qapi: Improve specificity of type/member descriptions
[qemu/armbru.git] / hw / i386 / intel_iommu.c
bloba62896759c78f84147bc3b1fd71cf0756b816a4a
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
54 * PCI bus number (or SID) is not reliable since the device is usaully
55 * initalized before guest can configure the PCI bridge
56 * (SECONDARY_BUS_NUMBER).
58 struct vtd_as_key {
59 PCIBus *bus;
60 uint8_t devfn;
61 uint32_t pasid;
64 struct vtd_iotlb_key {
65 uint64_t gfn;
66 uint32_t pasid;
67 uint32_t level;
68 uint16_t sid;
71 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
72 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
74 static void vtd_panic_require_caching_mode(void)
76 error_report("We need to set caching-mode=on for intel-iommu to enable "
77 "device assignment with IOMMU protection.");
78 exit(1);
81 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
82 uint64_t wmask, uint64_t w1cmask)
84 stq_le_p(&s->csr[addr], val);
85 stq_le_p(&s->wmask[addr], wmask);
86 stq_le_p(&s->w1cmask[addr], w1cmask);
89 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
91 stq_le_p(&s->womask[addr], mask);
94 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
95 uint32_t wmask, uint32_t w1cmask)
97 stl_le_p(&s->csr[addr], val);
98 stl_le_p(&s->wmask[addr], wmask);
99 stl_le_p(&s->w1cmask[addr], w1cmask);
102 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
104 stl_le_p(&s->womask[addr], mask);
107 /* "External" get/set operations */
108 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
110 uint64_t oldval = ldq_le_p(&s->csr[addr]);
111 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
112 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
113 stq_le_p(&s->csr[addr],
114 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
117 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
119 uint32_t oldval = ldl_le_p(&s->csr[addr]);
120 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
121 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
122 stl_le_p(&s->csr[addr],
123 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
126 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
128 uint64_t val = ldq_le_p(&s->csr[addr]);
129 uint64_t womask = ldq_le_p(&s->womask[addr]);
130 return val & ~womask;
133 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
135 uint32_t val = ldl_le_p(&s->csr[addr]);
136 uint32_t womask = ldl_le_p(&s->womask[addr]);
137 return val & ~womask;
140 /* "Internal" get/set operations */
141 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
143 return ldq_le_p(&s->csr[addr]);
146 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
148 return ldl_le_p(&s->csr[addr]);
151 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
153 stq_le_p(&s->csr[addr], val);
156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
157 uint32_t clear, uint32_t mask)
159 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
160 stl_le_p(&s->csr[addr], new_val);
161 return new_val;
164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
165 uint64_t clear, uint64_t mask)
167 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
168 stq_le_p(&s->csr[addr], new_val);
169 return new_val;
172 static inline void vtd_iommu_lock(IntelIOMMUState *s)
174 qemu_mutex_lock(&s->iommu_lock);
177 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
179 qemu_mutex_unlock(&s->iommu_lock);
182 static void vtd_update_scalable_state(IntelIOMMUState *s)
184 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
186 if (s->scalable_mode) {
187 s->root_scalable = val & VTD_RTADDR_SMT;
191 static void vtd_update_iq_dw(IntelIOMMUState *s)
193 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
195 if (s->ecap & VTD_ECAP_SMTS &&
196 val & VTD_IQA_DW_MASK) {
197 s->iq_dw = true;
198 } else {
199 s->iq_dw = false;
203 /* Whether the address space needs to notify new mappings */
204 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
206 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
209 /* GHashTable functions */
210 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
212 const struct vtd_iotlb_key *key1 = v1;
213 const struct vtd_iotlb_key *key2 = v2;
215 return key1->sid == key2->sid &&
216 key1->pasid == key2->pasid &&
217 key1->level == key2->level &&
218 key1->gfn == key2->gfn;
221 static guint vtd_iotlb_hash(gconstpointer v)
223 const struct vtd_iotlb_key *key = v;
225 return key->gfn | ((key->sid) << VTD_IOTLB_SID_SHIFT) |
226 (key->level) << VTD_IOTLB_LVL_SHIFT |
227 (key->pasid) << VTD_IOTLB_PASID_SHIFT;
230 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
232 const struct vtd_as_key *key1 = v1;
233 const struct vtd_as_key *key2 = v2;
235 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
236 (key1->pasid == key2->pasid);
240 * Note that we use pointer to PCIBus as the key, so hashing/shifting
241 * based on the pointer value is intended. Note that we deal with
242 * collisions through vtd_as_equal().
