2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/cpus.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/runstate.h"
38 #include "migration/vmstate.h"
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
45 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
47 # define LOG_IRQ(...) do { } while (0)
52 # define LOG_TB(...) qemu_log(__VA_ARGS__)
54 # define LOG_TB(...) do { } while (0)
57 static void cpu_ppc_tb_stop (CPUPPCState
*env
);
58 static void cpu_ppc_tb_start (CPUPPCState
*env
);
60 void ppc_set_irq(PowerPCCPU
*cpu
, int n_IRQ
, int level
)
62 CPUState
*cs
= CPU(cpu
);
63 CPUPPCState
*env
= &cpu
->env
;
64 unsigned int old_pending
;
67 /* We may already have the BQL if coming from the reset path */
68 if (!qemu_mutex_iothread_locked()) {
70 qemu_mutex_lock_iothread();
73 old_pending
= env
->pending_interrupts
;
76 env
->pending_interrupts
|= 1 << n_IRQ
;
77 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
79 env
->pending_interrupts
&= ~(1 << n_IRQ
);
80 if (env
->pending_interrupts
== 0) {
81 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
85 if (old_pending
!= env
->pending_interrupts
) {
86 kvmppc_set_interrupt(cpu
, n_IRQ
, level
);
90 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91 "req %08x\n", __func__
, env
, n_IRQ
, level
,
92 env
->pending_interrupts
, CPU(cpu
)->interrupt_request
);
95 qemu_mutex_unlock_iothread();
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque
, int pin
, int level
)
102 PowerPCCPU
*cpu
= opaque
;
103 CPUPPCState
*env
= &cpu
->env
;
106 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
108 cur_level
= (env
->irq_input_state
>> pin
) & 1;
109 /* Don't generate spurious events */
110 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
111 CPUState
*cs
= CPU(cpu
);
114 case PPC6xx_INPUT_TBEN
:
115 /* Level sensitive - active high */
116 LOG_IRQ("%s: %s the time base\n",
117 __func__
, level
? "start" : "stop");
119 cpu_ppc_tb_start(env
);
121 cpu_ppc_tb_stop(env
);
123 case PPC6xx_INPUT_INT
:
124 /* Level sensitive - active high */
125 LOG_IRQ("%s: set the external IRQ state to %d\n",
127 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
129 case PPC6xx_INPUT_SMI
:
130 /* Level sensitive - active high */
131 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
133 ppc_set_irq(cpu
, PPC_INTERRUPT_SMI
, level
);
135 case PPC6xx_INPUT_MCP
:
136 /* Negative edge sensitive */
137 /* XXX: TODO: actual reaction may depends on HID0 status
138 * 603/604/740/750: check HID0[EMCP]
140 if (cur_level
== 1 && level
== 0) {
141 LOG_IRQ("%s: raise machine check state\n",
143 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
146 case PPC6xx_INPUT_CKSTP_IN
:
147 /* Level sensitive - active low */
148 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149 /* XXX: Note that the only way to restart the CPU is to reset it */
151 LOG_IRQ("%s: stop the CPU\n", __func__
);
155 case PPC6xx_INPUT_HRESET
:
156 /* Level sensitive - active low */
158 LOG_IRQ("%s: reset the CPU\n", __func__
);
159 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
162 case PPC6xx_INPUT_SRESET
:
163 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
165 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
168 /* Unknown pin - do nothing */
169 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
173 env
->irq_input_state
|= 1 << pin
;
175 env
->irq_input_state
&= ~(1 << pin
);
179 void ppc6xx_irq_init(PowerPCCPU
*cpu
)
181 CPUPPCState
*env
= &cpu
->env
;
183 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, cpu
,
187 #if defined(TARGET_PPC64)
188 /* PowerPC 970 internal IRQ controller */
189 static void ppc970_set_irq(void *opaque
, int pin
, int level
)
191 PowerPCCPU
*cpu
= opaque
;
192 CPUPPCState
*env
= &cpu
->env
;
195 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
197 cur_level
= (env
->irq_input_state
>> pin
) & 1;
198 /* Don't generate spurious events */
199 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
200 CPUState
*cs
= CPU(cpu
);
203 case PPC970_INPUT_INT
:
204 /* Level sensitive - active high */
205 LOG_IRQ("%s: set the external IRQ state to %d\n",
207 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
209 case PPC970_INPUT_THINT
:
210 /* Level sensitive - active high */
211 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__
,
213 ppc_set_irq(cpu
, PPC_INTERRUPT_THERM
, level
);
215 case PPC970_INPUT_MCP
:
216 /* Negative edge sensitive */
217 /* XXX: TODO: actual reaction may depends on HID0 status
218 * 603/604/740/750: check HID0[EMCP]
220 if (cur_level
== 1 && level
== 0) {
221 LOG_IRQ("%s: raise machine check state\n",
