2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
27 #include "qemu-common.h"
30 #include "kvm_s390x.h"
31 #include "sysemu/kvm_int.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "exec/gdbstub.h"
44 #include "exec/ram_addr.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
53 #include "hw/s390x/pv.h"
59 #define DPRINTF(fmt, ...) do { \
61 fprintf(stderr, fmt, ## __VA_ARGS__); \
65 #define kvm_vm_check_mem_attr(s, attr) \
66 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
68 #define IPA0_DIAG 0x8300
69 #define IPA0_SIGP 0xae00
70 #define IPA0_B2 0xb200
71 #define IPA0_B9 0xb900
72 #define IPA0_EB 0xeb00
73 #define IPA0_E3 0xe300
75 #define PRIV_B2_SCLP_CALL 0x20
76 #define PRIV_B2_CSCH 0x30
77 #define PRIV_B2_HSCH 0x31
78 #define PRIV_B2_MSCH 0x32
79 #define PRIV_B2_SSCH 0x33
80 #define PRIV_B2_STSCH 0x34
81 #define PRIV_B2_TSCH 0x35
82 #define PRIV_B2_TPI 0x36
83 #define PRIV_B2_SAL 0x37
84 #define PRIV_B2_RSCH 0x38
85 #define PRIV_B2_STCRW 0x39
86 #define PRIV_B2_STCPS 0x3a
87 #define PRIV_B2_RCHP 0x3b
88 #define PRIV_B2_SCHM 0x3c
89 #define PRIV_B2_CHSC 0x5f
90 #define PRIV_B2_SIGA 0x74
91 #define PRIV_B2_XSCH 0x76
93 #define PRIV_EB_SQBS 0x8a
94 #define PRIV_EB_PCISTB 0xd0
95 #define PRIV_EB_SIC 0xd1
97 #define PRIV_B9_EQBS 0x9c
98 #define PRIV_B9_CLP 0xa0
99 #define PRIV_B9_PCISTG 0xd0
100 #define PRIV_B9_PCILG 0xd2
101 #define PRIV_B9_RPCIT 0xd3
103 #define PRIV_E3_MPCIFC 0xd0
104 #define PRIV_E3_STPCIFC 0xd4
106 #define DIAG_TIMEREVENT 0x288
107 #define DIAG_IPL 0x308
108 #define DIAG_KVM_HYPERCALL 0x500
109 #define DIAG_KVM_BREAKPOINT 0x501
111 #define ICPT_INSTRUCTION 0x04
112 #define ICPT_PROGRAM 0x08
113 #define ICPT_EXT_INT 0x14
114 #define ICPT_WAITPSW 0x1c
115 #define ICPT_SOFT_INTERCEPT 0x24
116 #define ICPT_CPU_STOP 0x28
117 #define ICPT_OPEREXC 0x2c
119 #define ICPT_PV_INSTR 0x68
120 #define ICPT_PV_INSTR_NOTIFICATION 0x6c
122 #define NR_LOCAL_IRQS 32
124 * Needs to be big enough to contain max_cpus emergency signals
125 * and in addition NR_LOCAL_IRQS interrupts
127 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
128 (max_cpus + NR_LOCAL_IRQS))
130 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
131 * as the dirty bitmap must be managed by bitops that take an int as
132 * position indicator. This would end at an unaligned address
133 * (0x7fffff00000). As future variants might provide larger pages
134 * and to make all addresses properly aligned, let us split at 4TB.
136 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
138 static CPUWatchpoint hw_watchpoint
;
140 * We don't use a list because this structure is also used to transmit the
141 * hardware breakpoints to the kernel.
143 static struct kvm_hw_breakpoint
*hw_breakpoints
;
144 static int nb_hw_breakpoints
;
146 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
150 static int cap_sync_regs
;
151 static int cap_async_pf
;
152 static int cap_mem_op
;
153 static int cap_s390_irq
;
156 static int cap_hpage_1m
;
157 static int cap_vcpu_resets
;
158 static int cap_protected
;
160 static int active_cmma
;
162 static void *legacy_s390_alloc(size_t size
, uint64_t *align
, bool shared
);
164 static int kvm_s390_query_mem_limit(uint64_t *memory_limit
)
166 struct kvm_device_attr attr
= {
167 .group
= KVM_S390_VM_MEM_CTRL
,
168 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
169 .addr
= (uint64_t) memory_limit
,
172 return kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
175 int kvm_s390_set_mem_limit(uint64_t new_limit
, uint64_t *hw_limit
)
179 struct kvm_device_attr attr
= {
180 .group
= KVM_S390_VM_MEM_CTRL
,
181 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
182 .addr
= (uint64_t) &new_limit
,
185 if (!kvm_vm_check_mem_attr(kvm_state
, KVM_S390_VM_MEM_LIMIT_SIZE
)) {
189 rc
= kvm_s390_query_mem_limit(hw_limit
);
192 } else if (*hw_limit
< new_limit
) {
196 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
199 int kvm_s390_cmma_active(void)
204 static bool kvm_s390_cmma_available(void)
206 static bool initialized
, value
;
210 value
= kvm_vm_check_mem_attr(kvm_state
, KVM_S390_VM_MEM_ENABLE_CMMA
) &&
211 kvm_vm_check_mem_attr(kvm_state
, KVM_S390_VM_MEM_CLR_CMMA
);
216 void kvm_s390_cmma_reset(void)
219 struct kvm_device_attr attr
= {
220 .group
= KVM_S390_VM_MEM_CTRL
,
221 .attr
= KVM_S390_VM_MEM_CLR_CMMA
,
224 if (!kvm_s390_cmma_active()) {
228 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
229 trace_kvm_clear_cmma(rc
);
232 static void kvm_s390_enable_cmma(void)
235 struct kvm_device_attr attr
= {
236 .group
= KVM_S390_VM_MEM_CTRL
,
237 .attr
= KVM_S390_VM_MEM_ENABLE_CMMA
,
241 warn_report("CMM will not be enabled because it is not "
242 "compatible with huge memory backings.");
245 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
247 trace_kvm_enable_cmma(rc
);
250 static void kvm_s390_set_attr(uint64_t attr
)
252 struct kvm_device_attr attribute
= {
253 .group
= KVM_S390_VM_CRYPTO
,
257 int ret
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attribute
);
260 error_report("Failed to set crypto device attribute %lu: %s",
261 attr
, strerror(-ret
));
265 static void kvm_s390_init_aes_kw(void)
267 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_AES_KW
;
269 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
271 attr
= KVM_S390_VM_CRYPTO_ENABLE_AES_KW
;
274 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
275 kvm_s390_set_attr(attr
);
279 static void kvm_s390_init_dea_kw(void)
281 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_DEA_KW
;
283 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
285 attr
= KVM_S390_VM_CRYPTO_ENABLE_DEA_KW
;
288 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
289 kvm_s390_set_attr(attr
);
293 void kvm_s390_crypto_reset(void)
295 if (s390_has_feat(S390_FEAT_MSA_EXT_3
)) {
296 kvm_s390_init_aes_kw();
297 kvm_s390_init_dea_kw();
301 void kvm_s390_set_max_pagesize(uint64_t pagesize
, Error
**errp
)
303 if (pagesize
== 4 * KiB
) {
307 if (!hpage_1m_allowed()) {
308 error_setg(errp
, "This QEMU machine does not support huge page "
313 if (pagesize
!= 1 * MiB
) {
314 error_setg(errp
, "Memory backing with 2G pages was specified, "
315 "but KVM does not support this memory backing");
319 if (kvm_vm_enable_cap(kvm_state
, KVM_CAP_S390_HPAGE_1M
, 0)) {
320 error_setg(errp
, "Memory backing with 1M pages was specified, "
321 "but KVM does not support this memory backing");
328 int kvm_s390_get_hpage_1m(void)
333 static void ccw_machine_class_foreach(ObjectClass
*oc
, void *opaque
)
335 MachineClass
*mc
= MACHINE_CLASS(oc
);
337 mc
->default_cpu_type
= S390_CPU_TYPE_NAME("host");
340 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
342 object_class_foreach(ccw_machine_class_foreach
, TYPE_S390_CCW_MACHINE
,
345 if (!kvm_check_extension(kvm_state
, KVM_CAP_DEVICE_CTRL
)) {
346 error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
347 "please use kernel 3.15 or newer");
351 cap_sync_regs
= kvm_check_extension(s
, KVM_CAP_SYNC_REGS
);
352 cap_async_pf
= kvm_check_extension(s
, KVM_CAP_ASYNC_PF
);
353 cap_mem_op
= kvm_check_extension(s
, KVM_CAP_S390_MEM_OP
);
354 cap_s390_irq
= kvm_check_extension(s
, KVM_CAP_S390_INJECT_IRQ
);
355 cap_vcpu_resets
= kvm_check_extension(s
, KVM_CAP_S390_VCPU_RESETS
);
356 cap_protected
= kvm_check_extension(s
, KVM_CAP_S390_PROTECTED
);
358 if (!kvm_check_extension(s
, KVM_CAP_S390_GMAP
)
359 || !kvm_check_extension(s
, KVM_CAP_S390_COW
)) {
360 phys_mem_set_alloc(legacy_s390_alloc
);
363 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_SIGP
, 0);
364 kvm_vm_enable_cap(s
, KVM_CAP_S390_VECTOR_REGISTERS
, 0);
365 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_STSI
, 0);
367 if (kvm_vm_enable_cap(s
, KVM_CAP_S390_RI
, 0) == 0) {
371 if (cpu_model_allowed()) {
372 if (kvm_vm_enable_cap(s
, KVM_CAP_S390_GS
, 0) == 0) {
378 * The migration interface for ais was introduced with kernel 4.13
379 * but the capability itself had been active since 4.12. As migration
380 * support is considered necessary, we only try to enable this for
381 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
383 if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
384 kvm_check_extension(s
, KVM_CAP_S390_AIS_MIGRATION
)) {
385 kvm_vm_enable_cap(s
, KVM_CAP_S390_AIS
, 0);
