target-ppc: Initialize OpenPIC properly
[qemu/agraf.git] / cpu-exec.c
blobaf4595b65aeb3f5afb635a72cbf65493d5b8143e
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
25 #if !defined(CONFIG_SOFTMMU)
26 #undef EAX
27 #undef ECX
28 #undef EDX
29 #undef EBX
30 #undef ESP
31 #undef EBP
32 #undef ESI
33 #undef EDI
34 #undef EIP
35 #include <signal.h>
36 #ifdef __linux__
37 #include <sys/ucontext.h>
38 #endif
39 #endif
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
43 #undef env
44 #define env cpu_single_env
45 #endif
47 int tb_invalidated_flag;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState *env)
54 return cpu_has_work(env);
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
61 regs_to_env();
62 longjmp(env->jmp_env, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState *env1, void *puc)
70 #if !defined(CONFIG_SOFTMMU)
71 #ifdef __linux__
72 struct ucontext *uc = puc;
73 #elif defined(__OpenBSD__)
74 struct sigcontext *uc = puc;
75 #endif
76 #endif
78 env = env1;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
83 if (puc) {
84 /* XXX: use siglongjmp ? */
85 #ifdef __linux__
86 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
89 #endif
91 #endif
92 env->exception_index = -1;
93 longjmp(env->jmp_env, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
100 unsigned long next_tb;
101 TranslationBlock *tb;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles > CF_COUNT_MASK)
106 max_cycles = CF_COUNT_MASK;
108 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
109 max_cycles);
110 env->current_tb = tb;
111 /* execute the generated code */
112 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
114 if ((next_tb & 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env, tb);
119 tb_phys_invalidate(tb, -1);
120 tb_free(tb);
123 static TranslationBlock *tb_find_slow(target_ulong pc,
124 target_ulong cs_base,
125 uint64_t flags)
127 TranslationBlock *tb, **ptb1;
128 unsigned int h;
129 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
131 tb_invalidated_flag = 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc = get_phys_addr_code(env, pc);
137 phys_page1 = phys_pc & TARGET_PAGE_MASK;
138 phys_page2 = -1;
139 h = tb_phys_hash_func(phys_pc);
140 ptb1 = &tb_phys_hash[h];
141 for(;;) {
142 tb = *ptb1;
143 if (!tb)
144 goto not_found;
145 if (tb->pc == pc &&
146 tb->page_addr[0] == phys_page1 &&
147 tb->cs_base == cs_base &&
148 tb->flags == flags) {
149 /* check next page if needed */
150 if (tb->page_addr[1] != -1) {
151 virt_page2 = (pc & TARGET_PAGE_MASK) +
152 TARGET_PAGE_SIZE;
153 phys_page2 = get_phys_addr_code(env, virt_page2);
154 if (tb->page_addr[1] == phys_page2)
155 goto found;
156 } else {
157 goto found;
160 ptb1 = &tb->phys_hash_next;
162 not_found:
163 /* if no translated code available, then translate it now */
164 tb = tb_gen_code(env, pc, cs_base, flags, 0);
166 found:
167 /* we add the TB in the virtual pc hash table */
168 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
169 return tb;
172 static inline TranslationBlock *tb_find_fast(void)
174 TranslationBlock *tb;
175 target_ulong cs_base, pc;
176 int flags;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
180 is executed. */
181 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
182 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
183 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
184 tb->flags != flags)) {
185 tb = tb_find_slow(pc, cs_base, flags);
187 return tb;
190 static CPUDebugExcpHandler *debug_excp_handler;
192 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
194 CPUDebugExcpHandler *old_handler = debug_excp_handler;
196 debug_excp_handler = handler;
197 return old_handler;
200 static void cpu_handle_debug_exception(CPUState *env)
202 CPUWatchpoint *wp;
204 if (!env->watchpoint_hit)
205 QTAILQ_FOREACH(wp, &env->watchpoints, entry)
206 wp->flags &= ~BP_WATCHPOINT_HIT;
208 if (debug_excp_handler)
209 debug_excp_handler(env);
212 /* main execution loop */
214 int cpu_exec(CPUState *env1)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret, interrupt_request;
219 TranslationBlock *tb;
220 uint8_t *tc_ptr;
