microblaze: Dont segfault when singlestepping first insn.
[qemu/agraf.git] / hw / omap1.c
blobb5d78cd917bd20cb29ef2d456348a08732700e33
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw.h"
20 #include "arm-misc.h"
21 #include "omap.h"
22 #include "sysemu.h"
23 #include "qemu-timer.h"
24 #include "qemu-char.h"
25 #include "soc_dma.h"
26 /* We use pc-style serial ports. */
27 #include "pc.h"
29 /* Should signal the TCMI/GPMC */
30 uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
32 uint8_t ret;
34 OMAP_8B_REG(addr);
35 cpu_physical_memory_read(addr, (void *) &ret, 1);
36 return ret;
39 void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
40 uint32_t value)
42 uint8_t val8 = value;
44 OMAP_8B_REG(addr);
45 cpu_physical_memory_write(addr, (void *) &val8, 1);
48 uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
50 uint16_t ret;
52 OMAP_16B_REG(addr);
53 cpu_physical_memory_read(addr, (void *) &ret, 2);
54 return ret;
57 void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
58 uint32_t value)
60 uint16_t val16 = value;
62 OMAP_16B_REG(addr);
63 cpu_physical_memory_write(addr, (void *) &val16, 2);
66 uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
68 uint32_t ret;
70 OMAP_32B_REG(addr);
71 cpu_physical_memory_read(addr, (void *) &ret, 4);
72 return ret;
75 void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
76 uint32_t value)
78 OMAP_32B_REG(addr);
79 cpu_physical_memory_write(addr, (void *) &value, 4);
82 /* Interrupt Handlers */
83 struct omap_intr_handler_bank_s {
84 uint32_t irqs;
85 uint32_t inputs;
86 uint32_t mask;
87 uint32_t fiq;
88 uint32_t sens_edge;
89 uint32_t swi;
90 unsigned char priority[32];
93 struct omap_intr_handler_s {
94 qemu_irq *pins;
95 qemu_irq parent_intr[2];
96 unsigned char nbanks;
97 int level_only;
99 /* state */
100 uint32_t new_agr[2];
101 int sir_intr[2];
102 int autoidle;
103 uint32_t mask;
104 struct omap_intr_handler_bank_s bank[];
107 static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
109 int i, j, sir_intr, p_intr, p, f;
110 uint32_t level;
111 sir_intr = 0;
112 p_intr = 255;
114 /* Find the interrupt line with the highest dynamic priority.
115 * Note: 0 denotes the hightest priority.
116 * If all interrupts have the same priority, the default order is IRQ_N,
117 * IRQ_N-1,...,IRQ_0. */
118 for (j = 0; j < s->nbanks; ++j) {
119 level = s->bank[j].irqs & ~s->bank[j].mask &
120 (is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq);
121 for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
122 level >>= f) {
123 p = s->bank[j].priority[i];
124 if (p <= p_intr) {
125 p_intr = p;
126 sir_intr = 32 * j + i;
128 f = ffs(level >> 1);
131 s->sir_intr[is_fiq] = sir_intr;
134 static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
136 int i;
137 uint32_t has_intr = 0;
139 for (i = 0; i < s->nbanks; ++i)
140 has_intr |= s->bank[i].irqs & ~s->bank[i].mask &
141 (is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq);
143 if (s->new_agr[is_fiq] & has_intr & s->mask) {
144 s->new_agr[is_fiq] = 0;
145 omap_inth_sir_update(s, is_fiq);
146 qemu_set_irq(s->parent_intr[is_fiq], 1);
150 #define INT_FALLING_EDGE 0
151 #define INT_LOW_LEVEL 1
153 static void omap_set_intr(void *opaque, int irq, int req)
155 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
156 uint32_t rise;
158 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
159 int n = irq & 31;
161 if (req) {
162 rise = ~bank->irqs & (1 << n);
163 if (~bank->sens_edge & (1 << n))
164 rise &= ~bank->inputs;
166 bank->inputs |= (1 << n);
167 if (rise) {
168 bank->irqs |= rise;
169 omap_inth_update(ih, 0);
170 omap_inth_update(ih, 1);
172 } else {
173 rise = bank->sens_edge & bank->irqs & (1 << n);
174 bank->irqs &= ~rise;
175 bank->inputs &= ~(1 << n);
179 /* Simplified version with no edge detection */
180 static void omap_set_intr_noedge(void *opaque, int irq, int req)
182 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
183 uint32_t rise;
185 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
186 int n = irq & 31;
188 if (req) {
189 rise = ~bank->inputs & (1 << n);
190 if (rise) {
191 bank->irqs |= bank->inputs |= rise;
192 omap_inth_update(ih, 0);
193 omap_inth_update(ih, 1);
195 } else
196 bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
199 static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
201 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
202 int i, offset = addr;
203 int bank_no = offset >> 8;
204 int line_no;
205 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
206 offset &= 0xff;
208 switch (offset) {
209 case 0x00: /* ITR */
210 return bank->irqs;
212 case 0x04: /* MIR */
213 return bank->mask;
215 case 0x10: /* SIR_IRQ_CODE */
216 case 0x14: /* SIR_FIQ_CODE */
217 if (bank_no != 0)
218 break;
219 line_no = s->sir_intr[(offset - 0x10) >> 2];
220 bank = &s->bank[line_no >> 5];
221 i = line_no & 31;
222 if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
223 bank->irqs &= ~(1 << i);
224 return line_no;
226 case 0x18: /* CONTROL_REG */
227 if (bank_no != 0)
228 break;
229 return 0;
231 case 0x1c: /* ILR0 */
232 case 0x20: /* ILR1 */
233 case 0x24: /* ILR2 */
234 case 0x28: /* ILR3 */
235 case 0x2c: /* ILR4 */
236 case 0x30: /* ILR5 */
237 case 0x34: /* ILR6 */
238 case 0x38: /* ILR7 */
239 case 0x3c: /* ILR8 */
240 case 0x40: /* ILR9 */
241 case 0x44: /* ILR10 */
242 case 0x48: /* ILR11 */
243 case 0x4c: /* ILR12 */
244 case 0x50: /* ILR13 */
245 case 0x54: /* ILR14 */
246 case 0x58: /* ILR15 */
247 case 0x5c: /* ILR16 */
248 case 0x60: /* ILR17 */
249 case 0x64: /* ILR18 */
250 case 0x68: /* ILR19 */
251 case 0x6c: /* ILR20 */
252 case 0x70: /* ILR21 */
253 case 0x74: /* ILR22 */
254 case 0x78: /* ILR23 */
255 case 0x7c: /* ILR24 */
256 case 0x80: /* ILR25 */
257 case 0x84: /* ILR26 */
258 case 0x88: /* ILR27 */
259 case 0x8c: /* ILR28 */
260 case 0x90: /* ILR29 */
261 case 0x94: /* ILR30 */
262 case 0x98: /* ILR31 */
263 i = (offset - 0x1c) >> 2;
264 return (bank->priority[i] << 2) |
265 (((bank->sens_edge >> i) & 1) << 1) |
266 ((bank->fiq >> i) & 1);
268 case 0x9c: /* ISR */
269 return 0x00000000;
272 OMAP_BAD_REG(addr);
273 return 0;
276 static void omap_inth_write(void *opaque, target_phys_addr_t addr,
277 uint32_t value)
279 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
280 int i, offset = addr;
281 int bank_no = offset >> 8;
282 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
283 offset &= 0xff;
285 switch (offset) {
286 case 0x00: /* ITR */
287 /* Important: ignore the clearing if the IRQ is level-triggered and
288 the input bit is 1 */
289 bank->irqs &= value | (bank->inputs & bank->sens_edge);
290 return;
292 case 0x04: /* MIR */
293 bank->mask = value;
294 omap_inth_update(s, 0);
295 omap_inth_update(s, 1);
296 return;
298 case 0x10: /* SIR_IRQ_CODE */
299 case 0x14: /* SIR_FIQ_CODE */
300 OMAP_RO_REG(addr);
301 break;
303 case 0x18: /* CONTROL_REG */
304 if (bank_no != 0)
305 break;
306 if (value & 2) {
307 qemu_set_irq(s->parent_intr[1], 0);
308 s->new_agr[1] = ~0;
309 omap_inth_update(s, 1);
311 if (value & 1) {
312 qemu_set_irq(s->parent_intr[0], 0);
313 s->new_agr[0] = ~0;
314 omap_inth_update(s, 0);
316 return;
318 case 0x1c: /* ILR0 */
319 case 0x20: /* ILR1 */
320 case 0x24: /* ILR2 */
321 case 0x28: /* ILR3 */
322 case 0x2c: /* ILR4 */
323 case 0x30: /* ILR5 */
324 case 0x34: /* ILR6 */
325 case 0x38: /* ILR7 */
326 case 0x3c: /* ILR8 */
327 case 0x40: /* ILR9 */
328 case 0x44: /* ILR10 */
329 case 0x48: /* ILR11 */
330 case 0x4c: /* ILR12 */
331 case 0x50: /* ILR13 */
332 case 0x54: /* ILR14 */
333 case 0x58: /* ILR15 */
334 case 0x5c: /* ILR16 */
335 case 0x60: /* ILR17 */
336 case 0x64: /* ILR18 */
337 case 0x68: /* ILR19 */
338 case 0x6c: /* ILR20 */
339 case 0x70: /* ILR21 */
340 case 0x74: /* ILR22 */
341 case 0x78: /* ILR23 */
342 case 0x7c: /* ILR24 */
343 case 0x80: /* ILR25 */
344 case 0x84: /* ILR26 */
345 case 0x88: /* ILR27 */
346 case 0x8c: /* ILR28 */
347 case 0x90: /* ILR29 */
348 case 0x94: /* ILR30 */
349 case 0x98: /* ILR31 */
350 i = (offset - 0x1c) >> 2;
351 bank->priority[i] = (value >> 2) & 0x1f;
352 bank->sens_edge &= ~(1 << i);
353 bank->sens_edge |= ((value >> 1) & 1) << i;
354 bank->fiq &= ~(1 << i);
355 bank->fiq |= (value & 1) << i;
356 return;
358 case 0x9c: /* ISR */
359 for (i = 0; i < 32; i ++)
360 if (value & (1 << i)) {
361 omap_set_intr(s, 32 * bank_no + i, 1);
362 return;
364 return;
366 OMAP_BAD_REG(addr);
369 static CPUReadMemoryFunc * const omap_inth_readfn[] = {
370 omap_badwidth_read32,
371 omap_badwidth_read32,
372 omap_inth_read,
375 static CPUWriteMemoryFunc * const omap_inth_writefn[] = {
376 omap_inth_write,
377 omap_inth_write,
378 omap_inth_write,
381 void omap_inth_reset(struct omap_intr_handler_s *s)
383 int i;
385 for (i = 0; i < s->nbanks; ++i){
386 s->bank[i].irqs = 0x00000000;
387 s->bank[i].mask = 0xffffffff;
388 s->bank[i].sens_edge = 0x00000000;
389 s->bank[i].fiq = 0x00000000;
390 s->bank[i].inputs = 0x00000000;
391 s->bank[i].swi = 0x00000000;
392 memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority));
394 if (s->level_only)
395 s->bank[i].sens_edge = 0xffffffff;
398 s->new_agr[0] = ~0;
399 s->new_agr[1] = ~0;
400 s->sir_intr[0] = 0;
401 s->sir_intr[1] = 0;
402 s->autoidle = 0;
403 s->mask = ~0;
405 qemu_set_irq(s->parent_intr[0], 0);
406 qemu_set_irq(s->parent_intr[1], 0);
409 struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
410 unsigned long size, unsigned char nbanks, qemu_irq **pins,
411 qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
413 int iomemtype;
414 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
415 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
416 sizeof(struct omap_intr_handler_bank_s) * nbanks);
418 s->parent_intr[0] = parent_irq;
419 s->parent_intr[1] = parent_fiq;
420 s->nbanks = nbanks;
421 s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
422 if (pins)
423 *pins = s->pins;
425 omap_inth_reset(s);
427 iomemtype = cpu_register_io_memory(omap_inth_readfn,
428 omap_inth_writefn, s);
429 cpu_register_physical_memory(base, size, iomemtype);
431 return s;
434 static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr)
436 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
437 int offset = addr;
438 int bank_no, line_no;
439 struct omap_intr_handler_bank_s *bank = NULL;
441 if ((offset & 0xf80) == 0x80) {
442 bank_no = (offset & 0x60) >> 5;
443 if (bank_no < s->nbanks) {
444 offset &= ~0x60;
445 bank = &s->bank[bank_no];
449 switch (offset) {
450 case 0x00: /* INTC_REVISION */
451 return 0x21;
453 case 0x10: /* INTC_SYSCONFIG */
454 return (s->autoidle >> 2) & 1;
456 case 0x14: /* INTC_SYSSTATUS */
457 return 1; /* RESETDONE */
459 case 0x40: /* INTC_SIR_IRQ */
460 return s->sir_intr[0];
462 case 0x44: /* INTC_SIR_FIQ */
463 return s->sir_intr[1];
465 case 0x48: /* INTC_CONTROL */
466 return (!s->mask) << 2; /* GLOBALMASK */
468 case 0x4c: /* INTC_PROTECTION */
469 return 0;
471 case 0x50: /* INTC_IDLE */
472 return s->autoidle & 3;
474 /* Per-bank registers */
475 case 0x80: /* INTC_ITR */
476 return bank->inputs;
478 case 0x84: /* INTC_MIR */
479 return bank->mask;
481 case 0x88: /* INTC_MIR_CLEAR */
482 case 0x8c: /* INTC_MIR_SET */
483 return 0;
485 case 0x90: /* INTC_ISR_SET */
486 return bank->swi;
488 case 0x94: /* INTC_ISR_CLEAR */
489 return 0;
491 case 0x98: /* INTC_PENDING_IRQ */
492 return bank->irqs & ~bank->mask & ~bank->fiq;
494 case 0x9c: /* INTC_PENDING_FIQ */
495 return bank->irqs & ~bank->mask & bank->fiq;
497 /* Per-line registers */
498 case 0x100 ... 0x300: /* INTC_ILR */
499 bank_no = (offset - 0x100) >> 7;
500 if (bank_no > s->nbanks)
501 break;
502 bank = &s->bank[bank_no];
503 line_no = (offset & 0x7f) >> 2;
504 return (bank->priority[line_no] << 2) |
505 ((bank->fiq >> line_no) & 1);
507 OMAP_BAD_REG(addr);
508 return 0;
511 static void omap2_inth_write(void *opaque, target_phys_addr_t addr,
512 uint32_t value)
514 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
515 int offset = addr;
516 int bank_no, line_no;
517 struct omap_intr_handler_bank_s *bank = NULL;
519 if ((offset & 0xf80) == 0x80) {
520 bank_no = (offset & 0x60) >> 5;
521 if (bank_no < s->nbanks) {
522 offset &= ~0x60;
523 bank = &s->bank[bank_no];
527 switch (offset) {
528 case 0x10: /* INTC_SYSCONFIG */
529 s->autoidle &= 4;
530 s->autoidle |= (value & 1) << 2;
531 if (value & 2) /* SOFTRESET */
532 omap_inth_reset(s);
533 return;
535 case 0x48: /* INTC_CONTROL */
536 s->mask = (value & 4) ? 0 : ~0; /* GLOBALMASK */
537 if (value & 2) { /* NEWFIQAGR */
538 qemu_set_irq(s->parent_intr[1], 0);
539 s->new_agr[1] = ~0;
540 omap_inth_update(s, 1);
542 if (value & 1) { /* NEWIRQAGR */
543 qemu_set_irq(s->parent_intr[0], 0);
544 s->new_agr[0] = ~0;
545 omap_inth_update(s, 0);
547 return;
549 case 0x4c: /* INTC_PROTECTION */
550 /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
551 * for every register, see Chapter 3 and 4 for privileged mode. */
552 if (value & 1)
553 fprintf(stderr, "%s: protection mode enable attempt\n",
554 __FUNCTION__);
555 return;
557 case 0x50: /* INTC_IDLE */
558 s->autoidle &= ~3;
559 s->autoidle |= value & 3;
560 return;
562 /* Per-bank registers */
563 case 0x84: /* INTC_MIR */
564 bank->mask = value;
565 omap_inth_update(s, 0);
566 omap_inth_update(s, 1);
567 return;
569 case 0x88: /* INTC_MIR_CLEAR */
570 bank->mask &= ~value;
571 omap_inth_update(s, 0);
572 omap_inth_update(s, 1);
573 return;
575 case 0x8c: /* INTC_MIR_SET */
576 bank->mask |= value;
577 return;
579 case 0x90: /* INTC_ISR_SET */
580 bank->irqs |= bank->swi |= value;
581 omap_inth_update(s, 0);
582 omap_inth_update(s, 1);
583 return;
585 case 0x94: /* INTC_ISR_CLEAR */
586 bank->swi &= ~value;
587 bank->irqs = bank->swi & bank->inputs;
588 return;
590 /* Per-line registers */
591 case 0x100 ... 0x300: /* INTC_ILR */
592 bank_no = (offset - 0x100) >> 7;
593 if (bank_no > s->nbanks)
594 break;
595 bank = &s->bank[bank_no];
596 line_no = (offset & 0x7f) >> 2;
597 bank->priority[line_no] = (value >> 2) & 0x3f;
598 bank->fiq &= ~(1 << line_no);
599 bank->fiq |= (value & 1) << line_no;
600 return;
602 case 0x00: /* INTC_REVISION */
603 case 0x14: /* INTC_SYSSTATUS */
604 case 0x40: /* INTC_SIR_IRQ */
605 case 0x44: /* INTC_SIR_FIQ */
606 case 0x80: /* INTC_ITR */
607 case 0x98: /* INTC_PENDING_IRQ */
608 case 0x9c: /* INTC_PENDING_FIQ */
609 OMAP_RO_REG(addr);
610 return;
612 OMAP_BAD_REG(addr);
615 static CPUReadMemoryFunc * const omap2_inth_readfn[] = {
616 omap_badwidth_read32,
617 omap_badwidth_read32,
618 omap2_inth_read,
621 static CPUWriteMemoryFunc * const omap2_inth_writefn[] = {
622 omap2_inth_write,
623 omap2_inth_write,
624 omap2_inth_write,
627 struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
628 int size, int nbanks, qemu_irq **pins,
629 qemu_irq parent_irq, qemu_irq parent_fiq,
630 omap_clk fclk, omap_clk iclk)
632 int iomemtype;
633 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
634 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
635 sizeof(struct omap_intr_handler_bank_s) * nbanks);
637 s->parent_intr[0] = parent_irq;
638 s->parent_intr[1] = parent_fiq;
639 s->nbanks = nbanks;
640 s->level_only = 1;
641 s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
642 if (pins)
643 *pins = s->pins;
645 omap_inth_reset(s);
647 iomemtype = cpu_register_io_memory(omap2_inth_readfn,
648 omap2_inth_writefn, s);
649 cpu_register_physical_memory(base, size, iomemtype);
651 return s;
654 /* MPU OS timers */
655 struct omap_mpu_timer_s {
656 qemu_irq irq;
657 omap_clk clk;
658 uint32_t val;
659 int64_t time;
660 QEMUTimer *timer;
661 QEMUBH *tick;
662 int64_t rate;
663 int it_ena;
665 int enable;
666 int ptv;
667 int ar;
668 int st;
669 uint32_t reset_val;
672 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
674 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
676 if (timer->st && timer->enable && timer->rate)
677 return timer->val - muldiv64(distance >> (timer->ptv + 1),
678 timer->rate, get_ticks_per_sec());
679 else
680 return timer->val;
683 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
685 timer->val = omap_timer_read(timer);
686 timer->time = qemu_get_clock(vm_clock);
689 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
691 int64_t expires;
693 if (timer->enable && timer->st && timer->rate) {
694 timer->val = timer->reset_val; /* Should skip this on clk enable */
695 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
696 get_ticks_per_sec(), timer->rate);
698 /* If timer expiry would be sooner than in about 1 ms and
699 * auto-reload isn't set, then fire immediately. This is a hack
700 * to make systems like PalmOS run in acceptable time. PalmOS
701 * sets the interval to a very low value and polls the status bit
702 * in a busy loop when it wants to sleep just a couple of CPU
703 * ticks. */
704 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
705 qemu_mod_timer(timer->timer, timer->time + expires);
706 else
707 qemu_bh_schedule(timer->tick);
708 } else
709 qemu_del_timer(timer->timer);
712 static void omap_timer_fire(void *opaque)
714 struct omap_mpu_timer_s *timer = opaque;
716 if (!timer->ar) {
717 timer->val = 0;
718 timer->st = 0;
721 if (timer->it_ena)
722 /* Edge-triggered irq */
723 qemu_irq_pulse(timer->irq);
726 static void omap_timer_tick(void *opaque)
728 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
730 omap_timer_sync(timer);
731 omap_timer_fire(timer);
732 omap_timer_update(timer);
735 static void omap_timer_clk_update(void *opaque, int line, int on)
737 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
739 omap_timer_sync(timer);
740 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
741 omap_timer_update(timer);
