qapi/error: Check format string argument in error_*prepend()
[qemu/armbru.git] / hw / intc / xive.c
blob9a162431e0a3e4a4aac49dfd9cb3dc3be24d78ef
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
26 * XIVE Thread Interrupt Management context
30 * Convert a priority number to an Interrupt Pending Buffer (IPB)
31 * register, which indicates a pending interrupt at the priority
32 * corresponding to the bit number
34 static uint8_t priority_to_ipb(uint8_t priority)
36 return priority > XIVE_PRIORITY_MAX ?
37 0 : 1 << (XIVE_PRIORITY_MAX - priority);
41 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
42 * Interrupt Priority Register (PIPR), which contains the priority of
43 * the most favored pending notification.
45 static uint8_t ipb_to_pipr(uint8_t ibp)
47 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
50 static uint8_t exception_mask(uint8_t ring)
52 switch (ring) {
53 case TM_QW1_OS:
54 return TM_QW1_NSR_EO;
55 case TM_QW3_HV_PHYS:
56 return TM_QW3_NSR_HE;
57 default:
58 g_assert_not_reached();
62 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
64 switch (ring) {
65 case TM_QW0_USER:
66 return 0; /* Not supported */
67 case TM_QW1_OS:
68 return tctx->os_output;
69 case TM_QW2_HV_POOL:
70 case TM_QW3_HV_PHYS:
71 return tctx->hv_output;
72 default:
73 return 0;
77 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
79 uint8_t *regs = &tctx->regs[ring];
80 uint8_t nsr = regs[TM_NSR];
81 uint8_t mask = exception_mask(ring);
83 qemu_irq_lower(xive_tctx_output(tctx, ring));
85 if (regs[TM_NSR] & mask) {
86 uint8_t cppr = regs[TM_PIPR];
88 regs[TM_CPPR] = cppr;
90 /* Reset the pending buffer bit */
91 regs[TM_IPB] &= ~priority_to_ipb(cppr);
92 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
94 /* Drop Exception bit */
95 regs[TM_NSR] &= ~mask;
98 return (nsr << 8) | regs[TM_CPPR];
101 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
103 uint8_t *regs = &tctx->regs[ring];
105 if (regs[TM_PIPR] < regs[TM_CPPR]) {
106 switch (ring) {
107 case TM_QW1_OS:
108 regs[TM_NSR] |= TM_QW1_NSR_EO;
109 break;
110 case TM_QW3_HV_PHYS:
111 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
112 break;
113 default:
114 g_assert_not_reached();
116 qemu_irq_raise(xive_tctx_output(tctx, ring));
120 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
122 if (cppr > XIVE_PRIORITY_MAX) {
123 cppr = 0xff;
126 tctx->regs[ring + TM_CPPR] = cppr;
128 /* CPPR has changed, check if we need to raise a pending exception */
129 xive_tctx_notify(tctx, ring);
132 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
134 uint8_t *regs = &tctx->regs[ring];
136 regs[TM_IPB] |= ipb;
137 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
138 xive_tctx_notify(tctx, ring);
141 static inline uint32_t xive_tctx_word2(uint8_t *ring)
143 return *((uint32_t *) &ring[TM_WORD2]);
147 * XIVE Thread Interrupt Management Area (TIMA)
150 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
151 hwaddr offset, uint64_t value, unsigned size)
153 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
156 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
157 hwaddr offset, unsigned size)
159 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
162 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
163 hwaddr offset, unsigned size)
165 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
166 uint32_t qw2w2;
168 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
169 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
170 return qw2w2;
173 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
174 uint64_t value, unsigned size)
176 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
179 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
180 hwaddr offset, unsigned size)
182 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
186 * Define an access map for each page of the TIMA that we will use in
187 * the memory region ops to filter values when doing loads and stores
188 * of raw registers values
190 * Registers accessibility bits :
192 * 0x0 - no access
193 * 0x1 - write only
194 * 0x2 - read only
195 * 0x3 - read/write
198 static const uint8_t xive_tm_hw_view[] = {
199 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
200 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
201 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
202 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
205 static const uint8_t xive_tm_hv_view[] = {
206 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
207 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
208 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
209 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
212 static const uint8_t xive_tm_os_view[] = {
213 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
214 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
215 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
216 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
219 static const uint8_t xive_tm_user_view[] = {
220 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
221 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
222 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
223 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
227 * Overall TIMA access map for the thread interrupt management context
228 * registers
230 static const uint8_t *xive_tm_views[] = {
231 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
232 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
233 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
234 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
238 * Computes a register access mask for a given offset in the TIMA
240 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
242 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
243 uint8_t reg_offset = offset & 0x3F;
244 uint8_t reg_mask = write ? 0x1 : 0x2;
245 uint64_t mask = 0x0;
246 int i;
248 for (i = 0; i < size; i++) {
249 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
250 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
254 return mask;
257 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
258 unsigned size)
260 uint8_t ring_offset = offset & 0x30;
261 uint8_t reg_offset = offset & 0x3F;
262 uint64_t mask = xive_tm_mask(offset, size, true);
263 int i;
266 * Only 4 or 8 bytes stores are allowed and the User ring is
267 * excluded
269 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
270 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
271 HWADDR_PRIx"\n", offset);
272 return;
276 * Use the register offset for the raw values and filter out
277 * reserved values
279 for (i = 0; i < size; i++) {
280 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
281 if (byte_mask) {
282 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
283 byte_mask;
288 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
290 uint8_t ring_offset = offset & 0x30;
291 uint8_t reg_offset = offset & 0x3F;
292 uint64_t mask = xive_tm_mask(offset, size, false);
293 uint64_t ret;
294 int i;
297 * Only 4 or 8 bytes loads are allowed and the User ring is
298 * excluded
300 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
301 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
302 HWADDR_PRIx"\n", offset);
303 return -1;
306 /* Use the register offset for the raw values */
307 ret = 0;
308 for (i = 0; i < size; i++) {
309 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
312 /* filter out reserved values */
313 return ret & mask;
317 * The TM context is mapped twice within each page. Stores and loads
318 * to the first mapping below 2K write and read the specified values
319 * without modification. The second mapping above 2K performs specific
320 * state changes (side effects) in addition to setting/returning the
321 * interrupt management area context of the processor thread.