221 unsigned long next_tb;
223 if (cpu_halted(env1) == EXCP_HALTED)
224 return EXCP_HALTED;
226 cpu_single_env = env1;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
231 env = env1;
233 env_to_regs();
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
237 DF = 1 - (2 * ((env->eflags >> 10) & 1));
238 CC_OP = CC_OP_EFLAGS;
239 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env->cc_op = CC_OP_FLAGS;
243 env->cc_dest = env->sr & 0xf;
244 env->cc_x = (env->sr >> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MICROBLAZE)
249 #elif defined(TARGET_MIPS)
250 #elif defined(TARGET_SH4)
251 #elif defined(TARGET_CRIS)
252 #elif defined(TARGET_S390X)
253 /* XXXXX */
254 #else
255 #error unsupported target CPU
256 #endif
257 env->exception_index = -1;
259 /* prepare setjmp context for exception handling */
260 for(;;) {
261 if (setjmp(env->jmp_env) == 0) {
262 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
263 #undef env
264 env = cpu_single_env;
265 #define env cpu_single_env
266 #endif
267 env->current_tb = NULL;
268 /* if an exception is pending, we execute it here */
269 if (env->exception_index >= 0) {
270 if (env->exception_index >= EXCP_INTERRUPT) {
271 /* exit request from the cpu execution loop */
272 ret = env->exception_index;
273 if (ret == EXCP_DEBUG)
274 cpu_handle_debug_exception(env);
275 break;
276 } else {
277 #if defined(CONFIG_USER_ONLY)
278 /* if user mode only, we simulate a fake exception
279 which will be handled outside the cpu execution
280 loop */
281 #if defined(TARGET_I386)
282 do_interrupt_user(env->exception_index,
283 env->exception_is_int,
284 env->error_code,
285 env->exception_next_eip);
286 /* successfully delivered */
287 env->old_exception = -1;
288 #endif
289 ret = env->exception_index;
290 break;
291 #else
292 #if defined(TARGET_I386)
293 /* simulate a real cpu exception. On i386, it can
294 trigger new exceptions, but we do not handle
295 double or triple faults yet. */
296 do_interrupt(env->exception_index,
297 env->exception_is_int,
298 env->error_code,
299 env->exception_next_eip, 0);
300 /* successfully delivered */
301 env->old_exception = -1;
302 #elif defined(TARGET_PPC)
303 do_interrupt(env);
304 #elif defined(TARGET_MICROBLAZE)
305 do_interrupt(env);
306 #elif defined(TARGET_MIPS)
307 do_interrupt(env);
308 #elif defined(TARGET_SPARC)
309 do_interrupt(env);
310 #elif defined(TARGET_ARM)
311 do_interrupt(env);
312 #elif defined(TARGET_SH4)
313 do_interrupt(env);
314 #elif defined(TARGET_ALPHA)
315 do_interrupt(env);
316 #elif defined(TARGET_CRIS)
317 do_interrupt(env);
318 #elif defined(TARGET_M68K)
319 do_interrupt(0);
320 #endif
321 #endif
323 env->exception_index = -1;
326 if (kvm_enabled()) {
327 kvm_cpu_exec(env);
328 longjmp(env->jmp_env, 1);
331 next_tb = 0; /* force lookup of first TB */
332 for(;;) {
333 interrupt_request = env->interrupt_request;
334 if (unlikely(interrupt_request)) {
335 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
336 /* Mask out external interrupts for this step. */
337 interrupt_request &= ~(CPU_INTERRUPT_HARD |
338 CPU_INTERRUPT_FIQ |
339 CPU_INTERRUPT_SMI |
340 CPU_INTERRUPT_NMI);
342 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
343 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
344 env->exception_index = EXCP_DEBUG;
345 cpu_loop_exit();
347 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
348 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
349 defined(TARGET_MICROBLAZE)
350 if (interrupt_request & CPU_INTERRUPT_HALT) {
351 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
352 env->halted = 1;
353 env->exception_index = EXCP_HLT;
354 cpu_loop_exit();
356 #endif
357 #if defined(TARGET_I386)
358 if (interrupt_request & CPU_INTERRUPT_INIT) {
359 svm_check_intercept(SVM_EXIT_INIT);
360 do_cpu_init(env);
361 env->exception_index = EXCP_HALTED;
362 cpu_loop_exit();
363 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
364 do_cpu_sipi(env);
365 } else if (env->hflags2 & HF2_GIF_MASK) {
366 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
367 !(env->hflags & HF_SMM_MASK)) {
368 svm_check_intercept(SVM_EXIT_SMI);
