target-ppc: Extract MPC82xx aliases to *_HiP4
[qemu/agraf.git] / tests / rtc-test.c
blobc5fd042610f81fad3a91ae5450676c8317e38159
1 /*
2 * QTest testcase for the MC146818 real-time clock
4 * Copyright IBM, Corp. 2012
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "libqtest.h"
14 #include "hw/mc146818rtc_regs.h"
16 #include <glib.h>
17 #include <stdio.h>
18 #include <string.h>
19 #include <stdlib.h>
20 #include <unistd.h>
22 static uint8_t base = 0x70;
24 static int bcd2dec(int value)
26 return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
29 static uint8_t cmos_read(uint8_t reg)
31 outb(base + 0, reg);
32 return inb(base + 1);
35 static void cmos_write(uint8_t reg, uint8_t val)
37 outb(base + 0, reg);
38 outb(base + 1, val);
41 static int tm_cmp(struct tm *lhs, struct tm *rhs)
43 time_t a, b;
44 struct tm d1, d2;
46 memcpy(&d1, lhs, sizeof(d1));
47 memcpy(&d2, rhs, sizeof(d2));
49 a = mktime(&d1);
50 b = mktime(&d2);
52 if (a < b) {
53 return -1;
54 } else if (a > b) {
55 return 1;
58 return 0;
61 #if 0
62 static void print_tm(struct tm *tm)
64 printf("%04d-%02d-%02d %02d:%02d:%02d\n",
65 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
66 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
68 #endif
70 static void cmos_get_date_time(struct tm *date)
72 int base_year = 2000, hour_offset;
73 int sec, min, hour, mday, mon, year;
74 time_t ts;
75 struct tm dummy;
77 sec = cmos_read(RTC_SECONDS);
78 min = cmos_read(RTC_MINUTES);
79 hour = cmos_read(RTC_HOURS);
80 mday = cmos_read(RTC_DAY_OF_MONTH);
81 mon = cmos_read(RTC_MONTH);
82 year = cmos_read(RTC_YEAR);
84 if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
85 sec = bcd2dec(sec);
86 min = bcd2dec(min);
87 hour = bcd2dec(hour);
88 mday = bcd2dec(mday);
89 mon = bcd2dec(mon);
90 year = bcd2dec(year);
91 hour_offset = 80;
92 } else {
93 hour_offset = 0x80;
96 if ((cmos_read(0x0B) & REG_B_24H) == 0) {
97 if (hour >= hour_offset) {
98 hour -= hour_offset;
99 hour += 12;
103 ts = time(NULL);
104 localtime_r(&ts, &dummy);
106 date->tm_isdst = dummy.tm_isdst;
107 date->tm_sec = sec;
108 date->tm_min = min;
109 date->tm_hour = hour;
110 date->tm_mday = mday;
111 date->tm_mon = mon - 1;
112 date->tm_year = base_year + year - 1900;
113 #ifndef __sun__
114 date->tm_gmtoff = 0;
115 #endif
117 ts = mktime(date);
120 static void check_time(int wiggle)
122 struct tm start, date[4], end;
123 struct tm *datep;
124 time_t ts;
127 * This check assumes a few things. First, we cannot guarantee that we get
128 * a consistent reading from the wall clock because we may hit an edge of
129 * the clock while reading. To work around this, we read four clock readings
130 * such that at least two of them should match. We need to assume that one
131 * reading is corrupt so we need four readings to ensure that we have at
132 * least two consecutive identical readings
134 * It's also possible that we'll cross an edge reading the host clock so
135 * simply check to make sure that the clock reading is within the period of
136 * when we expect it to be.