323 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
324 hwaddr offset, unsigned size)
326 return xive_tctx_accept(tctx, TM_QW1_OS);
329 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
330 hwaddr offset, uint64_t value, unsigned size)
332 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
336 * Adjust the IPB to allow a CPU to process event queues of other
337 * priorities during one physical interrupt cycle.
339 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
340 hwaddr offset, uint64_t value, unsigned size)
342 xive_tctx_ipb_update(tctx, TM_QW1_OS, priority_to_ipb(value & 0xff));
345 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
346 uint32_t *nvt_idx, bool *vo)
348 if (nvt_blk) {
349 *nvt_blk = xive_nvt_blk(cam);
351 if (nvt_idx) {
352 *nvt_idx = xive_nvt_idx(cam);
354 if (vo) {
355 *vo = !!(cam & TM_QW1W2_VO);
359 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
360 uint32_t *nvt_idx, bool *vo)
362 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
363 uint32_t cam = be32_to_cpu(qw1w2);
365 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
366 return qw1w2;
369 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
371 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
374 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
375 hwaddr offset, unsigned size)
377 uint32_t qw1w2;
378 uint32_t qw1w2_new;
379 uint8_t nvt_blk;
380 uint32_t nvt_idx;
381 bool vo;
383 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
385 if (!vo) {
386 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
387 nvt_blk, nvt_idx);
390 /* Invalidate CAM line */
391 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
392 xive_tctx_set_os_cam(tctx, qw1w2_new);
393 return qw1w2;
396 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
397 uint8_t nvt_blk, uint32_t nvt_idx)
399 XiveNVT nvt;
400 uint8_t ipb;
403 * Grab the associated NVT to pull the pending bits, and merge
404 * them with the IPB of the thread interrupt context registers
406 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
407 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
408 nvt_blk, nvt_idx);
409 return;
412 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
414 if (ipb) {
415 /* Reset the NVT value */
416 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
417 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
419 /* Merge in current context */
420 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
425 * Updating the OS CAM line can trigger a resend of interrupt
427 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
428 hwaddr offset, uint64_t value, unsigned size)
430 uint32_t cam = value;
431 uint32_t qw1w2 = cpu_to_be32(cam);
432 uint8_t nvt_blk;
433 uint32_t nvt_idx;
434 bool vo;
436 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
438 /* First update the registers */
439 xive_tctx_set_os_cam(tctx, qw1w2);
441 /* Check the interrupt pending bits */
442 if (vo) {
443 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
448 * Define a mapping of "special" operations depending on the TIMA page
449 * offset and the size of the operation.
451 typedef struct XiveTmOp {
452 uint8_t page_offset;
453 uint32_t op_offset;
454 unsigned size;
455 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
456 hwaddr offset,
457 uint64_t value, unsigned size);
458 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
459 unsigned size);
460 } XiveTmOp;
462 static const XiveTmOp xive_tm_operations[] = {
464 * MMIOs below 2K : raw values and special operations without side
465 * effects
467 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
468 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL },
469 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
470 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
471 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
473 /* MMIOs above 2K : special operations with side effects */
474 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
475 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
476 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx },
477 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx },
478 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
479 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
480 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
483 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
485 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
486 uint32_t op_offset = offset & 0xFFF;
487 int i;
489 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
490 const XiveTmOp *xto = &xive_tm_operations[i];
492 /* Accesses done from a more privileged TIMA page is allowed */
493 if (xto->page_offset >= page_offset &&
494 xto->op_offset == op_offset &&
495 xto->size == size &&
496 ((write && xto->write_handler) || (!write && xto->read_handler))) {
497 return xto;
500 return NULL;
504 * TIMA MMIO handlers
506 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
507 uint64_t value, unsigned size)
509 const XiveTmOp *xto;
512 * TODO: check V bit in Q[0-3]W2
516 * First, check for special operations in the 2K region
518 if (offset & 0x800) {
519 xto = xive_tm_find_op(offset, size, true);
520 if (!xto) {
521 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
522 "@%"HWADDR_PRIx"\n", offset);
523 } else {
524 xto->write_handler(xptr, tctx, offset, value, size);
526 return;
530 * Then, for special operations in the region below 2K.
532 xto = xive_tm_find_op(offset, size, true);
533 if (xto) {
534 xto->write_handler(xptr, tctx, offset, value, size);
535 return;
539 * Finish with raw access to the register values
541 xive_tm_raw_write(tctx, offset, value, size);
544 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
545 unsigned size)
547 const XiveTmOp *xto;
550 * TODO: check V bit in Q[0-3]W2
554 * First, check for special operations in the 2K region
556 if (offset & 0x800) {
557 xto = xive_tm_find_op(offset, size, false);
558 if (!xto) {
559 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
560 "@%"HWADDR_PRIx"\n", offset);
561 return -1;
563 return xto->read_handler(xptr, tctx, offset, size);
567 * Then, for special operations in the region below 2K.