369 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
370 do_smm_enter();
371 next_tb = 0;
372 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
373 !(env->hflags2 & HF2_NMI_MASK)) {
374 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
375 env->hflags2 |= HF2_NMI_MASK;
376 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
377 next_tb = 0;
378 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
379 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
380 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
381 next_tb = 0;
382 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
383 (((env->hflags2 & HF2_VINTR_MASK) &&
384 (env->hflags2 & HF2_HIF_MASK)) ||
385 (!(env->hflags2 & HF2_VINTR_MASK) &&
386 (env->eflags & IF_MASK &&
387 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
388 int intno;
389 svm_check_intercept(SVM_EXIT_INTR);
390 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
391 intno = cpu_get_pic_interrupt(env);
392 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
393 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
394 #undef env
395 env = cpu_single_env;
396 #define env cpu_single_env
397 #endif
398 do_interrupt(intno, 0, 0, 0, 1);
399 /* ensure that no TB jump will be modified as
400 the program flow was changed */
401 next_tb = 0;
402 #if !defined(CONFIG_USER_ONLY)
403 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
404 (env->eflags & IF_MASK) &&
405 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
406 int intno;
407 /* FIXME: this should respect TPR */
408 svm_check_intercept(SVM_EXIT_VINTR);
409 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
410 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
411 do_interrupt(intno, 0, 0, 0, 1);
412 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
413 next_tb = 0;
414 #endif
417 #elif defined(TARGET_PPC)
418 #if 0
419 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
420 cpu_reset(env);
422 #endif
423 if (interrupt_request & CPU_INTERRUPT_HARD) {
424 ppc_hw_interrupt(env);
425 if (env->pending_interrupts == 0)
426 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
427 next_tb = 0;
429 #elif defined(TARGET_MICROBLAZE)
430 if ((interrupt_request & CPU_INTERRUPT_HARD)
431 && (env->sregs[SR_MSR] & MSR_IE)
432 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
433 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
434 env->exception_index = EXCP_IRQ;
435 do_interrupt(env);
436 next_tb = 0;
438 #elif defined(TARGET_MIPS)
439 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
440 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
441 (env->CP0_Status & (1 << CP0St_IE)) &&
442 !(env->CP0_Status & (1 << CP0St_EXL)) &&
443 !(env->CP0_Status & (1 << CP0St_ERL)) &&
444 !(env->hflags & MIPS_HFLAG_DM)) {
445 /* Raise it */
446 env->exception_index = EXCP_EXT_INTERRUPT;
447 env->error_code = 0;
448 do_interrupt(env);
449 next_tb = 0;
451 #elif defined(TARGET_SPARC)
452 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
453 cpu_interrupts_enabled(env)) {
454 int pil = env->interrupt_index & 15;
455 int type = env->interrupt_index & 0xf0;
457 if (((type == TT_EXTINT) &&
458 (pil == 15 || pil > env->psrpil)) ||
459 type != TT_EXTINT) {
460 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
461 env->exception_index = env->interrupt_index;
462 do_interrupt(env);
463 env->interrupt_index = 0;
464 next_tb = 0;
466 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
467 //do_interrupt(0, 0, 0, 0, 0);
468 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
470 #elif defined(TARGET_ARM)
471 if (interrupt_request & CPU_INTERRUPT_FIQ
472 && !(env->uncached_cpsr & CPSR_F)) {
473 env->exception_index = EXCP_FIQ;
474 do_interrupt(env);
475 next_tb = 0;
477 /* ARMv7-M interrupt return works by loading a magic value
478 into the PC. On real hardware the load causes the
479 return to occur. The qemu implementation performs the
480 jump normally, then does the exception return when the
481 CPU tries to execute code at the magic address.
482 This will cause the magic PC value to be pushed to
483 the stack if an interrupt occured at the wrong time.