744 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
746 omap_clk_adduser(timer->clk,
747 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
748 timer->rate = omap_clk_getrate(timer->clk);
751 static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
753 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
755 switch (addr) {
756 case 0x00: /* CNTL_TIMER */
757 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
759 case 0x04: /* LOAD_TIM */
760 break;
762 case 0x08: /* READ_TIM */
763 return omap_timer_read(s);
766 OMAP_BAD_REG(addr);
767 return 0;
770 static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
771 uint32_t value)
773 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
775 switch (addr) {
776 case 0x00: /* CNTL_TIMER */
777 omap_timer_sync(s);
778 s->enable = (value >> 5) & 1;
779 s->ptv = (value >> 2) & 7;
780 s->ar = (value >> 1) & 1;
781 s->st = value & 1;
782 omap_timer_update(s);
783 return;
785 case 0x04: /* LOAD_TIM */
786 s->reset_val = value;
787 return;
789 case 0x08: /* READ_TIM */
790 OMAP_RO_REG(addr);
791 break;
793 default:
794 OMAP_BAD_REG(addr);
798 static CPUReadMemoryFunc * const omap_mpu_timer_readfn[] = {
799 omap_badwidth_read32,
800 omap_badwidth_read32,
801 omap_mpu_timer_read,
804 static CPUWriteMemoryFunc * const omap_mpu_timer_writefn[] = {
805 omap_badwidth_write32,
806 omap_badwidth_write32,
807 omap_mpu_timer_write,
810 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
812 qemu_del_timer(s->timer);
813 s->enable = 0;
814 s->reset_val = 31337;
815 s->val = 0;
816 s->ptv = 0;
817 s->ar = 0;
818 s->st = 0;
819 s->it_ena = 1;
822 struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
823 qemu_irq irq, omap_clk clk)
825 int iomemtype;
826 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
827 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
829 s->irq = irq;
830 s->clk = clk;
831 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
832 s->tick = qemu_bh_new(omap_timer_fire, s);
833 omap_mpu_timer_reset(s);
834 omap_timer_clk_setup(s);
836 iomemtype = cpu_register_io_memory(omap_mpu_timer_readfn,
837 omap_mpu_timer_writefn, s);
838 cpu_register_physical_memory(base, 0x100, iomemtype);
840 return s;
843 /* Watchdog timer */
844 struct omap_watchdog_timer_s {
845 struct omap_mpu_timer_s timer;
846 uint8_t last_wr;
847 int mode;
848 int free;
849 int reset;
852 static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
854 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
856 switch (addr) {
857 case 0x00: /* CNTL_TIMER */
858 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
859 (s->timer.st << 7) | (s->free << 1);
861 case 0x04: /* READ_TIMER */
862 return omap_timer_read(&s->timer);
864 case 0x08: /* TIMER_MODE */
865 return s->mode << 15;
868 OMAP_BAD_REG(addr);
869 return 0;
872 static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
873 uint32_t value)
875 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
877 switch (addr) {
878 case 0x00: /* CNTL_TIMER */
879 omap_timer_sync(&s->timer);
880 s->timer.ptv = (value >> 9) & 7;
881 s->timer.ar = (value >> 8) & 1;
882 s->timer.st = (value >> 7) & 1;
883 s->free = (value >> 1) & 1;
884 omap_timer_update(&s->timer);
885 break;
887 case 0x04: /* LOAD_TIMER */
888 s->timer.reset_val = value & 0xffff;
889 break;
891 case 0x08: /* TIMER_MODE */
892 if (!s->mode && ((value >> 15) & 1))
893 omap_clk_get(s->timer.clk);
894 s->mode |= (value >> 15) & 1;
895 if (s->last_wr == 0xf5) {
896 if ((value & 0xff) == 0xa0) {
897 if (s->mode) {
898 s->mode = 0;
899 omap_clk_put(s->timer.clk);
901 } else {
902 /* XXX: on T|E hardware somehow this has no effect,
903 * on Zire 71 it works as specified. */
904 s->reset = 1;
905 qemu_system_reset_request();
908 s->last_wr = value & 0xff;
909 break;
911 default:
912 OMAP_BAD_REG(addr);
916 static CPUReadMemoryFunc * const omap_wd_timer_readfn[] = {
917 omap_badwidth_read16,
918 omap_wd_timer_read,
919 omap_badwidth_read16,
922 static CPUWriteMemoryFunc * const omap_wd_timer_writefn[] = {
923 omap_badwidth_write16,
924 omap_wd_timer_write,
925 omap_badwidth_write16,
928 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
930 qemu_del_timer(s->timer.timer);
931 if (!s->mode)
932 omap_clk_get(s->timer.clk);
933 s->mode = 1;
934 s->free = 1;
935 s->reset = 0;
936 s->timer.enable = 1;
937 s->timer.it_ena = 1;
938 s->timer.reset_val = 0xffff;
939 s->timer.val = 0;
940 s->timer.st = 0;
941 s->timer.ptv = 0;
942 s->timer.ar = 0;
943 omap_timer_update(&s->timer);
946 struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
947 qemu_irq irq, omap_clk clk)
949 int iomemtype;
950 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
951 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
953 s->timer.irq = irq;
954 s->timer.clk = clk;
955 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
956 omap_wd_timer_reset(s);
957 omap_timer_clk_setup(&s->timer);
959 iomemtype = cpu_register_io_memory(omap_wd_timer_readfn,
960 omap_wd_timer_writefn, s);
961 cpu_register_physical_memory(base, 0x100, iomemtype);
963 return s;
966 /* 32-kHz timer */
967 struct omap_32khz_timer_s {
968 struct omap_mpu_timer_s timer;
971 static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
973 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
974 int offset = addr & OMAP_MPUI_REG_MASK;
976 switch (offset) {
977 case 0x00: /* TVR */
978 return s->timer.reset_val;
980 case 0x04: /* TCR */
981 return omap_timer_read(&s->timer);
983 case 0x08: /* CR */
984 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
986 default:
987 break;
989 OMAP_BAD_REG(addr);
990 return 0;
993 static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
994 uint32_t value)
996 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
997 int offset = addr & OMAP_MPUI_REG_MASK;
999 switch (offset) {
1000 case 0x00: /* TVR */
1001 s->timer.reset_val = value & 0x00ffffff;
1002 break;
1004 case 0x04: /* TCR */
1005 OMAP_RO_REG(addr);
1006 break;
1008 case 0x08: /* CR */
1009 s->timer.ar = (value >> 3) & 1;
1010 s->timer.it_ena = (value >> 2) & 1;
1011 if (s->timer.st != (value & 1) || (value & 2)) {
1012 omap_timer_sync(&s->timer);
1013 s->timer.enable = value & 1;
1014 s->timer.st = value & 1;
1015 omap_timer_update(&s->timer);
1017 break;
1019 default:
1020 OMAP_BAD_REG(addr);
1024 static CPUReadMemoryFunc * const omap_os_timer_readfn[] = {
1025 omap_badwidth_read32,
1026 omap_badwidth_read32,
1027 omap_os_timer_read,
1030 static CPUWriteMemoryFunc * const omap_os_timer_writefn[] = {
1031 omap_badwidth_write32,
1032 omap_badwidth_write32,
1033 omap_os_timer_write,
1036 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1038 qemu_del_timer(s->timer.timer);
1039 s->timer.enable = 0;
1040 s->timer.it_ena = 0;
1041 s->timer.reset_val = 0x00ffffff;
1042 s->timer.val = 0;
1043 s->timer.st = 0;
1044 s->timer.ptv = 0;
1045 s->timer.ar = 1;
1048 struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1049 qemu_irq irq, omap_clk clk)
1051 int iomemtype;
1052 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1053 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1055 s->timer.irq = irq;
1056 s->timer.clk = clk;
1057 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1058 omap_os_timer_reset(s);
1059 omap_timer_clk_setup(&s->timer);
1061 iomemtype = cpu_register_io_memory(omap_os_timer_readfn,
1062 omap_os_timer_writefn, s);
1063 cpu_register_physical_memory(base, 0x800, iomemtype);
1065 return s;
1068 /* Ultra Low-Power Device Module */
1069 static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1071 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1072 uint16_t ret;
1074 switch (addr) {
1075 case 0x14: /* IT_STATUS */
1076 ret = s->ulpd_pm_regs[addr >> 2];
1077 s->ulpd_pm_regs[addr >> 2] = 0;
1078 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1079 return ret;
1081 case 0x18: /* Reserved */
1082 case 0x1c: /* Reserved */
1083 case 0x20: /* Reserved */
1084 case 0x28: /* Reserved */
1085 case 0x2c: /* Reserved */
1086 OMAP_BAD_REG(addr);
1087 case 0x00: /* COUNTER_32_LSB */
1088 case 0x04: /* COUNTER_32_MSB */
1089 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1090 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1091 case 0x10: /* GAUGING_CTRL */
1092 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1093 case 0x30: /* CLOCK_CTRL */
1094 case 0x34: /* SOFT_REQ */
1095 case 0x38: /* COUNTER_32_FIQ */
1096 case 0x3c: /* DPLL_CTRL */
1097 case 0x40: /* STATUS_REQ */
1098 /* XXX: check clk::usecount state for every clock */
1099 case 0x48: /* LOCL_TIME */
1100 case 0x4c: /* APLL_CTRL */
1101 case 0x50: /* POWER_CTRL */
1102 return s->ulpd_pm_regs[addr >> 2];
1105 OMAP_BAD_REG(addr);
1106 return 0;
1109 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1110 uint16_t diff, uint16_t value)
1112 if (diff & (1 << 4)) /* USB_MCLK_EN */
1113 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1114 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
1115 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1118 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1119 uint16_t diff, uint16_t value)
1121 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
1122 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1123 if (diff & (1 << 1)) /* SOFT_COM_REQ */
1124 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1125 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
1126 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1127 if (diff & (1 << 3)) /* SOFT_USB_REQ */
1128 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1131 static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1132 uint32_t value)
1134 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1135 int64_t now, ticks;
1136 int div, mult;
1137 static const int bypass_div[4] = { 1, 2, 4, 4 };
1138 uint16_t diff;
1140 switch (addr) {
1141 case 0x00: /* COUNTER_32_LSB */
1142 case 0x04: /* COUNTER_32_MSB */
1143 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1144 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1145 case 0x14: /* IT_STATUS */
1146 case 0x40: /* STATUS_REQ */
1147 OMAP_RO_REG(addr);
1148 break;
1150 case 0x10: /* GAUGING_CTRL */
1151 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1152 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
1153 now = qemu_get_clock(vm_clock);
1155 if (value & 1)
1156 s->ulpd_gauge_start = now;
1157 else {
1158 now -= s->ulpd_gauge_start;
1160 /* 32-kHz ticks */
1161 ticks = muldiv64(now, 32768, get_ticks_per_sec());
1162 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
1163 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1164 if (ticks >> 32) /* OVERFLOW_32K */
1165 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1167 /* High frequency ticks */
1168 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
1169 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
1170 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1171 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
1172 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1174 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1175 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1178 s->ulpd_pm_regs[addr >> 2] = value;
1179 break;
1181 case 0x18: /* Reserved */
1182 case 0x1c: /* Reserved */
1183 case 0x20: /* Reserved */
1184 case 0x28: /* Reserved */
1185 case 0x2c: /* Reserved */
1186 OMAP_BAD_REG(addr);
1187 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1188 case 0x38: /* COUNTER_32_FIQ */
1189 case 0x48: /* LOCL_TIME */
1190 case 0x50: /* POWER_CTRL */
1191 s->ulpd_pm_regs[addr >> 2] = value;
1192 break;
1194 case 0x30: /* CLOCK_CTRL */
1195 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
1196 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
1197 omap_ulpd_clk_update(s, diff, value);
1198 break;
1200 case 0x34: /* SOFT_REQ */
1201 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
1202 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
1203 omap_ulpd_req_update(s, diff, value);
1204 break;
1206 case 0x3c: /* DPLL_CTRL */
1207 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1208 * omitted altogether, probably a typo. */
1209 /* This register has identical semantics with DPLL(1:3) control
1210 * registers, see omap_dpll_write() */
1211 diff = s->ulpd_pm_regs[addr >> 2] & value;
1212 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
1213 if (diff & (0x3ff << 2)) {
1214 if (value & (1 << 4)) { /* PLL_ENABLE */
1215 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1216 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1217 } else {
1218 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1219 mult = 1;
1221 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1224 /* Enter the desired mode. */
1225 s->ulpd_pm_regs[addr >> 2] =
1226 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
1227 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
1229 /* Act as if the lock is restored. */
1230 s->ulpd_pm_regs[addr >> 2] |= 2;
1231 break;
1233 case 0x4c: /* APLL_CTRL */
1234 diff = s->ulpd_pm_regs[addr >> 2] & value;
1235 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
1236 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
1237 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1238 (value & (1 << 0)) ? "apll" : "dpll4"));
1239 break;
1241 default:
1242 OMAP_BAD_REG(addr);
1246 static CPUReadMemoryFunc * const omap_ulpd_pm_readfn[] = {
1247 omap_badwidth_read16,
1248 omap_ulpd_pm_read,
1249 omap_badwidth_read16,
1252 static CPUWriteMemoryFunc * const omap_ulpd_pm_writefn[] = {
1253 omap_badwidth_write16,
1254 omap_ulpd_pm_write,
1255 omap_badwidth_write16,
1258 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1260 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1261 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1262 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1263 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1264 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1265 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1266 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1267 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1268 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1269 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1270 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1271 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1272 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1273 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1274 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1275 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1276 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1277 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1278 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1279 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1280 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1281 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1282 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1285 static void omap_ulpd_pm_init(target_phys_addr_t base,
1286 struct omap_mpu_state_s *mpu)
1288 int iomemtype = cpu_register_io_memory(omap_ulpd_pm_readfn,
1289 omap_ulpd_pm_writefn, mpu);
1291 cpu_register_physical_memory(base, 0x800, iomemtype);
1292 omap_ulpd_pm_reset(mpu);
1295 /* OMAP Pin Configuration */
1296 static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1298 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1300 switch (addr) {
1301 case 0x00: /* FUNC_MUX_CTRL_0 */
1302 case 0x04: /* FUNC_MUX_CTRL_1 */
1303 case 0x08: /* FUNC_MUX_CTRL_2 */
1304 return s->func_mux_ctrl[addr >> 2];
1306 case 0x0c: /* COMP_MODE_CTRL_0 */
1307 return s->comp_mode_ctrl[0];
1309 case 0x10: /* FUNC_MUX_CTRL_3 */
1310 case 0x14: /* FUNC_MUX_CTRL_4 */
1311 case 0x18: /* FUNC_MUX_CTRL_5 */
1312 case 0x1c: /* FUNC_MUX_CTRL_6 */
1313 case 0x20: /* FUNC_MUX_CTRL_7 */
1314 case 0x24: /* FUNC_MUX_CTRL_8 */
1315 case 0x28: /* FUNC_MUX_CTRL_9 */
1316 case 0x2c: /* FUNC_MUX_CTRL_A */
1317 case 0x30: /* FUNC_MUX_CTRL_B */
1318 case 0x34: /* FUNC_MUX_CTRL_C */
1319 case 0x38: /* FUNC_MUX_CTRL_D */
1320 return s->func_mux_ctrl[(addr >> 2) - 1];
1322 case 0x40: /* PULL_DWN_CTRL_0 */
1323 case 0x44: /* PULL_DWN_CTRL_1 */
1324 case 0x48: /* PULL_DWN_CTRL_2 */
1325 case 0x4c: /* PULL_DWN_CTRL_3 */
1326 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
1328 case 0x50: /* GATE_INH_CTRL_0 */
1329 return s->gate_inh_ctrl[0];
1331 case 0x60: /* VOLTAGE_CTRL_0 */
1332 return s->voltage_ctrl[0];
1334 case 0x70: /* TEST_DBG_CTRL_0 */
1335 return s->test_dbg_ctrl[0];
1337 case 0x80: /* MOD_CONF_CTRL_0 */
1338 return s->mod_conf_ctrl[0];
1341 OMAP_BAD_REG(addr);
1342 return 0;
1345 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1346 uint32_t diff, uint32_t value)
1348 if (s->compat1509) {
1349 if (diff & (1 << 9)) /* BLUETOOTH */
1350 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1351 (~value >> 9) & 1);
1352 if (diff & (1 << 7)) /* USB.CLKO */
1353 omap_clk_onoff(omap_findclk(s, "usb.clko"),
1354 (value >> 7) & 1);
1358 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1359 uint32_t diff, uint32_t value)
1361 if (s->compat1509) {
1362 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1363 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1364 (value >> 31) & 1);
1365 if (diff & (1 << 1)) /* CLK32K */
1366 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1367 (~value >> 1) & 1);
1371 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1372 uint32_t diff, uint32_t value)
1374 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1375 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1376 omap_findclk(s, ((value >> 31) & 1) ?