569 xto = xive_tm_find_op(offset, size, false);
570 if (xto) {
571 return xto->read_handler(xptr, tctx, offset, size);
575 * Finish with raw access to the register values
577 return xive_tm_raw_read(tctx, offset, size);
580 static char *xive_tctx_ring_print(uint8_t *ring)
582 uint32_t w2 = xive_tctx_word2(ring);
584 return g_strdup_printf("%02x %02x %02x %02x %02x "
585 "%02x %02x %02x %08x",
586 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
587 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
588 be32_to_cpu(w2));
591 static const char * const xive_tctx_ring_names[] = {
592 "USER", "OS", "POOL", "PHYS",
595 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
597 int cpu_index;
598 int i;
600 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
601 * are hot plugged or unplugged.
603 if (!tctx) {
604 return;
607 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
609 if (kvm_irqchip_in_kernel()) {
610 Error *local_err = NULL;
612 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
613 if (local_err) {
614 error_report_err(local_err);
615 return;
619 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
620 " W2\n", cpu_index);
622 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
623 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
624 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
625 xive_tctx_ring_names[i], s);
626 g_free(s);
630 void xive_tctx_reset(XiveTCTX *tctx)
632 memset(tctx->regs, 0, sizeof(tctx->regs));
634 /* Set some defaults */
635 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
636 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
637 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
640 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
641 * CPPR is first set.
643 tctx->regs[TM_QW1_OS + TM_PIPR] =
644 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
645 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
646 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
649 static void xive_tctx_realize(DeviceState *dev, Error **errp)
651 XiveTCTX *tctx = XIVE_TCTX(dev);
652 PowerPCCPU *cpu;
653 CPUPPCState *env;
654 Error *local_err = NULL;
656 assert(tctx->cs);
657 assert(tctx->xptr);
659 cpu = POWERPC_CPU(tctx->cs);
660 env = &cpu->env;
661 switch (PPC_INPUT(env)) {
662 case PPC_FLAGS_INPUT_POWER9:
663 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
664 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
665 break;
667 default:
668 error_setg(errp, "XIVE interrupt controller does not support "
669 "this CPU bus model");
670 return;
673 /* Connect the presenter to the VCPU (required for CPU hotplug) */
674 if (kvm_irqchip_in_kernel()) {
675 kvmppc_xive_cpu_connect(tctx, &local_err);
676 if (local_err) {
677 error_propagate(errp, local_err);
678 return;
683 static int vmstate_xive_tctx_pre_save(void *opaque)
685 Error *local_err = NULL;
687 if (kvm_irqchip_in_kernel()) {
688 kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
689 if (local_err) {
690 error_report_err(local_err);
691 return -1;
695 return 0;
698 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
700 Error *local_err = NULL;
702 if (kvm_irqchip_in_kernel()) {
704 * Required for hotplugged CPU, for which the state comes
705 * after all states of the machine.
707 kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err);
708 if (local_err) {
709 error_report_err(local_err);
710 return -1;
714 return 0;
717 static const VMStateDescription vmstate_xive_tctx = {
718 .name = TYPE_XIVE_TCTX,
719 .version_id = 1,
720 .minimum_version_id = 1,
721 .pre_save = vmstate_xive_tctx_pre_save,
722 .post_load = vmstate_xive_tctx_post_load,
723 .fields = (VMStateField[]) {
724 VMSTATE_BUFFER(regs, XiveTCTX),
725 VMSTATE_END_OF_LIST()
729 static Property xive_tctx_properties[] = {
730 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
731 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
732 XivePresenter *),
733 DEFINE_PROP_END_OF_LIST(),
736 static void xive_tctx_class_init(ObjectClass *klass, void *data)
738 DeviceClass *dc = DEVICE_CLASS(klass);
740 dc->desc = "XIVE Interrupt Thread Context";
741 dc->realize = xive_tctx_realize;
742 dc->vmsd = &vmstate_xive_tctx;
743 device_class_set_props(dc, xive_tctx_properties);
745 * Reason: part of XIVE interrupt controller, needs to be wired up
746 * by xive_tctx_create().