223 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
226 case PPC970_INPUT_CKSTP
:
227 /* Level sensitive - active low */
228 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
230 LOG_IRQ("%s: stop the CPU\n", __func__
);
233 LOG_IRQ("%s: restart the CPU\n", __func__
);
238 case PPC970_INPUT_HRESET
:
239 /* Level sensitive - active low */
241 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
244 case PPC970_INPUT_SRESET
:
245 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
247 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
249 case PPC970_INPUT_TBEN
:
250 LOG_IRQ("%s: set the TBEN state to %d\n", __func__
,
255 /* Unknown pin - do nothing */
256 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
260 env
->irq_input_state
|= 1 << pin
;
262 env
->irq_input_state
&= ~(1 << pin
);
266 void ppc970_irq_init(PowerPCCPU
*cpu
)
268 CPUPPCState
*env
= &cpu
->env
;
270 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, cpu
,
274 /* POWER7 internal IRQ controller */
275 static void power7_set_irq(void *opaque
, int pin
, int level
)
277 PowerPCCPU
*cpu
= opaque
;
279 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
280 &cpu
->env
, pin
, level
);
283 case POWER7_INPUT_INT
:
284 /* Level sensitive - active high */
285 LOG_IRQ("%s: set the external IRQ state to %d\n",
287 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
290 /* Unknown pin - do nothing */
291 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
296 void ppcPOWER7_irq_init(PowerPCCPU
*cpu
)
298 CPUPPCState
*env
= &cpu
->env
;
300 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power7_set_irq
, cpu
,
304 /* POWER9 internal IRQ controller */
305 static void power9_set_irq(void *opaque
, int pin
, int level
)
307 PowerPCCPU
*cpu
= opaque
;
309 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
310 &cpu
->env
, pin
, level
);
313 case POWER9_INPUT_INT
:
314 /* Level sensitive - active high */
315 LOG_IRQ("%s: set the external IRQ state to %d\n",
317 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
319 case POWER9_INPUT_HINT
:
320 /* Level sensitive - active high */
321 LOG_IRQ("%s: set the external IRQ state to %d\n",
323 ppc_set_irq(cpu
, PPC_INTERRUPT_HVIRT
, level
);
326 /* Unknown pin - do nothing */
327 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
332 void ppcPOWER9_irq_init(PowerPCCPU
*cpu
)
334 CPUPPCState
*env
= &cpu
->env
;
336 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power9_set_irq
, cpu
,
339 #endif /* defined(TARGET_PPC64) */
341 void ppc40x_core_reset(PowerPCCPU
*cpu
)
343 CPUPPCState
*env
= &cpu
->env
;
346 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC core\n");
347 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
348 dbsr
= env
->spr
[SPR_40x_DBSR
];
351 env
->spr
[SPR_40x_DBSR
] = dbsr
;
354 void ppc40x_chip_reset(PowerPCCPU
*cpu
)
356 CPUPPCState
*env
= &cpu
->env
;
359 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC chip\n");
360 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
361 /* XXX: TODO reset all internal peripherals */
362 dbsr
= env
->spr
[SPR_40x_DBSR
];
365 env
->spr
[SPR_40x_DBSR
] = dbsr
;
368 void ppc40x_system_reset(PowerPCCPU
*cpu
)
370 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC system\n");
371 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
374 void store_40x_dbcr0(CPUPPCState
*env
, uint32_t val
)
376 PowerPCCPU
*cpu
= env_archcpu(env
);
378 switch ((val
>> 28) & 0x3) {
384 ppc40x_core_reset(cpu
);
388 ppc40x_chip_reset(cpu
);
392 ppc40x_system_reset(cpu
);
397 /* PowerPC 40x internal IRQ controller */
398 static void ppc40x_set_irq(void *opaque
, int pin
, int level
)
400 PowerPCCPU
*cpu
= opaque
;
401 CPUPPCState
*env
= &cpu
->env
;
404 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
406 cur_level
= (env
->irq_input_state
>> pin
) & 1;
407 /* Don't generate spurious events */
408 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
409 CPUState
*cs
= CPU(cpu
);
412 case PPC40x_INPUT_RESET_SYS
:
414 LOG_IRQ("%s: reset the PowerPC system\n",
416 ppc40x_system_reset(cpu
);
419 case PPC40x_INPUT_RESET_CHIP
:
421 LOG_IRQ("%s: reset the PowerPC chip\n", __func__
);
422 ppc40x_chip_reset(cpu
);
425 case PPC40x_INPUT_RESET_CORE
:
426 /* XXX: TODO: update DBSR[MRR] */
428 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
429 ppc40x_core_reset(cpu
);
432 case PPC40x_INPUT_CINT
:
433 /* Level sensitive - active high */
434 LOG_IRQ("%s: set the critical IRQ state to %d\n",
436 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
438 case PPC40x_INPUT_INT
:
439 /* Level sensitive - active high */