388 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES
);
392 int kvm_arch_irqchip_create(KVMState
*s
)
397 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
399 return cpu
->cpu_index
;
402 int kvm_arch_init_vcpu(CPUState
*cs
)
404 unsigned int max_cpus
= MACHINE(qdev_get_machine())->smp
.max_cpus
;
405 S390CPU
*cpu
= S390_CPU(cs
);
406 kvm_s390_set_cpu_state(cpu
, cpu
->env
.cpu_state
);
407 cpu
->irqstate
= g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus
));
411 int kvm_arch_destroy_vcpu(CPUState
*cs
)
413 S390CPU
*cpu
= S390_CPU(cs
);
415 g_free(cpu
->irqstate
);
416 cpu
->irqstate
= NULL
;
421 static void kvm_s390_reset_vcpu(S390CPU
*cpu
, unsigned long type
)
423 CPUState
*cs
= CPU(cpu
);
426 * The reset call is needed here to reset in-kernel vcpu data that
427 * we can't access directly from QEMU (i.e. with older kernels
428 * which don't support sync_regs/ONE_REG). Before this ioctl
429 * cpu_synchronize_state() is called in common kvm code
432 if (kvm_vcpu_ioctl(cs
, type
)) {
433 error_report("CPU reset failed on CPU %i type %lx",
434 cs
->cpu_index
, type
);
438 void kvm_s390_reset_vcpu_initial(S390CPU
*cpu
)
440 kvm_s390_reset_vcpu(cpu
, KVM_S390_INITIAL_RESET
);
443 void kvm_s390_reset_vcpu_clear(S390CPU
*cpu
)
445 if (cap_vcpu_resets
) {
446 kvm_s390_reset_vcpu(cpu
, KVM_S390_CLEAR_RESET
);
448 kvm_s390_reset_vcpu(cpu
, KVM_S390_INITIAL_RESET
);
452 void kvm_s390_reset_vcpu_normal(S390CPU
*cpu
)
454 if (cap_vcpu_resets
) {
455 kvm_s390_reset_vcpu(cpu
, KVM_S390_NORMAL_RESET
);
459 static int can_sync_regs(CPUState
*cs
, int regs
)
461 return cap_sync_regs
&& (cs
->kvm_run
->kvm_valid_regs
& regs
) == regs
;
464 int kvm_arch_put_registers(CPUState
*cs
, int level
)
466 S390CPU
*cpu
= S390_CPU(cs
);
467 CPUS390XState
*env
= &cpu
->env
;
468 struct kvm_sregs sregs
;
469 struct kvm_regs regs
;
470 struct kvm_fpu fpu
= {};
474 /* always save the PSW and the GPRS*/
475 cs
->kvm_run
->psw_addr
= env
->psw
.addr
;
476 cs
->kvm_run
->psw_mask
= env
->psw
.mask
;
478 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
479 for (i
= 0; i
< 16; i
++) {
480 cs
->kvm_run
->s
.regs
.gprs
[i
] = env
->regs
[i
];
481 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_GPRS
;
484 for (i
= 0; i
< 16; i
++) {
485 regs
.gprs
[i
] = env
->regs
[i
];
487 r
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
493 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
494 for (i
= 0; i
< 32; i
++) {
495 cs
->kvm_run
->s
.regs
.vrs
[i
][0] = env
->vregs
[i
][0];
496 cs
->kvm_run
->s
.regs
.vrs
[i
][1] = env
->vregs
[i
][1];
498 cs
->kvm_run
->s
.regs
.fpc
= env
->fpc
;
499 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_VRS
;
500 } else if (can_sync_regs(cs
, KVM_SYNC_FPRS
)) {
501 for (i
= 0; i
< 16; i
++) {
502 cs
->kvm_run
->s
.regs
.fprs
[i
] = *get_freg(env
, i
);
504 cs
->kvm_run
->s
.regs
.fpc
= env
->fpc
;
505 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_FPRS
;
508 for (i
= 0; i
< 16; i
++) {
509 fpu
.fprs
[i
] = *get_freg(env
, i
);
513 r
= kvm_vcpu_ioctl(cs
, KVM_SET_FPU
, &fpu
);
519 /* Do we need to save more than that? */
520 if (level
== KVM_PUT_RUNTIME_STATE
) {
524 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
525 cs
->kvm_run
->s
.regs
.cputm
= env
->cputm
;
526 cs
->kvm_run
->s
.regs
.ckc
= env
->ckc
;
527 cs
->kvm_run
->s
.regs
.todpr
= env
->todpr
;
528 cs
->kvm_run
->s
.regs
.gbea
= env
->gbea
;
529 cs
->kvm_run
->s
.regs
.pp
= env
->pp
;
530 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ARCH0
;
533 * These ONE_REGS are not protected by a capability. As they are only
534 * necessary for migration we just trace a possible error, but don't
535 * return with an error return code.
537 kvm_set_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
538 kvm_set_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
539 kvm_set_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
540 kvm_set_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
541 kvm_set_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
544 if (can_sync_regs(cs
, KVM_SYNC_RICCB
)) {
545 memcpy(cs
->kvm_run
->s
.regs
.riccb
, env
->riccb
, 64);
546 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_RICCB
;
549 /* pfault parameters */
550 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
551 cs
->kvm_run
->s
.regs
.pft
= env
->pfault_token
;
552 cs
->kvm_run
->s
.regs
.pfs
= env
->pfault_select
;
553 cs
->kvm_run
->s
.regs
.pfc
= env
->pfault_compare
;
554 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PFAULT
;
555 } else if (cap_async_pf
) {
556 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
560 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
564 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
570 /* access registers and control registers*/
571 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
572 for (i
= 0; i
< 16; i
++) {
573 cs
->kvm_run
->s
.regs
.acrs
[i
] = env
->aregs
[i
];
574 cs
->kvm_run
->s
.regs
.crs
[i
] = env
->cregs
[i
];
576 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ACRS
;
577 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_CRS
;
579 for (i
= 0; i
< 16; i
++) {
580 sregs
.acrs
[i
] = env
->aregs
[i
];
581 sregs
.crs
[i
] = env
->cregs
[i
];
583 r
= kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
589 if (can_sync_regs(cs
, KVM_SYNC_GSCB
)) {
590 memcpy(cs
->kvm_run
->s
.regs
.gscb
, env
->gscb
, 32);
591 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_GSCB
;
594 if (can_sync_regs(cs
, KVM_SYNC_BPBC
)) {
595 cs
->kvm_run
->s
.regs
.bpbc
= env
->bpbc
;
596 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_BPBC
;
599 if (can_sync_regs(cs
, KVM_SYNC_ETOKEN
)) {
600 cs
->kvm_run
->s
.regs
.etoken
= env
->etoken
;
601 cs
->kvm_run
->s
.regs
.etoken_extension
= env
->etoken_extension
;
602 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ETOKEN
;
605 /* Finally the prefix */
606 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
607 cs
->kvm_run
->s
.regs
.prefix
= env
->psa
;
608 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PREFIX
;
610 /* prefix is only supported via sync regs */
615 int kvm_arch_get_registers(CPUState
*cs
)
617 S390CPU
*cpu
= S390_CPU(cs
);
618 CPUS390XState
*env
= &cpu
->env
;
619 struct kvm_sregs sregs
;
620 struct kvm_regs regs
;
625 env
->psw
.addr
= cs
->kvm_run
->psw_addr
;
626 env
->psw
.mask
= cs
->kvm_run
->psw_mask
;
629 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
630 for (i
= 0; i
< 16; i
++) {
631 env
->regs
[i
] = cs
->kvm_run
->s
.regs
.gprs
[i
];
634 r
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
638 for (i
= 0; i
< 16; i
++) {
639 env
->regs
[i
] = regs
.gprs
[i
];
643 /* The ACRS and CRS */
644 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
645 for (i
= 0; i
< 16; i
++) {
646 env
->aregs
[i
] = cs
->kvm_run
->s
.regs
.acrs
[i
];
647 env
->cregs
[i
] = cs
->kvm_run
->s
.regs
.crs
[i
];
650 r
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
654 for (i
= 0; i
< 16; i
++) {
655 env
->aregs
[i
] = sregs
.acrs
[i
];
656 env
->cregs
[i
] = sregs
.crs
[i
];
660 /* Floating point and vector registers */
661 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
662 for (i
= 0; i
< 32; i
++) {
663 env
->vregs
[i
][0] = cs
->kvm_run
->s
.regs
.vrs
[i
][0];
664 env
->vregs
[i
][1] = cs
->kvm_run
->s
.regs
.vrs
[i
][1];
666 env
->fpc
= cs
->kvm_run
->s
.regs
.fpc
;
667 } else if (can_sync_regs(cs
, KVM_SYNC_FPRS
)) {
668 for (i
= 0; i
< 16; i
++) {
669 *get_freg(env
, i
) = cs
->kvm_run
->s
.regs
.fprs
[i
];
671 env
->fpc
= cs
->kvm_run
->s
.regs
.fpc
;
673 r
= kvm_vcpu_ioctl(cs
, KVM_GET_FPU
, &fpu
);
677 for (i
= 0; i
< 16; i
++) {
678 *get_freg(env
, i
) = fpu
.fprs
[i
];
684 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
685 env
->psa
= cs
->kvm_run
->s
.regs
.prefix
;
688 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
689 env
->cputm
= cs
->kvm_run
->s
.regs
.cputm
;
690 env
->ckc
= cs
->kvm_run
->s
.regs
.ckc
;
691 env
->todpr
= cs
->kvm_run
->s
.regs
.todpr
;
692 env
->gbea
= cs
->kvm_run
->s
.regs
.gbea
;
693 env
->pp
= cs
->kvm_run
->s
.regs
.pp
;
696 * These ONE_REGS are not protected by a capability. As they are only
697 * necessary for migration we just trace a possible error, but don't
698 * return with an error return code.