748 dc->user_creatable = false;
751 static const TypeInfo xive_tctx_info = {
752 .name = TYPE_XIVE_TCTX,
753 .parent = TYPE_DEVICE,
754 .instance_size = sizeof(XiveTCTX),
755 .class_init = xive_tctx_class_init,
758 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
760 Object *obj;
762 obj = object_new(TYPE_XIVE_TCTX);
763 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
764 object_unref(obj);
765 object_property_set_link(obj, "cpu", cpu, &error_abort);
766 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
767 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
768 object_unparent(obj);
769 return NULL;
771 return obj;
774 void xive_tctx_destroy(XiveTCTX *tctx)
776 Object *obj = OBJECT(tctx);
778 object_unparent(obj);
782 * XIVE ESB helpers
785 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
787 uint8_t old_pq = *pq & 0x3;
789 *pq &= ~0x3;
790 *pq |= value & 0x3;
792 return old_pq;
795 static bool xive_esb_trigger(uint8_t *pq)
797 uint8_t old_pq = *pq & 0x3;
799 switch (old_pq) {
800 case XIVE_ESB_RESET:
801 xive_esb_set(pq, XIVE_ESB_PENDING);
802 return true;
803 case XIVE_ESB_PENDING:
804 case XIVE_ESB_QUEUED:
805 xive_esb_set(pq, XIVE_ESB_QUEUED);
806 return false;
807 case XIVE_ESB_OFF:
808 xive_esb_set(pq, XIVE_ESB_OFF);
809 return false;
810 default:
811 g_assert_not_reached();
815 static bool xive_esb_eoi(uint8_t *pq)
817 uint8_t old_pq = *pq & 0x3;
819 switch (old_pq) {
820 case XIVE_ESB_RESET:
821 case XIVE_ESB_PENDING:
822 xive_esb_set(pq, XIVE_ESB_RESET);
823 return false;
824 case XIVE_ESB_QUEUED:
825 xive_esb_set(pq, XIVE_ESB_PENDING);
826 return true;
827 case XIVE_ESB_OFF:
828 xive_esb_set(pq, XIVE_ESB_OFF);
829 return false;
830 default:
831 g_assert_not_reached();
836 * XIVE Interrupt Source (or IVSE)
839 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
841 assert(srcno < xsrc->nr_irqs);
843 return xsrc->status[srcno] & 0x3;
846 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
848 assert(srcno < xsrc->nr_irqs);
850 return xive_esb_set(&xsrc->status[srcno], pq);
854 * Returns whether the event notification should be forwarded.
856 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
858 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
860 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
862 switch (old_pq) {
863 case XIVE_ESB_RESET:
864 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
865 return true;
866 default:
867 return false;
872 * Returns whether the event notification should be forwarded.
874 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
876 bool ret;
878 assert(srcno < xsrc->nr_irqs);
880 ret = xive_esb_trigger(&xsrc->status[srcno]);
882 if (xive_source_irq_is_lsi(xsrc, srcno) &&
883 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
884 qemu_log_mask(LOG_GUEST_ERROR,
885 "XIVE: queued an event on LSI IRQ %d\n", srcno);
888 return ret;
892 * Returns whether the event notification should be forwarded.
894 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
896 bool ret;
898 assert(srcno < xsrc->nr_irqs);
900 ret = xive_esb_eoi(&xsrc->status[srcno]);
903 * LSI sources do not set the Q bit but they can still be
904 * asserted, in which case we should forward a new event
905 * notification
907 if (xive_source_irq_is_lsi(xsrc, srcno) &&
908 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
909 ret = xive_source_lsi_trigger(xsrc, srcno);
912 return ret;
916 * Forward the source event notification to the Router
918 static void xive_source_notify(XiveSource *xsrc, int srcno)
920 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
922 if (xnc->notify) {
923 xnc->notify(xsrc->xive, srcno);
928 * In a two pages ESB MMIO setting, even page is the trigger page, odd
929 * page is for management
931 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
933 return !((addr >> shift) & 1);
936 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
938 return xive_source_esb_has_2page(xsrc) &&
939 addr_is_even(addr, xsrc->esb_shift - 1);
943 * ESB MMIO loads
944 * Trigger page Management/EOI page
946 * ESB MMIO setting 2 pages 1 or 2 pages
948 * 0x000 .. 0x3FF -1 EOI and return 0|1
949 * 0x400 .. 0x7FF -1 EOI and return 0|1
950 * 0x800 .. 0xBFF -1 return PQ
951 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
952 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
953 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
954 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
956 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
958 XiveSource *xsrc = XIVE_SOURCE(opaque);
959 uint32_t offset = addr & 0xFFF;
960 uint32_t srcno = addr >> xsrc->esb_shift;
961 uint64_t ret = -1;
963 /* In a two pages ESB MMIO setting, trigger page should not be read */
964 if (xive_source_is_trigger_page(xsrc, addr)) {
965 qemu_log_mask(LOG_GUEST_ERROR,
966 "XIVE: invalid load on IRQ %d trigger page at "
967 "0x%"HWADDR_PRIx"\n", srcno, addr);
968 return -1;
971 switch (offset) {
972 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
973 ret = xive_source_esb_eoi(xsrc, srcno);
975 /* Forward the source event notification for routing */
976 if (ret) {
977 xive_source_notify(xsrc, srcno);
979 break;
981 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
982 ret = xive_source_esb_get(xsrc, srcno);
983 break;
985 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
986 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
987 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
988 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