139 ts = time(NULL);
140 gmtime_r(&ts, &start);
142 cmos_get_date_time(&date[0]);
143 cmos_get_date_time(&date[1]);
144 cmos_get_date_time(&date[2]);
145 cmos_get_date_time(&date[3]);
147 ts = time(NULL);
148 gmtime_r(&ts, &end);
150 if (tm_cmp(&date[0], &date[1]) == 0) {
151 datep = &date[0];
152 } else if (tm_cmp(&date[1], &date[2]) == 0) {
153 datep = &date[1];
154 } else if (tm_cmp(&date[2], &date[3]) == 0) {
155 datep = &date[2];
156 } else {
157 g_assert_not_reached();
160 if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
161 long t, s;
163 start.tm_isdst = datep->tm_isdst;
165 t = (long)mktime(datep);
166 s = (long)mktime(&start);
167 if (t < s) {
168 g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t));
169 } else {
170 g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s));
173 g_assert_cmpint(ABS(t - s), <=, wiggle);
177 static int wiggle = 2;
179 static void set_year_20xx(void)
181 /* Set BCD mode */
182 cmos_write(RTC_REG_B, REG_B_24H);
183 cmos_write(RTC_REG_A, 0x76);
184 cmos_write(RTC_YEAR, 0x11);
185 cmos_write(RTC_CENTURY, 0x20);
186 cmos_write(RTC_MONTH, 0x02);
187 cmos_write(RTC_DAY_OF_MONTH, 0x02);
188 cmos_write(RTC_HOURS, 0x02);
189 cmos_write(RTC_MINUTES, 0x04);
190 cmos_write(RTC_SECONDS, 0x58);
191 cmos_write(RTC_REG_A, 0x26);
193 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
194 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
195 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
196 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
197 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
198 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
199 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
201 if (sizeof(time_t) == 4) {
202 return;
205 /* Set a date in 2080 to ensure there is no year-2038 overflow. */
206 cmos_write(RTC_REG_A, 0x76);
207 cmos_write(RTC_YEAR, 0x80);
208 cmos_write(RTC_REG_A, 0x26);
210 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
211 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
212 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
213 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
214 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
215 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
216 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
218 cmos_write(RTC_REG_A, 0x76);
219 cmos_write(RTC_YEAR, 0x11);
220 cmos_write(RTC_REG_A, 0x26);
222 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
223 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
224 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
225 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
226 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
227 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
228 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
231 static void set_year_1980(void)
233 /* Set BCD mode */
234 cmos_write(RTC_REG_B, REG_B_24H);
235 cmos_write(RTC_REG_A, 0x76);
236 cmos_write(RTC_YEAR, 0x80);
237 cmos_write(RTC_CENTURY, 0x19);
238 cmos_write(RTC_MONTH, 0x02);
239 cmos_write(RTC_DAY_OF_MONTH, 0x02);
240 cmos_write(RTC_HOURS, 0x02);
241 cmos_write(RTC_MINUTES, 0x04);
242 cmos_write(RTC_SECONDS, 0x58);
243 cmos_write(RTC_REG_A, 0x26);
245 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
246 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
247 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
248 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
249 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
250 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
251 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
254 static void bcd_check_time(void)
256 /* Set BCD mode */
257 cmos_write(RTC_REG_B, REG_B_24H);
258 check_time(wiggle);
261 static void dec_check_time(void)
263 /* Set DEC mode */
264 cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
265 check_time(wiggle);
268 static void alarm_time(void)
270 struct tm now;
271 time_t ts;
272 int i;
274 ts = time(NULL);
275 gmtime_r(&ts, &now);
277 /* set DEC mode */
278 cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
280 g_assert(!get_irq(RTC_ISA_IRQ));
281 cmos_read(RTC_REG_C);
283 now.tm_sec = (now.tm_sec + 2) % 60;
284 cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
285 cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
286 cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
287 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
