PPC: e500: Define addresses as always 64bit
[qemu/agraf.git] / hw / arm_mptimer.c
blobfe43cbb5f1e8e9894999d8b3c0d6ac64901d18d9
1 /*
2 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Copyright (c) 2011 Linaro Limited
6 * Written by Paul Brook, Peter Maydell
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "sysbus.h"
23 #include "qemu-timer.h"
25 /* This device implements the per-cpu private timer and watchdog block
26 * which is used in both the ARM11MPCore and Cortex-A9MP.
29 #define MAX_CPUS 4
31 /* State of a single timer or watchdog block */
32 typedef struct {
33 uint32_t count;
34 uint32_t load;
35 uint32_t control;
36 uint32_t status;
37 int64_t tick;
38 QEMUTimer *timer;
39 qemu_irq irq;
40 MemoryRegion iomem;
41 } timerblock;
43 typedef struct {
44 SysBusDevice busdev;
45 uint32_t num_cpu;
46 timerblock timerblock[MAX_CPUS * 2];
47 MemoryRegion iomem[2];
48 } arm_mptimer_state;
50 static inline int get_current_cpu(arm_mptimer_state *s)
52 if (cpu_single_env->cpu_index >= s->num_cpu) {
53 hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
54 s->num_cpu, cpu_single_env->cpu_index);
56 return cpu_single_env->cpu_index;
59 static inline void timerblock_update_irq(timerblock *tb)
61 qemu_set_irq(tb->irq, tb->status);
64 /* Return conversion factor from mpcore timer ticks to qemu timer ticks. */
65 static inline uint32_t timerblock_scale(timerblock *tb)
67 return (((tb->control >> 8) & 0xff) + 1) * 10;
70 static void timerblock_reload(timerblock *tb, int restart)
72 if (tb->count == 0) {
73 return;
75 if (restart) {
76 tb->tick = qemu_get_clock_ns(vm_clock);
78 tb->tick += (int64_t)tb->count * timerblock_scale(tb);
79 qemu_mod_timer(tb->timer, tb->tick);
82 static void timerblock_tick(void *opaque)
84 timerblock *tb = (timerblock *)opaque;
85 tb->status = 1;
86 if (tb->control & 2) {
87 tb->count = tb->load;
88 timerblock_reload(tb, 0);
89 } else {
90 tb->count = 0;
92 timerblock_update_irq(tb);
95 static uint64_t timerblock_read(void *opaque, target_phys_addr_t addr,
96 unsigned size)
98 timerblock *tb = (timerblock *)opaque;
99 int64_t val;
100 switch (addr) {
101 case 0: /* Load */
102 return tb->load;
103 case 4: /* Counter. */
104 if (((tb->control & 1) == 0) || (tb->count == 0)) {
105 return 0;
107 /* Slow and ugly, but hopefully won't happen too often. */
108 val = tb->tick - qemu_get_clock_ns(vm_clock);
109 val /= timerblock_scale(tb);
110 if (val < 0) {
111 val = 0;
113 return val;
114 case 8: /* Control. */
115 return tb->control;
116 case 12: /* Interrupt status. */
117 return tb->status;
118 default:
119 return 0;
123 static void timerblock_write(void *opaque, target_phys_addr_t addr,
124 uint64_t value, unsigned size)
126 timerblock *tb = (timerblock *)opaque;
127 int64_t old;
128 switch (addr) {
129 case 0: /* Load */
130 tb->load = value;
131 /* Fall through. */
132 case 4: /* Counter. */
133 if ((tb->control & 1) && tb->count) {
134 /* Cancel the previous timer. */
135 qemu_del_timer(tb->timer);
137 tb->count = value;
138 if (tb->control & 1) {
139 timerblock_reload(tb, 1);
141 break;
142 case 8: /* Control. */
143 old = tb->control;
144 tb->control = value;
145 if (((old & 1) == 0) && (value & 1)) {
146 if (tb->count == 0 && (tb->control & 2)) {
147 tb->count = tb->load;
149 timerblock_reload(tb, 1);
151 break;
152 case 12: /* Interrupt status. */
153 tb->status &= ~value;
154 timerblock_update_irq(tb);
155 break;
159 /* Wrapper functions to implement the "read timer/watchdog for
160 * the current CPU" memory regions.