484 We avoid this by disabling interrupts when
485 pc contains a magic address. */
486 if (interrupt_request & CPU_INTERRUPT_HARD
487 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
488 || !(env->uncached_cpsr & CPSR_I))) {
489 env->exception_index = EXCP_IRQ;
490 do_interrupt(env);
491 next_tb = 0;
493 #elif defined(TARGET_SH4)
494 if (interrupt_request & CPU_INTERRUPT_HARD) {
495 do_interrupt(env);
496 next_tb = 0;
498 #elif defined(TARGET_ALPHA)
499 if (interrupt_request & CPU_INTERRUPT_HARD) {
500 do_interrupt(env);
501 next_tb = 0;
503 #elif defined(TARGET_CRIS)
504 if (interrupt_request & CPU_INTERRUPT_HARD
505 && (env->pregs[PR_CCS] & I_FLAG)) {
506 env->exception_index = EXCP_IRQ;
507 do_interrupt(env);
508 next_tb = 0;
510 if (interrupt_request & CPU_INTERRUPT_NMI
511 && (env->pregs[PR_CCS] & M_FLAG)) {
512 env->exception_index = EXCP_NMI;
513 do_interrupt(env);
514 next_tb = 0;
516 #elif defined(TARGET_M68K)
517 if (interrupt_request & CPU_INTERRUPT_HARD
518 && ((env->sr & SR_I) >> SR_I_SHIFT)
519 < env->pending_level) {
520 /* Real hardware gets the interrupt vector via an
521 IACK cycle at this point. Current emulated
522 hardware doesn't rely on this, so we
523 provide/save the vector when the interrupt is
524 first signalled. */
525 env->exception_index = env->pending_vector;
526 do_interrupt(1);
527 next_tb = 0;
529 #endif
530 /* Don't use the cached interupt_request value,
531 do_interrupt may have updated the EXITTB flag. */
532 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
533 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
534 /* ensure that no TB jump will be modified as
535 the program flow was changed */
536 next_tb = 0;
539 if (unlikely(env->exit_request)) {
540 env->exit_request = 0;
541 env->exception_index = EXCP_INTERRUPT;
542 cpu_loop_exit();
544 #ifdef CONFIG_DEBUG_EXEC
545 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
546 /* restore flags in standard format */
547 regs_to_env();
548 #if defined(TARGET_I386)
549 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
550 log_cpu_state(env, X86_DUMP_CCOP);
551 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
552 #elif defined(TARGET_ARM)
553 log_cpu_state(env, 0);
554 #elif defined(TARGET_SPARC)
555 log_cpu_state(env, 0);
556 #elif defined(TARGET_PPC)
557 log_cpu_state(env, 0);
558 #elif defined(TARGET_M68K)
559 cpu_m68k_flush_flags(env, env->cc_op);
560 env->cc_op = CC_OP_FLAGS;
561 env->sr = (env->sr & 0xffe0)
562 | env->cc_dest | (env->cc_x << 4);
563 log_cpu_state(env, 0);
564 #elif defined(TARGET_MICROBLAZE)
565 log_cpu_state(env, 0);
566 #elif defined(TARGET_MIPS)
567 log_cpu_state(env, 0);
568 #elif defined(TARGET_SH4)
569 log_cpu_state(env, 0);
570 #elif defined(TARGET_ALPHA)
571 log_cpu_state(env, 0);
572 #elif defined(TARGET_CRIS)
573 log_cpu_state(env, 0);
574 #else
575 #error unsupported target CPU
576 #endif
578 #endif
579 spin_lock(&tb_lock);
580 tb = tb_find_fast();
581 /* Note: we do it here to avoid a gcc bug on Mac OS X when
582 doing it in tb_find_slow */
583 if (tb_invalidated_flag) {
584 /* as some TB could have been invalidated because
585 of memory exceptions while generating the code, we
586 must recompute the hash index here */
587 next_tb = 0;
588 tb_invalidated_flag = 0;
590 #ifdef CONFIG_DEBUG_EXEC
591 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
592 (long)tb->tc_ptr, tb->pc,
593 lookup_symbol(tb->pc));
594 #endif
595 /* see if we can patch the calling TB. When the TB
596 spans two pages, we cannot safely do a direct
597 jump. */
599 if (next_tb != 0 && tb->page_addr[1] == -1) {
600 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
603 spin_unlock(&tb_lock);
604 env->current_tb = tb;
606 /* cpu_interrupt might be called while translating the
607 TB, but before it is linked into a potentially
608 infinite loop and becomes env->current_tb. Avoid
609 starting execution if there is a pending interrupt. */
610 if (unlikely (env->exit_request))
611 env->current_tb = NULL;
613 while (env->current_tb) {
614 tc_ptr = tb->tc_ptr;
615 /* execute the generated code */
616 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