289 for (i = 0; i < 2 + wiggle; i++) {
290 if (get_irq(RTC_ISA_IRQ)) {
291 break;
294 clock_step(1000000000);
297 g_assert(get_irq(RTC_ISA_IRQ));
298 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
299 g_assert(cmos_read(RTC_REG_C) == 0);
302 static void set_time(int mode, int h, int m, int s)
304 /* set BCD 12 hour mode */
305 cmos_write(RTC_REG_B, mode);
307 cmos_write(RTC_REG_A, 0x76);
308 cmos_write(RTC_HOURS, h);
309 cmos_write(RTC_MINUTES, m);
310 cmos_write(RTC_SECONDS, s);
311 cmos_write(RTC_REG_A, 0x26);
314 #define assert_time(h, m, s) \
315 do { \
316 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
317 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
318 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
319 } while(0)
321 static void basic_12h_bcd(void)
323 /* set BCD 12 hour mode */
324 set_time(0, 0x81, 0x59, 0x00);
325 clock_step(1000000000LL);
326 assert_time(0x81, 0x59, 0x01);
327 clock_step(59000000000LL);
328 assert_time(0x82, 0x00, 0x00);
330 /* test BCD wraparound */
331 set_time(0, 0x09, 0x59, 0x59);
332 clock_step(60000000000LL);
333 assert_time(0x10, 0x00, 0x59);
335 /* 12 AM -> 1 AM */
336 set_time(0, 0x12, 0x59, 0x59);
337 clock_step(1000000000LL);
338 assert_time(0x01, 0x00, 0x00);
340 /* 12 PM -> 1 PM */
341 set_time(0, 0x92, 0x59, 0x59);
342 clock_step(1000000000LL);
343 assert_time(0x81, 0x00, 0x00);
345 /* 11 AM -> 12 PM */
346 set_time(0, 0x11, 0x59, 0x59);
347 clock_step(1000000000LL);
348 assert_time(0x92, 0x00, 0x00);
349 /* TODO: test day wraparound */
351 /* 11 PM -> 12 AM */
352 set_time(0, 0x91, 0x59, 0x59);
353 clock_step(1000000000LL);
354 assert_time(0x12, 0x00, 0x00);
355 /* TODO: test day wraparound */
358 static void basic_12h_dec(void)
360 /* set decimal 12 hour mode */
361 set_time(REG_B_DM, 0x81, 59, 0);
362 clock_step(1000000000LL);
363 assert_time(0x81, 59, 1);
364 clock_step(59000000000LL);
365 assert_time(0x82, 0, 0);
367 /* 12 PM -> 1 PM */
368 set_time(REG_B_DM, 0x8c, 59, 59);
369 clock_step(1000000000LL);
370 assert_time(0x81, 0, 0);
372 /* 12 AM -> 1 AM */
373 set_time(REG_B_DM, 0x0c, 59, 59);
374 clock_step(1000000000LL);
375 assert_time(0x01, 0, 0);
377 /* 11 AM -> 12 PM */
378 set_time(REG_B_DM, 0x0b, 59, 59);
379 clock_step(1000000000LL);
380 assert_time(0x8c, 0, 0);
382 /* 11 PM -> 12 AM */
383 set_time(REG_B_DM, 0x8b, 59, 59);
384 clock_step(1000000000LL);
385 assert_time(0x0c, 0, 0);
386 /* TODO: test day wraparound */
389 static void basic_24h_bcd(void)
391 /* set BCD 24 hour mode */
392 set_time(REG_B_24H, 0x09, 0x59, 0x00);
393 clock_step(1000000000LL);
394 assert_time(0x09, 0x59, 0x01);
395 clock_step(59000000000LL);
396 assert_time(0x10, 0x00, 0x00);
398 /* test BCD wraparound */
399 set_time(REG_B_24H, 0x09, 0x59, 0x00);
400 clock_step(60000000000LL);
401 assert_time(0x10, 0x00, 0x00);
403 /* TODO: test day wraparound */
404 set_time(REG_B_24H, 0x23, 0x59, 0x00);
405 clock_step(60000000000LL);
406 assert_time(0x00, 0x00, 0x00);
409 static void basic_24h_dec(void)
411 /* set decimal 24 hour mode */
412 set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
413 clock_step(1000000000LL);
414 assert_time(9, 59, 1);
415 clock_step(59000000000LL);
416 assert_time(10, 0, 0);
418 /* test BCD wraparound */
419 set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
420 clock_step(60000000000LL);
421 assert_time(10, 0, 0);
423 /* TODO: test day wraparound */
424 set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
425 clock_step(60000000000LL);
426 assert_time(0, 0, 0);
429 static void am_pm_alarm(void)
431 cmos_write(RTC_MINUTES_ALARM, 0xC0);
432 cmos_write(RTC_SECONDS_ALARM, 0xC0);
434 /* set BCD 12 hour mode */
435 cmos_write(RTC_REG_B, 0);
437 /* Set time and alarm hour. */
438 cmos_write(RTC_REG_A, 0x76);
439 cmos_write(RTC_HOURS_ALARM, 0x82);
440 cmos_write(RTC_HOURS, 0x81);
441 cmos_write(RTC_MINUTES, 0x59);
442 cmos_write(RTC_SECONDS, 0x00);
443 cmos_read(RTC_REG_C);
444 cmos_write(RTC_REG_A, 0x26);
446 /* Check that alarm triggers when AM/PM is set. */
447 clock_step(60000000000LL);
448 g_assert(cmos_read(RTC_HOURS) == 0x82);
449 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
452 * Each of the following two tests takes over 60 seconds due to the time
453 * needed to report the PIT interrupts. Unfortunately, our PIT device
454 * model keeps counting even when GATE=0, so we cannot simply disable
455 * it in main().