1377 "ck_48m" : "armper_ck"));
1378 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1379 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1380 omap_findclk(s, ((value >> 30) & 1) ?
1381 "ck_48m" : "armper_ck"));
1382 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1383 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1384 omap_findclk(s, ((value >> 29) & 1) ?
1385 "ck_48m" : "armper_ck"));
1386 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1387 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1388 omap_findclk(s, ((value >> 23) & 1) ?
1389 "ck_48m" : "armper_ck"));
1390 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1391 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1392 omap_findclk(s, ((value >> 12) & 1) ?
1393 "ck_48m" : "armper_ck"));
1394 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1395 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1398 static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1399 uint32_t value)
1401 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1402 uint32_t diff;
1404 switch (addr) {
1405 case 0x00: /* FUNC_MUX_CTRL_0 */
1406 diff = s->func_mux_ctrl[addr >> 2] ^ value;
1407 s->func_mux_ctrl[addr >> 2] = value;
1408 omap_pin_funcmux0_update(s, diff, value);
1409 return;
1411 case 0x04: /* FUNC_MUX_CTRL_1 */
1412 diff = s->func_mux_ctrl[addr >> 2] ^ value;
1413 s->func_mux_ctrl[addr >> 2] = value;
1414 omap_pin_funcmux1_update(s, diff, value);
1415 return;
1417 case 0x08: /* FUNC_MUX_CTRL_2 */
1418 s->func_mux_ctrl[addr >> 2] = value;
1419 return;
1421 case 0x0c: /* COMP_MODE_CTRL_0 */
1422 s->comp_mode_ctrl[0] = value;
1423 s->compat1509 = (value != 0x0000eaef);
1424 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1425 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1426 return;
1428 case 0x10: /* FUNC_MUX_CTRL_3 */
1429 case 0x14: /* FUNC_MUX_CTRL_4 */
1430 case 0x18: /* FUNC_MUX_CTRL_5 */
1431 case 0x1c: /* FUNC_MUX_CTRL_6 */
1432 case 0x20: /* FUNC_MUX_CTRL_7 */
1433 case 0x24: /* FUNC_MUX_CTRL_8 */
1434 case 0x28: /* FUNC_MUX_CTRL_9 */
1435 case 0x2c: /* FUNC_MUX_CTRL_A */
1436 case 0x30: /* FUNC_MUX_CTRL_B */
1437 case 0x34: /* FUNC_MUX_CTRL_C */
1438 case 0x38: /* FUNC_MUX_CTRL_D */
1439 s->func_mux_ctrl[(addr >> 2) - 1] = value;
1440 return;
1442 case 0x40: /* PULL_DWN_CTRL_0 */
1443 case 0x44: /* PULL_DWN_CTRL_1 */
1444 case 0x48: /* PULL_DWN_CTRL_2 */
1445 case 0x4c: /* PULL_DWN_CTRL_3 */
1446 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
1447 return;
1449 case 0x50: /* GATE_INH_CTRL_0 */
1450 s->gate_inh_ctrl[0] = value;
1451 return;
1453 case 0x60: /* VOLTAGE_CTRL_0 */
1454 s->voltage_ctrl[0] = value;
1455 return;
1457 case 0x70: /* TEST_DBG_CTRL_0 */
1458 s->test_dbg_ctrl[0] = value;
1459 return;
1461 case 0x80: /* MOD_CONF_CTRL_0 */
1462 diff = s->mod_conf_ctrl[0] ^ value;
1463 s->mod_conf_ctrl[0] = value;
1464 omap_pin_modconf1_update(s, diff, value);
1465 return;
1467 default:
1468 OMAP_BAD_REG(addr);
1472 static CPUReadMemoryFunc * const omap_pin_cfg_readfn[] = {
1473 omap_badwidth_read32,
1474 omap_badwidth_read32,
1475 omap_pin_cfg_read,
1478 static CPUWriteMemoryFunc * const omap_pin_cfg_writefn[] = {
1479 omap_badwidth_write32,
1480 omap_badwidth_write32,
1481 omap_pin_cfg_write,
1484 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1486 /* Start in Compatibility Mode. */
1487 mpu->compat1509 = 1;
1488 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1489 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1490 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1491 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1492 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1493 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1494 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1495 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1496 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1497 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1500 static void omap_pin_cfg_init(target_phys_addr_t base,
1501 struct omap_mpu_state_s *mpu)
1503 int iomemtype = cpu_register_io_memory(omap_pin_cfg_readfn,
1504 omap_pin_cfg_writefn, mpu);
1506 cpu_register_physical_memory(base, 0x800, iomemtype);
1507 omap_pin_cfg_reset(mpu);
1510 /* Device Identification, Die Identification */
1511 static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1513 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1515 switch (addr) {
1516 case 0xfffe1800: /* DIE_ID_LSB */
1517 return 0xc9581f0e;
1518 case 0xfffe1804: /* DIE_ID_MSB */
1519 return 0xa8858bfa;
1521 case 0xfffe2000: /* PRODUCT_ID_LSB */
1522 return 0x00aaaafc;
1523 case 0xfffe2004: /* PRODUCT_ID_MSB */
1524 return 0xcafeb574;
1526 case 0xfffed400: /* JTAG_ID_LSB */
1527 switch (s->mpu_model) {
1528 case omap310:
1529 return 0x03310315;
1530 case omap1510:
1531 return 0x03310115;
1532 default:
1533 hw_error("%s: bad mpu model\n", __FUNCTION__);
1535 break;
1537 case 0xfffed404: /* JTAG_ID_MSB */
1538 switch (s->mpu_model) {
1539 case omap310:
1540 return 0xfb57402f;
1541 case omap1510:
1542 return 0xfb47002f;
1543 default:
1544 hw_error("%s: bad mpu model\n", __FUNCTION__);
1546 break;
1549 OMAP_BAD_REG(addr);
1550 return 0;
1553 static void omap_id_write(void *opaque, target_phys_addr_t addr,
1554 uint32_t value)
1556 OMAP_BAD_REG(addr);
1559 static CPUReadMemoryFunc * const omap_id_readfn[] = {
1560 omap_badwidth_read32,
1561 omap_badwidth_read32,
1562 omap_id_read,
1565 static CPUWriteMemoryFunc * const omap_id_writefn[] = {
1566 omap_badwidth_write32,
1567 omap_badwidth_write32,
1568 omap_id_write,
1571 static void omap_id_init(struct omap_mpu_state_s *mpu)
1573 int iomemtype = cpu_register_io_memory(omap_id_readfn,
1574 omap_id_writefn, mpu);
1575 cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
1576 cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
1577 if (!cpu_is_omap15xx(mpu))
1578 cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
1581 /* MPUI Control (Dummy) */
1582 static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1584 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1586 switch (addr) {
1587 case 0x00: /* CTRL */
1588 return s->mpui_ctrl;
1589 case 0x04: /* DEBUG_ADDR */
1590 return 0x01ffffff;
1591 case 0x08: /* DEBUG_DATA */
1592 return 0xffffffff;
1593 case 0x0c: /* DEBUG_FLAG */
1594 return 0x00000800;
1595 case 0x10: /* STATUS */
1596 return 0x00000000;
1598 /* Not in OMAP310 */
1599 case 0x14: /* DSP_STATUS */
1600 case 0x18: /* DSP_BOOT_CONFIG */
1601 return 0x00000000;
1602 case 0x1c: /* DSP_MPUI_CONFIG */
1603 return 0x0000ffff;
1606 OMAP_BAD_REG(addr);
1607 return 0;
1610 static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1611 uint32_t value)
1613 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1615 switch (addr) {
1616 case 0x00: /* CTRL */
1617 s->mpui_ctrl = value & 0x007fffff;
1618 break;
1620 case 0x04: /* DEBUG_ADDR */
1621 case 0x08: /* DEBUG_DATA */
1622 case 0x0c: /* DEBUG_FLAG */
1623 case 0x10: /* STATUS */
1624 /* Not in OMAP310 */
1625 case 0x14: /* DSP_STATUS */
1626 OMAP_RO_REG(addr);
1627 case 0x18: /* DSP_BOOT_CONFIG */
1628 case 0x1c: /* DSP_MPUI_CONFIG */
1629 break;
1631 default:
1632 OMAP_BAD_REG(addr);
1636 static CPUReadMemoryFunc * const omap_mpui_readfn[] = {
1637 omap_badwidth_read32,
1638 omap_badwidth_read32,
1639 omap_mpui_read,
1642 static CPUWriteMemoryFunc * const omap_mpui_writefn[] = {
1643 omap_badwidth_write32,
1644 omap_badwidth_write32,
1645 omap_mpui_write,
1648 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1650 s->mpui_ctrl = 0x0003ff1b;
1653 static void omap_mpui_init(target_phys_addr_t base,
1654 struct omap_mpu_state_s *mpu)
1656 int iomemtype = cpu_register_io_memory(omap_mpui_readfn,
1657 omap_mpui_writefn, mpu);
1659 cpu_register_physical_memory(base, 0x100, iomemtype);
1661 omap_mpui_reset(mpu);
1664 /* TIPB Bridges */
1665 struct omap_tipb_bridge_s {
1666 qemu_irq abort;
1668 int width_intr;
1669 uint16_t control;
1670 uint16_t alloc;
1671 uint16_t buffer;
1672 uint16_t enh_control;
1675 static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1677 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1679 switch (addr) {
1680 case 0x00: /* TIPB_CNTL */
1681 return s->control;
1682 case 0x04: /* TIPB_BUS_ALLOC */
1683 return s->alloc;
1684 case 0x08: /* MPU_TIPB_CNTL */
1685 return s->buffer;
1686 case 0x0c: /* ENHANCED_TIPB_CNTL */
1687 return s->enh_control;
1688 case 0x10: /* ADDRESS_DBG */
1689 case 0x14: /* DATA_DEBUG_LOW */
1690 case 0x18: /* DATA_DEBUG_HIGH */
1691 return 0xffff;
1692 case 0x1c: /* DEBUG_CNTR_SIG */
1693 return 0x00f8;
1696 OMAP_BAD_REG(addr);
1697 return 0;
1700 static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1701 uint32_t value)
1703 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1705 switch (addr) {
1706 case 0x00: /* TIPB_CNTL */
1707 s->control = value & 0xffff;
1708 break;
1710 case 0x04: /* TIPB_BUS_ALLOC */
1711 s->alloc = value & 0x003f;
1712 break;
1714 case 0x08: /* MPU_TIPB_CNTL */
1715 s->buffer = value & 0x0003;
1716 break;
1718 case 0x0c: /* ENHANCED_TIPB_CNTL */
1719 s->width_intr = !(value & 2);
1720 s->enh_control = value & 0x000f;
1721 break;
1723 case 0x10: /* ADDRESS_DBG */
1724 case 0x14: /* DATA_DEBUG_LOW */
1725 case 0x18: /* DATA_DEBUG_HIGH */
1726 case 0x1c: /* DEBUG_CNTR_SIG */
1727 OMAP_RO_REG(addr);
1728 break;
1730 default:
1731 OMAP_BAD_REG(addr);
1735 static CPUReadMemoryFunc * const omap_tipb_bridge_readfn[] = {
1736 omap_badwidth_read16,
1737 omap_tipb_bridge_read,
1738 omap_tipb_bridge_read,
1741 static CPUWriteMemoryFunc * const omap_tipb_bridge_writefn[] = {
1742 omap_badwidth_write16,
1743 omap_tipb_bridge_write,
1744 omap_tipb_bridge_write,
1747 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1749 s->control = 0xffff;
1750 s->alloc = 0x0009;
1751 s->buffer = 0x0000;
1752 s->enh_control = 0x000f;
1755 struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1756 qemu_irq abort_irq, omap_clk clk)
1758 int iomemtype;
1759 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1760 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1762 s->abort = abort_irq;
1763 omap_tipb_bridge_reset(s);
1765 iomemtype = cpu_register_io_memory(omap_tipb_bridge_readfn,
1766 omap_tipb_bridge_writefn, s);
1767 cpu_register_physical_memory(base, 0x100, iomemtype);
1769 return s;
1772 /* Dummy Traffic Controller's Memory Interface */
1773 static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1775 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1776 uint32_t ret;
1778 switch (addr) {
1779 case 0x00: /* IMIF_PRIO */
1780 case 0x04: /* EMIFS_PRIO */
1781 case 0x08: /* EMIFF_PRIO */
1782 case 0x0c: /* EMIFS_CONFIG */
1783 case 0x10: /* EMIFS_CS0_CONFIG */
1784 case 0x14: /* EMIFS_CS1_CONFIG */
1785 case 0x18: /* EMIFS_CS2_CONFIG */
1786 case 0x1c: /* EMIFS_CS3_CONFIG */
1787 case 0x24: /* EMIFF_MRS */
1788 case 0x28: /* TIMEOUT1 */
1789 case 0x2c: /* TIMEOUT2 */
1790 case 0x30: /* TIMEOUT3 */
1791 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1792 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1793 return s->tcmi_regs[addr >> 2];
1795 case 0x20: /* EMIFF_SDRAM_CONFIG */
1796 ret = s->tcmi_regs[addr >> 2];
1797 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1798 /* XXX: We can try using the VGA_DIRTY flag for this */
1799 return ret;
1802 OMAP_BAD_REG(addr);
1803 return 0;
1806 static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1807 uint32_t value)
1809 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1811 switch (addr) {
1812 case 0x00: /* IMIF_PRIO */
1813 case 0x04: /* EMIFS_PRIO */
1814 case 0x08: /* EMIFF_PRIO */
1815 case 0x10: /* EMIFS_CS0_CONFIG */
1816 case 0x14: /* EMIFS_CS1_CONFIG */
1817 case 0x18: /* EMIFS_CS2_CONFIG */
1818 case 0x1c: /* EMIFS_CS3_CONFIG */
1819 case 0x20: /* EMIFF_SDRAM_CONFIG */
1820 case 0x24: /* EMIFF_MRS */
1821 case 0x28: /* TIMEOUT1 */
1822 case 0x2c: /* TIMEOUT2 */
1823 case 0x30: /* TIMEOUT3 */
1824 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1825 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1826 s->tcmi_regs[addr >> 2] = value;
1827 break;
1828 case 0x0c: /* EMIFS_CONFIG */
1829 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1830 break;
1832 default:
1833 OMAP_BAD_REG(addr);
1837 static CPUReadMemoryFunc * const omap_tcmi_readfn[] = {
1838 omap_badwidth_read32,
1839 omap_badwidth_read32,
1840 omap_tcmi_read,
1843 static CPUWriteMemoryFunc * const omap_tcmi_writefn[] = {
1844 omap_badwidth_write32,
1845 omap_badwidth_write32,
1846 omap_tcmi_write,
1849 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1851 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1852 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1853 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1854 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1855 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1856 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1857 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1858 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1859 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1860 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1861 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1862 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1863 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1864 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1865 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1868 static void omap_tcmi_init(target_phys_addr_t base,
1869 struct omap_mpu_state_s *mpu)
1871 int iomemtype = cpu_register_io_memory(omap_tcmi_readfn,
1872 omap_tcmi_writefn, mpu);
1874 cpu_register_physical_memory(base, 0x100, iomemtype);
1875 omap_tcmi_reset(mpu);
1878 /* Digital phase-locked loops control */
1879 static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1881 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1883 if (addr == 0x00) /* CTL_REG */
1884 return s->mode;
1886 OMAP_BAD_REG(addr);
1887 return 0;
1890 static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1891 uint32_t value)
1893 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1894 uint16_t diff;
1895 static const int bypass_div[4] = { 1, 2, 4, 4 };
1896 int div, mult;
1898 if (addr == 0x00) { /* CTL_REG */
1899 /* See omap_ulpd_pm_write() too */
1900 diff = s->mode & value;
1901 s->mode = value & 0x2fff;
1902 if (diff & (0x3ff << 2)) {
1903 if (value & (1 << 4)) { /* PLL_ENABLE */
1904 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1905 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1906 } else {