989 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
990 break;
991 default:
992 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
993 offset);
996 return ret;
1000 * ESB MMIO stores
1001 * Trigger page Management/EOI page
1003 * ESB MMIO setting 2 pages 1 or 2 pages
1005 * 0x000 .. 0x3FF Trigger Trigger
1006 * 0x400 .. 0x7FF Trigger EOI
1007 * 0x800 .. 0xBFF Trigger undefined
1008 * 0xC00 .. 0xCFF Trigger PQ=00
1009 * 0xD00 .. 0xDFF Trigger PQ=01
1010 * 0xE00 .. 0xDFF Trigger PQ=10
1011 * 0xF00 .. 0xDFF Trigger PQ=11
1013 static void xive_source_esb_write(void *opaque, hwaddr addr,
1014 uint64_t value, unsigned size)
1016 XiveSource *xsrc = XIVE_SOURCE(opaque);
1017 uint32_t offset = addr & 0xFFF;
1018 uint32_t srcno = addr >> xsrc->esb_shift;
1019 bool notify = false;
1021 /* In a two pages ESB MMIO setting, trigger page only triggers */
1022 if (xive_source_is_trigger_page(xsrc, addr)) {
1023 notify = xive_source_esb_trigger(xsrc, srcno);
1024 goto out;
1027 switch (offset) {
1028 case 0 ... 0x3FF:
1029 notify = xive_source_esb_trigger(xsrc, srcno);
1030 break;
1032 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1033 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1034 qemu_log_mask(LOG_GUEST_ERROR,
1035 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1036 return;
1039 notify = xive_source_esb_eoi(xsrc, srcno);
1040 break;
1042 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1043 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1044 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1045 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1046 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1047 break;
1049 default:
1050 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1051 offset);
1052 return;
1055 out:
1056 /* Forward the source event notification for routing */
1057 if (notify) {
1058 xive_source_notify(xsrc, srcno);
1062 static const MemoryRegionOps xive_source_esb_ops = {
1063 .read = xive_source_esb_read,
1064 .write = xive_source_esb_write,
1065 .endianness = DEVICE_BIG_ENDIAN,
1066 .valid = {
1067 .min_access_size = 8,
1068 .max_access_size = 8,
1070 .impl = {
1071 .min_access_size = 8,
1072 .max_access_size = 8,
1076 void xive_source_set_irq(void *opaque, int srcno, int val)
1078 XiveSource *xsrc = XIVE_SOURCE(opaque);
1079 bool notify = false;
1081 if (xive_source_irq_is_lsi(xsrc, srcno)) {
1082 if (val) {
1083 notify = xive_source_lsi_trigger(xsrc, srcno);
1084 } else {
1085 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
1087 } else {
1088 if (val) {
1089 notify = xive_source_esb_trigger(xsrc, srcno);
1093 /* Forward the source event notification for routing */
1094 if (notify) {
1095 xive_source_notify(xsrc, srcno);
1099 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1101 int i;
1103 for (i = 0; i < xsrc->nr_irqs; i++) {
1104 uint8_t pq = xive_source_esb_get(xsrc, i);
1106 if (pq == XIVE_ESB_OFF) {
1107 continue;
1110 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
1111 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1112 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1113 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1114 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1118 static void xive_source_reset(void *dev)
1120 XiveSource *xsrc = XIVE_SOURCE(dev);
1122 /* Do not clear the LSI bitmap */
1124 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1125 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1128 static void xive_source_realize(DeviceState *dev, Error **errp)
1130 XiveSource *xsrc = XIVE_SOURCE(dev);
1132 assert(xsrc->xive);
1134 if (!xsrc->nr_irqs) {
1135 error_setg(errp, "Number of interrupt needs to be greater than 0");
1136 return;
1139 if (xsrc->esb_shift != XIVE_ESB_4K &&
1140 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1141 xsrc->esb_shift != XIVE_ESB_64K &&
1142 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1143 error_setg(errp, "Invalid ESB shift setting");
1144 return;
1147 xsrc->status = g_malloc0(xsrc->nr_irqs);
1148 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1150 if (!kvm_irqchip_in_kernel()) {
1151 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1152 &xive_source_esb_ops, xsrc, "xive.esb",
1153 (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1156 qemu_register_reset(xive_source_reset, dev);
1159 static const VMStateDescription vmstate_xive_source = {
1160 .name = TYPE_XIVE_SOURCE,
1161 .version_id = 1,
1162 .minimum_version_id = 1,
1163 .fields = (VMStateField[]) {
1164 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1165 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1166 VMSTATE_END_OF_LIST()
1171 * The default XIVE interrupt source setting for the ESB MMIOs is two
1172 * 64k pages without Store EOI, to be in sync with KVM.
1174 static Property xive_source_properties[] = {
1175 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1176 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1177 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1178 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1179 XiveNotifier *),
1180 DEFINE_PROP_END_OF_LIST(),
1183 static void xive_source_class_init(ObjectClass *klass, void *data)
1185 DeviceClass *dc = DEVICE_CLASS(klass);
1187 dc->desc = "XIVE Interrupt Source";
1188 device_class_set_props(dc, xive_source_properties);
1189 dc->realize = xive_source_realize;
1190 dc->vmsd = &vmstate_xive_source;
1192 * Reason: part of XIVE interrupt controller, needs to be wired up,
1193 * e.g. by spapr_xive_instance_init().