440 LOG_IRQ("%s: set the external IRQ state to %d\n",
442 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
444 case PPC40x_INPUT_HALT
:
445 /* Level sensitive - active low */
447 LOG_IRQ("%s: stop the CPU\n", __func__
);
450 LOG_IRQ("%s: restart the CPU\n", __func__
);
455 case PPC40x_INPUT_DEBUG
:
456 /* Level sensitive - active high */
457 LOG_IRQ("%s: set the debug pin state to %d\n",
459 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
462 /* Unknown pin - do nothing */
463 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
467 env
->irq_input_state
|= 1 << pin
;
469 env
->irq_input_state
&= ~(1 << pin
);
473 void ppc40x_irq_init(PowerPCCPU
*cpu
)
475 CPUPPCState
*env
= &cpu
->env
;
477 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
478 cpu
, PPC40x_INPUT_NB
);
481 /* PowerPC E500 internal IRQ controller */
482 static void ppce500_set_irq(void *opaque
, int pin
, int level
)
484 PowerPCCPU
*cpu
= opaque
;
485 CPUPPCState
*env
= &cpu
->env
;
488 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
490 cur_level
= (env
->irq_input_state
>> pin
) & 1;
491 /* Don't generate spurious events */
492 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
494 case PPCE500_INPUT_MCK
:
496 LOG_IRQ("%s: reset the PowerPC system\n",
498 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
501 case PPCE500_INPUT_RESET_CORE
:
503 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
504 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, level
);
507 case PPCE500_INPUT_CINT
:
508 /* Level sensitive - active high */
509 LOG_IRQ("%s: set the critical IRQ state to %d\n",
511 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
513 case PPCE500_INPUT_INT
:
514 /* Level sensitive - active high */
515 LOG_IRQ("%s: set the core IRQ state to %d\n",
517 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
519 case PPCE500_INPUT_DEBUG
:
520 /* Level sensitive - active high */
521 LOG_IRQ("%s: set the debug pin state to %d\n",
523 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
526 /* Unknown pin - do nothing */
527 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
531 env
->irq_input_state
|= 1 << pin
;
533 env
->irq_input_state
&= ~(1 << pin
);
537 void ppce500_irq_init(PowerPCCPU
*cpu
)
539 CPUPPCState
*env
= &cpu
->env
;
541 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
542 cpu
, PPCE500_INPUT_NB
);
545 /* Enable or Disable the E500 EPR capability */
546 void ppce500_set_mpic_proxy(bool enabled
)
551 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
553 cpu
->env
.mpic_proxy
= enabled
;
555 kvmppc_set_mpic_proxy(cpu
, enabled
);
560 /*****************************************************************************/
561 /* PowerPC time base and decrementer emulation */
563 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
565 /* TB time in tb periods */
566 return muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
) + tb_offset
;
569 uint64_t cpu_ppc_load_tbl (CPUPPCState
*env
)
571 ppc_tb_t
*tb_env
= env
->tb_env
;
575 return env
->spr
[SPR_TBL
];
578 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
579 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
584 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState
*env
)
586 ppc_tb_t
*tb_env
= env
->tb_env
;
589 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
590 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
595 uint32_t cpu_ppc_load_tbu (CPUPPCState
*env
)
598 return env
->spr
[SPR_TBU
];
601 return _cpu_ppc_load_tbu(env
);
604 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
605 int64_t *tb_offsetp
, uint64_t value
)
607 *tb_offsetp
= value
-
608 muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
);
610 LOG_TB("%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
611 __func__
, value
, *tb_offsetp
);
614 void cpu_ppc_store_tbl (CPUPPCState
*env
, uint32_t value
)
616 ppc_tb_t
*tb_env
= env
->tb_env
;
619 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
620 tb
&= 0xFFFFFFFF00000000ULL
;
621 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
622 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
625 static inline void _cpu_ppc_store_tbu(CPUPPCState
*env
, uint32_t value
)
627 ppc_tb_t
*tb_env
= env
->tb_env
;
630 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
631 tb
&= 0x00000000FFFFFFFFULL
;
632 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
633 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
636 void cpu_ppc_store_tbu (CPUPPCState
*env
, uint32_t value
)
638 _cpu_ppc_store_tbu(env
, value
);
641 uint64_t cpu_ppc_load_atbl (CPUPPCState
*env
)
643 ppc_tb_t
*tb_env
= env
->tb_env
;