244 static guint vtd_as_hash(gconstpointer v)
246 const struct vtd_as_key *key = v;
247 guint value = (guint)(uintptr_t)key->bus;
249 return (guint)(value << 8 | key->devfn);
252 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
253 gpointer user_data)
255 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
256 uint16_t domain_id = *(uint16_t *)user_data;
257 return entry->domain_id == domain_id;
260 /* The shift of an addr for a certain level of paging structure */
261 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
263 assert(level != 0);
264 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
267 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
269 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
272 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
273 gpointer user_data)
275 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
276 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
277 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
278 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
279 return (entry->domain_id == info->domain_id) &&
280 (((entry->gfn & info->mask) == gfn) ||
281 (entry->gfn == gfn_tlb));
284 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
285 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
287 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
289 VTDAddressSpace *vtd_as;
290 GHashTableIter as_it;
292 trace_vtd_context_cache_reset();
294 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
296 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
297 vtd_as->context_cache_entry.context_cache_gen = 0;
299 s->context_cache_gen = 1;
302 /* Must be called with IOMMU lock held. */
303 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
305 assert(s->iotlb);
306 g_hash_table_remove_all(s->iotlb);
309 static void vtd_reset_iotlb(IntelIOMMUState *s)
311 vtd_iommu_lock(s);
312 vtd_reset_iotlb_locked(s);
313 vtd_iommu_unlock(s);
316 static void vtd_reset_caches(IntelIOMMUState *s)
318 vtd_iommu_lock(s);
319 vtd_reset_iotlb_locked(s);
320 vtd_reset_context_cache_locked(s);
321 vtd_iommu_unlock(s);
324 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
326 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
329 /* Must be called with IOMMU lock held */
330 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
331 uint32_t pasid, hwaddr addr)
333 struct vtd_iotlb_key key;
334 VTDIOTLBEntry *entry;
335 int level;
337 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
338 key.gfn = vtd_get_iotlb_gfn(addr, level);
339 key.level = level;
340 key.sid = source_id;
341 key.pasid = pasid;
342 entry = g_hash_table_lookup(s->iotlb, &key);
343 if (entry) {
344 goto out;
348 out:
349 return entry;
352 /* Must be with IOMMU lock held */
353 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
354 uint16_t domain_id, hwaddr addr, uint64_t slpte,
355 uint8_t access_flags, uint32_t level,
356 uint32_t pasid)
358 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
359 struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
360 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
362 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
363 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
364 trace_vtd_iotlb_reset("iotlb exceeds size limit");
365 vtd_reset_iotlb_locked(s);
368 entry->gfn = gfn;
369 entry->domain_id = domain_id;
370 entry->slpte = slpte;
371 entry->access_flags = access_flags;
372 entry->mask = vtd_slpt_level_page_mask(level);
373 entry->pasid = pasid;
375 key->gfn = gfn;
376 key->sid = source_id;
377 key->level = level;
378 key->pasid = pasid;
380 g_hash_table_replace(s->iotlb, key, entry);
383 /* Given the reg addr of both the message data and address, generate an
384 * interrupt via MSI.
386 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
387 hwaddr mesg_data_reg)
389 MSIMessage msi;
391 assert(mesg_data_reg < DMAR_REG_SIZE);
392 assert(mesg_addr_reg < DMAR_REG_SIZE);
394 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
395 msi.data = vtd_get_long_raw(s, mesg_data_reg);
397 trace_vtd_irq_generate(msi.address, msi.data);
399 apic_get_class(NULL)->send_msi(&msi);
402 /* Generate a fault event to software via MSI if conditions are met.
403 * Notice that the value of FSTS_REG being passed to it should be the one
404 * before any update.
406 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
408 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
409 pre_fsts & VTD_FSTS_IQE) {
410 error_report_once("There are previous interrupt conditions "
411 "to be serviced by software, fault event "
412 "is not generated");
413 return;
415 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
416 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
417 error_report_once("Interrupt Mask set, irq is not generated");
418 } else {
419 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
420 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
424 /* Check if the Fault (F) field of the Fault Recording Register referenced by
425 * @index is Set.
427 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
429 /* Each reg is 128-bit */
430 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
431 addr += 8; /* Access the high 64-bit half */
433 assert(index < DMAR_FRCD_REG_NR);
435 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
438 /* Update the PPF field of Fault Status Register.