1907 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1908 mult = 1;
1910 omap_clk_setrate(s->dpll, div, mult);
1913 /* Enter the desired mode. */
1914 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1916 /* Act as if the lock is restored. */
1917 s->mode |= 2;
1918 } else {
1919 OMAP_BAD_REG(addr);
1923 static CPUReadMemoryFunc * const omap_dpll_readfn[] = {
1924 omap_badwidth_read16,
1925 omap_dpll_read,
1926 omap_badwidth_read16,
1929 static CPUWriteMemoryFunc * const omap_dpll_writefn[] = {
1930 omap_badwidth_write16,
1931 omap_dpll_write,
1932 omap_badwidth_write16,
1935 static void omap_dpll_reset(struct dpll_ctl_s *s)
1937 s->mode = 0x2002;
1938 omap_clk_setrate(s->dpll, 1, 1);
1941 static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1942 omap_clk clk)
1944 int iomemtype = cpu_register_io_memory(omap_dpll_readfn,
1945 omap_dpll_writefn, s);
1947 s->dpll = clk;
1948 omap_dpll_reset(s);
1950 cpu_register_physical_memory(base, 0x100, iomemtype);
1953 /* UARTs */
1954 struct omap_uart_s {
1955 target_phys_addr_t base;
1956 SerialState *serial; /* TODO */
1957 struct omap_target_agent_s *ta;
1958 omap_clk fclk;
1959 qemu_irq irq;
1961 uint8_t eblr;
1962 uint8_t syscontrol;
1963 uint8_t wkup;
1964 uint8_t cfps;
1965 uint8_t mdr[2];
1966 uint8_t scr;
1967 uint8_t clksel;
1970 void omap_uart_reset(struct omap_uart_s *s)
1972 s->eblr = 0x00;
1973 s->syscontrol = 0;
1974 s->wkup = 0x3f;
1975 s->cfps = 0x69;
1976 s->clksel = 0;
1979 struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
1980 qemu_irq irq, omap_clk fclk, omap_clk iclk,
1981 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
1983 struct omap_uart_s *s = (struct omap_uart_s *)
1984 qemu_mallocz(sizeof(struct omap_uart_s));
1986 s->base = base;
1987 s->fclk = fclk;
1988 s->irq = irq;
1989 s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
1990 chr ?: qemu_chr_open("null", "null", NULL), 1);
1992 return s;
1995 static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr)
1997 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
1999 addr &= 0xff;
2000 switch (addr) {
2001 case 0x20: /* MDR1 */
2002 return s->mdr[0];
2003 case 0x24: /* MDR2 */
2004 return s->mdr[1];
2005 case 0x40: /* SCR */
2006 return s->scr;
2007 case 0x44: /* SSR */
2008 return 0x0;
2009 case 0x48: /* EBLR (OMAP2) */
2010 return s->eblr;
2011 case 0x4C: /* OSC_12M_SEL (OMAP1) */
2012 return s->clksel;
2013 case 0x50: /* MVR */
2014 return 0x30;
2015 case 0x54: /* SYSC (OMAP2) */
2016 return s->syscontrol;
2017 case 0x58: /* SYSS (OMAP2) */
2018 return 1;
2019 case 0x5c: /* WER (OMAP2) */
2020 return s->wkup;
2021 case 0x60: /* CFPS (OMAP2) */
2022 return s->cfps;
2025 OMAP_BAD_REG(addr);
2026 return 0;
2029 static void omap_uart_write(void *opaque, target_phys_addr_t addr,
2030 uint32_t value)
2032 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2034 addr &= 0xff;
2035 switch (addr) {
2036 case 0x20: /* MDR1 */
2037 s->mdr[0] = value & 0x7f;
2038 break;
2039 case 0x24: /* MDR2 */
2040 s->mdr[1] = value & 0xff;
2041 break;
2042 case 0x40: /* SCR */
2043 s->scr = value & 0xff;
2044 break;
2045 case 0x48: /* EBLR (OMAP2) */
2046 s->eblr = value & 0xff;
2047 break;
2048 case 0x4C: /* OSC_12M_SEL (OMAP1) */
2049 s->clksel = value & 1;
2050 break;
2051 case 0x44: /* SSR */
2052 case 0x50: /* MVR */
2053 case 0x58: /* SYSS (OMAP2) */
2054 OMAP_RO_REG(addr);
2055 break;
2056 case 0x54: /* SYSC (OMAP2) */
2057 s->syscontrol = value & 0x1d;
2058 if (value & 2)
2059 omap_uart_reset(s);
2060 break;
2061 case 0x5c: /* WER (OMAP2) */
2062 s->wkup = value & 0x7f;
2063 break;
2064 case 0x60: /* CFPS (OMAP2) */
2065 s->cfps = value & 0xff;
2066 break;
2067 default:
2068 OMAP_BAD_REG(addr);
2072 static CPUReadMemoryFunc * const omap_uart_readfn[] = {
2073 omap_uart_read,
2074 omap_uart_read,
2075 omap_badwidth_read8,
2078 static CPUWriteMemoryFunc * const omap_uart_writefn[] = {
2079 omap_uart_write,
2080 omap_uart_write,
2081 omap_badwidth_write8,
2084 struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta,
2085 qemu_irq irq, omap_clk fclk, omap_clk iclk,
2086 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2088 target_phys_addr_t base = omap_l4_attach(ta, 0, 0);
2089 struct omap_uart_s *s = omap_uart_init(base, irq,
2090 fclk, iclk, txdma, rxdma, chr);
2091 int iomemtype = cpu_register_io_memory(omap_uart_readfn,
2092 omap_uart_writefn, s);
2094 s->ta = ta;
2096 cpu_register_physical_memory(base + 0x20, 0x100, iomemtype);
2098 return s;
2101 void omap_uart_attach(struct omap_uart_s *s, CharDriverState *chr)
2103 /* TODO: Should reuse or destroy current s->serial */
2104 s->serial = serial_mm_init(s->base, 2, s->irq,
2105 omap_clk_getrate(s->fclk) / 16,
2106 chr ?: qemu_chr_open("null", "null", NULL), 1);
2109 /* MPU Clock/Reset/Power Mode Control */
2110 static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2112 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2114 switch (addr) {
2115 case 0x00: /* ARM_CKCTL */
2116 return s->clkm.arm_ckctl;
2118 case 0x04: /* ARM_IDLECT1 */
2119 return s->clkm.arm_idlect1;
2121 case 0x08: /* ARM_IDLECT2 */
2122 return s->clkm.arm_idlect2;
2124 case 0x0c: /* ARM_EWUPCT */
2125 return s->clkm.arm_ewupct;
2127 case 0x10: /* ARM_RSTCT1 */
2128 return s->clkm.arm_rstct1;
2130 case 0x14: /* ARM_RSTCT2 */
2131 return s->clkm.arm_rstct2;
2133 case 0x18: /* ARM_SYSST */
2134 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
2136 case 0x1c: /* ARM_CKOUT1 */
2137 return s->clkm.arm_ckout1;
2139 case 0x20: /* ARM_CKOUT2 */
2140 break;
2143 OMAP_BAD_REG(addr);
2144 return 0;
2147 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2148 uint16_t diff, uint16_t value)
2150 omap_clk clk;
2152 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
2153 if (value & (1 << 14))
2154 /* Reserved */;
2155 else {
2156 clk = omap_findclk(s, "arminth_ck");
2157 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2160 if (diff & (1 << 12)) { /* ARM_TIMXO */
2161 clk = omap_findclk(s, "armtim_ck");
2162 if (value & (1 << 12))
2163 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2164 else
2165 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2167 /* XXX: en_dspck */
2168 if (diff & (3 << 10)) { /* DSPMMUDIV */
2169 clk = omap_findclk(s, "dspmmu_ck");
2170 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2172 if (diff & (3 << 8)) { /* TCDIV */
2173 clk = omap_findclk(s, "tc_ck");
2174 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2176 if (diff & (3 << 6)) { /* DSPDIV */
2177 clk = omap_findclk(s, "dsp_ck");
2178 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2180 if (diff & (3 << 4)) { /* ARMDIV */
2181 clk = omap_findclk(s, "arm_ck");
2182 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2184 if (diff & (3 << 2)) { /* LCDDIV */
2185 clk = omap_findclk(s, "lcd_ck");
2186 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2188 if (diff & (3 << 0)) { /* PERDIV */
2189 clk = omap_findclk(s, "armper_ck");
2190 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2194 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2195 uint16_t diff, uint16_t value)
2197 omap_clk clk;
2199 if (value & (1 << 11)) /* SETARM_IDLE */
2200 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2201 if (!(value & (1 << 10))) /* WKUP_MODE */
2202 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2204 #define SET_CANIDLE(clock, bit) \
2205 if (diff & (1 << bit)) { \
2206 clk = omap_findclk(s, clock); \
2207 omap_clk_canidle(clk, (value >> bit) & 1); \
2209 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2210 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2211 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2212 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2213 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2214 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2215 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2216 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2217 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2218 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2219 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2220 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2221 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2222 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2225 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2226 uint16_t diff, uint16_t value)
2228 omap_clk clk;
2230 #define SET_ONOFF(clock, bit) \
2231 if (diff & (1 << bit)) { \
2232 clk = omap_findclk(s, clock); \
2233 omap_clk_onoff(clk, (value >> bit) & 1); \
2235 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2236 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2237 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2238 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2239 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2240 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2241 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2242 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2243 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2244 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2245 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2248 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2249 uint16_t diff, uint16_t value)
2251 omap_clk clk;
2253 if (diff & (3 << 4)) { /* TCLKOUT */
2254 clk = omap_findclk(s, "tclk_out");
2255 switch ((value >> 4) & 3) {
2256 case 1:
2257 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2258 omap_clk_onoff(clk, 1);
2259 break;
2260 case 2:
2261 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2262 omap_clk_onoff(clk, 1);
2263 break;
2264 default:
2265 omap_clk_onoff(clk, 0);
2268 if (diff & (3 << 2)) { /* DCLKOUT */
2269 clk = omap_findclk(s, "dclk_out");
2270 switch ((value >> 2) & 3) {
2271 case 0:
2272 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2273 break;
2274 case 1:
2275 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2276 break;
2277 case 2:
2278 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2279 break;
2280 case 3:
2281 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2282 break;
2285 if (diff & (3 << 0)) { /* ACLKOUT */
2286 clk = omap_findclk(s, "aclk_out");
2287 switch ((value >> 0) & 3) {
2288 case 1:
2289 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2290 omap_clk_onoff(clk, 1);
2291 break;
2292 case 2:
2293 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2294 omap_clk_onoff(clk, 1);
2295 break;
2296 case 3:
2297 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2298 omap_clk_onoff(clk, 1);
2299 break;
2300 default:
2301 omap_clk_onoff(clk, 0);
2306 static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2307 uint32_t value)
2309 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2310 uint16_t diff;
2311 omap_clk clk;
2312 static const char *clkschemename[8] = {
2313 "fully synchronous", "fully asynchronous", "synchronous scalable",
2314 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2317 switch (addr) {
2318 case 0x00: /* ARM_CKCTL */
2319 diff = s->clkm.arm_ckctl ^ value;
2320 s->clkm.arm_ckctl = value & 0x7fff;
2321 omap_clkm_ckctl_update(s, diff, value);
2322 return;
2324 case 0x04: /* ARM_IDLECT1 */
2325 diff = s->clkm.arm_idlect1 ^ value;
2326 s->clkm.arm_idlect1 = value & 0x0fff;
2327 omap_clkm_idlect1_update(s, diff, value);
2328 return;
2330 case 0x08: /* ARM_IDLECT2 */
2331 diff = s->clkm.arm_idlect2 ^ value;
2332 s->clkm.arm_idlect2 = value & 0x07ff;
2333 omap_clkm_idlect2_update(s, diff, value);
2334 return;
2336 case 0x0c: /* ARM_EWUPCT */
2337 diff = s->clkm.arm_ewupct ^ value;
2338 s->clkm.arm_ewupct = value & 0x003f;
2339 return;
2341 case 0x10: /* ARM_RSTCT1 */
2342 diff = s->clkm.arm_rstct1 ^ value;
2343 s->clkm.arm_rstct1 = value & 0x0007;
2344 if (value & 9) {
2345 qemu_system_reset_request();
2346 s->clkm.cold_start = 0xa;
2348 if (diff & ~value & 4) { /* DSP_RST */
2349 omap_mpui_reset(s);
2350 omap_tipb_bridge_reset(s->private_tipb);
2351 omap_tipb_bridge_reset(s->public_tipb);
2353 if (diff & 2) { /* DSP_EN */
2354 clk = omap_findclk(s, "dsp_ck");
2355 omap_clk_canidle(clk, (~value >> 1) & 1);
2357 return;
2359 case 0x14: /* ARM_RSTCT2 */
2360 s->clkm.arm_rstct2 = value & 0x0001;
2361 return;
2363 case 0x18: /* ARM_SYSST */
2364 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2365 s->clkm.clocking_scheme = (value >> 11) & 7;
2366 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2367 clkschemename[s->clkm.clocking_scheme]);
2369 s->clkm.cold_start &= value & 0x3f;
2370 return;
2372 case 0x1c: /* ARM_CKOUT1 */
2373 diff = s->clkm.arm_ckout1 ^ value;
2374 s->clkm.arm_ckout1 = value & 0x003f;
2375 omap_clkm_ckout1_update(s, diff, value);
2376 return;
2378 case 0x20: /* ARM_CKOUT2 */
2379 default:
2380 OMAP_BAD_REG(addr);
2384 static CPUReadMemoryFunc * const omap_clkm_readfn[] = {
2385 omap_badwidth_read16,
2386 omap_clkm_read,
2387 omap_badwidth_read16,
2390 static CPUWriteMemoryFunc * const omap_clkm_writefn[] = {
2391 omap_badwidth_write16,
2392 omap_clkm_write,
2393 omap_badwidth_write16,
2396 static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2398 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2400 switch (addr) {
2401 case 0x04: /* DSP_IDLECT1 */
2402 return s->clkm.dsp_idlect1;
2404 case 0x08: /* DSP_IDLECT2 */
2405 return s->clkm.dsp_idlect2;
2407 case 0x14: /* DSP_RSTCT2 */
2408 return s->clkm.dsp_rstct2;
2410 case 0x18: /* DSP_SYSST */
2411 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
2412 (s->env->halted << 6); /* Quite useless... */
2415 OMAP_BAD_REG(addr);
2416 return 0;
2419 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2420 uint16_t diff, uint16_t value)
2422 omap_clk clk;
2424 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2427 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2428 uint16_t diff, uint16_t value)
2430 omap_clk clk;
2432 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2435 static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2436 uint32_t value)
2438 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2439 uint16_t diff;
2441 switch (addr) {
2442 case 0x04: /* DSP_IDLECT1 */
2443 diff = s->clkm.dsp_idlect1 ^ value;
2444 s->clkm.dsp_idlect1 = value & 0x01f7;
2445 omap_clkdsp_idlect1_update(s, diff, value);
2446 break;
2448 case 0x08: /* DSP_IDLECT2 */
2449 s->clkm.dsp_idlect2 = value & 0x0037;
2450 diff = s->clkm.dsp_idlect1 ^ value;
2451 omap_clkdsp_idlect2_update(s, diff, value);
2452 break;
2454 case 0x14: /* DSP_RSTCT2 */