646 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
647 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
652 uint32_t cpu_ppc_load_atbu (CPUPPCState
*env
)
654 ppc_tb_t
*tb_env
= env
->tb_env
;
657 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
658 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
663 void cpu_ppc_store_atbl (CPUPPCState
*env
, uint32_t value
)
665 ppc_tb_t
*tb_env
= env
->tb_env
;
668 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
669 tb
&= 0xFFFFFFFF00000000ULL
;
670 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
671 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
674 void cpu_ppc_store_atbu (CPUPPCState
*env
, uint32_t value
)
676 ppc_tb_t
*tb_env
= env
->tb_env
;
679 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
680 tb
&= 0x00000000FFFFFFFFULL
;
681 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
682 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
685 uint64_t cpu_ppc_load_vtb(CPUPPCState
*env
)
687 ppc_tb_t
*tb_env
= env
->tb_env
;
689 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
693 void cpu_ppc_store_vtb(CPUPPCState
*env
, uint64_t value
)
695 ppc_tb_t
*tb_env
= env
->tb_env
;
697 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
698 &tb_env
->vtb_offset
, value
);
701 void cpu_ppc_store_tbu40(CPUPPCState
*env
, uint64_t value
)
703 ppc_tb_t
*tb_env
= env
->tb_env
;
706 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
709 tb
|= (value
& ~0xFFFFFFUL
);
710 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
711 &tb_env
->tb_offset
, tb
);
714 static void cpu_ppc_tb_stop (CPUPPCState
*env
)
716 ppc_tb_t
*tb_env
= env
->tb_env
;
717 uint64_t tb
, atb
, vmclk
;
719 /* If the time base is already frozen, do nothing */
720 if (tb_env
->tb_freq
!= 0) {
721 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
722 /* Get the time base */
723 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
724 /* Get the alternate time base */
725 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
726 /* Store the time base value (ie compute the current offset) */
727 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
728 /* Store the alternate time base value (compute the current offset) */
729 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
730 /* Set the time base frequency to zero */
732 /* Now, the time bases are frozen to tb_offset / atb_offset value */
736 static void cpu_ppc_tb_start (CPUPPCState
*env
)
738 ppc_tb_t
*tb_env
= env
->tb_env
;
739 uint64_t tb
, atb
, vmclk
;
741 /* If the time base is not frozen, do nothing */
742 if (tb_env
->tb_freq
== 0) {
743 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
744 /* Get the time base from tb_offset */
745 tb
= tb_env
->tb_offset
;
746 /* Get the alternate time base from atb_offset */
747 atb
= tb_env
->atb_offset
;
748 /* Restore the tb frequency from the decrementer frequency */
749 tb_env
->tb_freq
= tb_env
->decr_freq
;
750 /* Store the time base value */
751 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
752 /* Store the alternate time base value */
753 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
757 bool ppc_decr_clear_on_delivery(CPUPPCState
*env
)
759 ppc_tb_t
*tb_env
= env
->tb_env
;
760 int flags
= PPC_DECR_UNDERFLOW_TRIGGERED
| PPC_DECR_UNDERFLOW_LEVEL
;
761 return ((tb_env
->flags
& flags
) == PPC_DECR_UNDERFLOW_TRIGGERED
);
764 static inline int64_t _cpu_ppc_load_decr(CPUPPCState
*env
, uint64_t next
)
766 ppc_tb_t
*tb_env
= env
->tb_env
;
769 diff
= next
- qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
771 decr
= muldiv64(diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
772 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
775 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
777 LOG_TB("%s: %016" PRIx64
"\n", __func__
, decr
);
782 target_ulong
cpu_ppc_load_decr(CPUPPCState
*env
)
784 ppc_tb_t
*tb_env
= env
->tb_env
;
788 return env
->spr
[SPR_DECR
];
791 decr
= _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
794 * If large decrementer is enabled then the decrementer is signed extened
795 * to 64 bits, otherwise it is a 32 bit value.
797 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
800 return (uint32_t) decr
;
803 target_ulong
cpu_ppc_load_hdecr(CPUPPCState
*env
)
805 PowerPCCPU
*cpu
= env_archcpu(env
);
806 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
807 ppc_tb_t
*tb_env
= env
->tb_env
;
810 hdecr
= _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
813 * If we have a large decrementer (POWER9 or later) then hdecr is sign
814 * extended to 64 bits, otherwise it is 32 bits.