700 kvm_get_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
701 kvm_get_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
702 kvm_get_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
703 kvm_get_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
704 kvm_get_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
707 if (can_sync_regs(cs
, KVM_SYNC_RICCB
)) {
708 memcpy(env
->riccb
, cs
->kvm_run
->s
.regs
.riccb
, 64);
711 if (can_sync_regs(cs
, KVM_SYNC_GSCB
)) {
712 memcpy(env
->gscb
, cs
->kvm_run
->s
.regs
.gscb
, 32);
715 if (can_sync_regs(cs
, KVM_SYNC_BPBC
)) {
716 env
->bpbc
= cs
->kvm_run
->s
.regs
.bpbc
;
719 if (can_sync_regs(cs
, KVM_SYNC_ETOKEN
)) {
720 env
->etoken
= cs
->kvm_run
->s
.regs
.etoken
;
721 env
->etoken_extension
= cs
->kvm_run
->s
.regs
.etoken_extension
;
724 /* pfault parameters */
725 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
726 env
->pfault_token
= cs
->kvm_run
->s
.regs
.pft
;
727 env
->pfault_select
= cs
->kvm_run
->s
.regs
.pfs
;
728 env
->pfault_compare
= cs
->kvm_run
->s
.regs
.pfc
;
729 } else if (cap_async_pf
) {
730 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
734 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
738 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
747 int kvm_s390_get_clock(uint8_t *tod_high
, uint64_t *tod_low
)
750 struct kvm_device_attr attr
= {
751 .group
= KVM_S390_VM_TOD
,
752 .attr
= KVM_S390_VM_TOD_LOW
,
753 .addr
= (uint64_t)tod_low
,
756 r
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
761 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
762 attr
.addr
= (uint64_t)tod_high
;
763 return kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
766 int kvm_s390_get_clock_ext(uint8_t *tod_high
, uint64_t *tod_low
)
769 struct kvm_s390_vm_tod_clock gtod
;
770 struct kvm_device_attr attr
= {
771 .group
= KVM_S390_VM_TOD
,
772 .attr
= KVM_S390_VM_TOD_EXT
,
773 .addr
= (uint64_t)>od
,
776 r
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
777 *tod_high
= gtod
.epoch_idx
;
783 int kvm_s390_set_clock(uint8_t tod_high
, uint64_t tod_low
)
786 struct kvm_device_attr attr
= {
787 .group
= KVM_S390_VM_TOD
,
788 .attr
= KVM_S390_VM_TOD_LOW
,
789 .addr
= (uint64_t)&tod_low
,
792 r
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
797 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
798 attr
.addr
= (uint64_t)&tod_high
;
799 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
802 int kvm_s390_set_clock_ext(uint8_t tod_high
, uint64_t tod_low
)
804 struct kvm_s390_vm_tod_clock gtod
= {
805 .epoch_idx
= tod_high
,
808 struct kvm_device_attr attr
= {
809 .group
= KVM_S390_VM_TOD
,
810 .attr
= KVM_S390_VM_TOD_EXT
,
811 .addr
= (uint64_t)>od
,
814 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
819 * @addr: the logical start address in guest memory
820 * @ar: the access register number
821 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
822 * @len: length that should be transferred
823 * @is_write: true = write, false = read
824 * Returns: 0 on success, non-zero if an exception or error occurred
826 * Use KVM ioctl to read/write from/to guest memory. An access exception
827 * is injected into the vCPU in case of translation errors.
829 int kvm_s390_mem_op(S390CPU
*cpu
, vaddr addr
, uint8_t ar
, void *hostbuf
,
830 int len
, bool is_write
)
832 struct kvm_s390_mem_op mem_op
= {
834 .flags
= KVM_S390_MEMOP_F_INJECT_EXCEPTION
,
836 .op
= is_write
? KVM_S390_MEMOP_LOGICAL_WRITE
837 : KVM_S390_MEMOP_LOGICAL_READ
,
838 .buf
= (uint64_t)hostbuf
,
847 mem_op
.flags
|= KVM_S390_MEMOP_F_CHECK_ONLY
;
850 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_S390_MEM_OP
, &mem_op
);
852 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret
));
857 int kvm_s390_mem_op_pv(S390CPU
*cpu
, uint64_t offset
, void *hostbuf
,
858 int len
, bool is_write
)
860 struct kvm_s390_mem_op mem_op
= {
861 .sida_offset
= offset
,
863 .op
= is_write
? KVM_S390_MEMOP_SIDA_WRITE
864 : KVM_S390_MEMOP_SIDA_READ
,
865 .buf
= (uint64_t)hostbuf
,
869 if (!cap_mem_op
|| !cap_protected
) {
873 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_S390_MEM_OP
, &mem_op
);
875 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret
));
882 * Legacy layout for s390:
883 * Older S390 KVM requires the topmost vma of the RAM to be
884 * smaller than an system defined value, which is at least 256GB.
885 * Larger systems have larger values. We put the guest between
886 * the end of data segment (system break) and this value. We
887 * use 32GB as a base to have enough room for the system break
888 * to grow. We also have to use MAP parameters that avoid
889 * read-only mapping of guest pages.
891 static void *legacy_s390_alloc(size_t size
, uint64_t *align
, bool shared
)
896 /* we only support one allocation, which is enough for initial ram */
900 mem
= mmap((void *) 0x800000000ULL
, size
,
901 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
902 MAP_SHARED
| MAP_ANONYMOUS
| MAP_FIXED
, -1, 0);
903 if (mem
== MAP_FAILED
) {
907 *align
= QEMU_VMALLOC_ALIGN
;
912 static uint8_t const *sw_bp_inst
;
913 static uint8_t sw_bp_ilen
;
915 static void determine_sw_breakpoint_instr(void)
917 /* DIAG 501 is used for sw breakpoints with old kernels */
918 static const uint8_t diag_501
[] = {0x83, 0x24, 0x05, 0x01};
919 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
920 static const uint8_t instr_0x0000
[] = {0x00, 0x00};
925 if (kvm_vm_enable_cap(kvm_state
, KVM_CAP_S390_USER_INSTR0
, 0)) {
926 sw_bp_inst
= diag_501
;
927 sw_bp_ilen
= sizeof(diag_501
);
928 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
930 sw_bp_inst
= instr_0x0000
;
931 sw_bp_ilen
= sizeof(instr_0x0000
);
932 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
936 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
938 determine_sw_breakpoint_instr();
940 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
942 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)sw_bp_inst
, sw_bp_ilen
, 1)) {
948 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
952 if (cpu_memory_rw_debug(cs
, bp
->pc
, t
, sw_bp_ilen
, 0)) {
954 } else if (memcmp(t
, sw_bp_inst
, sw_bp_ilen
)) {
956 } else if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
964 static struct kvm_hw_breakpoint
*find_hw_breakpoint(target_ulong addr
,
969 for (n
= 0; n
< nb_hw_breakpoints
; n
++) {
970 if (hw_breakpoints
[n
].addr
== addr
&& hw_breakpoints
[n
].type
== type
&&
971 (hw_breakpoints
[n
].len
== len
|| len
== -1)) {
972 return &hw_breakpoints
[n
];
979 static int insert_hw_breakpoint(target_ulong addr
, int len
, int type
)
983 if (find_hw_breakpoint(addr
, len
, type
)) {
987 size
= (nb_hw_breakpoints
+ 1) * sizeof(struct kvm_hw_breakpoint
);
989 if (!hw_breakpoints
) {
990 nb_hw_breakpoints
= 0;
991 hw_breakpoints
= (struct kvm_hw_breakpoint
*)g_try_malloc(size
);
994 (struct kvm_hw_breakpoint
*)g_try_realloc(hw_breakpoints
, size
);
997 if (!hw_breakpoints
) {
998 nb_hw_breakpoints
= 0;
1002 hw_breakpoints
[nb_hw_breakpoints
].addr
= addr
;
1003 hw_breakpoints
[nb_hw_breakpoints
].len
= len
;
1004 hw_breakpoints
[nb_hw_breakpoints
].type
= type
;
1006 nb_hw_breakpoints
++;
1011 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
1012 target_ulong len
, int type
)
1015 case GDB_BREAKPOINT_HW
:
1018 case GDB_WATCHPOINT_WRITE
:
1022 type
= KVM_HW_WP_WRITE
;
1027 return insert_hw_breakpoint(addr
, len
, type
);
1030 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
1031 target_ulong len
, int type
)
1034 struct kvm_hw_breakpoint
*bp
= find_hw_breakpoint(addr
, len
, type
);
1040 nb_hw_breakpoints
--;
1041 if (nb_hw_breakpoints
> 0) {
1043 * In order to trim the array, move the last element to the position to
1044 * be removed - if necessary.
