mips_malta_machine = {
986 .name = "malta",
987 .desc = "MIPS Malta Core LV",
988 .init = mips_malta_init,
989 .is_default = 1,
992 static void mips_malta_machine_init(void)
994 qemu_register_machine(&mips_malta_machine);
997 machine_init(mips_malta_machine_init);