816 if (pcc
->lrg_decr_bits
> 32) {
819 return (uint32_t) hdecr
;
822 uint64_t cpu_ppc_load_purr (CPUPPCState
*env
)
824 ppc_tb_t
*tb_env
= env
->tb_env
;
826 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
827 tb_env
->purr_offset
);
830 /* When decrementer expires,
831 * all we need to do is generate or queue a CPU exception
833 static inline void cpu_ppc_decr_excp(PowerPCCPU
*cpu
)
836 LOG_TB("raise decrementer exception\n");
837 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 1);
840 static inline void cpu_ppc_decr_lower(PowerPCCPU
*cpu
)
842 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 0);
845 static inline void cpu_ppc_hdecr_excp(PowerPCCPU
*cpu
)
847 CPUPPCState
*env
= &cpu
->env
;
850 LOG_TB("raise hv decrementer exception\n");
852 /* The architecture specifies that we don't deliver HDEC
853 * interrupts in a PM state. Not only they don't cause a
854 * wakeup but they also get effectively discarded.
856 if (!env
->resume_as_sreset
) {
857 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 1);
861 static inline void cpu_ppc_hdecr_lower(PowerPCCPU
*cpu
)
863 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 0);
866 static void __cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint64_t *nextp
,
868 void (*raise_excp
)(void *),
869 void (*lower_excp
)(PowerPCCPU
*),
870 target_ulong decr
, target_ulong value
,
873 CPUPPCState
*env
= &cpu
->env
;
874 ppc_tb_t
*tb_env
= env
->tb_env
;
878 /* Truncate value to decr_width and sign extend for simplicity */
879 value
&= ((1ULL << nr_bits
) - 1);
880 negative
= !!(value
& (1ULL << (nr_bits
- 1)));
882 value
|= (0xFFFFFFFFULL
<< nr_bits
);
885 LOG_TB("%s: " TARGET_FMT_lx
" => " TARGET_FMT_lx
"\n", __func__
,
889 /* KVM handles decrementer exceptions, we don't need our own timer */
894 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
897 * If we get a really small DEC value, we can assume that by the time we
898 * handled it we should inject an interrupt already.
900 * On MSB level based DEC implementations the MSB always means the interrupt
901 * is pending, so raise it on those.
903 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
904 * an edge interrupt, so raise it here too.
907 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
) && negative
) ||
908 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_TRIGGERED
) && negative
909 && !(decr
& (1ULL << (nr_bits
- 1))))) {
914 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
915 if (!negative
&& (tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
)) {
919 /* Calculate the next timer event */
920 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
921 next
= now
+ muldiv64(value
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
925 timer_mod(timer
, next
);
928 static inline void _cpu_ppc_store_decr(PowerPCCPU
*cpu
, target_ulong decr
,
929 target_ulong value
, int nr_bits
)
931 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
933 __cpu_ppc_store_decr(cpu
, &tb_env
->decr_next
, tb_env
->decr_timer
,
934 tb_env
->decr_timer
->cb
, &cpu_ppc_decr_lower
, decr
,
938 void cpu_ppc_store_decr(CPUPPCState
*env
, target_ulong value
)
940 PowerPCCPU
*cpu
= env_archcpu(env
);
941 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
944 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
945 nr_bits
= pcc
->lrg_decr_bits
;
948 _cpu_ppc_store_decr(cpu
, cpu_ppc_load_decr(env
), value
, nr_bits
);
951 static void cpu_ppc_decr_cb(void *opaque
)
953 PowerPCCPU
*cpu
= opaque
;
955 cpu_ppc_decr_excp(cpu
);
958 static inline void _cpu_ppc_store_hdecr(PowerPCCPU
*cpu
, target_ulong hdecr
,
959 target_ulong value
, int nr_bits
)
961 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
963 if (tb_env
->hdecr_timer
!= NULL
) {
964 __cpu_ppc_store_decr(cpu
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
965 tb_env
->hdecr_timer
->cb
, &cpu_ppc_hdecr_lower
,
966 hdecr
, value
, nr_bits
);
970 void cpu_ppc_store_hdecr(CPUPPCState
*env
, target_ulong value
)
972 PowerPCCPU
*cpu
= env_archcpu(env
);
973 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
975 _cpu_ppc_store_hdecr(cpu
, cpu_ppc_load_hdecr(env
), value
,
979 static void cpu_ppc_hdecr_cb(void *opaque
)
981 PowerPCCPU
*cpu
= opaque
;
983 cpu_ppc_hdecr_excp(cpu
);
986 void cpu_ppc_store_purr(CPUPPCState
*env
, uint64_t value
)
988 ppc_tb_t
*tb_env
= env
->tb_env
;
990 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
991 &tb_env
->purr_offset
, value
);
994 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
996 CPUPPCState
*env
= opaque
;
997 PowerPCCPU
*cpu
= env_archcpu(env
);
998 ppc_tb_t
*tb_env
= env
->tb_env
;
1000 tb_env
->tb_freq
= freq
;
1001 tb_env
->decr_freq
= freq
;
1002 /* There is a bug in Linux 2.4 kernels:
1003 * if a decrementer exception is pending when it enables msr_ee at startup,
1004 * it's not ready to handle it...