1046 if (bp
!= &hw_breakpoints
[nb_hw_breakpoints
]) {
1047 *bp
= hw_breakpoints
[nb_hw_breakpoints
];
1049 size
= nb_hw_breakpoints
* sizeof(struct kvm_hw_breakpoint
);
1051 (struct kvm_hw_breakpoint
*)g_realloc(hw_breakpoints
, size
);
1053 g_free(hw_breakpoints
);
1054 hw_breakpoints
= NULL
;
1060 void kvm_arch_remove_all_hw_breakpoints(void)
1062 nb_hw_breakpoints
= 0;
1063 g_free(hw_breakpoints
);
1064 hw_breakpoints
= NULL
;
1067 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
1071 if (nb_hw_breakpoints
> 0) {
1072 dbg
->arch
.nr_hw_bp
= nb_hw_breakpoints
;
1073 dbg
->arch
.hw_bp
= hw_breakpoints
;
1075 for (i
= 0; i
< nb_hw_breakpoints
; ++i
) {
1076 hw_breakpoints
[i
].phys_addr
= s390_cpu_get_phys_addr_debug(cpu
,
1077 hw_breakpoints
[i
].addr
);
1079 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
1081 dbg
->arch
.nr_hw_bp
= 0;
1082 dbg
->arch
.hw_bp
= NULL
;
1086 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
1090 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
1092 return MEMTXATTRS_UNSPECIFIED
;
1095 int kvm_arch_process_async_events(CPUState
*cs
)
1100 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq
*irq
,
1101 struct kvm_s390_interrupt
*interrupt
)
1105 interrupt
->type
= irq
->type
;
1106 switch (irq
->type
) {
1107 case KVM_S390_INT_VIRTIO
:
1108 interrupt
->parm
= irq
->u
.ext
.ext_params
;
1110 case KVM_S390_INT_PFAULT_INIT
:
1111 case KVM_S390_INT_PFAULT_DONE
:
1112 interrupt
->parm64
= irq
->u
.ext
.ext_params2
;
1114 case KVM_S390_PROGRAM_INT
:
1115 interrupt
->parm
= irq
->u
.pgm
.code
;
1117 case KVM_S390_SIGP_SET_PREFIX
:
1118 interrupt
->parm
= irq
->u
.prefix
.address
;
1120 case KVM_S390_INT_SERVICE
:
1121 interrupt
->parm
= irq
->u
.ext
.ext_params
;
1124 interrupt
->parm
= irq
->u
.mchk
.cr14
;
1125 interrupt
->parm64
= irq
->u
.mchk
.mcic
;
1127 case KVM_S390_INT_EXTERNAL_CALL
:
1128 interrupt
->parm
= irq
->u
.extcall
.code
;
1130 case KVM_S390_INT_EMERGENCY
:
1131 interrupt
->parm
= irq
->u
.emerg
.code
;
1133 case KVM_S390_SIGP_STOP
:
1134 case KVM_S390_RESTART
:
1135 break; /* These types have no parameters */
1136 case KVM_S390_INT_IO_MIN
...KVM_S390_INT_IO_MAX
:
1137 interrupt
->parm
= irq
->u
.io
.subchannel_id
<< 16;
1138 interrupt
->parm
|= irq
->u
.io
.subchannel_nr
;
1139 interrupt
->parm64
= (uint64_t)irq
->u
.io
.io_int_parm
<< 32;
1140 interrupt
->parm64
|= irq
->u
.io
.io_int_word
;
1149 static void inject_vcpu_irq_legacy(CPUState
*cs
, struct kvm_s390_irq
*irq
)
1151 struct kvm_s390_interrupt kvmint
= {};
1154 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
1156 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
1160 r
= kvm_vcpu_ioctl(cs
, KVM_S390_INTERRUPT
, &kvmint
);
1162 fprintf(stderr
, "KVM failed to inject interrupt\n");
1167 void kvm_s390_vcpu_interrupt(S390CPU
*cpu
, struct kvm_s390_irq
*irq
)
1169 CPUState
*cs
= CPU(cpu
);
1173 r
= kvm_vcpu_ioctl(cs
, KVM_S390_IRQ
, irq
);
1177 error_report("KVM failed to inject interrupt %llx", irq
->type
);
1181 inject_vcpu_irq_legacy(cs
, irq
);
1184 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq
*irq
)
1186 struct kvm_s390_interrupt kvmint
= {};
1189 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
1191 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
1195 r
= kvm_vm_ioctl(kvm_state
, KVM_S390_INTERRUPT
, &kvmint
);
1197 fprintf(stderr
, "KVM failed to inject interrupt\n");
1202 void kvm_s390_program_interrupt(S390CPU
*cpu
, uint16_t code
)
1204 struct kvm_s390_irq irq
= {
1205 .type
= KVM_S390_PROGRAM_INT
,
1208 qemu_log_mask(CPU_LOG_INT
, "program interrupt at %#" PRIx64
"\n",
1210 kvm_s390_vcpu_interrupt(cpu
, &irq
);
1213 void kvm_s390_access_exception(S390CPU
*cpu
, uint16_t code
, uint64_t te_code
)
1215 struct kvm_s390_irq irq
= {
1216 .type
= KVM_S390_PROGRAM_INT
,
1218 .u
.pgm
.trans_exc_code
= te_code
,
1219 .u
.pgm
.exc_access_id
= te_code
& 3,
1222 kvm_s390_vcpu_interrupt(cpu
, &irq
);
1225 static void kvm_sclp_service_call(S390CPU
*cpu
, struct kvm_run
*run
,
1228 CPUS390XState
*env
= &cpu
->env
;
1233 sccb
= env
->regs
[ipbh0
& 0xf];
1234 code
= env
->regs
[(ipbh0
& 0xf0) >> 4];
1236 switch (run
->s390_sieic
.icptcode
) {
1237 case ICPT_PV_INSTR_NOTIFICATION
:
1238 g_assert(s390_is_pv());
1239 /* The notification intercepts are currently handled by KVM */
1240 error_report("unexpected SCLP PV notification");
1244 g_assert(s390_is_pv());
1245 sclp_service_call_protected(env
, sccb
, code
);
1246 /* Setting the CC is done by the Ultravisor. */
1248 case ICPT_INSTRUCTION
:
1249 g_assert(!s390_is_pv());
1250 r
= sclp_service_call(env
, sccb
, code
);
1252 kvm_s390_program_interrupt(cpu
, -r
);
1259 static int handle_b2(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1261 CPUS390XState
*env
= &cpu
->env
;
1263 uint16_t ipbh0
= (run
->s390_sieic
.ipb
& 0xffff0000) >> 16;
1267 ioinst_handle_xsch(cpu
, env
->regs
[1], RA_IGNORED
);
1270 ioinst_handle_csch(cpu
, env
->regs
[1], RA_IGNORED
);
1273 ioinst_handle_hsch(cpu
, env
->regs
[1], RA_IGNORED
);
1276 ioinst_handle_msch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
, RA_IGNORED
);
1279 ioinst_handle_ssch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
, RA_IGNORED
);
1282 ioinst_handle_stcrw(cpu
, run
->s390_sieic
.ipb
, RA_IGNORED
);
1285 ioinst_handle_stsch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
, RA_IGNORED
);
1288 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1289 fprintf(stderr
, "Spurious tsch intercept\n");
1292 ioinst_handle_chsc(cpu
, run
->s390_sieic
.ipb
, RA_IGNORED
);
1295 /* This should have been handled by kvm already. */
1296 fprintf(stderr
, "Spurious tpi intercept\n");
1299 ioinst_handle_schm(cpu
, env
->regs
[1], env
->regs
[2],
1300 run
->s390_sieic
.ipb
, RA_IGNORED
);
1303 ioinst_handle_rsch(cpu
, env
->regs
[1], RA_IGNORED
);
1306 ioinst_handle_rchp(cpu
, env
->regs
[1], RA_IGNORED
);
1309 /* We do not provide this instruction, it is suppressed. */
1312 ioinst_handle_sal(cpu
, env
->regs
[1], RA_IGNORED
);
1315 /* Not provided, set CC = 3 for subchannel not operational */
1318 case PRIV_B2_SCLP_CALL
:
1319 kvm_sclp_service_call(cpu
, run
, ipbh0
);
1323 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1
);
1330 static uint64_t get_base_disp_rxy(S390CPU
*cpu
, struct kvm_run
*run
,
1333 CPUS390XState
*env
= &cpu
->env
;
1334 uint32_t x2
= (run
->s390_sieic
.ipa
& 0x000f);
1335 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1336 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1337 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1339 if (disp2
& 0x80000) {
1340 disp2
+= 0xfff00000;
1346 return (base2
? env
->regs
[base2
] : 0) +
1347 (x2
? env
->regs
[x2
] : 0) + (long)(int)disp2
;
1350 static uint64_t get_base_disp_rsy(S390CPU
*cpu
, struct kvm_run
*run
,
1353 CPUS390XState
*env
= &cpu
->env
;
1354 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1355 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1356 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1358 if (disp2
& 0x80000) {
1359 disp2
+= 0xfff00000;
1365 return (base2
? env
->regs
[base2
] : 0) + (long)(int)disp2
;