617 #undef env
618 env = cpu_single_env;
619 #define env cpu_single_env
620 #endif
621 next_tb = tcg_qemu_tb_exec(tc_ptr);
622 env->current_tb = NULL;
623 if ((next_tb & 3) == 2) {
624 /* Instruction counter expired. */
625 int insns_left;
626 tb = (TranslationBlock *)(long)(next_tb & ~3);
627 /* Restore PC. */
628 cpu_pc_from_tb(env, tb);
629 insns_left = env->icount_decr.u32;
630 if (env->icount_extra && insns_left >= 0) {
631 /* Refill decrementer and continue execution. */
632 env->icount_extra += insns_left;
633 if (env->icount_extra > 0xffff) {
634 insns_left = 0xffff;
635 } else {
636 insns_left = env->icount_extra;
638 env->icount_extra -= insns_left;
639 env->icount_decr.u16.low = insns_left;
640 } else {
641 if (insns_left > 0) {
642 /* Execute remaining instructions. */
643 cpu_exec_nocache(insns_left, tb);
645 env->exception_index = EXCP_INTERRUPT;
646 next_tb = 0;
647 cpu_loop_exit();
651 /* reset soft MMU for next block (it can currently
652 only be set by a memory fault) */
653 } /* for(;;) */
654 } else {
655 env_to_regs();
657 } /* for(;;) */
660 #if defined(TARGET_I386)
661 /* restore flags in standard format */
662 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
663 #elif defined(TARGET_ARM)
664 /* XXX: Save/restore host fpu exception state?. */
665 #elif defined(TARGET_SPARC)
666 #elif defined(TARGET_PPC)
667 #elif defined(TARGET_M68K)
668 cpu_m68k_flush_flags(env, env->cc_op);
669 env->cc_op = CC_OP_FLAGS;
670 env->sr = (env->sr & 0xffe0)
671 | env->cc_dest | (env->cc_x << 4);
672 #elif defined(TARGET_MICROBLAZE)
673 #elif defined(TARGET_MIPS)
674 #elif defined(TARGET_SH4)
675 #elif defined(TARGET_ALPHA)
676 #elif defined(TARGET_CRIS)
677 #elif defined(TARGET_S390X)
678 /* XXXXX */
679 #else
680 #error unsupported target CPU
681 #endif
683 /* restore global registers */
684 #include "hostregs_helper.h"
686 /* fail safe : never use cpu_single_env outside cpu_exec() */
687 cpu_single_env = NULL;
688 return ret;
691 /* must only be called from the generated code as an exception can be
692 generated */
693 void tb_invalidate_page_range(target_ulong start, target_ulong end)
695 /* XXX: cannot enable it yet because it yields to MMU exception
696 where NIP != read address on PowerPC */
697 #if 0
698 target_ulong phys_addr;
699 phys_addr = get_phys_addr_code(env, start);
700 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
701 #endif
704 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
706 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
708 CPUX86State *saved_env;
710 saved_env = env;
711 env = s;
712 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
713 selector &= 0xffff;
714 cpu_x86_load_seg_cache(env, seg_reg, selector,
715 (selector << 4), 0xffff, 0);
716 } else {
717 helper_load_seg(seg_reg, selector);
719 env = saved_env;
722 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
724 CPUX86State *saved_env;
726 saved_env = env;
727 env = s;
729 helper_fsave(ptr, data32);
731 env = saved_env;
734 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
736 CPUX86State *saved_env;
738 saved_env = env;
739 env = s;
741 helper_frstor(ptr, data32);
743 env = saved_env;
746 #endif /* TARGET_I386 */
748 #if !defined(CONFIG_SOFTMMU)
750 #if defined(TARGET_I386)
751 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
752 #else
753 #define EXCEPTION_ACTION cpu_loop_exit()
754 #endif
756 /* 'pc' is the host PC at which the exception was raised. 'address' is
757 the effective address of the memory exception. 'is_write' is 1 if a
758 write caused the exception and otherwise 0'. 'old_set' is the
759 signal set which should be restored */
760 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
761 int is_write, sigset_t *old_set,
762 void *puc)
764 TranslationBlock *tb;
765 int ret;
767 if (cpu_single_env)
768 env = cpu_single_env; /* XXX: find a correct solution for multithread */
769 #if defined(DEBUG_SIGNAL)
770 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
771 pc, address, is_write, *(unsigned long *)old_set);
772 #endif
773 /* XXX: locking issue */
774 if (is_write && page_unprotect(h2g(address), pc, puc)) {
775 return 1;