1006 _cpu_ppc_store_decr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 32);
1007 _cpu_ppc_store_hdecr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 32);
1008 cpu_ppc_store_purr(env
, 0x0000000000000000ULL
);
1011 static void timebase_save(PPCTimebase
*tb
)
1013 uint64_t ticks
= cpu_get_host_ticks();
1014 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1016 if (!first_ppc_cpu
->env
.tb_env
) {
1017 error_report("No timebase object");
1021 /* not used anymore, we keep it for compatibility */
1022 tb
->time_of_the_day_ns
= qemu_clock_get_ns(QEMU_CLOCK_HOST
);
1024 * tb_offset is only expected to be changed by QEMU so
1025 * there is no need to update it from KVM here
1027 tb
->guest_timebase
= ticks
+ first_ppc_cpu
->env
.tb_env
->tb_offset
;
1029 tb
->runstate_paused
= runstate_check(RUN_STATE_PAUSED
);
1032 static void timebase_load(PPCTimebase
*tb
)
1035 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1036 int64_t tb_off_adj
, tb_off
;
1039 if (!first_ppc_cpu
->env
.tb_env
) {
1040 error_report("No timebase object");
1044 freq
= first_ppc_cpu
->env
.tb_env
->tb_freq
;
1046 tb_off_adj
= tb
->guest_timebase
- cpu_get_host_ticks();
1048 tb_off
= first_ppc_cpu
->env
.tb_env
->tb_offset
;
1049 trace_ppc_tb_adjust(tb_off
, tb_off_adj
, tb_off_adj
- tb_off
,
1050 (tb_off_adj
- tb_off
) / freq
);
1052 /* Set new offset to all CPUs */
1054 PowerPCCPU
*pcpu
= POWERPC_CPU(cpu
);
1055 pcpu
->env
.tb_env
->tb_offset
= tb_off_adj
;
1056 kvmppc_set_reg_tb_offset(pcpu
, pcpu
->env
.tb_env
->tb_offset
);
1060 void cpu_ppc_clock_vm_state_change(void *opaque
, int running
,
1063 PPCTimebase
*tb
= opaque
;
1073 * When migrating a running guest, read the clock just
1074 * before migration, so that the guest clock counts
1075 * during the events between:
1081 * This reduces clock difference on migration from 5s
1082 * to 0.1s (when max_downtime == 5s), because sending the
1083 * final pages of memory (which happens between vm_stop()
1084 * and pre_save()) takes max_downtime.
1086 static int timebase_pre_save(void *opaque
)
1088 PPCTimebase
*tb
= opaque
;
1090 /* guest_timebase won't be overridden in case of paused guest */
1091 if (!tb
->runstate_paused
) {
1098 const VMStateDescription vmstate_ppc_timebase
= {
1101 .minimum_version_id
= 1,
1102 .minimum_version_id_old
= 1,
1103 .pre_save
= timebase_pre_save
,
1104 .fields
= (VMStateField
[]) {
1105 VMSTATE_UINT64(guest_timebase
, PPCTimebase
),
1106 VMSTATE_INT64(time_of_the_day_ns
, PPCTimebase
),
1107 VMSTATE_END_OF_LIST()
1111 /* Set up (once) timebase frequency (in Hz) */
1112 clk_setup_cb
cpu_ppc_tb_init (CPUPPCState
*env
, uint32_t freq
)
1114 PowerPCCPU
*cpu
= env_archcpu(env
);
1117 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1118 env
->tb_env
= tb_env
;
1119 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1120 if (is_book3s_arch2x(env
)) {
1121 /* All Book3S 64bit CPUs implement level based DEC logic */
1122 tb_env
->flags
|= PPC_DECR_UNDERFLOW_LEVEL
;
1124 /* Create new timer */
1125 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_decr_cb
, cpu
);
1126 if (env
->has_hv_mode
) {
1127 tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_hdecr_cb
,
1130 tb_env
->hdecr_timer
= NULL
;
1132 cpu_ppc_set_tb_clk(env
, freq
);
1134 return &cpu_ppc_set_tb_clk
;
1137 /* Specific helpers for POWER & PowerPC 601 RTC */
1138 void cpu_ppc601_store_rtcu (CPUPPCState
*env
, uint32_t value
)
1140 _cpu_ppc_store_tbu(env
, value
);
1143 uint32_t cpu_ppc601_load_rtcu (CPUPPCState
*env
)
1145 return _cpu_ppc_load_tbu(env
);
1148 void cpu_ppc601_store_rtcl (CPUPPCState
*env
, uint32_t value
)
1150 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
1153 uint32_t cpu_ppc601_load_rtcl (CPUPPCState
*env
)
1155 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1158 /*****************************************************************************/
1159 /* PowerPC 40x timers */
1161 /* PIT, FIT & WDT */
1162 typedef struct ppc40x_timer_t ppc40x_timer_t
;
1163 struct ppc40x_timer_t
{
1164 uint64_t pit_reload