1368 static int kvm_clp_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1370 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1372 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1373 return clp_service_call(cpu
, r2
, RA_IGNORED
);
1379 static int kvm_pcilg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1381 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1382 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1384 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1385 return pcilg_service_call(cpu
, r1
, r2
, RA_IGNORED
);
1391 static int kvm_pcistg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1393 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1394 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1396 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1397 return pcistg_service_call(cpu
, r1
, r2
, RA_IGNORED
);
1403 static int kvm_stpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1405 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1409 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1410 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1412 return stpcifc_service_call(cpu
, r1
, fiba
, ar
, RA_IGNORED
);
1418 static int kvm_sic_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1420 CPUS390XState
*env
= &cpu
->env
;
1421 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1422 uint8_t r3
= run
->s390_sieic
.ipa
& 0x000f;
1427 mode
= env
->regs
[r1
] & 0xffff;
1428 isc
= (env
->regs
[r3
] >> 27) & 0x7;
1429 r
= css_do_sic(env
, isc
, mode
);
1431 kvm_s390_program_interrupt(cpu
, -r
);
1437 static int kvm_rpcit_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1439 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1440 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1442 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1443 return rpcit_service_call(cpu
, r1
, r2
, RA_IGNORED
);
1449 static int kvm_pcistb_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1451 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1452 uint8_t r3
= run
->s390_sieic
.ipa
& 0x000f;
1456 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1457 gaddr
= get_base_disp_rsy(cpu
, run
, &ar
);
1459 return pcistb_service_call(cpu
, r1
, r3
, gaddr
, ar
, RA_IGNORED
);
1465 static int kvm_mpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1467 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1471 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1472 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1474 return mpcifc_service_call(cpu
, r1
, fiba
, ar
, RA_IGNORED
);
1480 static int handle_b9(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1486 r
= kvm_clp_service_call(cpu
, run
);
1488 case PRIV_B9_PCISTG
:
1489 r
= kvm_pcistg_service_call(cpu
, run
);
1492 r
= kvm_pcilg_service_call(cpu
, run
);
1495 r
= kvm_rpcit_service_call(cpu
, run
);
1498 /* just inject exception */
1503 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1
);
1510 static int handle_eb(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1515 case PRIV_EB_PCISTB
:
1516 r
= kvm_pcistb_service_call(cpu
, run
);
1519 r
= kvm_sic_service_call(cpu
, run
);
1522 /* just inject exception */
1527 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl
);
1534 static int handle_e3(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1539 case PRIV_E3_MPCIFC
:
1540 r
= kvm_mpcifc_service_call(cpu
, run
);
1542 case PRIV_E3_STPCIFC
:
1543 r
= kvm_stpcifc_service_call(cpu
, run
);
1547 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl
);
1554 static int handle_hypercall(S390CPU
*cpu
, struct kvm_run
*run
)
1556 CPUS390XState
*env
= &cpu
->env
;
1559 ret
= s390_virtio_hypercall(env
);
1560 if (ret
== -EINVAL
) {
1561 kvm_s390_program_interrupt(cpu
, PGM_SPECIFICATION
);
1568 static void kvm_handle_diag_288(S390CPU
*cpu
, struct kvm_run
*run
)
1573 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1574 r3
= run
->s390_sieic
.ipa
& 0x000f;
1575 rc
= handle_diag_288(&cpu
->env
, r1
, r3
);
1577 kvm_s390_program_interrupt(cpu
, PGM_SPECIFICATION
);
1581 static void kvm_handle_diag_308(S390CPU
*cpu
, struct kvm_run
*run
)
1585 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1586 r3
= run
->s390_sieic
.ipa
& 0x000f;
1587 handle_diag_308(&cpu
->env
, r1
, r3
, RA_IGNORED
);
1590 static int handle_sw_breakpoint(S390CPU
*cpu
, struct kvm_run
*run
)
1592 CPUS390XState
*env
= &cpu
->env
;
1595 pc
= env
->psw
.addr
- sw_bp_ilen
;
1596 if (kvm_find_sw_breakpoint(CPU(cpu
), pc
)) {
1604 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1606 static int handle_diag(S390CPU
*cpu
, struct kvm_run
*run
, uint32_t ipb
)
1612 * For any diagnose call we support, bits 48-63 of the resulting
1613 * address specify the function code; the remainder is ignored.
1615 func_code
= decode_basedisp_rs(&cpu
->env
, ipb
, NULL
) & DIAG_KVM_CODE_MASK
;
1616 switch (func_code
) {
1617 case DIAG_TIMEREVENT
:
1618 kvm_handle_diag_288(cpu
, run
);
1621 kvm_handle_diag_308(cpu
, run
);
1623 case DIAG_KVM_HYPERCALL
:
1624 r
= handle_hypercall(cpu
, run
);
1626 case DIAG_KVM_BREAKPOINT
:
1627 r
= handle_sw_breakpoint(cpu
, run
);
1630 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code
);
1631 kvm_s390_program_interrupt(cpu
, PGM_SPECIFICATION
);
1638 static int kvm_s390_handle_sigp(S390CPU
*cpu
, uint8_t ipa1
, uint32_t ipb
)
1640 CPUS390XState
*env
= &cpu
->env
;
1641 const uint8_t r1
= ipa1
>> 4;
1642 const uint8_t r3
= ipa1
& 0x0f;
1646 /* get order code */
1647 order
= decode_basedisp_rs(env
, ipb
, NULL
) & SIGP_ORDER_MASK
;
1649 ret
= handle_sigp(env
, order
, r1
, r3
);
1654 static int handle_instruction(S390CPU
*cpu
, struct kvm_run
*run
)
1656 unsigned int ipa0
= (run
->s390_sieic
.ipa
& 0xff00);
1657 uint8_t ipa1
= run
->s390_sieic
.ipa
& 0x00ff;
1660 DPRINTF("handle_instruction 0x%x 0x%x\n",
1661 run
->s390_sieic
.ipa
, run
->s390_sieic
.ipb
);
1664 r
= handle_b2(cpu
, run
, ipa1
);
1667 r
= handle_b9(cpu
, run
, ipa1
);
1670 r
= handle_eb(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1673 r
= handle_e3(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1676 r
= handle_diag(cpu
, run
, run
->s390_sieic
.ipb
);
1679 r
= kvm_s390_handle_sigp(cpu
, ipa1
, run
->s390_sieic
.ipb
);
1685 kvm_s390_program_interrupt(cpu
, PGM_OPERATION
);
1691 static void unmanageable_intercept(S390CPU
*cpu
, S390CrashReason reason
,
1694 CPUState
*cs
= CPU(cpu
);
1697 cpu
->env
.crash_reason
= reason
;
1698 qemu_system_guest_panicked(cpu_get_crash_info(cs
));
1701 /* try to detect pgm check loops */
1702 static int handle_oper_loop(S390CPU
*cpu
, struct kvm_run
*run
)
1704 CPUState
*cs
= CPU(cpu
);
1707 newpsw
.mask
= ldq_phys(cs
->as
, cpu
->env
.psa
+
1708 offsetof(LowCore
, program_new_psw
));
1709 newpsw
.addr
= ldq_phys(cs
->as
, cpu
->env
.psa
+
1710 offsetof(LowCore
, program_new_psw
) + 8);
1711 oldpsw
.mask
= run
->psw_mask
;
1712 oldpsw
.addr
= run
->psw_addr
;
1714 * Avoid endless loops of operation exceptions, if the pgm new
1715 * PSW will cause a new operation exception.
1716 * The heuristic checks if the pgm new psw is within 6 bytes before
1717 * the faulting psw address (with same DAT, AS settings) and the
1718 * new psw is not a wait psw and the fault was not triggered by
1719 * problem state. In that case go into crashed state.