439 * Should be called whenever change the F field of any fault recording
440 * registers.
442 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
444 uint32_t i;
445 uint32_t ppf_mask = 0;
447 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
448 if (vtd_is_frcd_set(s, i)) {
449 ppf_mask = VTD_FSTS_PPF;
450 break;
453 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
454 trace_vtd_fsts_ppf(!!ppf_mask);
457 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
459 /* Each reg is 128-bit */
460 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
461 addr += 8; /* Access the high 64-bit half */
463 assert(index < DMAR_FRCD_REG_NR);
465 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
466 vtd_update_fsts_ppf(s);
469 /* Must not update F field now, should be done later */
470 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
471 uint16_t source_id, hwaddr addr,
472 VTDFaultReason fault, bool is_write,
473 bool is_pasid, uint32_t pasid)
475 uint64_t hi = 0, lo;
476 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
478 assert(index < DMAR_FRCD_REG_NR);
480 lo = VTD_FRCD_FI(addr);
481 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
482 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
483 if (!is_write) {
484 hi |= VTD_FRCD_T;
486 vtd_set_quad_raw(s, frcd_reg_addr, lo);
487 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
489 trace_vtd_frr_new(index, hi, lo);
492 /* Try to collapse multiple pending faults from the same requester */
493 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
495 uint32_t i;
496 uint64_t frcd_reg;
497 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
499 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
500 frcd_reg = vtd_get_quad_raw(s, addr);
501 if ((frcd_reg & VTD_FRCD_F) &&
502 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
503 return true;
505 addr += 16; /* 128-bit for each */
507 return false;
510 /* Log and report an DMAR (address translation) fault to software */
511 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
512 hwaddr addr, VTDFaultReason fault,
513 bool is_write, bool is_pasid,
514 uint32_t pasid)
516 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
518 assert(fault < VTD_FR_MAX);
520 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
522 if (fsts_reg & VTD_FSTS_PFO) {
523 error_report_once("New fault is not recorded due to "
524 "Primary Fault Overflow");
525 return;
528 if (vtd_try_collapse_fault(s, source_id)) {
529 error_report_once("New fault is not recorded due to "
530 "compression of faults");
531 return;
534 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
535 error_report_once("Next Fault Recording Reg is used, "
536 "new fault is not recorded, set PFO field");
537 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
538 return;
541 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault,
542 is_write, is_pasid, pasid);
544 if (fsts_reg & VTD_FSTS_PPF) {
545 error_report_once("There are pending faults already, "
546 "fault event is not generated");
547 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
548 s->next_frcd_reg++;
549 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
550 s->next_frcd_reg = 0;
552 } else {
553 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
554 VTD_FSTS_FRI(s->next_frcd_reg));
555 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
556 s->next_frcd_reg++;
557 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
558 s->next_frcd_reg = 0;
560 /* This case actually cause the PPF to be Set.
561 * So generate fault event (interrupt).
563 vtd_generate_fault_event(s, fsts_reg);
567 /* Handle Invalidation Queue Errors of queued invalidation interface error
568 * conditions.
570 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
572 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
574 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
575 vtd_generate_fault_event(s, fsts_reg);
578 /* Set the IWC field and try to generate an invalidation completion interrupt */
579 static void vtd_generate_completion_event(IntelIOMMUState *s)
581 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
582 trace_vtd_inv_desc_wait_irq("One pending, skip current");
583 return;
585 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
586 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
587 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
588 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
589 "new event not generated");
590 return;
591 } else {
592 /* Generate the interrupt event */
593 trace_vtd_inv_desc_wait_irq("Generating complete event");
594 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
595 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
599 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
600 VTDRootEntry *re,
601 uint8_t devfn)
603 if (s->root_scalable && devfn > UINT8_MAX / 2) {
604 return re->hi & VTD_ROOT_ENTRY_P;
607 return re->lo & VTD_ROOT_ENTRY_P;
610 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
611 VTDRootEntry *re)
613 dma_addr_t addr;
615 addr = s->root + index * sizeof(*re);
616 if (dma_memory_read(&address_space_memory, addr,