; /* PIT auto-reload value */
1165 uint64_t fit_next
; /* Tick for next FIT interrupt */
1166 QEMUTimer
*fit_timer
;
1167 uint64_t wdt_next
; /* Tick for next WDT interrupt */
1168 QEMUTimer
*wdt_timer
;
1170 /* 405 have the PIT, 440 have a DECR. */
1171 unsigned int decr_excp
;
1174 /* Fixed interval timer */
1175 static void cpu_4xx_fit_cb (void *opaque
)
1180 ppc40x_timer_t
*ppc40x_timer
;
1184 cpu
= env_archcpu(env
);
1185 tb_env
= env
->tb_env
;
1186 ppc40x_timer
= tb_env
->opaque
;
1187 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1188 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
1202 /* Cannot occur, but makes gcc happy */
1205 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->tb_freq
);
1208 timer_mod(ppc40x_timer
->fit_timer
, next
);
1209 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
1210 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1) {
1211 ppc_set_irq(cpu
, PPC_INTERRUPT_FIT
, 1);
1213 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
1214 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
1215 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1218 /* Programmable interval timer */
1219 static void start_stop_pit (CPUPPCState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
1221 ppc40x_timer_t
*ppc40x_timer
;
1224 ppc40x_timer
= tb_env
->opaque
;
1225 if (ppc40x_timer
->pit_reload
<= 1 ||
1226 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
1227 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
1229 LOG_TB("%s: stop PIT\n", __func__
);
1230 timer_del(tb_env
->decr_timer
);
1232 LOG_TB("%s: start PIT %016" PRIx64
"\n",
1233 __func__
, ppc40x_timer
->pit_reload
);
1234 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1235 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
1236 NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1238 next
+= tb_env
->decr_next
- now
;
1241 timer_mod(tb_env
->decr_timer
, next
);
1242 tb_env
->decr_next
= next
;
1246 static void cpu_4xx_pit_cb (void *opaque
)
1251 ppc40x_timer_t
*ppc40x_timer
;
1254 cpu
= env_archcpu(env
);
1255 tb_env
= env
->tb_env
;
1256 ppc40x_timer
= tb_env
->opaque
;
1257 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
1258 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) {
1259 ppc_set_irq(cpu
, ppc40x_timer
->decr_excp
, 1);
1261 start_stop_pit(env
, tb_env
, 1);
1262 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
" "
1263 "%016" PRIx64
"\n", __func__
,
1264 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
1265 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
1266 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
1267 ppc40x_timer
->pit_reload
);
1270 /* Watchdog timer */
1271 static void cpu_4xx_wdt_cb (void *opaque
)
1276 ppc40x_timer_t
*ppc40x_timer
;
1280 cpu
= env_archcpu(env
);
1281 tb_env
= env
->tb_env
;
1282 ppc40x_timer
= tb_env
->opaque
;
1283 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1284 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
1298 /* Cannot occur, but makes gcc happy */
1301 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1304 LOG_TB("%s: TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
1305 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1306 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
1309 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1310 ppc40x_timer
->wdt_next
= next
;
1311 env
->spr
[SPR_40x_TSR
] |= 1U << 31;
1314 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1315 ppc40x_timer
->wdt_next
= next
;
1316 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
1317 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1) {
1318 ppc_set_irq(cpu
, PPC_INTERRUPT_WDT
, 1);
1322 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1323 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1324 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1328 case 0x1: /* Core reset */
1329 ppc40x_core_reset(cpu
);
1331 case 0x2: /* Chip reset */
1332 ppc40x_chip_reset(cpu
);
1334 case 0x3: /* System reset */
1335 ppc40x_system_reset(cpu
);