1722 if (oldpsw
.addr
- newpsw
.addr
<= 6 &&
1723 !(newpsw
.mask
& PSW_MASK_WAIT
) &&
1724 !(oldpsw
.mask
& PSW_MASK_PSTATE
) &&
1725 (newpsw
.mask
& PSW_MASK_ASC
) == (oldpsw
.mask
& PSW_MASK_ASC
) &&
1726 (newpsw
.mask
& PSW_MASK_DAT
) == (oldpsw
.mask
& PSW_MASK_DAT
)) {
1727 unmanageable_intercept(cpu
, S390_CRASH_REASON_OPINT_LOOP
,
1728 offsetof(LowCore
, program_new_psw
));
1734 static int handle_intercept(S390CPU
*cpu
)
1736 CPUState
*cs
= CPU(cpu
);
1737 struct kvm_run
*run
= cs
->kvm_run
;
1738 int icpt_code
= run
->s390_sieic
.icptcode
;
1741 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code
,
1742 (long)cs
->kvm_run
->psw_addr
);
1743 switch (icpt_code
) {
1744 case ICPT_INSTRUCTION
:
1746 case ICPT_PV_INSTR_NOTIFICATION
:
1747 r
= handle_instruction(cpu
, run
);
1750 unmanageable_intercept(cpu
, S390_CRASH_REASON_PGMINT_LOOP
,
1751 offsetof(LowCore
, program_new_psw
));
1755 unmanageable_intercept(cpu
, S390_CRASH_REASON_EXTINT_LOOP
,
1756 offsetof(LowCore
, external_new_psw
));
1760 /* disabled wait, since enabled wait is handled in kernel */
1761 s390_handle_wait(cpu
);
1765 do_stop_interrupt(&cpu
->env
);
1769 /* check for break points */
1770 r
= handle_sw_breakpoint(cpu
, run
);
1772 /* Then check for potential pgm check loops */
1773 r
= handle_oper_loop(cpu
, run
);
1775 kvm_s390_program_interrupt(cpu
, PGM_OPERATION
);
1779 case ICPT_SOFT_INTERCEPT
:
1780 fprintf(stderr
, "KVM unimplemented icpt SOFT\n");
1784 fprintf(stderr
, "KVM unimplemented icpt IO\n");
1788 fprintf(stderr
, "Unknown intercept code: %d\n", icpt_code
);
1796 static int handle_tsch(S390CPU
*cpu
)
1798 CPUState
*cs
= CPU(cpu
);
1799 struct kvm_run
*run
= cs
->kvm_run
;
1802 ret
= ioinst_handle_tsch(cpu
, cpu
->env
.regs
[1], run
->s390_tsch
.ipb
,
1807 * If an I/O interrupt had been dequeued, we have to reinject it.
1809 if (run
->s390_tsch
.dequeued
) {
1810 s390_io_interrupt(run
->s390_tsch
.subchannel_id
,
1811 run
->s390_tsch
.subchannel_nr
,
1812 run
->s390_tsch
.io_int_parm
,
1813 run
->s390_tsch
.io_int_word
);
1820 static void insert_stsi_3_2_2(S390CPU
*cpu
, __u64 addr
, uint8_t ar
)
1822 const MachineState
*ms
= MACHINE(qdev_get_machine());
1823 uint16_t conf_cpus
= 0, reserved_cpus
= 0;
1828 s390_cpu_pv_mem_read(cpu
, 0, &sysib
, sizeof(sysib
));
1829 } else if (s390_cpu_virt_mem_read(cpu
, addr
, ar
, &sysib
, sizeof(sysib
))) {
1832 /* Shift the stack of Extended Names to prepare for our own data */
1833 memmove(&sysib
.ext_names
[1], &sysib
.ext_names
[0],
1834 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- 1));
1835 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1836 * assumed it's not capable of managing Extended Names for lower levels.
1838 for (del
= 1; del
< sysib
.count
; del
++) {
1839 if (!sysib
.vm
[del
].ext_name_encoding
|| !sysib
.ext_names
[del
][0]) {
1843 if (del
< sysib
.count
) {
1844 memset(sysib
.ext_names
[del
], 0,
1845 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- del
));
1848 /* count the cpus and split them into configured and reserved ones */
1849 for (i
= 0; i
< ms
->possible_cpus
->len
; i
++) {
1850 if (ms
->possible_cpus
->cpus
[i
].cpu
) {
1856 sysib
.vm
[0].total_cpus
= conf_cpus
+ reserved_cpus
;
1857 sysib
.vm
[0].conf_cpus
= conf_cpus
;
1858 sysib
.vm
[0].reserved_cpus
= reserved_cpus
;
1860 /* Insert short machine name in EBCDIC, padded with blanks */
1862 memset(sysib
.vm
[0].name
, 0x40, sizeof(sysib
.vm
[0].name
));
1863 ebcdic_put(sysib
.vm
[0].name
, qemu_name
, MIN(sizeof(sysib
.vm
[0].name
),
1864 strlen(qemu_name
)));
1866 sysib
.vm
[0].ext_name_encoding
= 2; /* 2 = UTF-8 */
1867 memset(sysib
.ext_names
[0], 0, sizeof(sysib
.ext_names
[0]));
1868 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1869 * considered by s390 as not capable of providing any Extended Name.
1870 * Therefore if no name was specified on qemu invocation, we go with the
1871 * same "KVMguest" default, which KVM has filled into short name field.
1874 strncpy((char *)sysib
.ext_names
[0], qemu_name
,
1875 sizeof(sysib
.ext_names
[0]));
1877 strcpy((char *)sysib
.ext_names
[0], "KVMguest");
1880 memcpy(sysib
.vm
[0].uuid
, &qemu_uuid
, sizeof(sysib
.vm
[0].uuid
));
1883 s390_cpu_pv_mem_write(cpu
, 0, &sysib
, sizeof(sysib
));
1885 s390_cpu_virt_mem_write(cpu
, addr
, ar
, &sysib
, sizeof(sysib
));
1889 static int handle_stsi(S390CPU
*cpu
)
1891 CPUState
*cs
= CPU(cpu
);
1892 struct kvm_run
*run
= cs
->kvm_run
;
1894 switch (run
->s390_stsi
.fc
) {
1896 if (run
->s390_stsi
.sel1
!= 2 || run
->s390_stsi
.sel2
!= 2) {
1899 /* Only sysib 3.2.2 needs post-handling for now. */
1900 insert_stsi_3_2_2(cpu
, run
->s390_stsi
.addr
, run
->s390_stsi
.ar
);
1907 static int kvm_arch_handle_debug_exit(S390CPU
*cpu
)
1909 CPUState
*cs
= CPU(cpu
);
1910 struct kvm_run
*run
= cs
->kvm_run
;
1913 struct kvm_debug_exit_arch
*arch_info
= &run
->debug
.arch
;
1915 switch (arch_info
->type
) {
1916 case KVM_HW_WP_WRITE
:
1917 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1918 cs
->watchpoint_hit
= &hw_watchpoint
;
1919 hw_watchpoint
.vaddr
= arch_info
->addr
;
1920 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1925 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1929 case KVM_SINGLESTEP
:
1930 if (cs
->singlestep_enabled
) {
1941 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
1943 S390CPU
*cpu
= S390_CPU(cs
);
1946 qemu_mutex_lock_iothread();
1948 kvm_cpu_synchronize_state(cs
);
1950 switch (run
->exit_reason
) {
1951 case KVM_EXIT_S390_SIEIC
:
1952 ret
= handle_intercept(cpu
);
1954 case KVM_EXIT_S390_RESET
:
1955 s390_ipl_reset_request(cs
, S390_RESET_REIPL
);
1957 case KVM_EXIT_S390_TSCH
:
1958 ret
= handle_tsch(cpu
);
1960 case KVM_EXIT_S390_STSI
:
1961 ret
= handle_stsi(cpu
);
1963 case KVM_EXIT_DEBUG
:
1964 ret
= kvm_arch_handle_debug_exit(cpu
);
1967 fprintf(stderr
, "Unknown KVM exit: %d\n", run
->exit_reason
);
1970 qemu_mutex_unlock_iothread();
1973 ret
= EXCP_INTERRUPT
;
1978 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
1983 void kvm_s390_enable_css_support(S390CPU
*cpu
)
1987 /* Activate host kernel channel subsystem support. */
1988 r
= kvm_vcpu_enable_cap(CPU(cpu
), KVM_CAP_S390_CSS_SUPPORT
, 0);
1992 void kvm_arch_init_irq_routing(KVMState
*s
)
1995 * Note that while irqchip capabilities generally imply that cpustates
1996 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1997 * have to override the common code kvm_halt_in_kernel_allowed setting.