778 /* see if it is an MMU fault */
779 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
780 if (ret < 0)
781 return 0; /* not an MMU fault */
782 if (ret == 0)
783 return 1; /* the MMU fault was handled without causing real CPU fault */
784 /* now we have a real cpu fault */
785 tb = tb_find_pc(pc);
786 if (tb) {
787 /* the PC is inside the translated code. It means that we have
788 a virtual CPU fault */
789 cpu_restore_state(tb, env, pc, puc);
792 /* we restore the process signal mask as the sigreturn should
793 do it (XXX: use sigsetjmp) */
794 sigprocmask(SIG_SETMASK, old_set, NULL);
795 EXCEPTION_ACTION;
797 /* never comes here */
798 return 1;
801 #if defined(__i386__)
803 #if defined(__APPLE__)
804 # include <sys/ucontext.h>
806 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
807 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
808 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
809 # define MASK_sig(context) ((context)->uc_sigmask)
810 #elif defined (__NetBSD__)
811 # include <ucontext.h>
813 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
814 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
815 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
816 # define MASK_sig(context) ((context)->uc_sigmask)
817 #elif defined (__FreeBSD__) || defined(__DragonFly__)
818 # include <ucontext.h>
820 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
821 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
822 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
823 # define MASK_sig(context) ((context)->uc_sigmask)
824 #elif defined(__OpenBSD__)
825 # define EIP_sig(context) ((context)->sc_eip)
826 # define TRAP_sig(context) ((context)->sc_trapno)
827 # define ERROR_sig(context) ((context)->sc_err)
828 # define MASK_sig(context) ((context)->sc_mask)
829 #else
830 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
831 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
832 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
833 # define MASK_sig(context) ((context)->uc_sigmask)
834 #endif
836 int cpu_signal_handler(int host_signum, void *pinfo,
837 void *puc)
839 siginfo_t *info = pinfo;
840 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
841 ucontext_t *uc = puc;
842 #elif defined(__OpenBSD__)
843 struct sigcontext *uc = puc;
844 #else
845 struct ucontext *uc = puc;
846 #endif
847 unsigned long pc;
848 int trapno;
850 #ifndef REG_EIP
851 /* for glibc 2.1 */
852 #define REG_EIP EIP
853 #define REG_ERR ERR
854 #define REG_TRAPNO TRAPNO
855 #endif
856 pc = EIP_sig(uc);
857 trapno = TRAP_sig(uc);
858 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
859 trapno == 0xe ?
860 (ERROR_sig(uc) >> 1) & 1 : 0,
861 &MASK_sig(uc), puc);
864 #elif defined(__x86_64__)
866 #ifdef __NetBSD__
867 #define PC_sig(context) _UC_MACHINE_PC(context)
868 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
869 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
870 #define MASK_sig(context) ((context)->uc_sigmask)
871 #elif defined(__OpenBSD__)
872 #define PC_sig(context) ((context)->sc_rip)
873 #define TRAP_sig(context) ((context)->sc_trapno)
874 #define ERROR_sig(context) ((context)->sc_err)
875 #define MASK_sig(context) ((context)->sc_mask)
876 #elif defined (__FreeBSD__) || defined(__DragonFly__)
877 #include <ucontext.h>
879 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
880 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
881 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
882 #define MASK_sig(context) ((context)->uc_sigmask)
883 #else
884 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
885 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
886 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
887 #define MASK_sig(context) ((context)->uc_sigmask)
888 #endif
890 int cpu_signal_handler(int host_signum, void *pinfo,
891 void *puc)
893 siginfo_t *info = pinfo;
894 unsigned long pc;
895 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
896 ucontext_t *uc = puc;
897 #elif defined(__OpenBSD__)
898 struct sigcontext *uc = puc;
899 #else
900 struct ucontext *uc = puc;
901 #endif
903 pc = PC_sig(uc);