2455 s->clkm.dsp_rstct2 = value & 0x0001;
2456 break;
2458 case 0x18: /* DSP_SYSST */
2459 s->clkm.cold_start &= value & 0x3f;
2460 break;
2462 default:
2463 OMAP_BAD_REG(addr);
2467 static CPUReadMemoryFunc * const omap_clkdsp_readfn[] = {
2468 omap_badwidth_read16,
2469 omap_clkdsp_read,
2470 omap_badwidth_read16,
2473 static CPUWriteMemoryFunc * const omap_clkdsp_writefn[] = {
2474 omap_badwidth_write16,
2475 omap_clkdsp_write,
2476 omap_badwidth_write16,
2479 static void omap_clkm_reset(struct omap_mpu_state_s *s)
2481 if (s->wdt && s->wdt->reset)
2482 s->clkm.cold_start = 0x6;
2483 s->clkm.clocking_scheme = 0;
2484 omap_clkm_ckctl_update(s, ~0, 0x3000);
2485 s->clkm.arm_ckctl = 0x3000;
2486 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
2487 s->clkm.arm_idlect1 = 0x0400;
2488 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
2489 s->clkm.arm_idlect2 = 0x0100;
2490 s->clkm.arm_ewupct = 0x003f;
2491 s->clkm.arm_rstct1 = 0x0000;
2492 s->clkm.arm_rstct2 = 0x0000;
2493 s->clkm.arm_ckout1 = 0x0015;
2494 s->clkm.dpll1_mode = 0x2002;
2495 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2496 s->clkm.dsp_idlect1 = 0x0040;
2497 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2498 s->clkm.dsp_idlect2 = 0x0000;
2499 s->clkm.dsp_rstct2 = 0x0000;
2502 static void omap_clkm_init(target_phys_addr_t mpu_base,
2503 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2505 int iomemtype[2] = {
2506 cpu_register_io_memory(omap_clkm_readfn, omap_clkm_writefn, s),
2507 cpu_register_io_memory(omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2510 s->clkm.arm_idlect1 = 0x03ff;
2511 s->clkm.arm_idlect2 = 0x0100;
2512 s->clkm.dsp_idlect1 = 0x0002;
2513 omap_clkm_reset(s);
2514 s->clkm.cold_start = 0x3a;
2516 cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
2517 cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
2520 /* MPU I/O */
2521 struct omap_mpuio_s {
2522 qemu_irq irq;
2523 qemu_irq kbd_irq;
2524 qemu_irq *in;
2525 qemu_irq handler[16];
2526 qemu_irq wakeup;
2528 uint16_t inputs;
2529 uint16_t outputs;
2530 uint16_t dir;
2531 uint16_t edge;
2532 uint16_t mask;
2533 uint16_t ints;
2535 uint16_t debounce;
2536 uint16_t latch;
2537 uint8_t event;
2539 uint8_t buttons[5];
2540 uint8_t row_latch;
2541 uint8_t cols;
2542 int kbd_mask;
2543 int clk;
2546 static void omap_mpuio_set(void *opaque, int line, int level)
2548 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2549 uint16_t prev = s->inputs;
2551 if (level)
2552 s->inputs |= 1 << line;
2553 else
2554 s->inputs &= ~(1 << line);
2556 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2557 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2558 s->ints |= 1 << line;
2559 qemu_irq_raise(s->irq);
2560 /* TODO: wakeup */
2562 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2563 (s->event >> 1) == line) /* PIN_SELECT */
2564 s->latch = s->inputs;
2568 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2570 int i;
2571 uint8_t *row, rows = 0, cols = ~s->cols;
2573 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
2574 if (*row & cols)
2575 rows |= i;
2577 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
2578 s->row_latch = ~rows;
2581 static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2583 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2584 int offset = addr & OMAP_MPUI_REG_MASK;
2585 uint16_t ret;
2587 switch (offset) {
2588 case 0x00: /* INPUT_LATCH */
2589 return s->inputs;
2591 case 0x04: /* OUTPUT_REG */
2592 return s->outputs;
2594 case 0x08: /* IO_CNTL */
2595 return s->dir;
2597 case 0x10: /* KBR_LATCH */
2598 return s->row_latch;
2600 case 0x14: /* KBC_REG */
2601 return s->cols;
2603 case 0x18: /* GPIO_EVENT_MODE_REG */
2604 return s->event;
2606 case 0x1c: /* GPIO_INT_EDGE_REG */
2607 return s->edge;
2609 case 0x20: /* KBD_INT */
2610 return (~s->row_latch & 0x1f) && !s->kbd_mask;
2612 case 0x24: /* GPIO_INT */
2613 ret = s->ints;
2614 s->ints &= s->mask;
2615 if (ret)
2616 qemu_irq_lower(s->irq);
2617 return ret;
2619 case 0x28: /* KBD_MASKIT */
2620 return s->kbd_mask;
2622 case 0x2c: /* GPIO_MASKIT */
2623 return s->mask;
2625 case 0x30: /* GPIO_DEBOUNCING_REG */
2626 return s->debounce;
2628 case 0x34: /* GPIO_LATCH_REG */
2629 return s->latch;
2632 OMAP_BAD_REG(addr);
2633 return 0;
2636 static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2637 uint32_t value)
2639 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2640 int offset = addr & OMAP_MPUI_REG_MASK;
2641 uint16_t diff;
2642 int ln;
2644 switch (offset) {
2645 case 0x04: /* OUTPUT_REG */
2646 diff = (s->outputs ^ value) & ~s->dir;
2647 s->outputs = value;
2648 while ((ln = ffs(diff))) {
2649 ln --;
2650 if (s->handler[ln])
2651 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2652 diff &= ~(1 << ln);
2654 break;
2656 case 0x08: /* IO_CNTL */
2657 diff = s->outputs & (s->dir ^ value);
2658 s->dir = value;
2660 value = s->outputs & ~s->dir;
2661 while ((ln = ffs(diff))) {
2662 ln --;
2663 if (s->handler[ln])
2664 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2665 diff &= ~(1 << ln);
2667 break;
2669 case 0x14: /* KBC_REG */
2670 s->cols = value;
2671 omap_mpuio_kbd_update(s);
2672 break;
2674 case 0x18: /* GPIO_EVENT_MODE_REG */
2675 s->event = value & 0x1f;
2676 break;
2678 case 0x1c: /* GPIO_INT_EDGE_REG */
2679 s->edge = value;
2680 break;
2682 case 0x28: /* KBD_MASKIT */
2683 s->kbd_mask = value & 1;
2684 omap_mpuio_kbd_update(s);
2685 break;
2687 case 0x2c: /* GPIO_MASKIT */
2688 s->mask = value;
2689 break;
2691 case 0x30: /* GPIO_DEBOUNCING_REG */
2692 s->debounce = value & 0x1ff;
2693 break;
2695 case 0x00: /* INPUT_LATCH */
2696 case 0x10: /* KBR_LATCH */
2697 case 0x20: /* KBD_INT */
2698 case 0x24: /* GPIO_INT */
2699 case 0x34: /* GPIO_LATCH_REG */
2700 OMAP_RO_REG(addr);
2701 return;
2703 default:
2704 OMAP_BAD_REG(addr);
2705 return;
2709 static CPUReadMemoryFunc * const omap_mpuio_readfn[] = {
2710 omap_badwidth_read16,
2711 omap_mpuio_read,
2712 omap_badwidth_read16,
2715 static CPUWriteMemoryFunc * const omap_mpuio_writefn[] = {
2716 omap_badwidth_write16,
2717 omap_mpuio_write,
2718 omap_badwidth_write16,
2721 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2723 s->inputs = 0;
2724 s->outputs = 0;
2725 s->dir = ~0;
2726 s->event = 0;
2727 s->edge = 0;
2728 s->kbd_mask = 0;
2729 s->mask = 0;
2730 s->debounce = 0;
2731 s->latch = 0;
2732 s->ints = 0;
2733 s->row_latch = 0x1f;
2734 s->clk = 1;
2737 static void omap_mpuio_onoff(void *opaque, int line, int on)
2739 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2741 s->clk = on;
2742 if (on)
2743 omap_mpuio_kbd_update(s);
2746 struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2747 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2748 omap_clk clk)
2750 int iomemtype;
2751 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2752 qemu_mallocz(sizeof(struct omap_mpuio_s));
2754 s->irq = gpio_int;
2755 s->kbd_irq = kbd_int;
2756 s->wakeup = wakeup;
2757 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2758 omap_mpuio_reset(s);
2760 iomemtype = cpu_register_io_memory(omap_mpuio_readfn,
2761 omap_mpuio_writefn, s);
2762 cpu_register_physical_memory(base, 0x800, iomemtype);
2764 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2766 return s;
2769 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2771 return s->in;
2774 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2776 if (line >= 16 || line < 0)
2777 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2778 s->handler[line] = handler;
2781 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2783 if (row >= 5 || row < 0)
2784 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2786 if (down)
2787 s->buttons[row] |= 1 << col;
2788 else
2789 s->buttons[row] &= ~(1 << col);
2791 omap_mpuio_kbd_update(s);
2794 /* General-Purpose I/O */
2795 struct omap_gpio_s {
2796 qemu_irq irq;
2797 qemu_irq *in;
2798 qemu_irq handler[16];
2800 uint16_t inputs;
2801 uint16_t outputs;
2802 uint16_t dir;
2803 uint16_t edge;
2804 uint16_t mask;
2805 uint16_t ints;
2806 uint16_t pins;
2809 static void omap_gpio_set(void *opaque, int line, int level)
2811 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2812 uint16_t prev = s->inputs;
2814 if (level)
2815 s->inputs |= 1 << line;
2816 else
2817 s->inputs &= ~(1 << line);
2819 if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
2820 (1 << line) & s->dir & ~s->mask) {
2821 s->ints |= 1 << line;
2822 qemu_irq_raise(s->irq);
2826 static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
2828 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2829 int offset = addr & OMAP_MPUI_REG_MASK;
2831 switch (offset) {
2832 case 0x00: /* DATA_INPUT */
2833 return s->inputs & s->pins;
2835 case 0x04: /* DATA_OUTPUT */
2836 return s->outputs;
2838 case 0x08: /* DIRECTION_CONTROL */
2839 return s->dir;
2841 case 0x0c: /* INTERRUPT_CONTROL */
2842 return s->edge;
2844 case 0x10: /* INTERRUPT_MASK */
2845 return s->mask;
2847 case 0x14: /* INTERRUPT_STATUS */
2848 return s->ints;
2850 case 0x18: /* PIN_CONTROL (not in OMAP310) */
2851 OMAP_BAD_REG(addr);
2852 return s->pins;
2855 OMAP_BAD_REG(addr);
2856 return 0;
2859 static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
2860 uint32_t value)
2862 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2863 int offset = addr & OMAP_MPUI_REG_MASK;
2864 uint16_t diff;
2865 int ln;
2867 switch (offset) {
2868 case 0x00: /* DATA_INPUT */
2869 OMAP_RO_REG(addr);
2870 return;
2872 case 0x04: /* DATA_OUTPUT */
2873 diff = (s->outputs ^ value) & ~s->dir;
2874 s->outputs = value;
2875 while ((ln = ffs(diff))) {
2876 ln --;
2877 if (s->handler[ln])
2878 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2879 diff &= ~(1 << ln);
2881 break;
2883 case 0x08: /* DIRECTION_CONTROL */
2884 diff = s->outputs & (s->dir ^ value);
2885 s->dir = value;
2887 value = s->outputs & ~s->dir;
2888 while ((ln = ffs(diff))) {
2889 ln --;
2890 if (s->handler[ln])
2891 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2892 diff &= ~(1 << ln);
2894 break;
2896 case 0x0c: /* INTERRUPT_CONTROL */
2897 s->edge = value;
2898 break;
2900 case 0x10: /* INTERRUPT_MASK */
2901 s->mask = value;
2902 break;
2904 case 0x14: /* INTERRUPT_STATUS */
2905 s->ints &= ~value;
2906 if (!s->ints)
2907 qemu_irq_lower(s->irq);
2908 break;
2910 case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
2911 OMAP_BAD_REG(addr);
2912 s->pins = value;
2913 break;
2915 default:
2916 OMAP_BAD_REG(addr);
2917 return;
2921 /* *Some* sources say the memory region is 32-bit. */
2922 static CPUReadMemoryFunc * const omap_gpio_readfn[] = {
2923 omap_badwidth_read16,
2924 omap_gpio_read,
2925 omap_badwidth_read16,
2928 static CPUWriteMemoryFunc * const omap_gpio_writefn[] = {
2929 omap_badwidth_write16,
2930 omap_gpio_write,
2931 omap_badwidth_write16,
2934 static void omap_gpio_reset(struct omap_gpio_s *s)
2936 s->inputs = 0;
2937 s->outputs = ~0;
2938 s->dir = ~0;
2939 s->edge = ~0;
2940 s->mask = ~0;
2941 s->ints = 0;
2942 s->pins = ~0;
2945 struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
2946 qemu_irq irq, omap_clk clk)
2948 int iomemtype;
2949 struct omap_gpio_s *s = (struct omap_gpio_s *)
2950 qemu_mallocz(sizeof(struct omap_gpio_s));
2952 s->irq = irq;
2953 s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
2954 omap_gpio_reset(s);
2956 iomemtype = cpu_register_io_memory(omap_gpio_readfn,
2957 omap_gpio_writefn, s);
2958 cpu_register_physical_memory(base, 0x1000, iomemtype);
2960 return s;
2963 qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
2965 return s->in;
2968 void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
2970 if (line >= 16 || line < 0)
2971 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2972 s->handler[line] = handler;
2975 /* MicroWire Interface */
2976 struct omap_uwire_s {
2977 qemu_irq txirq;
2978 qemu_irq rxirq;
2979 qemu_irq txdrq;
2981 uint16_t txbuf;
2982 uint16_t rxbuf;
2983 uint16_t control;
2984 uint16_t setup[5];
2986 uWireSlave *chip[4];
2989 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2991 int chipselect = (s->control >> 10) & 3; /* INDEX */
2992 uWireSlave *slave = s->chip[chipselect];
2994 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2995 if (s->control & (1 << 12)) /* CS_CMD */
2996 if (slave && slave->send)
2997 slave->send(slave->opaque,
2998 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2999 s->control &= ~(1 << 14); /* CSRB */
3000 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3001 * a DRQ. When is the level IRQ supposed to be reset? */
3004 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
3005 if (s->control & (1 << 12)) /* CS_CMD */
3006 if (slave && slave->receive)
3007 s->rxbuf = slave->receive(slave->opaque);
3008 s->control |= 1 << 15; /* RDRB */
3009 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3010 * a DRQ. When is the level IRQ supposed to be reset? */
3014 static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3016 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3017 int offset = addr & OMAP_MPUI_REG_MASK;
3019 switch (offset) {
3020 case 0x00: /* RDR */
3021 s->control &= ~(1 << 15); /* RDRB */
3022 return s->rxbuf;
3024 case 0x04: /* CSR */
3025 return s->control;
3027 case 0x08: /* SR1 */
3028 return s->setup[0];
3029 case 0x0c: /* SR2 */
3030 return s->setup[1];
3031 case 0x10: /* SR3 */
3032 return s->setup[2];
3033 case 0x14: /* SR4 */
3034 return s->setup[3];
3035 case 0x18: /* SR5 */
3036 return s->setup[4];
3039 OMAP_BAD_REG(addr);
3040 return 0;
3043 static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3044 uint32_t value)
3046 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3047 int offset = addr & OMAP_MPUI_REG_MASK;
3049 switch (offset) {
3050 case 0x00: /* TDR */
3051 s->txbuf = value; /* TD */
3052 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
3053 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
3054 (s->control & (1 << 12)))) { /* CS_CMD */
3055 s->control |= 1 << 14; /* CSRB */
3056 omap_uwire_transfer_start(s);
3058 break;
3060 case 0x04: /* CSR */
3061 s->control = value & 0x1fff;
3062 if (value & (1 << 13)) /* START */
3063 omap_uwire_transfer_start(s);
3064 break;
3066 case 0x08: /* SR1 */
3067 s->setup[0] = value & 0x003f;
3068 break;
3070 case 0x0c: /* SR2 */
3071 s->setup[1] = value & 0x0fc0;
3072 break;
3074 case 0x10: /* SR3 */
3075 s->setup[2] = value & 0x0003;
3076 break;
3078 case 0x14: /* SR4 */
3079 s->setup[3] = value & 0x0001;
3080 break;
3082 case 0x18: /* SR5 */
3083 s->setup[4] = value & 0x000f;
3084 break;
3086 default:
3087 OMAP_BAD_REG(addr);