1999 if (kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
2000 kvm_gsi_routing_allowed
= true;
2001 kvm_halt_in_kernel_allowed
= false;
2005 int kvm_s390_assign_subch_ioeventfd(EventNotifier
*notifier
, uint32_t sch
,
2006 int vq
, bool assign
)
2008 struct kvm_ioeventfd kick
= {
2009 .flags
= KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY
|
2010 KVM_IOEVENTFD_FLAG_DATAMATCH
,
2011 .fd
= event_notifier_get_fd(notifier
),
2016 trace_kvm_assign_subch_ioeventfd(kick
.fd
, kick
.addr
, assign
,
2018 if (!kvm_check_extension(kvm_state
, KVM_CAP_IOEVENTFD
)) {
2022 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
2024 return kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
2027 int kvm_s390_get_ri(void)
2032 int kvm_s390_get_gs(void)
2037 int kvm_s390_set_cpu_state(S390CPU
*cpu
, uint8_t cpu_state
)
2039 struct kvm_mp_state mp_state
= {};
2042 /* the kvm part might not have been initialized yet */
2043 if (CPU(cpu
)->kvm_state
== NULL
) {
2047 switch (cpu_state
) {
2048 case S390_CPU_STATE_STOPPED
:
2049 mp_state
.mp_state
= KVM_MP_STATE_STOPPED
;
2051 case S390_CPU_STATE_CHECK_STOP
:
2052 mp_state
.mp_state
= KVM_MP_STATE_CHECK_STOP
;
2054 case S390_CPU_STATE_OPERATING
:
2055 mp_state
.mp_state
= KVM_MP_STATE_OPERATING
;
2057 case S390_CPU_STATE_LOAD
:
2058 mp_state
.mp_state
= KVM_MP_STATE_LOAD
;
2061 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2066 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2068 trace_kvm_failed_cpu_state_set(CPU(cpu
)->cpu_index
, cpu_state
,
2075 void kvm_s390_vcpu_interrupt_pre_save(S390CPU
*cpu
)
2077 unsigned int max_cpus
= MACHINE(qdev_get_machine())->smp
.max_cpus
;
2078 struct kvm_s390_irq_state irq_state
= {
2079 .buf
= (uint64_t) cpu
->irqstate
,
2080 .len
= VCPU_IRQ_BUF_SIZE(max_cpus
),
2082 CPUState
*cs
= CPU(cpu
);
2085 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2089 bytes
= kvm_vcpu_ioctl(cs
, KVM_S390_GET_IRQ_STATE
, &irq_state
);
2091 cpu
->irqstate_saved_size
= 0;
2092 error_report("Migration of interrupt state failed");
2096 cpu
->irqstate_saved_size
= bytes
;
2099 int kvm_s390_vcpu_interrupt_post_load(S390CPU
*cpu
)
2101 CPUState
*cs
= CPU(cpu
);
2102 struct kvm_s390_irq_state irq_state
= {
2103 .buf
= (uint64_t) cpu
->irqstate
,
2104 .len
= cpu
->irqstate_saved_size
,
2108 if (cpu
->irqstate_saved_size
== 0) {
2112 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2116 r
= kvm_vcpu_ioctl(cs
, KVM_S390_SET_IRQ_STATE
, &irq_state
);
2118 error_report("Setting interrupt state failed %d", r
);
2123 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
2124 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
2126 S390PCIBusDevice
*pbdev
;
2127 uint32_t vec
= data
& ZPCI_MSI_VEC_MASK
;
2130 DPRINTF("add_msi_route no pci device\n");
2134 pbdev
= s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev
)->id
);
2136 DPRINTF("add_msi_route no zpci device\n");
2140 route
->type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
2142 route
->u
.adapter
.summary_addr
= pbdev
->routes
.adapter
.summary_addr
;
2143 route
->u
.adapter
.ind_addr
= pbdev
->routes
.adapter
.ind_addr
;
2144 route
->u
.adapter
.summary_offset
= pbdev
->routes
.adapter
.summary_offset
;
2145 route
->u
.adapter
.ind_offset
= pbdev
->routes
.adapter
.ind_offset
+ vec
;
2146 route
->u
.adapter
.adapter_id
= pbdev
->routes
.adapter
.adapter_id
;
2150 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
2151 int vector
, PCIDevice
*dev
)
2156 int kvm_arch_release_virq_post(int virq
)
2161 int kvm_arch_msi_data_to_gsi(uint32_t data
)
2166 static int query_cpu_subfunc(S390FeatBitmap features
)
2168 struct kvm_s390_vm_cpu_subfunc prop
= {};
2169 struct kvm_device_attr attr
= {
2170 .group
= KVM_S390_VM_CPU_MODEL
,
2171 .attr
= KVM_S390_VM_CPU_MACHINE_SUBFUNC
,
2172 .addr
= (uint64_t) &prop
,
2176 rc
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
2182 * We're going to add all subfunctions now, if the corresponding feature
2183 * is available that unlocks the query functions.
2185 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PLO
, prop
.plo
);
2186 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING
, features
)) {
2187 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PTFF
, prop
.ptff
);
2189 if (test_bit(S390_FEAT_MSA
, features
)) {
2190 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMAC
, prop
.kmac
);
2191 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMC
, prop
.kmc
);
2192 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KM
, prop
.km
);
2193 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KIMD
, prop
.kimd
);
2194 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KLMD
, prop
.klmd
);
2196 if (test_bit(S390_FEAT_MSA_EXT_3
, features
)) {
2197 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PCKMO
, prop
.pckmo
);
2199 if (test_bit(S390_FEAT_MSA_EXT_4
, features
)) {
2200 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMCTR
, prop
.kmctr
);
2201 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMF
, prop
.kmf
);
2202 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMO
, prop
.kmo
);
2203 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PCC
, prop
.pcc
);
2205 if (test_bit(S390_FEAT_MSA_EXT_5
, features
)) {
2206 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PPNO
, prop
.ppno
);
2208 if (test_bit(S390_FEAT_MSA_EXT_8
, features
)) {
2209 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMA
, prop
.kma
);
2211 if (test_bit(S390_FEAT_MSA_EXT_9
, features
)) {
2212 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KDSA
, prop
.kdsa
);
2214 if (test_bit(S390_FEAT_ESORT_BASE
, features
)) {
2215 s390_add_from_feat_block(features
, S390_FEAT_TYPE_SORTL
, prop
.sortl
);
2217 if (test_bit(S390_FEAT_DEFLATE_BASE
, features
)) {
2218 s390_add_from_feat_block(features
, S390_FEAT_TYPE_DFLTCC
, prop
.dfltcc
);
2223 static int configure_cpu_subfunc(const S390FeatBitmap features
)
2225 struct kvm_s390_vm_cpu_subfunc prop
= {};
2226 struct kvm_device_attr attr
= {
2227 .group
= KVM_S390_VM_CPU_MODEL
,
2228 .attr
= KVM_S390_VM_CPU_PROCESSOR_SUBFUNC
,
2229 .addr
= (uint64_t) &prop
,
2232 if (!kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2233 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC
)) {
2234 /* hardware support might be missing, IBC will handle most of this */
2238 s390_fill_feat_block(features
, S390_FEAT_TYPE_PLO
, prop
.plo
);
2239 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING
, features
)) {
2240 s390_fill_feat_block(features
, S390_FEAT_TYPE_PTFF
, prop
.ptff
);
2242 if (test_bit(S390_FEAT_MSA
, features
)) {
2243 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMAC
, prop
.kmac
);
2244 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMC
, prop
.kmc
);
2245 s390_fill_feat_block(features
, S390_FEAT_TYPE_KM
, prop
.km
);
2246 s390_fill_feat_block(features
, S390_FEAT_TYPE_KIMD
, prop
.kimd
);
2247 s390_fill_feat_block(features
, S390_FEAT_TYPE_KLMD
, prop
.klmd
);
2249 if (test_bit(S390_FEAT_MSA_EXT_3
, features
)) {
2250 s390_fill_feat_block(features
, S390_FEAT_TYPE_PCKMO
, prop
.pckmo
);
2252 if (test_bit(S390_FEAT_MSA_EXT_4
, features
)) {
2253 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMCTR
, prop
.kmctr
);
2254 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMF
, prop
.kmf
);
2255 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMO
, prop
.kmo
);
2256 s390_fill_feat_block(features
, S390_FEAT_TYPE_PCC
, prop
.pcc
);
2258 if (test_bit(S390_FEAT_MSA_EXT_5
, features
)) {
2259 s390_fill_feat_block(features
, S390_FEAT_TYPE_PPNO
, prop
.ppno
);
2261 if (test_bit(S390_FEAT_MSA_EXT_8
, features
)) {
2262 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMA
, prop
.kma
);
2264 if (test_bit(S390_FEAT_MSA_EXT_9
, features
)) {
2265 s390_fill_feat_block(features
, S390_FEAT_TYPE_KDSA
, prop
.kdsa
);
2267 if (test_bit(S390_FEAT_ESORT_BASE
, features
)) {
2268 s390_fill_feat_block(features
, S390_FEAT_TYPE_SORTL
, prop
.sortl
);
2270 if (test_bit(S390_FEAT_DEFLATE_BASE
, features
)) {
2271 s390_fill_feat_block(features
, S390_FEAT_TYPE_DFLTCC
, prop
.dfltcc
);
2273 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
2276 static int kvm_to_feat