904 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
905 TRAP_sig(uc) == 0xe ?
906 (ERROR_sig(uc) >> 1) & 1 : 0,
907 &MASK_sig(uc), puc);
910 #elif defined(_ARCH_PPC)
912 /***********************************************************************
913 * signal context platform-specific definitions
914 * From Wine
916 #ifdef linux
917 /* All Registers access - only for local access */
918 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
919 /* Gpr Registers access */
920 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
921 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
922 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
923 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
924 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
925 # define LR_sig(context) REG_sig(link, context) /* Link register */
926 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
927 /* Float Registers access */
928 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
929 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
930 /* Exception Registers access */
931 # define DAR_sig(context) REG_sig(dar, context)
932 # define DSISR_sig(context) REG_sig(dsisr, context)
933 # define TRAP_sig(context) REG_sig(trap, context)
934 #endif /* linux */
936 #ifdef __APPLE__
937 # include <sys/ucontext.h>
938 typedef struct ucontext SIGCONTEXT;
939 /* All Registers access - only for local access */
940 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
941 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
942 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
943 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
944 /* Gpr Registers access */
945 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
946 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
947 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
948 # define CTR_sig(context) REG_sig(ctr, context)
949 # define XER_sig(context) REG_sig(xer, context) /* Link register */
950 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
951 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
952 /* Float Registers access */
953 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
954 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
955 /* Exception Registers access */
956 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
957 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
958 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
959 #endif /* __APPLE__ */
961 int cpu_signal_handler(int host_signum, void *pinfo,
962 void *puc)
964 siginfo_t *info = pinfo;
965 struct ucontext *uc = puc;
966 unsigned long pc;
967 int is_write;
969 pc = IAR_sig(uc);
970 is_write = 0;
971 #if 0
972 /* ppc 4xx case */
973 if (DSISR_sig(uc) & 0x00800000)
974 is_write = 1;
975 #else
976 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
977 is_write = 1;
978 #endif
979 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
980 is_write, &uc->uc_sigmask, puc);
983 #elif defined(__alpha__)
985 int cpu_signal_handler(int host_signum, void *pinfo,
986 void *puc)
988 siginfo_t *info = pinfo;
989 struct ucontext *uc = puc;
990 uint32_t *pc = uc->uc_mcontext.sc_pc;
991 uint32_t insn = *pc;
992 int is_write = 0;
994 /* XXX: need kernel patch to get write flag faster */
995 switch (insn >> 26) {
996 case 0x0d: // stw
997 case 0x0e: // stb
998 case 0x0f: // stq_u
999 case 0x24: // stf
1000 case 0x25: // stg
1001 case 0x26: // sts
1002 case 0x27: // stt
1003 case 0x2c: // stl
1004 case 0x2d: // stq
1005 case 0x2e: // stl_c
1006 case 0x2f: // stq_c
1007 is_write = 1;
1010 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1011 is_write, &uc->uc_sigmask, puc);
1013 #elif defined(__sparc__)
1015 int cpu_signal_handler(int host_signum, void *pinfo,
1016 void *puc)
1018 siginfo_t *info = pinfo;
1019 int is_write;
1020 uint32_t insn;
1021 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1022 uint32_t *regs = (uint32_t *)(info + 1);
1023 void *sigmask = (regs + 20);
1024 /* XXX: is there a standard glibc define ? */