1341 void store_40x_pit (CPUPPCState
*env
, target_ulong val
)
1344 ppc40x_timer_t
*ppc40x_timer
;
1346 tb_env
= env
->tb_env
;
1347 ppc40x_timer
= tb_env
->opaque
;
1348 LOG_TB("%s val" TARGET_FMT_lx
"\n", __func__
, val
);
1349 ppc40x_timer
->pit_reload
= val
;
1350 start_stop_pit(env
, tb_env
, 0);
1353 target_ulong
load_40x_pit (CPUPPCState
*env
)
1355 return cpu_ppc_load_decr(env
);
1358 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1360 CPUPPCState
*env
= opaque
;
1361 ppc_tb_t
*tb_env
= env
->tb_env
;
1363 LOG_TB("%s set new frequency to %" PRIu32
"\n", __func__
,
1365 tb_env
->tb_freq
= freq
;
1366 tb_env
->decr_freq
= freq
;
1367 /* XXX: we should also update all timers */
1370 clk_setup_cb
ppc_40x_timers_init (CPUPPCState
*env
, uint32_t freq
,
1371 unsigned int decr_excp
)
1374 ppc40x_timer_t
*ppc40x_timer
;
1376 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1377 env
->tb_env
= tb_env
;
1378 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1379 ppc40x_timer
= g_malloc0(sizeof(ppc40x_timer_t
));
1380 tb_env
->tb_freq
= freq
;
1381 tb_env
->decr_freq
= freq
;
1382 tb_env
->opaque
= ppc40x_timer
;
1383 LOG_TB("%s freq %" PRIu32
"\n", __func__
, freq
);
1384 if (ppc40x_timer
!= NULL
) {
1385 /* We use decr timer for PIT */
1386 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_pit_cb
, env
);
1387 ppc40x_timer
->fit_timer
=
1388 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_fit_cb
, env
);
1389 ppc40x_timer
->wdt_timer
=
1390 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_wdt_cb
, env
);
1391 ppc40x_timer
->decr_excp
= decr_excp
;
1394 return &ppc_40x_set_tb_clk
;
1397 /*****************************************************************************/
1398 /* Embedded PowerPC Device Control Registers */
1399 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1401 dcr_read_cb dcr_read
;
1402 dcr_write_cb dcr_write
;
1406 /* XXX: on 460, DCR addresses are 32 bits wide,
1407 * using DCRIPR to get the 22 upper bits of the DCR address
1409 #define DCRN_NB 1024
1411 ppc_dcrn_t dcrn
[DCRN_NB
];
1412 int (*read_error
)(int dcrn
);
1413 int (*write_error
)(int dcrn
);
1416 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1420 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1422 dcr
= &dcr_env
->dcrn
[dcrn
];
1423 if (dcr
->dcr_read
== NULL
)
1425 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1430 if (dcr_env
->read_error
!= NULL
)
1431 return (*dcr_env
->read_error
)(dcrn
);
1436 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1440 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1442 dcr
= &dcr_env
->dcrn
[dcrn
];
1443 if (dcr
->dcr_write
== NULL
)
1445 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1450 if (dcr_env
->write_error
!= NULL
)
1451 return (*dcr_env
->write_error
)(dcrn
);
1456 int ppc_dcr_register (CPUPPCState
*env
, int dcrn
, void *opaque
,
1457 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1462 dcr_env
= env
->dcr_env
;
1463 if (dcr_env
== NULL
)
1465 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1467 dcr
= &dcr_env
->dcrn
[dcrn
];
1468 if (dcr
->opaque
!= NULL
||
1469 dcr
->dcr_read
!= NULL
||
1470 dcr
->dcr_write
!= NULL
)
1472 dcr
->opaque
= opaque
;
1473 dcr
->dcr_read
= dcr_read
;
1474 dcr
->dcr_write
= dcr_write
;
1479 int ppc_dcr_init (CPUPPCState
*env
, int (*read_error
)(int dcrn
),
1480 int (*write_error
)(int dcrn
))
1484 dcr_env
= g_malloc0(sizeof(ppc_dcr_t
));
1485 dcr_env
->read_error
= read_error
;
1486 dcr_env
->write_error
= write_error
;
1487 env
->dcr_env
= dcr_env
;
1492 /*****************************************************************************/
1494 int ppc_cpu_pir(PowerPCCPU
*cpu
)
1496 CPUPPCState
*env
= &cpu
->env
;
1497 return env
->spr_cb
[SPR_PIR
].default_value
;
1500 PowerPCCPU
*ppc_get_vcpu_by_pir(int pir
)
1505 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1507 if (ppc_cpu_pir(cpu
) == pir
) {
1515 void ppc_irq_reset(PowerPCCPU
*cpu
)
1517 CPUPPCState
*env
= &cpu
->env
;
1519 env
->irq_input_state
= 0;
1520 kvmppc_set_interrupt(cpu
, PPC_INTERRUPT_EXT
, 0);