[][2] = {
2277 { KVM_S390_VM_CPU_FEAT_ESOP
, S390_FEAT_ESOP
},
2278 { KVM_S390_VM_CPU_FEAT_SIEF2
, S390_FEAT_SIE_F2
},
2279 { KVM_S390_VM_CPU_FEAT_64BSCAO
, S390_FEAT_SIE_64BSCAO
},
2280 { KVM_S390_VM_CPU_FEAT_SIIF
, S390_FEAT_SIE_SIIF
},
2281 { KVM_S390_VM_CPU_FEAT_GPERE
, S390_FEAT_SIE_GPERE
},
2282 { KVM_S390_VM_CPU_FEAT_GSLS
, S390_FEAT_SIE_GSLS
},
2283 { KVM_S390_VM_CPU_FEAT_IB
, S390_FEAT_SIE_IB
},
2284 { KVM_S390_VM_CPU_FEAT_CEI
, S390_FEAT_SIE_CEI
},
2285 { KVM_S390_VM_CPU_FEAT_IBS
, S390_FEAT_SIE_IBS
},
2286 { KVM_S390_VM_CPU_FEAT_SKEY
, S390_FEAT_SIE_SKEY
},
2287 { KVM_S390_VM_CPU_FEAT_CMMA
, S390_FEAT_SIE_CMMA
},
2288 { KVM_S390_VM_CPU_FEAT_PFMFI
, S390_FEAT_SIE_PFMFI
},
2289 { KVM_S390_VM_CPU_FEAT_SIGPIF
, S390_FEAT_SIE_SIGPIF
},
2290 { KVM_S390_VM_CPU_FEAT_KSS
, S390_FEAT_SIE_KSS
},
2293 static int query_cpu_feat(S390FeatBitmap features
)
2295 struct kvm_s390_vm_cpu_feat prop
= {};
2296 struct kvm_device_attr attr
= {
2297 .group
= KVM_S390_VM_CPU_MODEL
,
2298 .attr
= KVM_S390_VM_CPU_MACHINE_FEAT
,
2299 .addr
= (uint64_t) &prop
,
2304 rc
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
2309 for (i
= 0; i
< ARRAY_SIZE(kvm_to_feat
); i
++) {
2310 if (test_be_bit(kvm_to_feat
[i
][0], (uint8_t *) prop
.feat
)) {
2311 set_bit(kvm_to_feat
[i
][1], features
);
2317 static int configure_cpu_feat(const S390FeatBitmap features
)
2319 struct kvm_s390_vm_cpu_feat prop
= {};
2320 struct kvm_device_attr attr
= {
2321 .group
= KVM_S390_VM_CPU_MODEL
,
2322 .attr
= KVM_S390_VM_CPU_PROCESSOR_FEAT
,
2323 .addr
= (uint64_t) &prop
,
2327 for (i
= 0; i
< ARRAY_SIZE(kvm_to_feat
); i
++) {
2328 if (test_bit(kvm_to_feat
[i
][1], features
)) {
2329 set_be_bit(kvm_to_feat
[i
][0], (uint8_t *) prop
.feat
);
2332 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
2335 bool kvm_s390_cpu_models_supported(void)
2337 if (!cpu_model_allowed()) {
2338 /* compatibility machines interfere with the cpu model */
2341 return kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2342 KVM_S390_VM_CPU_MACHINE
) &&
2343 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2344 KVM_S390_VM_CPU_PROCESSOR
) &&
2345 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2346 KVM_S390_VM_CPU_MACHINE_FEAT
) &&
2347 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2348 KVM_S390_VM_CPU_PROCESSOR_FEAT
) &&
2349 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2350 KVM_S390_VM_CPU_MACHINE_SUBFUNC
);
2353 void kvm_s390_get_host_cpu_model(S390CPUModel
*model
, Error
**errp
)
2355 struct kvm_s390_vm_cpu_machine prop
= {};
2356 struct kvm_device_attr attr
= {
2357 .group
= KVM_S390_VM_CPU_MODEL
,
2358 .attr
= KVM_S390_VM_CPU_MACHINE
,
2359 .addr
= (uint64_t) &prop
,
2361 uint16_t unblocked_ibc
= 0, cpu_type
= 0;
2364 memset(model
, 0, sizeof(*model
));
2366 if (!kvm_s390_cpu_models_supported()) {
2367 error_setg(errp
, "KVM doesn't support CPU models");
2371 /* query the basic cpu model properties */
2372 rc
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
2374 error_setg(errp
, "KVM: Error querying host CPU model: %d", rc
);
2378 cpu_type
= cpuid_type(prop
.cpuid
);
2379 if (has_ibc(prop
.ibc
)) {
2380 model
->lowest_ibc
= lowest_ibc(prop
.ibc
);
2381 unblocked_ibc
= unblocked_ibc(prop
.ibc
);
2383 model
->cpu_id
= cpuid_id(prop
.cpuid
);
2384 model
->cpu_id_format
= cpuid_format(prop
.cpuid
);
2385 model
->cpu_ver
= 0xff;
2387 /* get supported cpu features indicated via STFL(E) */
2388 s390_add_from_feat_block(model
->features
, S390_FEAT_TYPE_STFL
,
2389 (uint8_t *) prop
.fac_mask
);
2390 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2391 if (test_bit(S390_FEAT_STFLE
, model
->features
)) {
2392 set_bit(S390_FEAT_DAT_ENH_2
, model
->features
);
2394 /* get supported cpu features indicated e.g. via SCLP */
2395 rc
= query_cpu_feat(model
->features
);
2397 error_setg(errp
, "KVM: Error querying CPU features: %d", rc
);
2400 /* get supported cpu subfunctions indicated via query / test bit */
2401 rc
= query_cpu_subfunc(model
->features
);
2403 error_setg(errp
, "KVM: Error querying CPU subfunctions: %d", rc
);
2407 /* PTFF subfunctions might be indicated although kernel support missing */
2408 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH
, model
->features
)) {
2409 clear_bit(S390_FEAT_PTFF_QSIE
, model
->features
);
2410 clear_bit(S390_FEAT_PTFF_QTOUE
, model
->features
);
2411 clear_bit(S390_FEAT_PTFF_STOE
, model
->features
);
2412 clear_bit(S390_FEAT_PTFF_STOUE
, model
->features
);
2415 /* with cpu model support, CMM is only indicated if really available */
2416 if (kvm_s390_cmma_available()) {
2417 set_bit(S390_FEAT_CMM
, model
->features
);
2419 /* no cmm -> no cmm nt */
2420 clear_bit(S390_FEAT_CMM_NT
, model
->features
);
2423 /* bpb needs kernel support for migration, VSIE and reset */
2424 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_BPB
)) {
2425 clear_bit(S390_FEAT_BPB
, model
->features
);
2429 * If we have support for protected virtualization, indicate
2430 * the protected virtualization IPL unpack facility.
2432 if (cap_protected
) {
2433 set_bit(S390_FEAT_UNPACK
, model
->features
);
2436 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2437 set_bit(S390_FEAT_ZPCI
, model
->features
);
2438 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION
, model
->features
);
2440 if (s390_known_cpu_type(cpu_type
)) {
2441 /* we want the exact model, even if some features are missing */
2442 model
->def
= s390_find_cpu_def(cpu_type
, ibc_gen(unblocked_ibc
),
2443 ibc_ec_ga(unblocked_ibc
), NULL
);
2445 /* model unknown, e.g. too new - search using features */
2446 model
->def
= s390_find_cpu_def(0, ibc_gen(unblocked_ibc
),
2447 ibc_ec_ga(unblocked_ibc
),
2451 error_setg(errp
, "KVM: host CPU model could not be identified");
2454 /* for now, we can only provide the AP feature with HW support */
2455 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
,
2456 KVM_S390_VM_CRYPTO_ENABLE_APIE
)) {
2457 set_bit(S390_FEAT_AP
, model
->features
);
2459 /* strip of features that are not part of the maximum model */
2460 bitmap_and(model
->features
, model
->features
, model
->def
->full_feat
,
2464 static void kvm_s390_configure_apie(bool interpret
)
2466 uint64_t attr
= interpret
? KVM_S390_VM_CRYPTO_ENABLE_APIE
:
2467 KVM_S390_VM_CRYPTO_DISABLE_APIE
;
2469 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
2470 kvm_s390_set_attr(attr
);
2474 void kvm_s390_apply_cpu_model(const S390CPUModel
*model
, Error
**errp
)
2476 struct kvm_s390_vm_cpu_processor prop
= {
2479 struct kvm_device_attr attr
= {
2480 .group
= KVM_S390_VM_CPU_MODEL
,
2481 .attr
= KVM_S390_VM_CPU_PROCESSOR
,
2482 .addr
= (uint64_t) &prop
,
2487 /* compatibility handling if cpu models are disabled */
2488 if (kvm_s390_cmma_available()) {
2489 kvm_s390_enable_cmma();
2493 if (!kvm_s390_cpu_models_supported()) {
2494 error_setg(errp
, "KVM doesn't support CPU models");
2497 prop
.cpuid
= s390_cpuid_from_cpu_model(model
);
2498 prop
.ibc
= s390_ibc_from_cpu_model(model
);
2499 /* configure cpu features indicated via STFL(e) */
2500 s390_fill_feat_block(model
->features
, S390_FEAT_TYPE_STFL
,
2501 (uint8_t *) prop
.fac_list
);
2502 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
2504 error_setg(errp
, "KVM: Error configuring the CPU model: %d", rc
);
2507 /* configure cpu features indicated e.g. via SCLP */
2508 rc
= configure_cpu_feat(model
->features
);
2510 error_setg(errp
, "KVM: Error configuring CPU features: %d", rc
);
2513 /* configure cpu subfunctions indicated via query / test bit */
2514 rc
= configure_cpu_subfunc(model
->features
);
2516 error_setg(errp
, "KVM: Error configuring CPU subfunctions: %d", rc
);
2519 /* enable CMM via CMMA */
2520 if (test_bit(S390_FEAT_CMM
, model
->features
)) {
2521 kvm_s390_enable_cmma();
2524 if (test_bit(S390_FEAT_AP
, model
->features
)) {
2525 kvm_s390_configure_apie(true);
2529 void kvm_s390_restart_interrupt(S390CPU
*cpu
)
2531 struct kvm_s390_irq irq
= {
2532 .type
= KVM_S390_RESTART
,
2535 kvm_s390_vcpu_interrupt(cpu
, &irq
);
2538 void kvm_s390_stop_interrupt(S390CPU
*cpu
)
2540 struct kvm_s390_irq irq
= {
2541 .type
= KVM_S390_SIGP_STOP
,
2544 kvm_s390_vcpu_interrupt(cpu
, &irq
);