1195 dc->user_creatable = false;
1198 static const TypeInfo xive_source_info = {
1199 .name = TYPE_XIVE_SOURCE,
1200 .parent = TYPE_DEVICE,
1201 .instance_size = sizeof(XiveSource),
1202 .class_init = xive_source_class_init,
1206 * XiveEND helpers
1209 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1211 uint64_t qaddr_base = xive_end_qaddr(end);
1212 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1213 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1214 uint32_t qentries = 1 << (qsize + 10);
1215 int i;
1218 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1220 monitor_printf(mon, " [ ");
1221 qindex = (qindex - (width - 1)) & (qentries - 1);
1222 for (i = 0; i < width; i++) {
1223 uint64_t qaddr = qaddr_base + (qindex << 2);
1224 uint32_t qdata = -1;
1226 if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1227 sizeof(qdata))) {
1228 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1229 HWADDR_PRIx "\n", qaddr);
1230 return;
1232 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1233 be32_to_cpu(qdata));
1234 qindex = (qindex + 1) & (qentries - 1);
1236 monitor_printf(mon, "]");
1239 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1241 uint64_t qaddr_base = xive_end_qaddr(end);
1242 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1243 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1244 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1245 uint32_t qentries = 1 << (qsize + 10);
1247 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1248 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1249 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1250 uint8_t pq;
1252 if (!xive_end_is_valid(end)) {
1253 return;
1256 pq = xive_get_field32(END_W1_ESn, end->w1);
1258 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1259 end_idx,
1260 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1261 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1262 xive_end_is_valid(end) ? 'v' : '-',
1263 xive_end_is_enqueue(end) ? 'q' : '-',
1264 xive_end_is_notify(end) ? 'n' : '-',
1265 xive_end_is_backlog(end) ? 'b' : '-',
1266 xive_end_is_escalate(end) ? 'e' : '-',
1267 xive_end_is_uncond_escalation(end) ? 'u' : '-',
1268 xive_end_is_silent_escalation(end) ? 's' : '-',
1269 priority, nvt_blk, nvt_idx);
1271 if (qaddr_base) {
1272 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1273 qaddr_base, qindex, qentries, qgen);
1274 xive_end_queue_pic_print_info(end, 6, mon);
1276 monitor_printf(mon, "\n");
1279 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1281 uint64_t qaddr_base = xive_end_qaddr(end);
1282 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1283 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1284 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1286 uint64_t qaddr = qaddr_base + (qindex << 2);
1287 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1288 uint32_t qentries = 1 << (qsize + 10);
1290 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1291 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1292 HWADDR_PRIx "\n", qaddr);
1293 return;
1296 qindex = (qindex + 1) & (qentries - 1);
1297 if (qindex == 0) {
1298 qgen ^= 1;
1299 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1301 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1304 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1305 Monitor *mon)
1307 XiveEAS *eas = (XiveEAS *) &end->w4;
1308 uint8_t pq;
1310 if (!xive_end_is_escalate(end)) {
1311 return;
1314 pq = xive_get_field32(END_W1_ESe, end->w1);
1316 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1317 end_idx,
1318 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1319 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1320 xive_eas_is_valid(eas) ? 'V' : ' ',
1321 xive_eas_is_masked(eas) ? 'M' : ' ',
1322 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1323 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1324 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1328 * XIVE Router (aka. Virtualization Controller or IVRE)
1331 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1332 XiveEAS *eas)
1334 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1336 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1339 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1340 XiveEND *end)
1342 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1344 return xrc->get_end(xrtr, end_blk, end_idx, end);
1347 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1348 XiveEND *end, uint8_t word_number)
1350 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1352 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1355 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1356 XiveNVT *nvt)
1358 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1360 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1363 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1364 XiveNVT *nvt, uint8_t word_number)
1366 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1368 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1371 static int xive_router_get_block_id(XiveRouter *xrtr)
1373 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1375 return xrc->get_block_id(xrtr);
1378 static void xive_router_realize(DeviceState *dev, Error **errp)
1380 XiveRouter *xrtr = XIVE_ROUTER(dev);
1382 assert(xrtr->xfb);
1386 * Encode the HW CAM line in the block group mode format :
1388 * chip << 19 | 0000000 0 0001 thread (7Bit)
1390 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1392 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1393 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1394 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1396 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1400 * The thread context register words are in big-endian format.
1402 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1403 uint8_t format,
1404 uint8_t nvt_blk, uint32_t nvt_idx,
1405 bool cam_ignore, uint32_t logic_serv)
1407 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1408 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1409 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1410 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1411 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1414 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1415 * identifier are ignored in the "CAM" match.
1418 if (format == 0) {
1419 if (cam_ignore == true) {
1421 * F=0 & i=1: Logical server notification (bits ignored at
1422 * the end of the NVT identifier)
1424 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1425 nvt_blk, nvt_idx);
1426 return -1;
1429 /* F=0 & i=0: Specific NVT notification */
1431 /* PHYS ring */
1432 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1433 cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1434 return TM_QW3_HV_PHYS;
1437 /* HV POOL ring */
1438 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1439 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1440 return TM_QW2_HV_POOL;
1443 /* OS ring */
1444 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1445 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1446 return TM_QW1_OS;
1448 } else {
1449 /* F=1 : User level Event-Based Branch (EBB) notification */
1451 /* USER ring */
1452 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1453 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1454 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1455 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1456 return TM_QW0_USER;
1459 return -1;
1463 * This is our simple Xive Presenter Engine model. It is merged in the
1464 * Router as it does not require an extra object.
1466 * It receives notification requests sent by the IVRE to find one
1467 * matching NVT (or more) dispatched on the processor threads. In case
1468 * of a single NVT notification, the process is abreviated and the
1469 * thread is signaled if a match is found. In case of a logical server
1470 * notification (bits ignored at the end of the NVT identifier), the
1471 * IVPE and IVRE select a winning thread using different filters. This
1472 * involves 2 or 3 exchanges on the PowerBus that the model does not
1473 * support.
1475 * The parameters represent what is sent on the PowerBus
1477 static bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1478 uint8_t nvt_blk, uint32_t nvt_idx,
1479 bool cam_ignore, uint8_t priority,
1480 uint32_t logic_serv)
1482 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1483 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1484 int count;
1487 * Ask the machine to scan the interrupt controllers for a match
1489 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1490 priority, logic_serv, &match);
1491 if (count < 0) {
1492 return false;
1495 /* handle CPU exception delivery */
1496 if (count) {
1497 xive_tctx_ipb_update(match.tctx, match.ring, priority_to_ipb(priority));
1500 return !!count;
1504 * Notification using the END ESe/ESn bit (Event State Buffer for
1505 * escalation and notification). Profide futher coalescing in the
1506 * Router.