3088 return;
3092 static CPUReadMemoryFunc * const omap_uwire_readfn[] = {
3093 omap_badwidth_read16,
3094 omap_uwire_read,
3095 omap_badwidth_read16,
3098 static CPUWriteMemoryFunc * const omap_uwire_writefn[] = {
3099 omap_badwidth_write16,
3100 omap_uwire_write,
3101 omap_badwidth_write16,
3104 static void omap_uwire_reset(struct omap_uwire_s *s)
3106 s->control = 0;
3107 s->setup[0] = 0;
3108 s->setup[1] = 0;
3109 s->setup[2] = 0;
3110 s->setup[3] = 0;
3111 s->setup[4] = 0;
3114 struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3115 qemu_irq *irq, qemu_irq dma, omap_clk clk)
3117 int iomemtype;
3118 struct omap_uwire_s *s = (struct omap_uwire_s *)
3119 qemu_mallocz(sizeof(struct omap_uwire_s));
3121 s->txirq = irq[0];
3122 s->rxirq = irq[1];
3123 s->txdrq = dma;
3124 omap_uwire_reset(s);
3126 iomemtype = cpu_register_io_memory(omap_uwire_readfn,
3127 omap_uwire_writefn, s);
3128 cpu_register_physical_memory(base, 0x800, iomemtype);
3130 return s;
3133 void omap_uwire_attach(struct omap_uwire_s *s,
3134 uWireSlave *slave, int chipselect)
3136 if (chipselect < 0 || chipselect > 3) {
3137 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
3138 exit(-1);
3141 s->chip[chipselect] = slave;
3144 /* Pseudonoise Pulse-Width Light Modulator */
3145 static void omap_pwl_update(struct omap_mpu_state_s *s)
3147 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3149 if (output != s->pwl.output) {
3150 s->pwl.output = output;
3151 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3155 static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3157 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3158 int offset = addr & OMAP_MPUI_REG_MASK;
3160 switch (offset) {
3161 case 0x00: /* PWL_LEVEL */
3162 return s->pwl.level;
3163 case 0x04: /* PWL_CTRL */
3164 return s->pwl.enable;
3166 OMAP_BAD_REG(addr);
3167 return 0;
3170 static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3171 uint32_t value)
3173 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3174 int offset = addr & OMAP_MPUI_REG_MASK;
3176 switch (offset) {
3177 case 0x00: /* PWL_LEVEL */
3178 s->pwl.level = value;
3179 omap_pwl_update(s);
3180 break;
3181 case 0x04: /* PWL_CTRL */
3182 s->pwl.enable = value & 1;
3183 omap_pwl_update(s);
3184 break;
3185 default:
3186 OMAP_BAD_REG(addr);
3187 return;
3191 static CPUReadMemoryFunc * const omap_pwl_readfn[] = {
3192 omap_pwl_read,
3193 omap_badwidth_read8,
3194 omap_badwidth_read8,
3197 static CPUWriteMemoryFunc * const omap_pwl_writefn[] = {
3198 omap_pwl_write,
3199 omap_badwidth_write8,
3200 omap_badwidth_write8,
3203 static void omap_pwl_reset(struct omap_mpu_state_s *s)
3205 s->pwl.output = 0;
3206 s->pwl.level = 0;
3207 s->pwl.enable = 0;
3208 s->pwl.clk = 1;
3209 omap_pwl_update(s);
3212 static void omap_pwl_clk_update(void *opaque, int line, int on)
3214 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3216 s->pwl.clk = on;
3217 omap_pwl_update(s);
3220 static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3221 omap_clk clk)
3223 int iomemtype;
3225 omap_pwl_reset(s);
3227 iomemtype = cpu_register_io_memory(omap_pwl_readfn,
3228 omap_pwl_writefn, s);
3229 cpu_register_physical_memory(base, 0x800, iomemtype);
3231 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3234 /* Pulse-Width Tone module */
3235 static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3237 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3238 int offset = addr & OMAP_MPUI_REG_MASK;
3240 switch (offset) {
3241 case 0x00: /* FRC */
3242 return s->pwt.frc;
3243 case 0x04: /* VCR */
3244 return s->pwt.vrc;
3245 case 0x08: /* GCR */
3246 return s->pwt.gcr;
3248 OMAP_BAD_REG(addr);
3249 return 0;
3252 static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3253 uint32_t value)
3255 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3256 int offset = addr & OMAP_MPUI_REG_MASK;
3258 switch (offset) {
3259 case 0x00: /* FRC */
3260 s->pwt.frc = value & 0x3f;
3261 break;
3262 case 0x04: /* VRC */
3263 if ((value ^ s->pwt.vrc) & 1) {
3264 if (value & 1)
3265 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3266 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3267 ((omap_clk_getrate(s->pwt.clk) >> 3) /
3268 /* Pre-multiplexer divider */
3269 ((s->pwt.gcr & 2) ? 1 : 154) /
3270 /* Octave multiplexer */
3271 (2 << (value & 3)) *
3272 /* 101/107 divider */
3273 ((value & (1 << 2)) ? 101 : 107) *
3274 /* 49/55 divider */
3275 ((value & (1 << 3)) ? 49 : 55) *
3276 /* 50/63 divider */
3277 ((value & (1 << 4)) ? 50 : 63) *
3278 /* 80/127 divider */
3279 ((value & (1 << 5)) ? 80 : 127) /
3280 (107 * 55 * 63 * 127)));
3281 else
3282 printf("%s: silence!\n", __FUNCTION__);
3284 s->pwt.vrc = value & 0x7f;
3285 break;
3286 case 0x08: /* GCR */
3287 s->pwt.gcr = value & 3;
3288 break;
3289 default:
3290 OMAP_BAD_REG(addr);
3291 return;
3295 static CPUReadMemoryFunc * const omap_pwt_readfn[] = {
3296 omap_pwt_read,
3297 omap_badwidth_read8,
3298 omap_badwidth_read8,
3301 static CPUWriteMemoryFunc * const omap_pwt_writefn[] = {
3302 omap_pwt_write,
3303 omap_badwidth_write8,
3304 omap_badwidth_write8,
3307 static void omap_pwt_reset(struct omap_mpu_state_s *s)
3309 s->pwt.frc = 0;
3310 s->pwt.vrc = 0;
3311 s->pwt.gcr = 0;
3314 static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3315 omap_clk clk)
3317 int iomemtype;
3319 s->pwt.clk = clk;
3320 omap_pwt_reset(s);
3322 iomemtype = cpu_register_io_memory(omap_pwt_readfn,
3323 omap_pwt_writefn, s);
3324 cpu_register_physical_memory(base, 0x800, iomemtype);
3327 /* Real-time Clock module */
3328 struct omap_rtc_s {
3329 qemu_irq irq;
3330 qemu_irq alarm;
3331 QEMUTimer *clk;
3333 uint8_t interrupts;
3334 uint8_t status;
3335 int16_t comp_reg;
3336 int running;
3337 int pm_am;
3338 int auto_comp;
3339 int round;
3340 struct tm alarm_tm;
3341 time_t alarm_ti;
3343 struct tm current_tm;
3344 time_t ti;
3345 uint64_t tick;
3348 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
3350 /* s->alarm is level-triggered */
3351 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
3354 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3356 s->alarm_ti = mktimegm(&s->alarm_tm);
3357 if (s->alarm_ti == -1)
3358 printf("%s: conversion failed\n", __FUNCTION__);
3361 static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3363 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3364 int offset = addr & OMAP_MPUI_REG_MASK;
3365 uint8_t i;
3367 switch (offset) {
3368 case 0x00: /* SECONDS_REG */
3369 return to_bcd(s->current_tm.tm_sec);
3371 case 0x04: /* MINUTES_REG */
3372 return to_bcd(s->current_tm.tm_min);
3374 case 0x08: /* HOURS_REG */
3375 if (s->pm_am)
3376 return ((s->current_tm.tm_hour > 11) << 7) |
3377 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3378 else
3379 return to_bcd(s->current_tm.tm_hour);
3381 case 0x0c: /* DAYS_REG */
3382 return to_bcd(s->current_tm.tm_mday);
3384 case 0x10: /* MONTHS_REG */
3385 return to_bcd(s->current_tm.tm_mon + 1);
3387 case 0x14: /* YEARS_REG */
3388 return to_bcd(s->current_tm.tm_year % 100);
3390 case 0x18: /* WEEK_REG */
3391 return s->current_tm.tm_wday;
3393 case 0x20: /* ALARM_SECONDS_REG */
3394 return to_bcd(s->alarm_tm.tm_sec);
3396 case 0x24: /* ALARM_MINUTES_REG */
3397 return to_bcd(s->alarm_tm.tm_min);
3399 case 0x28: /* ALARM_HOURS_REG */
3400 if (s->pm_am)
3401 return ((s->alarm_tm.tm_hour > 11) << 7) |
3402 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3403 else
3404 return to_bcd(s->alarm_tm.tm_hour);
3406 case 0x2c: /* ALARM_DAYS_REG */
3407 return to_bcd(s->alarm_tm.tm_mday);
3409 case 0x30: /* ALARM_MONTHS_REG */
3410 return to_bcd(s->alarm_tm.tm_mon + 1);
3412 case 0x34: /* ALARM_YEARS_REG */
3413 return to_bcd(s->alarm_tm.tm_year % 100);
3415 case 0x40: /* RTC_CTRL_REG */
3416 return (s->pm_am << 3) | (s->auto_comp << 2) |
3417 (s->round << 1) | s->running;
3419 case 0x44: /* RTC_STATUS_REG */
3420 i = s->status;
3421 s->status &= ~0x3d;
3422 return i;
3424 case 0x48: /* RTC_INTERRUPTS_REG */
3425 return s->interrupts;
3427 case 0x4c: /* RTC_COMP_LSB_REG */
3428 return ((uint16_t) s->comp_reg) & 0xff;
3430 case 0x50: /* RTC_COMP_MSB_REG */
3431 return ((uint16_t) s->comp_reg) >> 8;
3434 OMAP_BAD_REG(addr);
3435 return 0;
3438 static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3439 uint32_t value)
3441 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3442 int offset = addr & OMAP_MPUI_REG_MASK;
3443 struct tm new_tm;
3444 time_t ti[2];
3446 switch (offset) {
3447 case 0x00: /* SECONDS_REG */
3448 #ifdef ALMDEBUG
3449 printf("RTC SEC_REG <-- %02x\n", value);
3450 #endif
3451 s->ti -= s->current_tm.tm_sec;
3452 s->ti += from_bcd(value);
3453 return;
3455 case 0x04: /* MINUTES_REG */
3456 #ifdef ALMDEBUG
3457 printf("RTC MIN_REG <-- %02x\n", value);
3458 #endif
3459 s->ti -= s->current_tm.tm_min * 60;
3460 s->ti += from_bcd(value) * 60;
3461 return;
3463 case 0x08: /* HOURS_REG */
3464 #ifdef ALMDEBUG
3465 printf("RTC HRS_REG <-- %02x\n", value);
3466 #endif
3467 s->ti -= s->current_tm.tm_hour * 3600;
3468 if (s->pm_am) {
3469 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
3470 s->ti += ((value >> 7) & 1) * 43200;
3471 } else
3472 s->ti += from_bcd(value & 0x3f) * 3600;
3473 return;
3475 case 0x0c: /* DAYS_REG */
3476 #ifdef ALMDEBUG
3477 printf("RTC DAY_REG <-- %02x\n", value);
3478 #endif
3479 s->ti -= s->current_tm.tm_mday * 86400;
3480 s->ti += from_bcd(value) * 86400;
3481 return;
3483 case 0x10: /* MONTHS_REG */
3484 #ifdef ALMDEBUG
3485 printf("RTC MTH_REG <-- %02x\n", value);
3486 #endif
3487 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3488 new_tm.tm_mon = from_bcd(value);
3489 ti[0] = mktimegm(&s->current_tm);
3490 ti[1] = mktimegm(&new_tm);
3492 if (ti[0] != -1 && ti[1] != -1) {
3493 s->ti -= ti[0];
3494 s->ti += ti[1];
3495 } else {
3496 /* A less accurate version */
3497 s->ti -= s->current_tm.tm_mon * 2592000;
3498 s->ti += from_bcd(value) * 2592000;
3500 return;
3502 case 0x14: /* YEARS_REG */
3503 #ifdef ALMDEBUG
3504 printf("RTC YRS_REG <-- %02x\n", value);
3505 #endif
3506 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3507 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
3508 ti[0] = mktimegm(&s->current_tm);
3509 ti[1] = mktimegm(&new_tm);
3511 if (ti[0] != -1 && ti[1] != -1) {
3512 s->ti -= ti[0];
3513 s->ti += ti[1];
3514 } else {
3515 /* A less accurate version */
3516 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3517 s->ti += from_bcd(value) * 31536000;
3519 return;
3521 case 0x18: /* WEEK_REG */
3522 return; /* Ignored */
3524 case 0x20: /* ALARM_SECONDS_REG */
3525 #ifdef ALMDEBUG
3526 printf("ALM SEC_REG <-- %02x\n", value);
3527 #endif
3528 s->alarm_tm.tm_sec = from_bcd(value);
3529 omap_rtc_alarm_update(s);
3530 return;
3532 case 0x24: /* ALARM_MINUTES_REG */
3533 #ifdef ALMDEBUG
3534 printf("ALM MIN_REG <-- %02x\n", value);
3535 #endif
3536 s->alarm_tm.tm_min = from_bcd(value);
3537 omap_rtc_alarm_update(s);
3538 return;
3540 case 0x28: /* ALARM_HOURS_REG */
3541 #ifdef ALMDEBUG
3542 printf("ALM HRS_REG <-- %02x\n", value);
3543 #endif
3544 if (s->pm_am)
3545 s->alarm_tm.tm_hour =
3546 ((from_bcd(value & 0x3f)) % 12) +
3547 ((value >> 7) & 1) * 12;
3548 else
3549 s->alarm_tm.tm_hour = from_bcd(value);
3550 omap_rtc_alarm_update(s);
3551 return;
3553 case 0x2c: /* ALARM_DAYS_REG */
3554 #ifdef ALMDEBUG
3555 printf("ALM DAY_REG <-- %02x\n", value);
3556 #endif
3557 s->alarm_tm.tm_mday = from_bcd(value);
3558 omap_rtc_alarm_update(s);
3559 return;
3561 case 0x30: /* ALARM_MONTHS_REG */
3562 #ifdef ALMDEBUG
3563 printf("ALM MON_REG <-- %02x\n", value);
3564 #endif
3565 s->alarm_tm.tm_mon = from_bcd(value);
3566 omap_rtc_alarm_update(s);
3567 return;
3569 case 0x34: /* ALARM_YEARS_REG */
3570 #ifdef ALMDEBUG
3571 printf("ALM YRS_REG <-- %02x\n", value);
3572 #endif
3573 s->alarm_tm.tm_year = from_bcd(value);
3574 omap_rtc_alarm_update(s);
3575 return;
3577 case 0x40: /* RTC_CTRL_REG */
3578 #ifdef ALMDEBUG
3579 printf("RTC CONTROL <-- %02x\n", value);
3580 #endif
3581 s->pm_am = (value >> 3) & 1;
3582 s->auto_comp = (value >> 2) & 1;
3583 s->round = (value >> 1) & 1;
3584 s->running = value & 1;
3585 s->status &= 0xfd;
3586 s->status |= s->running << 1;
3587 return;
3589 case 0x44: /* RTC_STATUS_REG */
3590 #ifdef ALMDEBUG
3591 printf("RTC STATUSL <-- %02x\n", value);
3592 #endif
3593 s->status &= ~((value & 0xc0) ^ 0x80);
3594 omap_rtc_interrupts_update(s);
3595 return;
3597 case 0x48: /* RTC_INTERRUPTS_REG */
3598 #ifdef ALMDEBUG
3599 printf("RTC INTRS <-- %02x\n", value);
3600 #endif
3601 s->interrupts = value;
3602 return;
3604 case 0x4c: /* RTC_COMP_LSB_REG */
3605 #ifdef ALMDEBUG
3606 printf("RTC COMPLSB <-- %02x\n", value);
3607 #endif
3608 s->comp_reg &= 0xff00;
3609 s->comp_reg |= 0x00ff & value;
3610 return;
3612 case 0x50: /* RTC_COMP_MSB_REG */
3613 #ifdef ALMDEBUG
3614 printf("RTC COMPMSB <-- %02x\n", value);
3615 #endif
3616 s->comp_reg &= 0x00ff;
3617 s->comp_reg |= 0xff00 & (value << 8);
3618 return;
3620 default:
3621 OMAP_BAD_REG(addr);
3622 return;
3626 static CPUReadMemoryFunc * const omap_rtc_readfn[] = {
3627 omap_rtc_read,
3628 omap_badwidth_read8,
3629 omap_badwidth_read8,
3632 static CPUWriteMemoryFunc * const omap_rtc_writefn[] = {
3633 omap_rtc_write,
3634 omap_badwidth_write8,
3635 omap_badwidth_write8,
3638 static void omap_rtc_tick(void *opaque)
3640 struct omap_rtc_s *s = opaque;
3642 if (s->round) {
3643 /* Round to nearest full minute. */
3644 if (s->current_tm.tm_sec < 30)
3645 s->ti -= s->current_tm.tm_sec;
3646 else
3647 s->ti += 60 - s->current_tm.tm_sec;
3649 s->round = 0;
3652 memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
3654 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3655 s->status |= 0x40;
3656 omap_rtc_interrupts_update(s);
3659 if (s->interrupts & 0x04)
3660 switch (s->interrupts & 3) {
3661 case 0:
3662 s->status |= 0x04;
3663 qemu_irq_pulse(s->irq);
3664 break;
3665 case 1:
3666 if (s->current_tm.tm_sec)
3667 break;
3668 s->status |= 0x08;
3669 qemu_irq_pulse(s->irq);
3670 break;
3671 case 2:
3672 if (s->current_tm.tm_sec || s->current_tm.tm_min)
3673 break;
3674 s->status |= 0x10;
3675 qemu_irq_pulse(s->irq);
3676 break;
3677 case 3:
3678 if (s->current_tm.tm_sec ||
3679 s->current_tm.tm_min || s->current_tm.tm_hour)
3680 break;
3681 s->status |= 0x20;
3682 qemu_irq_pulse(s->irq);
3683 break;
3686 /* Move on */
3687 if (s->running)
3688 s->ti ++;
3689 s->tick += 1000;
3692 * Every full hour add a rough approximation of the compensation
3693 * register to the 32kHz Timer (which drives the RTC) value.