162 static uint64_t arm_thistimer_read(void *opaque, target_phys_addr_t addr,
163 unsigned size)
165 arm_mptimer_state *s = (arm_mptimer_state *)opaque;
166 int id = get_current_cpu(s);
167 return timerblock_read(&s->timerblock[id * 2], addr, size);
170 static void arm_thistimer_write(void *opaque, target_phys_addr_t addr,
171 uint64_t value, unsigned size)
173 arm_mptimer_state *s = (arm_mptimer_state *)opaque;
174 int id = get_current_cpu(s);
175 timerblock_write(&s->timerblock[id * 2], addr, value, size);
178 static uint64_t arm_thiswdog_read(void *opaque, target_phys_addr_t addr,
179 unsigned size)
181 arm_mptimer_state *s = (arm_mptimer_state *)opaque;
182 int id = get_current_cpu(s);
183 return timerblock_read(&s->timerblock[id * 2 + 1], addr, size);
186 static void arm_thiswdog_write(void *opaque, target_phys_addr_t addr,
187 uint64_t value, unsigned size)
189 arm_mptimer_state *s = (arm_mptimer_state *)opaque;
190 int id = get_current_cpu(s);
191 timerblock_write(&s->timerblock[id * 2 + 1], addr, value, size);
194 static const MemoryRegionOps arm_thistimer_ops = {
195 .read = arm_thistimer_read,
196 .write = arm_thistimer_write,
197 .valid = {
198 .min_access_size = 4,
199 .max_access_size = 4,
201 .endianness = DEVICE_NATIVE_ENDIAN,
204 static const MemoryRegionOps arm_thiswdog_ops = {
205 .read = arm_thiswdog_read,
206 .write = arm_thiswdog_write,
207 .valid = {
208 .min_access_size = 4,
209 .max_access_size = 4,
211 .endianness = DEVICE_NATIVE_ENDIAN,
214 static const MemoryRegionOps timerblock_ops = {
215 .read = timerblock_read,
216 .write = timerblock_write,
217 .valid = {
218 .min_access_size = 4,
219 .max_access_size = 4,
221 .endianness = DEVICE_NATIVE_ENDIAN,
224 static void timerblock_reset(timerblock *tb)
226 tb->count = 0;
227 tb->load = 0;
228 tb->control = 0;
229 tb->status = 0;
230 tb->tick = 0;
231 if (tb->timer) {
232 qemu_del_timer(tb->timer);
236 static void arm_mptimer_reset(DeviceState *dev)
238 arm_mptimer_state *s =
239 FROM_SYSBUS(arm_mptimer_state, sysbus_from_qdev(dev));
240 int i;
241 /* We reset every timer in the array, not just the ones we're using,
242 * because vmsave will look at every array element.
244 for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
245 timerblock_reset(&s->timerblock[i]);
249 static int arm_mptimer_init(SysBusDevice *dev)
251 arm_mptimer_state *s = FROM_SYSBUS(arm_mptimer_state, dev);
252 int i;
253 if (s->num_cpu < 1 || s->num_cpu > MAX_CPUS) {
254 hw_error("%s: num-cpu must be between 1 and %d\n", __func__, MAX_CPUS);
256 /* We implement one timer and one watchdog block per CPU, and
257 * expose multiple MMIO regions:
258 * * region 0 is "timer for this core"
259 * * region 1 is "watchdog for this core"
260 * * region 2 is "timer for core 0"
261 * * region 3 is "watchdog for core 0"
262 * * region 4 is "timer for core 1"
263 * * region 5 is "watchdog for core 1"
264 * and so on.
265 * The outgoing interrupt lines are
266 * * timer for core 0
267 * * watchdog for core 0
268 * * timer for core 1
269 * * watchdog for core 1
270 * and so on.
272 memory_region_init_io(&s->iomem[0], &arm_thistimer_ops, s,
273 "arm_mptimer_timer", 0x20);
274 sysbus_init_mmio(dev, &s->iomem[0]);
275 memory_region_init_io(&s->iomem[1], &arm_thiswdog_ops, s,
276 "arm_mptimer_wdog", 0x20);
277 sysbus_init_mmio(dev, &s->iomem[1]);
278 for (i = 0; i < (s->num_cpu * 2); i++) {
279 timerblock *tb = &s->timerblock[i];
280 tb->timer = qemu_new_timer_ns(vm_clock, timerblock_tick, tb);
281 sysbus_init_irq(dev, &tb->irq);
282 memory_region_init_io(&tb->iomem, &timerblock_ops, tb,
283 "arm_mptimer_timerblock", 0x20);
284 sysbus_init_mmio(dev, &tb->iomem);
287 return 0;
290 static const VMStateDescription vmstate_timerblock = {
291 .name = "arm_mptimer_timerblock",
292 .version_id = 1,
293 .minimum_version_id = 1,
294 .fields = (VMStateField[]) {
295 VMSTATE_UINT32(count, timerblock),
296 VMSTATE_UINT32(load, timerblock),
297 VMSTATE_UINT32(control, timerblock),
298 VMSTATE_UINT32(status, timerblock),
299 VMSTATE_INT64(tick, timerblock),
300 VMSTATE_END_OF_LIST()
304 static const VMStateDescription vmstate_arm_mptimer = {
305 .name = "arm_mptimer",
306 .version_id = 1,
307 .minimum_version_id = 1,
308 .fields = (VMStateField[]) {
309 VMSTATE_STRUCT_ARRAY(timerblock, arm_mptimer_state, (MAX_CPUS * 2),
310 1, vmstate_timerblock, timerblock),
311 VMSTATE_END_OF_LIST()
315 static Property arm_mptimer_properties[] = {
316 DEFINE_PROP_UINT32("num-cpu", arm_mptimer_state, num_cpu, 0),
317 DEFINE_PROP_END_OF_LIST()
320 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
322 DeviceClass *dc = DEVICE_CLASS(klass);
323 SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
325 sbc->init = arm_mptimer_init;
326 dc->vmsd = &vmstate_arm_mptimer;
327 dc->reset = arm_mptimer_reset;
328 dc->no_user = 1;
329 dc->props = arm_mptimer_properties;
332 static TypeInfo arm_mptimer_info = {
333 .name = "arm_mptimer",
334 .parent = TYPE_SYS_BUS_DEVICE,
335 .instance_size = sizeof(arm_mptimer_state),
336 .class_init = arm_mptimer_class_init,
339 static void arm_mptimer_register_types(void)
341 type_register_static(&arm_mptimer_info);
344 type_init(arm_mptimer_register_types)