617 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
618 re->lo = 0;
619 return -VTD_FR_ROOT_TABLE_INV;
621 re->lo = le64_to_cpu(re->lo);
622 re->hi = le64_to_cpu(re->hi);
623 return 0;
626 static inline bool vtd_ce_present(VTDContextEntry *context)
628 return context->lo & VTD_CONTEXT_ENTRY_P;
631 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
632 VTDRootEntry *re,
633 uint8_t index,
634 VTDContextEntry *ce)
636 dma_addr_t addr, ce_size;
638 /* we have checked that root entry is present */
639 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
640 VTD_CTX_ENTRY_LEGACY_SIZE;
642 if (s->root_scalable && index > UINT8_MAX / 2) {
643 index = index & (~VTD_DEVFN_CHECK_MASK);
644 addr = re->hi & VTD_ROOT_ENTRY_CTP;
645 } else {
646 addr = re->lo & VTD_ROOT_ENTRY_CTP;
649 addr = addr + index * ce_size;
650 if (dma_memory_read(&address_space_memory, addr,
651 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
652 return -VTD_FR_CONTEXT_TABLE_INV;
655 ce->lo = le64_to_cpu(ce->lo);
656 ce->hi = le64_to_cpu(ce->hi);
657 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
658 ce->val[2] = le64_to_cpu(ce->val[2]);
659 ce->val[3] = le64_to_cpu(ce->val[3]);
661 return 0;
664 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
666 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
669 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
671 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
674 /* Whether the pte indicates the address of the page frame */
675 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
677 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
680 /* Get the content of a spte located in @base_addr[@index] */
681 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
683 uint64_t slpte;
685 assert(index < VTD_SL_PT_ENTRY_NR);
687 if (dma_memory_read(&address_space_memory,
688 base_addr + index * sizeof(slpte),
689 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
690 slpte = (uint64_t)-1;
691 return slpte;
693 slpte = le64_to_cpu(slpte);
694 return slpte;
697 /* Given an iova and the level of paging structure, return the offset
698 * of current level.
700 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
702 return (iova >> vtd_slpt_level_shift(level)) &
703 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
706 /* Check Capability Register to see if the @level of page-table is supported */
707 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
709 return VTD_CAP_SAGAW_MASK & s->cap &
710 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
713 /* Return true if check passed, otherwise false */
714 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
715 VTDPASIDEntry *pe)
717 switch (VTD_PE_GET_TYPE(pe)) {
718 case VTD_SM_PASID_ENTRY_FLT:
719 case VTD_SM_PASID_ENTRY_SLT:
720 case VTD_SM_PASID_ENTRY_NESTED:
721 break;
722 case VTD_SM_PASID_ENTRY_PT:
723 if (!x86_iommu->pt_supported) {
724 return false;
726 break;
727 default:
728 /* Unknown type */
729 return false;
731 return true;
734 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
736 return pdire->val & 1;
740 * Caller of this function should check present bit if wants
741 * to use pdir entry for further usage except for fpd bit check.
743 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
744 uint32_t pasid,
745 VTDPASIDDirEntry *pdire)
747 uint32_t index;
748 dma_addr_t addr, entry_size;
750 index = VTD_PASID_DIR_INDEX(pasid);
751 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
752 addr = pasid_dir_base + index * entry_size;
753 if (dma_memory_read(&address_space_memory, addr,
754 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
755 return -VTD_FR_PASID_TABLE_INV;
758 return 0;
761 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
763 return pe->val[0] & VTD_PASID_ENTRY_P;
766 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
767 uint32_t pasid,
768 dma_addr_t addr,
769 VTDPASIDEntry *pe)
771 uint32_t index;
772 dma_addr_t entry_size;
773 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
775 index = VTD_PASID_TABLE_INDEX(pasid);
776 entry_size = VTD_PASID_ENTRY_SIZE;
777 addr = addr + index * entry_size;
778 if (dma_memory_read(&address_space_memory, addr,
779 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
780 return -VTD_FR_PASID_TABLE_INV;
783 /* Do translation type check */
784 if (!vtd_pe_type_check(x86_iommu, pe)) {
785 return -VTD_FR_PASID_TABLE_INV;
788 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
789 return -VTD_FR_PASID_TABLE_INV;
792 return 0;
796 * Caller of this function should check present bit if wants
797 * to use pasid entry for further usage except for fpd bit check.
799 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
800 uint32_t pasid,
801 VTDPASIDDirEntry *pdire,
802 VTDPASIDEntry *pe)
804 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
806 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
810 * This function gets a pasid entry from a specified pasid
811 * table (includes dir and leaf table) with a specified pasid.
812 * Sanity check should be done to ensure return a present
813 * pasid entry to caller.