457 if (g_test_quick()) {
458 return;
461 /* set DEC 12 hour mode */
462 cmos_write(RTC_REG_B, REG_B_DM);
464 /* Set time and alarm hour. */
465 cmos_write(RTC_REG_A, 0x76);
466 cmos_write(RTC_HOURS_ALARM, 0x82);
467 cmos_write(RTC_HOURS, 3);
468 cmos_write(RTC_MINUTES, 0);
469 cmos_write(RTC_SECONDS, 0);
470 cmos_read(RTC_REG_C);
471 cmos_write(RTC_REG_A, 0x26);
473 /* Check that alarm triggers. */
474 clock_step(3600 * 11 * 1000000000LL);
475 g_assert(cmos_read(RTC_HOURS) == 0x82);
476 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
478 /* Same as above, with inverted HOURS and HOURS_ALARM. */
479 cmos_write(RTC_REG_A, 0x76);
480 cmos_write(RTC_HOURS_ALARM, 2);
481 cmos_write(RTC_HOURS, 3);
482 cmos_write(RTC_MINUTES, 0);
483 cmos_write(RTC_SECONDS, 0);
484 cmos_read(RTC_REG_C);
485 cmos_write(RTC_REG_A, 0x26);
487 /* Check that alarm does not trigger if hours differ only by AM/PM. */
488 clock_step(3600 * 11 * 1000000000LL);
489 g_assert(cmos_read(RTC_HOURS) == 0x82);
490 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
493 /* success if no crash or abort */
494 static void fuzz_registers(void)
496 unsigned int i;
498 for (i = 0; i < 1000; i++) {
499 uint8_t reg, val;
501 reg = (uint8_t)g_test_rand_int_range(0, 16);
502 val = (uint8_t)g_test_rand_int_range(0, 256);
504 cmos_write(reg, val);
505 cmos_read(reg);
509 static void register_b_set_flag(void)
511 /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
512 cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
514 cmos_write(RTC_REG_A, 0x76);
515 cmos_write(RTC_YEAR, 0x11);
516 cmos_write(RTC_CENTURY, 0x20);
517 cmos_write(RTC_MONTH, 0x02);
518 cmos_write(RTC_DAY_OF_MONTH, 0x02);
519 cmos_write(RTC_HOURS, 0x02);
520 cmos_write(RTC_MINUTES, 0x04);
521 cmos_write(RTC_SECONDS, 0x58);
522 cmos_write(RTC_REG_A, 0x26);
524 /* Since SET flag is still enabled, these are equality checks. */
525 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
526 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
527 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, 0x58);
528 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
529 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
530 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
531 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
533 /* Disable SET flag in Register B */
534 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
536 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
537 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
539 /* Since SET flag is disabled, this is an inequality check.
540 * We (reasonably) assume that no (sexagesimal) overflow occurs. */
541 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
542 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
543 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
544 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
545 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
548 int main(int argc, char **argv)
550 QTestState *s = NULL;
551 int ret;
553 g_test_init(&argc, &argv, NULL);
555 s = qtest_start("-display none -rtc clock=vm");
556 qtest_irq_intercept_in(s, "ioapic");
558 qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
559 qtest_add_func("/rtc/check-time/dec", dec_check_time);
560 qtest_add_func("/rtc/alarm/interrupt", alarm_time);
561 qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
562 qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
563 qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
564 qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
565 qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
566 qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
567 qtest_add_func("/rtc/set-year/1980", set_year_1980);
568 qtest_add_func("/rtc/register_b_set_flag", register_b_set_flag);
569 qtest_add_func("/rtc/fuzz-registers", fuzz_registers);
570 ret = g_test_run();
572 if (s) {
573 qtest_quit(s);
576 return ret;