1508 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1509 uint32_t end_idx, XiveEND *end,
1510 uint32_t end_esmask)
1512 uint8_t pq = xive_get_field32(end_esmask, end->w1);
1513 bool notify = xive_esb_trigger(&pq);
1515 if (pq != xive_get_field32(end_esmask, end->w1)) {
1516 end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1517 xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1520 /* ESe/n[Q]=1 : end of notification */
1521 return notify;
1525 * An END trigger can come from an event trigger (IPI or HW) or from
1526 * another chip. We don't model the PowerBus but the END trigger
1527 * message has the same parameters than in the function below.
1529 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1530 uint32_t end_idx, uint32_t end_data)
1532 XiveEND end;
1533 uint8_t priority;
1534 uint8_t format;
1535 uint8_t nvt_blk;
1536 uint32_t nvt_idx;
1537 XiveNVT nvt;
1538 bool found;
1540 /* END cache lookup */
1541 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1542 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1543 end_idx);
1544 return;
1547 if (!xive_end_is_valid(&end)) {
1548 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1549 end_blk, end_idx);
1550 return;
1553 if (xive_end_is_enqueue(&end)) {
1554 xive_end_enqueue(&end, end_data);
1555 /* Enqueuing event data modifies the EQ toggle and index */
1556 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1560 * When the END is silent, we skip the notification part.
1562 if (xive_end_is_silent_escalation(&end)) {
1563 goto do_escalation;
1567 * The W7 format depends on the F bit in W6. It defines the type
1568 * of the notification :
1570 * F=0 : single or multiple NVT notification
1571 * F=1 : User level Event-Based Branch (EBB) notification, no
1572 * priority
1574 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1575 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1577 /* The END is masked */
1578 if (format == 0 && priority == 0xff) {
1579 return;
1583 * Check the END ESn (Event State Buffer for notification) for
1584 * even futher coalescing in the Router
1586 if (!xive_end_is_notify(&end)) {
1587 /* ESn[Q]=1 : end of notification */
1588 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1589 &end, END_W1_ESn)) {
1590 return;
1595 * Follows IVPE notification
1597 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1598 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1600 /* NVT cache lookup */
1601 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1602 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1603 nvt_blk, nvt_idx);
1604 return;
1607 if (!xive_nvt_is_valid(&nvt)) {
1608 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1609 nvt_blk, nvt_idx);
1610 return;
1613 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1614 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1615 priority,
1616 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1618 /* TODO: Auto EOI. */
1620 if (found) {
1621 return;
1625 * If no matching NVT is dispatched on a HW thread :
1626 * - specific VP: update the NVT structure if backlog is activated
1627 * - logical server : forward request to IVPE (not supported)
1629 if (xive_end_is_backlog(&end)) {
1630 uint8_t ipb;
1632 if (format == 1) {
1633 qemu_log_mask(LOG_GUEST_ERROR,
1634 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1635 end_blk, end_idx);
1636 return;
1639 * Record the IPB in the associated NVT structure for later
1640 * use. The presenter will resend the interrupt when the vCPU
1641 * is dispatched again on a HW thread.
1643 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | priority_to_ipb(priority);
1644 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1645 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1648 * On HW, follows a "Broadcast Backlog" to IVPEs
1652 do_escalation:
1654 * If activated, escalate notification using the ESe PQ bits and
1655 * the EAS in w4-5
1657 if (!xive_end_is_escalate(&end)) {
1658 return;
1662 * Check the END ESe (Event State Buffer for escalation) for even
1663 * futher coalescing in the Router
1665 if (!xive_end_is_uncond_escalation(&end)) {
1666 /* ESe[Q]=1 : end of notification */
1667 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1668 &end, END_W1_ESe)) {
1669 return;
1674 * The END trigger becomes an Escalation trigger
1676 xive_router_end_notify(xrtr,
1677 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1678 xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1679 xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1682 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1684 XiveRouter *xrtr = XIVE_ROUTER(xn);
1685 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1686 uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1687 XiveEAS eas;
1689 /* EAS cache lookup */
1690 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1691 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1692 return;
1696 * The IVRE checks the State Bit Cache at this point. We skip the
1697 * SBC lookup because the state bits of the sources are modeled
1698 * internally in QEMU.