815 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
816 dma_addr_t pasid_dir_base,
817 uint32_t pasid,
818 VTDPASIDEntry *pe)
820 int ret;
821 VTDPASIDDirEntry pdire;
823 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
824 pasid, &pdire);
825 if (ret) {
826 return ret;
829 if (!vtd_pdire_present(&pdire)) {
830 return -VTD_FR_PASID_TABLE_INV;
833 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
834 if (ret) {
835 return ret;
838 if (!vtd_pe_present(pe)) {
839 return -VTD_FR_PASID_TABLE_INV;
842 return 0;
845 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
846 VTDContextEntry *ce,
847 VTDPASIDEntry *pe,
848 uint32_t pasid)
850 dma_addr_t pasid_dir_base;
851 int ret = 0;
853 if (pasid == PCI_NO_PASID) {
854 pasid = VTD_CE_GET_RID2PASID(ce);
856 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
857 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
859 return ret;
862 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
863 VTDContextEntry *ce,
864 bool *pe_fpd_set,
865 uint32_t pasid)
867 int ret;
868 dma_addr_t pasid_dir_base;
869 VTDPASIDDirEntry pdire;
870 VTDPASIDEntry pe;
872 if (pasid == PCI_NO_PASID) {
873 pasid = VTD_CE_GET_RID2PASID(ce);
875 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
878 * No present bit check since fpd is meaningful even
879 * if the present bit is clear.
881 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
882 if (ret) {
883 return ret;
886 if (pdire.val & VTD_PASID_DIR_FPD) {
887 *pe_fpd_set = true;
888 return 0;
891 if (!vtd_pdire_present(&pdire)) {
892 return -VTD_FR_PASID_TABLE_INV;
896 * No present bit check since fpd is meaningful even
897 * if the present bit is clear.
899 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
900 if (ret) {
901 return ret;
904 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
905 *pe_fpd_set = true;
908 return 0;
911 /* Get the page-table level that hardware should use for the second-level
912 * page-table walk from the Address Width field of context-entry.
914 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
916 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
919 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
920 VTDContextEntry *ce,
921 uint32_t pasid)
923 VTDPASIDEntry pe;
925 if (s->root_scalable) {
926 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
927 return VTD_PE_GET_LEVEL(&pe);
930 return vtd_ce_get_level(ce);
933 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
935 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
938 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
939 VTDContextEntry *ce,
940 uint32_t pasid)
942 VTDPASIDEntry pe;
944 if (s->root_scalable) {
945 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
946 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
949 return vtd_ce_get_agaw(ce);
952 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
954 return ce->lo & VTD_CONTEXT_ENTRY_TT;
957 /* Only for Legacy Mode. Return true if check passed, otherwise false */
958 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
959 VTDContextEntry *ce)
961 switch (vtd_ce_get_type(ce)) {
962 case VTD_CONTEXT_TT_MULTI_LEVEL:
963 /* Always supported */
964 break;
965 case VTD_CONTEXT_TT_DEV_IOTLB:
966 if (!x86_iommu->dt_supported) {
967 error_report_once("%s: DT specified but not supported", __func__);
968 return false;
970 break;
971 case VTD_CONTEXT_TT_PASS_THROUGH:
972 if (!x86_iommu->pt_supported) {
973 error_report_once("%s: PT specified but not supported", __func__);
974 return false;
976 break;
977 default:
978 /* Unknown type */
979 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
980 vtd_ce_get_type(ce));
981 return false;
983 return true;
986 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
987 VTDContextEntry *ce, uint8_t aw,
988 uint32_t pasid)
990 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
991 return 1ULL << MIN(ce_agaw, aw);
994 /* Return true if IOVA passes range check, otherwise false. */
995 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
996 uint64_t iova, VTDContextEntry *ce,
997 uint8_t aw, uint32_t pasid)
1000 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1001 * in CAP_REG and AW in context-entry.
1003 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1006 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1007 VTDContextEntry *ce,
1008 uint32_t pasid)
1010 VTDPASIDEntry pe;
1012 if (s->root_scalable) {
1013 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1014 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1017 return vtd_ce_get_slpt_base(ce);
1021 * Rsvd field masks for spte:
1022 * vtd_spte_rsvd 4k pages
1023 * vtd_spte_rsvd_large large pages
1025 static uint64_t vtd_spte_rsvd[5];
1026 static uint64_t vtd_spte_rsvd_large[5];
1028 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1030 uint64_t rsvd_mask = vtd_spte_rsvd[level];
1032 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1033 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1034 /* large page */
1035 rsvd_mask = vtd_spte_rsvd_large[level];
1038 return slpte & rsvd_mask;
1041 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1042 * of the translation, can be used for deciding the size of large page.