3695 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
3696 s->tick += s->comp_reg * 1000 / 32768;
3698 qemu_mod_timer(s->clk, s->tick);
3701 static void omap_rtc_reset(struct omap_rtc_s *s)
3703 struct tm tm;
3705 s->interrupts = 0;
3706 s->comp_reg = 0;
3707 s->running = 0;
3708 s->pm_am = 0;
3709 s->auto_comp = 0;
3710 s->round = 0;
3711 s->tick = qemu_get_clock(rt_clock);
3712 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
3713 s->alarm_tm.tm_mday = 0x01;
3714 s->status = 1 << 7;
3715 qemu_get_timedate(&tm, 0);
3716 s->ti = mktimegm(&tm);
3718 omap_rtc_alarm_update(s);
3719 omap_rtc_tick(s);
3722 struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
3723 qemu_irq *irq, omap_clk clk)
3725 int iomemtype;
3726 struct omap_rtc_s *s = (struct omap_rtc_s *)
3727 qemu_mallocz(sizeof(struct omap_rtc_s));
3729 s->irq = irq[0];
3730 s->alarm = irq[1];
3731 s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
3733 omap_rtc_reset(s);
3735 iomemtype = cpu_register_io_memory(omap_rtc_readfn,
3736 omap_rtc_writefn, s);
3737 cpu_register_physical_memory(base, 0x800, iomemtype);
3739 return s;
3742 /* Multi-channel Buffered Serial Port interfaces */
3743 struct omap_mcbsp_s {
3744 qemu_irq txirq;
3745 qemu_irq rxirq;
3746 qemu_irq txdrq;
3747 qemu_irq rxdrq;
3749 uint16_t spcr[2];
3750 uint16_t rcr[2];
3751 uint16_t xcr[2];
3752 uint16_t srgr[2];
3753 uint16_t mcr[2];
3754 uint16_t pcr;
3755 uint16_t rcer[8];
3756 uint16_t xcer[8];
3757 int tx_rate;
3758 int rx_rate;
3759 int tx_req;
3760 int rx_req;
3762 I2SCodec *codec;
3763 QEMUTimer *source_timer;
3764 QEMUTimer *sink_timer;
3767 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
3769 int irq;
3771 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
3772 case 0:
3773 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
3774 break;
3775 case 3:
3776 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3777 break;
3778 default:
3779 irq = 0;
3780 break;
3783 if (irq)
3784 qemu_irq_pulse(s->rxirq);
3786 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3787 case 0:
3788 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3789 break;
3790 case 3:
3791 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3792 break;
3793 default:
3794 irq = 0;
3795 break;
3798 if (irq)
3799 qemu_irq_pulse(s->txirq);
3802 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3804 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3805 s->spcr[0] |= 1 << 2; /* RFULL */
3806 s->spcr[0] |= 1 << 1; /* RRDY */
3807 qemu_irq_raise(s->rxdrq);
3808 omap_mcbsp_intr_update(s);
3811 static void omap_mcbsp_source_tick(void *opaque)
3813 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3814 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3816 if (!s->rx_rate)
3817 return;
3818 if (s->rx_req)
3819 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3821 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3823 omap_mcbsp_rx_newdata(s);
3824 qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) +
3825 get_ticks_per_sec());
3828 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3830 if (!s->codec || !s->codec->rts)
3831 omap_mcbsp_source_tick(s);
3832 else if (s->codec->in.len) {
3833 s->rx_req = s->codec->in.len;
3834 omap_mcbsp_rx_newdata(s);
3838 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3840 qemu_del_timer(s->source_timer);
3843 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3845 s->spcr[0] &= ~(1 << 1); /* RRDY */
3846 qemu_irq_lower(s->rxdrq);
3847 omap_mcbsp_intr_update(s);
3850 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3852 s->spcr[1] |= 1 << 1; /* XRDY */
3853 qemu_irq_raise(s->txdrq);
3854 omap_mcbsp_intr_update(s);
3857 static void omap_mcbsp_sink_tick(void *opaque)
3859 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3860 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3862 if (!s->tx_rate)
3863 return;
3864 if (s->tx_req)
3865 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3867 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3869 omap_mcbsp_tx_newdata(s);
3870 qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) +
3871 get_ticks_per_sec());
3874 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3876 if (!s->codec || !s->codec->cts)
3877 omap_mcbsp_sink_tick(s);
3878 else if (s->codec->out.size) {
3879 s->tx_req = s->codec->out.size;
3880 omap_mcbsp_tx_newdata(s);
3884 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3886 s->spcr[1] &= ~(1 << 1); /* XRDY */
3887 qemu_irq_lower(s->txdrq);
3888 omap_mcbsp_intr_update(s);
3889 if (s->codec && s->codec->cts)
3890 s->codec->tx_swallow(s->codec->opaque);
3893 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3895 s->tx_req = 0;
3896 omap_mcbsp_tx_done(s);
3897 qemu_del_timer(s->sink_timer);
3900 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3902 int prev_rx_rate, prev_tx_rate;
3903 int rx_rate = 0, tx_rate = 0;
3904 int cpu_rate = 1500000; /* XXX */
3906 /* TODO: check CLKSTP bit */
3907 if (s->spcr[1] & (1 << 6)) { /* GRST */
3908 if (s->spcr[0] & (1 << 0)) { /* RRST */
3909 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3910 (s->pcr & (1 << 8))) { /* CLKRM */
3911 if (~s->pcr & (1 << 7)) /* SCLKME */
3912 rx_rate = cpu_rate /
3913 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3914 } else
3915 if (s->codec)
3916 rx_rate = s->codec->rx_rate;
3919 if (s->spcr[1] & (1 << 0)) { /* XRST */
3920 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3921 (s->pcr & (1 << 9))) { /* CLKXM */
3922 if (~s->pcr & (1 << 7)) /* SCLKME */
3923 tx_rate = cpu_rate /
3924 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3925 } else
3926 if (s->codec)
3927 tx_rate = s->codec->tx_rate;
3930 prev_tx_rate = s->tx_rate;
3931 prev_rx_rate = s->rx_rate;
3932 s->tx_rate = tx_rate;
3933 s->rx_rate = rx_rate;
3935 if (s->codec)
3936 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3938 if (!prev_tx_rate && tx_rate)
3939 omap_mcbsp_tx_start(s);
3940 else if (s->tx_rate && !tx_rate)
3941 omap_mcbsp_tx_stop(s);
3943 if (!prev_rx_rate && rx_rate)
3944 omap_mcbsp_rx_start(s);
3945 else if (prev_tx_rate && !tx_rate)
3946 omap_mcbsp_rx_stop(s);
3949 static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3951 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3952 int offset = addr & OMAP_MPUI_REG_MASK;
3953 uint16_t ret;
3955 switch (offset) {
3956 case 0x00: /* DRR2 */
3957 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3958 return 0x0000;
3959 /* Fall through. */
3960 case 0x02: /* DRR1 */
3961 if (s->rx_req < 2) {
3962 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3963 omap_mcbsp_rx_done(s);
3964 } else {
3965 s->tx_req -= 2;
3966 if (s->codec && s->codec->in.len >= 2) {
3967 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3968 ret |= s->codec->in.fifo[s->codec->in.start ++];
3969 s->codec->in.len -= 2;
3970 } else
3971 ret = 0x0000;
3972 if (!s->tx_req)
3973 omap_mcbsp_rx_done(s);
3974 return ret;
3976 return 0x0000;
3978 case 0x04: /* DXR2 */
3979 case 0x06: /* DXR1 */
3980 return 0x0000;
3982 case 0x08: /* SPCR2 */
3983 return s->spcr[1];
3984 case 0x0a: /* SPCR1 */
3985 return s->spcr[0];
3986 case 0x0c: /* RCR2 */
3987 return s->rcr[1];
3988 case 0x0e: /* RCR1 */
3989 return s->rcr[0];
3990 case 0x10: /* XCR2 */
3991 return s->xcr[1];
3992 case 0x12: /* XCR1 */
3993 return s->xcr[0];
3994 case 0x14: /* SRGR2 */
3995 return s->srgr[1];
3996 case 0x16: /* SRGR1 */
3997 return s->srgr[0];
3998 case 0x18: /* MCR2 */
3999 return s->mcr[1];
4000 case 0x1a: /* MCR1 */
4001 return s->mcr[0];
4002 case 0x1c: /* RCERA */
4003 return s->rcer[0];
4004 case 0x1e: /* RCERB */
4005 return s->rcer[1];
4006 case 0x20: /* XCERA */
4007 return s->xcer[0];
4008 case 0x22: /* XCERB */
4009 return s->xcer[1];
4010 case 0x24: /* PCR0 */
4011 return s->pcr;
4012 case 0x26: /* RCERC */
4013 return s->rcer[2];
4014 case 0x28: /* RCERD */
4015 return s->rcer[3];
4016 case 0x2a: /* XCERC */
4017 return s->xcer[2];
4018 case 0x2c: /* XCERD */
4019 return s->xcer[3];
4020 case 0x2e: /* RCERE */
4021 return s->rcer[4];
4022 case 0x30: /* RCERF */
4023 return s->rcer[5];
4024 case 0x32: /* XCERE */
4025 return s->xcer[4];
4026 case 0x34: /* XCERF */
4027 return s->xcer[5];
4028 case 0x36: /* RCERG */
4029 return s->rcer[6];
4030 case 0x38: /* RCERH */
4031 return s->rcer[7];
4032 case 0x3a: /* XCERG */
4033 return s->xcer[6];
4034 case 0x3c: /* XCERH */
4035 return s->xcer[7];
4038 OMAP_BAD_REG(addr);
4039 return 0;
4042 static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
4043 uint32_t value)
4045 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4046 int offset = addr & OMAP_MPUI_REG_MASK;
4048 switch (offset) {
4049 case 0x00: /* DRR2 */
4050 case 0x02: /* DRR1 */
4051 OMAP_RO_REG(addr);
4052 return;
4054 case 0x04: /* DXR2 */
4055 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4056 return;
4057 /* Fall through. */
4058 case 0x06: /* DXR1 */
4059 if (s->tx_req > 1) {
4060 s->tx_req -= 2;
4061 if (s->codec && s->codec->cts) {
4062 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
4063 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
4065 if (s->tx_req < 2)
4066 omap_mcbsp_tx_done(s);
4067 } else
4068 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4069 return;
4071 case 0x08: /* SPCR2 */
4072 s->spcr[1] &= 0x0002;
4073 s->spcr[1] |= 0x03f9 & value;
4074 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
4075 if (~value & 1) /* XRST */
4076 s->spcr[1] &= ~6;
4077 omap_mcbsp_req_update(s);
4078 return;
4079 case 0x0a: /* SPCR1 */
4080 s->spcr[0] &= 0x0006;
4081 s->spcr[0] |= 0xf8f9 & value;
4082 if (value & (1 << 15)) /* DLB */
4083 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
4084 if (~value & 1) { /* RRST */
4085 s->spcr[0] &= ~6;
4086 s->rx_req = 0;
4087 omap_mcbsp_rx_done(s);
4089 omap_mcbsp_req_update(s);
4090 return;
4092 case 0x0c: /* RCR2 */
4093 s->rcr[1] = value & 0xffff;
4094 return;
4095 case 0x0e: /* RCR1 */
4096 s->rcr[0] = value & 0x7fe0;
4097 return;
4098 case 0x10: /* XCR2 */
4099 s->xcr[1] = value & 0xffff;
4100 return;
4101 case 0x12: /* XCR1 */
4102 s->xcr[0] = value & 0x7fe0;
4103 return;
4104 case 0x14: /* SRGR2 */
4105 s->srgr[1] = value & 0xffff;
4106 omap_mcbsp_req_update(s);
4107 return;
4108 case 0x16: /* SRGR1 */
4109 s->srgr[0] = value & 0xffff;
4110 omap_mcbsp_req_update(s);
4111 return;
4112 case 0x18: /* MCR2 */
4113 s->mcr[1] = value & 0x03e3;
4114 if (value & 3) /* XMCM */
4115 printf("%s: Tx channel selection mode enable attempt\n",
4116 __FUNCTION__);
4117 return;
4118 case 0x1a: /* MCR1 */
4119 s->mcr[0] = value & 0x03e1;
4120 if (value & 1) /* RMCM */
4121 printf("%s: Rx channel selection mode enable attempt\n",
4122 __FUNCTION__);
4123 return;
4124 case 0x1c: /* RCERA */
4125 s->rcer[0] = value & 0xffff;
4126 return;
4127 case 0x1e: /* RCERB */
4128 s->rcer[1] = value & 0xffff;
4129 return;
4130 case 0x20: /* XCERA */
4131 s->xcer[0] = value & 0xffff;
4132 return;
4133 case 0x22: /* XCERB */
4134 s->xcer[1] = value & 0xffff;
4135 return;
4136 case 0x24: /* PCR0 */
4137 s->pcr = value & 0x7faf;
4138 return;
4139 case 0x26: /* RCERC */
4140 s->rcer[2] = value & 0xffff;
4141 return;
4142 case 0x28: /* RCERD */
4143 s->rcer[3] = value & 0xffff;
4144 return;
4145 case 0x2a: /* XCERC */
4146 s->xcer[2] = value & 0xffff;
4147 return;
4148 case 0x2c: /* XCERD */
4149 s->xcer[3] = value & 0xffff;
4150 return;
4151 case 0x2e: /* RCERE */
4152 s->rcer[4] = value & 0xffff;
4153 return;
4154 case 0x30: /* RCERF */
4155 s->rcer[5] = value & 0xffff;
4156 return;
4157 case 0x32: /* XCERE */
4158 s->xcer[4] = value & 0xffff;
4159 return;
4160 case 0x34: /* XCERF */
4161 s->xcer[5] = value & 0xffff;
4162 return;
4163 case 0x36: /* RCERG */
4164 s->rcer[6] = value & 0xffff;
4165 return;
4166 case 0x38: /* RCERH */
4167 s->rcer[7] = value & 0xffff;
4168 return;
4169 case 0x3a: /* XCERG */
4170 s->xcer[6] = value & 0xffff;
4171 return;
4172 case 0x3c: /* XCERH */
4173 s->xcer[7] = value & 0xffff;
4174 return;
4177 OMAP_BAD_REG(addr);
4180 static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
4181 uint32_t value)
4183 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4184 int offset = addr & OMAP_MPUI_REG_MASK;
4186 if (offset == 0x04) { /* DXR */
4187 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4188 return;
4189 if (s->tx_req > 3) {
4190 s->tx_req -= 4;
4191 if (s->codec && s->codec->cts) {
4192 s->codec->out.fifo[s->codec->out.len ++] =
4193 (value >> 24) & 0xff;
4194 s->codec->out.fifo[s->codec->out.len ++] =
4195 (value >> 16) & 0xff;
4196 s->codec->out.fifo[s->codec->out.len ++] =
4197 (value >> 8) & 0xff;
4198 s->codec->out.fifo[s->codec->out.len ++] =
4199 (value >> 0) & 0xff;
4201 if (s->tx_req < 4)
4202 omap_mcbsp_tx_done(s);
4203 } else
4204 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4205 return;
4208 omap_badwidth_write16(opaque, addr, value);
4211 static CPUReadMemoryFunc * const omap_mcbsp_readfn[] = {
4212 omap_badwidth_read16,
4213 omap_mcbsp_read,
4214 omap_badwidth_read16,
4217 static CPUWriteMemoryFunc * const omap_mcbsp_writefn[] = {
4218 omap_badwidth_write16,
4219 omap_mcbsp_writeh,
4220 omap_mcbsp_writew,
4223 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
4225 memset(&s->spcr, 0, sizeof(s->spcr));
4226 memset(&s->rcr, 0, sizeof(s->rcr));
4227 memset(&s->xcr, 0, sizeof(s->xcr));
4228 s->srgr[0] = 0x0001;
4229 s->srgr[1] = 0x2000;
4230 memset(&s->mcr, 0, sizeof(s->mcr));
4231 memset(&s->pcr, 0, sizeof(s->pcr));
4232 memset(&s->rcer, 0, sizeof(s->rcer));
4233 memset(&s->xcer, 0, sizeof(s->xcer));
4234 s->tx_req = 0;
4235 s->rx_req = 0;
4236 s->tx_rate = 0;
4237 s->rx_rate = 0;
4238 qemu_del_timer(s->source_timer);
4239 qemu_del_timer(s->sink_timer);
4242 struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
4243 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
4245 int iomemtype;
4246 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
4247 qemu_mallocz(sizeof(struct omap_mcbsp_s));
4249 s->txirq = irq[0];
4250 s->rxirq = irq[1];
4251 s->txdrq = dma[0];
4252 s->rxdrq = dma[1];
4253 s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
4254 s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
4255 omap_mcbsp_reset(s);
4257 iomemtype = cpu_register_io_memory(omap_mcbsp_readfn,
4258 omap_mcbsp_writefn, s);
4259 cpu_register_physical_memory(base, 0x800, iomemtype);
4261 return s;
4264 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
4266 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4268 if (s->rx_rate) {
4269 s->rx_req = s->codec->in.len;
4270 omap_mcbsp_rx_newdata(s);
4274 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
4276 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4278 if (s->tx_rate) {
4279 s->tx_req = s->codec->out.size;
4280 omap_mcbsp_tx_newdata(s);
4284 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
4286 s->codec = slave;
4287 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
4288 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