1025 unsigned long pc = regs[1];
1026 #else
1027 #ifdef __linux__
1028 struct sigcontext *sc = puc;
1029 unsigned long pc = sc->sigc_regs.tpc;
1030 void *sigmask = (void *)sc->sigc_mask;
1031 #elif defined(__OpenBSD__)
1032 struct sigcontext *uc = puc;
1033 unsigned long pc = uc->sc_pc;
1034 void *sigmask = (void *)(long)uc->sc_mask;
1035 #endif
1036 #endif
1038 /* XXX: need kernel patch to get write flag faster */
1039 is_write = 0;
1040 insn = *(uint32_t *)pc;
1041 if ((insn >> 30) == 3) {
1042 switch((insn >> 19) & 0x3f) {
1043 case 0x05: // stb
1044 case 0x15: // stba
1045 case 0x06: // sth
1046 case 0x16: // stha
1047 case 0x04: // st
1048 case 0x14: // sta
1049 case 0x07: // std
1050 case 0x17: // stda
1051 case 0x0e: // stx
1052 case 0x1e: // stxa
1053 case 0x24: // stf
1054 case 0x34: // stfa
1055 case 0x27: // stdf
1056 case 0x37: // stdfa
1057 case 0x26: // stqf
1058 case 0x36: // stqfa
1059 case 0x25: // stfsr
1060 case 0x3c: // casa
1061 case 0x3e: // casxa
1062 is_write = 1;
1063 break;
1066 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1067 is_write, sigmask, NULL);
1070 #elif defined(__arm__)
1072 int cpu_signal_handler(int host_signum, void *pinfo,
1073 void *puc)
1075 siginfo_t *info = pinfo;
1076 struct ucontext *uc = puc;
1077 unsigned long pc;
1078 int is_write;
1080 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1081 pc = uc->uc_mcontext.gregs[R15];
1082 #else
1083 pc = uc->uc_mcontext.arm_pc;
1084 #endif
1085 /* XXX: compute is_write */
1086 is_write = 0;
1087 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1088 is_write,
1089 &uc->uc_sigmask, puc);
1092 #elif defined(__mc68000)
1094 int cpu_signal_handler(int host_signum, void *pinfo,
1095 void *puc)
1097 siginfo_t *info = pinfo;
1098 struct ucontext *uc = puc;
1099 unsigned long pc;
1100 int is_write;
1102 pc = uc->uc_mcontext.gregs[16];
1103 /* XXX: compute is_write */
1104 is_write = 0;
1105 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1106 is_write,
1107 &uc->uc_sigmask, puc);
1110 #elif defined(__ia64)
1112 #ifndef __ISR_VALID
1113 /* This ought to be in <bits/siginfo.h>... */
1114 # define __ISR_VALID 1
1115 #endif
1117 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1119 siginfo_t *info = pinfo;
1120 struct ucontext *uc = puc;
1121 unsigned long ip;
1122 int is_write = 0;
1124 ip = uc->uc_mcontext.sc_ip;
1125 switch (host_signum) {
1126 case SIGILL:
1127 case SIGFPE:
1128 case SIGSEGV:
1129 case SIGBUS:
1130 case SIGTRAP:
1131 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1132 /* ISR.W (write-access) is bit 33: */
1133 is_write = (info->si_isr >> 33) & 1;
1134 break;
1136 default:
1137 break;
1139 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1140 is_write,
1141 &uc->uc_sigmask, puc);
1144 #elif defined(__s390__)
1146 int cpu_signal_handler(int host_signum, void *pinfo,
1147 void *puc)
1149 siginfo_t *info = pinfo;
1150 struct ucontext *uc = puc;
1151 unsigned long pc;
1152 int is_write;
1154 pc = uc->uc_mcontext.psw.addr;
1155 /* XXX: compute is_write */
1156 is_write = 0;
1157 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1158 is_write, &uc->uc_sigmask, puc);
1161 #elif defined(__mips__)
1163 int cpu_signal_handler(int host_signum, void *pinfo,
1164 void *puc)
1166 siginfo_t *info = pinfo;
1167 struct ucontext *uc = puc;
1168 greg_t pc = uc->uc_mcontext.pc;
1169 int is_write;
1171 /* XXX: compute is_write */
1172 is_write = 0;
1173 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1174 is_write, &uc->uc_sigmask, puc);
1177 #elif defined(__hppa__)
1179 int cpu_signal_handler(int host_signum, void *pinfo,
1180 void *puc)
1182 struct siginfo *info = pinfo;
1183 struct ucontext *uc = puc;
1184 unsigned long pc;
1185 int is_write;
1187 pc = uc->uc_mcontext.sc_iaoq[0];
1188 /* FIXME: compute is_write */
1189 is_write = 0;
1190 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1191 is_write,
1192 &uc->uc_sigmask, puc);
1195 #else
1197 #error host CPU specific signal handler needed
1199 #endif
1201 #endif /* !defined(CONFIG_SOFTMMU) */