1701 if (!xive_eas_is_valid(&eas)) {
1702 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1703 return;
1706 if (xive_eas_is_masked(&eas)) {
1707 /* Notification completed */
1708 return;
1712 * The event trigger becomes an END trigger
1714 xive_router_end_notify(xrtr,
1715 xive_get_field64(EAS_END_BLOCK, eas.w),
1716 xive_get_field64(EAS_END_INDEX, eas.w),
1717 xive_get_field64(EAS_END_DATA, eas.w));
1720 static Property xive_router_properties[] = {
1721 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1722 TYPE_XIVE_FABRIC, XiveFabric *),
1723 DEFINE_PROP_END_OF_LIST(),
1726 static void xive_router_class_init(ObjectClass *klass, void *data)
1728 DeviceClass *dc = DEVICE_CLASS(klass);
1729 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1731 dc->desc = "XIVE Router Engine";
1732 device_class_set_props(dc, xive_router_properties);
1733 /* Parent is SysBusDeviceClass. No need to call its realize hook */
1734 dc->realize = xive_router_realize;
1735 xnc->notify = xive_router_notify;
1738 static const TypeInfo xive_router_info = {
1739 .name = TYPE_XIVE_ROUTER,
1740 .parent = TYPE_SYS_BUS_DEVICE,
1741 .abstract = true,
1742 .instance_size = sizeof(XiveRouter),
1743 .class_size = sizeof(XiveRouterClass),
1744 .class_init = xive_router_class_init,
1745 .interfaces = (InterfaceInfo[]) {
1746 { TYPE_XIVE_NOTIFIER },
1747 { TYPE_XIVE_PRESENTER },
1752 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1754 if (!xive_eas_is_valid(eas)) {
1755 return;
1758 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1759 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1760 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1761 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1762 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1766 * END ESB MMIO loads
1768 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1770 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1771 uint32_t offset = addr & 0xFFF;
1772 uint8_t end_blk;
1773 uint32_t end_idx;
1774 XiveEND end;
1775 uint32_t end_esmask;
1776 uint8_t pq;
1777 uint64_t ret = -1;
1780 * The block id should be deduced from the load address on the END
1781 * ESB MMIO but our model only supports a single block per XIVE chip.
1783 end_blk = xive_router_get_block_id(xsrc->xrtr);
1784 end_idx = addr >> (xsrc->esb_shift + 1);
1786 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1787 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1788 end_idx);
1789 return -1;
1792 if (!xive_end_is_valid(&end)) {
1793 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1794 end_blk, end_idx);
1795 return -1;
1798 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1799 pq = xive_get_field32(end_esmask, end.w1);
1801 switch (offset) {
1802 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1803 ret = xive_esb_eoi(&pq);
1805 /* Forward the source event notification for routing ?? */
1806 break;
1808 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1809 ret = pq;
1810 break;
1812 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1813 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1814 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1815 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1816 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1817 break;
1818 default:
1819 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1820 offset);
1821 return -1;
1824 if (pq != xive_get_field32(end_esmask, end.w1)) {
1825 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1826 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1829 return ret;
1833 * END ESB MMIO stores are invalid
1835 static void xive_end_source_write(void *opaque, hwaddr addr,
1836 uint64_t value, unsigned size)
1838 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1839 HWADDR_PRIx"\n", addr);
1842 static const MemoryRegionOps xive_end_source_ops = {
1843 .read = xive_end_source_read,
1844 .write = xive_end_source_write,
1845 .endianness = DEVICE_BIG_ENDIAN,
1846 .valid = {
1847 .min_access_size = 8,
1848 .max_access_size = 8,
1850 .impl = {
1851 .min_access_size = 8,
1852 .max_access_size = 8,
1856 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1858 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1860 assert(xsrc->xrtr);
1862 if (!xsrc->nr_ends) {
1863 error_setg(errp, "Number of interrupt needs to be greater than 0");
1864 return;
1867 if (xsrc->esb_shift != XIVE_ESB_4K &&
1868 xsrc->esb_shift != XIVE_ESB_64K) {
1869 error_setg(errp, "Invalid ESB shift setting");
1870 return;
1874 * Each END is assigned an even/odd pair of MMIO pages, the even page
1875 * manages the ESn field while the odd page manages the ESe field.
1877 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1878 &xive_end_source_ops, xsrc, "xive.end",
1879 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1882 static Property xive_end_source_properties[] = {
1883 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1884 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1885 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
1886 XiveRouter *),
1887 DEFINE_PROP_END_OF_LIST(),
1890 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1892 DeviceClass *dc = DEVICE_CLASS(klass);
1894 dc->desc = "XIVE END Source";
1895 device_class_set_props(dc, xive_end_source_properties);
1896 dc->realize = xive_end_source_realize;
1898 * Reason: part of XIVE interrupt controller, needs to be wired up,
1899 * e.g. by spapr_xive_instance_init().
1901 dc->user_creatable = false;
1904 static const TypeInfo xive_end_source_info = {
1905 .name = TYPE_XIVE_END_SOURCE,
1906 .parent = TYPE_DEVICE,
1907 .instance_size = sizeof(XiveENDSource),
1908 .class_init = xive_end_source_class_init,
1912 * XIVE Notifier
1914 static const TypeInfo xive_notifier_info = {
1915 .name = TYPE_XIVE_NOTIFIER,
1916 .parent = TYPE_INTERFACE,
1917 .class_size = sizeof(XiveNotifierClass),
1921 * XIVE Presenter
1923 static const TypeInfo xive_presenter_info = {
1924 .name = TYPE_XIVE_PRESENTER,
1925 .parent = TYPE_INTERFACE,
1926 .class_size = sizeof(XivePresenterClass),
1930 * XIVE Fabric
1932 static const TypeInfo xive_fabric_info = {
1933 .name = TYPE_XIVE_FABRIC,
1934 .parent = TYPE_INTERFACE,
1935 .class_size = sizeof(XiveFabricClass),
1938 static void xive_register_types(void)
1940 type_register_static(&xive_fabric_info);
1941 type_register_static(&xive_source_info);
1942 type_register_static(&xive_notifier_info);
1943 type_register_static(&xive_presenter_info);
1944 type_register_static(&xive_router_info);
1945 type_register_static(&xive_end_source_info);
1946 type_register_static(&xive_tctx_info);
1949 type_init(xive_register_types)