4291 /* LED Pulse Generators */
4292 struct omap_lpg_s {
4293 QEMUTimer *tm;
4295 uint8_t control;
4296 uint8_t power;
4297 int64_t on;
4298 int64_t period;
4299 int clk;
4300 int cycle;
4303 static void omap_lpg_tick(void *opaque)
4305 struct omap_lpg_s *s = opaque;
4307 if (s->cycle)
4308 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
4309 else
4310 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
4312 s->cycle = !s->cycle;
4313 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
4316 static void omap_lpg_update(struct omap_lpg_s *s)
4318 int64_t on, period = 1, ticks = 1000;
4319 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
4321 if (~s->control & (1 << 6)) /* LPGRES */
4322 on = 0;
4323 else if (s->control & (1 << 7)) /* PERM_ON */
4324 on = period;
4325 else {
4326 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
4327 256 / 32);
4328 on = (s->clk && s->power) ? muldiv64(ticks,
4329 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
4332 qemu_del_timer(s->tm);
4333 if (on == period && s->on < s->period)
4334 printf("%s: LED is on\n", __FUNCTION__);
4335 else if (on == 0 && s->on)
4336 printf("%s: LED is off\n", __FUNCTION__);
4337 else if (on && (on != s->on || period != s->period)) {
4338 s->cycle = 0;
4339 s->on = on;
4340 s->period = period;
4341 omap_lpg_tick(s);
4342 return;
4345 s->on = on;
4346 s->period = period;
4349 static void omap_lpg_reset(struct omap_lpg_s *s)
4351 s->control = 0x00;
4352 s->power = 0x00;
4353 s->clk = 1;
4354 omap_lpg_update(s);
4357 static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
4359 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4360 int offset = addr & OMAP_MPUI_REG_MASK;
4362 switch (offset) {
4363 case 0x00: /* LCR */
4364 return s->control;
4366 case 0x04: /* PMR */
4367 return s->power;
4370 OMAP_BAD_REG(addr);
4371 return 0;
4374 static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
4375 uint32_t value)
4377 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4378 int offset = addr & OMAP_MPUI_REG_MASK;
4380 switch (offset) {
4381 case 0x00: /* LCR */
4382 if (~value & (1 << 6)) /* LPGRES */
4383 omap_lpg_reset(s);
4384 s->control = value & 0xff;
4385 omap_lpg_update(s);
4386 return;
4388 case 0x04: /* PMR */
4389 s->power = value & 0x01;
4390 omap_lpg_update(s);
4391 return;
4393 default:
4394 OMAP_BAD_REG(addr);
4395 return;
4399 static CPUReadMemoryFunc * const omap_lpg_readfn[] = {
4400 omap_lpg_read,
4401 omap_badwidth_read8,
4402 omap_badwidth_read8,
4405 static CPUWriteMemoryFunc * const omap_lpg_writefn[] = {
4406 omap_lpg_write,
4407 omap_badwidth_write8,
4408 omap_badwidth_write8,
4411 static void omap_lpg_clk_update(void *opaque, int line, int on)
4413 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4415 s->clk = on;
4416 omap_lpg_update(s);
4419 struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
4421 int iomemtype;
4422 struct omap_lpg_s *s = (struct omap_lpg_s *)
4423 qemu_mallocz(sizeof(struct omap_lpg_s));
4425 s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
4427 omap_lpg_reset(s);
4429 iomemtype = cpu_register_io_memory(omap_lpg_readfn,
4430 omap_lpg_writefn, s);
4431 cpu_register_physical_memory(base, 0x800, iomemtype);
4433 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
4435 return s;
4438 /* MPUI Peripheral Bridge configuration */
4439 static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
4441 if (addr == OMAP_MPUI_BASE) /* CMR */
4442 return 0xfe4d;
4444 OMAP_BAD_REG(addr);
4445 return 0;
4448 static CPUReadMemoryFunc * const omap_mpui_io_readfn[] = {
4449 omap_badwidth_read16,
4450 omap_mpui_io_read,
4451 omap_badwidth_read16,
4454 static CPUWriteMemoryFunc * const omap_mpui_io_writefn[] = {
4455 omap_badwidth_write16,
4456 omap_badwidth_write16,
4457 omap_badwidth_write16,
4460 static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
4462 int iomemtype = cpu_register_io_memory(omap_mpui_io_readfn,
4463 omap_mpui_io_writefn, mpu);
4464 cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
4467 /* General chip reset */
4468 static void omap1_mpu_reset(void *opaque)
4470 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4472 omap_inth_reset(mpu->ih[0]);
4473 omap_inth_reset(mpu->ih[1]);
4474 omap_dma_reset(mpu->dma);
4475 omap_mpu_timer_reset(mpu->timer[0]);
4476 omap_mpu_timer_reset(mpu->timer[1]);
4477 omap_mpu_timer_reset(mpu->timer[2]);
4478 omap_wd_timer_reset(mpu->wdt);
4479 omap_os_timer_reset(mpu->os_timer);
4480 omap_lcdc_reset(mpu->lcd);
4481 omap_ulpd_pm_reset(mpu);
4482 omap_pin_cfg_reset(mpu);
4483 omap_mpui_reset(mpu);
4484 omap_tipb_bridge_reset(mpu->private_tipb);
4485 omap_tipb_bridge_reset(mpu->public_tipb);
4486 omap_dpll_reset(&mpu->dpll[0]);
4487 omap_dpll_reset(&mpu->dpll[1]);
4488 omap_dpll_reset(&mpu->dpll[2]);
4489 omap_uart_reset(mpu->uart[0]);
4490 omap_uart_reset(mpu->uart[1]);
4491 omap_uart_reset(mpu->uart[2]);
4492 omap_mmc_reset(mpu->mmc);
4493 omap_mpuio_reset(mpu->mpuio);
4494 omap_gpio_reset(mpu->gpio);
4495 omap_uwire_reset(mpu->microwire);
4496 omap_pwl_reset(mpu);
4497 omap_pwt_reset(mpu);
4498 omap_i2c_reset(mpu->i2c[0]);
4499 omap_rtc_reset(mpu->rtc);
4500 omap_mcbsp_reset(mpu->mcbsp1);
4501 omap_mcbsp_reset(mpu->mcbsp2);
4502 omap_mcbsp_reset(mpu->mcbsp3);
4503 omap_lpg_reset(mpu->led[0]);
4504 omap_lpg_reset(mpu->led[1]);
4505 omap_clkm_reset(mpu);
4506 cpu_reset(mpu->env);
4509 static const struct omap_map_s {
4510 target_phys_addr_t phys_dsp;
4511 target_phys_addr_t phys_mpu;
4512 uint32_t size;
4513 const char *name;
4514 } omap15xx_dsp_mm[] = {
4515 /* Strobe 0 */
4516 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
4517 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
4518 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
4519 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
4520 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
4521 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
4522 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
4523 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
4524 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
4525 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
4526 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
4527 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
4528 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
4529 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
4530 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
4531 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
4532 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
4533 /* Strobe 1 */
4534 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
4536 { 0 }
4539 static void omap_setup_dsp_mapping(const struct omap_map_s *map)
4541 int io;
4543 for (; map->phys_dsp; map ++) {
4544 io = cpu_get_physical_page_desc(map->phys_mpu);
4546 cpu_register_physical_memory(map->phys_dsp, map->size, io);
4550 void omap_mpu_wakeup(void *opaque, int irq, int req)
4552 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4554 if (mpu->env->halted)
4555 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
4558 static const struct dma_irq_map omap1_dma_irq_map[] = {
4559 { 0, OMAP_INT_DMA_CH0_6 },
4560 { 0, OMAP_INT_DMA_CH1_7 },
4561 { 0, OMAP_INT_DMA_CH2_8 },
4562 { 0, OMAP_INT_DMA_CH3 },
4563 { 0, OMAP_INT_DMA_CH4 },
4564 { 0, OMAP_INT_DMA_CH5 },
4565 { 1, OMAP_INT_1610_DMA_CH6 },
4566 { 1, OMAP_INT_1610_DMA_CH7 },
4567 { 1, OMAP_INT_1610_DMA_CH8 },
4568 { 1, OMAP_INT_1610_DMA_CH9 },
4569 { 1, OMAP_INT_1610_DMA_CH10 },
4570 { 1, OMAP_INT_1610_DMA_CH11 },
4571 { 1, OMAP_INT_1610_DMA_CH12 },
4572 { 1, OMAP_INT_1610_DMA_CH13 },
4573 { 1, OMAP_INT_1610_DMA_CH14 },
4574 { 1, OMAP_INT_1610_DMA_CH15 }
4577 /* DMA ports for OMAP1 */
4578 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
4579 target_phys_addr_t addr)
4581 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
4584 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
4585 target_phys_addr_t addr)
4587 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
4590 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
4591 target_phys_addr_t addr)
4593 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
4596 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
4597 target_phys_addr_t addr)
4599 return addr >= 0xfffb0000 && addr < 0xffff0000;
4602 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
4603 target_phys_addr_t addr)
4605 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
4608 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
4609 target_phys_addr_t addr)
4611 return addr >= 0xe1010000 && addr < 0xe1020004;
4614 struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4615 const char *core)
4617 int i;
4618 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4619 qemu_mallocz(sizeof(struct omap_mpu_state_s));
4620 ram_addr_t imif_base, emiff_base;
4621 qemu_irq *cpu_irq;
4622 qemu_irq dma_irqs[6];
4623 DriveInfo *dinfo;
4625 if (!core)
4626 core = "ti925t";
4628 /* Core */
4629 s->mpu_model = omap310;
4630 s->env = cpu_init(core);
4631 if (!s->env) {
4632 fprintf(stderr, "Unable to find CPU definition\n");
4633 exit(1);
4635 s->sdram_size = sdram_size;
4636 s->sram_size = OMAP15XX_SRAM_SIZE;
4638 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4640 /* Clocks */
4641 omap_clk_init(s);
4643 /* Memory-mapped stuff */
4644 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4645 (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4646 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4647 (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4649 omap_clkm_init(0xfffece00, 0xe1008000, s);
4651 cpu_irq = arm_pic_init_cpu(s->env);
4652 s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
4653 cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
4654 omap_findclk(s, "arminth_ck"));
4655 s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
4656 s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
4657 omap_findclk(s, "arminth_ck"));
4659 for (i = 0; i < 6; i ++)
4660 dma_irqs[i] =
4661 s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
4662 s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
4663 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
4665 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
4666 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
4667 s->port[imif ].addr_valid = omap_validate_imif_addr;
4668 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
4669 s->port[local ].addr_valid = omap_validate_local_addr;
4670 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4672 /* Register SDRAM and SRAM DMA ports for fast transfers. */
4673 soc_dma_port_add_mem_ram(s->dma,
4674 emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
4675 soc_dma_port_add_mem_ram(s->dma,
4676 imif_base, OMAP_IMIF_BASE, s->sram_size);
4678 s->timer[0] = omap_mpu_timer_init(0xfffec500,
4679 s->irq[0][OMAP_INT_TIMER1],
4680 omap_findclk(s, "mputim_ck"));
4681 s->timer[1] = omap_mpu_timer_init(0xfffec600,
4682 s->irq[0][OMAP_INT_TIMER2],
4683 omap_findclk(s, "mputim_ck"));
4684 s->timer[2] = omap_mpu_timer_init(0xfffec700,
4685 s->irq[0][OMAP_INT_TIMER3],
4686 omap_findclk(s, "mputim_ck"));
4688 s->wdt = omap_wd_timer_init(0xfffec800,
4689 s->irq[0][OMAP_INT_WD_TIMER],
4690 omap_findclk(s, "armwdt_ck"));
4692 s->os_timer = omap_os_timer_init(0xfffb9000,
4693 s->irq[1][OMAP_INT_OS_TIMER],
4694 omap_findclk(s, "clk32-kHz"));
4696 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
4697 omap_dma_get_lcdch(s->dma), imif_base, emiff_base,
4698 omap_findclk(s, "lcd_ck"));
4700 omap_ulpd_pm_init(0xfffe0800, s);
4701 omap_pin_cfg_init(0xfffe1000, s);
4702 omap_id_init(s);
4704 omap_mpui_init(0xfffec900, s);
4706 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4707 s->irq[0][OMAP_INT_BRIDGE_PRIV],
4708 omap_findclk(s, "tipb_ck"));
4709 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4710 s->irq[0][OMAP_INT_BRIDGE_PUB],
4711 omap_findclk(s, "tipb_ck"));
4713 omap_tcmi_init(0xfffecc00, s);
4715 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
4716 omap_findclk(s, "uart1_ck"),
4717 omap_findclk(s, "uart1_ck"),
4718 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
4719 serial_hds[0]);
4720 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
4721 omap_findclk(s, "uart2_ck"),
4722 omap_findclk(s, "uart2_ck"),
4723 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
4724 serial_hds[0] ? serial_hds[1] : NULL);
4725 s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3],
4726 omap_findclk(s, "uart3_ck"),
4727 omap_findclk(s, "uart3_ck"),
4728 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
4729 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
4731 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4732 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4733 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4735 dinfo = drive_get(IF_SD, 0, 0);
4736 if (!dinfo) {
4737 fprintf(stderr, "qemu: missing SecureDigital device\n");
4738 exit(1);
4740 s->mmc = omap_mmc_init(0xfffb7800, dinfo->bdrv,
4741 s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
4742 omap_findclk(s, "mmc_ck"));
4744 s->mpuio = omap_mpuio_init(0xfffb5000,
4745 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4746 s->wakeup, omap_findclk(s, "clk32-kHz"));
4748 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
4749 omap_findclk(s, "arm_gpio_ck"));
4751 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4752 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4754 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
4755 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
4757 s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4758 &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4760 s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4761 omap_findclk(s, "clk32-kHz"));
4763 s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
4764 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4765 s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
4766 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4767 s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
4768 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4770 s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
4771 s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
4773 /* Register mappings not currenlty implemented:
4774 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4775 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4776 * USB W2FC fffb4000 - fffb47ff
4777 * Camera Interface fffb6800 - fffb6fff
4778 * USB Host fffba000 - fffba7ff
4779 * FAC fffba800 - fffbafff
4780 * HDQ/1-Wire fffbc000 - fffbc7ff
4781 * TIPB switches fffbc800 - fffbcfff
4782 * Mailbox fffcf000 - fffcf7ff
4783 * Local bus IF fffec100 - fffec1ff
4784 * Local bus MMU fffec200 - fffec2ff
4785 * DSP MMU fffed200 - fffed2ff
4788 omap_setup_dsp_mapping(omap15xx_dsp_mm);
4789 omap_setup_mpui_io(s);
4791 qemu_register_reset(omap1_mpu_reset, s);
4793 return s;