1044 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1045 uint64_t iova, bool is_write,
1046 uint64_t *slptep, uint32_t *slpte_level,
1047 bool *reads, bool *writes, uint8_t aw_bits,
1048 uint32_t pasid)
1050 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1051 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1052 uint32_t offset;
1053 uint64_t slpte;
1054 uint64_t access_right_check;
1055 uint64_t xlat, size;
1057 if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1058 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1059 "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1060 return -VTD_FR_ADDR_BEYOND_MGAW;
1063 /* FIXME: what is the Atomics request here? */
1064 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1066 while (true) {
1067 offset = vtd_iova_level_offset(iova, level);
1068 slpte = vtd_get_slpte(addr, offset);
1070 if (slpte == (uint64_t)-1) {
1071 error_report_once("%s: detected read error on DMAR slpte "
1072 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1073 __func__, iova, pasid);
1074 if (level == vtd_get_iova_level(s, ce, pasid)) {
1075 /* Invalid programming of context-entry */
1076 return -VTD_FR_CONTEXT_ENTRY_INV;
1077 } else {
1078 return -VTD_FR_PAGING_ENTRY_INV;
1081 *reads = (*reads) && (slpte & VTD_SL_R);
1082 *writes = (*writes) && (slpte & VTD_SL_W);
1083 if (!(slpte & access_right_check)) {
1084 error_report_once("%s: detected slpte permission error "
1085 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1086 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1087 PRIx32 ")", __func__, iova, level,
1088 slpte, is_write, pasid);
1089 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1091 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1092 error_report_once("%s: detected splte reserve non-zero "
1093 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1094 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1095 __func__, iova, level, slpte, pasid);
1096 return -VTD_FR_PAGING_ENTRY_RSVD;
1099 if (vtd_is_last_slpte(slpte, level)) {
1100 *slptep = slpte;
1101 *slpte_level = level;
1102 break;
1104 addr = vtd_get_slpte_addr(slpte, aw_bits);
1105 level--;
1108 xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1109 size = ~vtd_slpt_level_page_mask(level) + 1;
1112 * From VT-d spec 3.14: Untranslated requests and translation
1113 * requests that result in an address in the interrupt range will be
1114 * blocked with condition code LGN.4 or SGN.8.
1116 if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1117 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1118 return 0;
1119 } else {
1120 error_report_once("%s: xlat address is in interrupt range "
1121 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1122 "slpte=0x%" PRIx64 ", write=%d, "
1123 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1124 "pasid=0x%" PRIx32 ")",
1125 __func__, iova, level, slpte, is_write,
1126 xlat, size, pasid);
1127 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1128 -VTD_FR_INTERRUPT_ADDR;
1132 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1135 * Constant information used during page walking
1137 * @hook_fn: hook func to be called when detected page
1138 * @private: private data to be passed into hook func
1139 * @notify_unmap: whether we should notify invalid entries
1140 * @as: VT-d address space of the device
1141 * @aw: maximum address width
1142 * @domain: domain ID of the page walk
1144 typedef struct {
1145 VTDAddressSpace *as;
1146 vtd_page_walk_hook hook_fn;
1147 void *private;
1148 bool notify_unmap;
1149 uint8_t aw;
1150 uint16_t domain_id;
1151 } vtd_page_walk_info;
1153 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1155 VTDAddressSpace *as = info->as;
1156 vtd_page_walk_hook hook_fn = info->hook_fn;
1157 void *private = info->private;
1158 IOMMUTLBEntry *entry = &event->entry;
1159 DMAMap target = {
1160 .iova = entry->iova,
1161 .size = entry->addr_mask,
1162 .translated_addr = entry->translated_addr,
1163 .perm = entry->perm,
1165 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1167 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1168 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1169 return 0;
1172 assert(hook_fn);
1174 /* Update local IOVA mapped ranges */
1175 if (event->type == IOMMU_NOTIFIER_MAP) {
1176 if (mapped) {
1177 /* If it's exactly the same translation, skip */
1178 if (!memcmp(mapped, &target, sizeof(target))) {
1179 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1180 entry->translated_addr);
1181 return 0;
1182 } else {
1184 * Translation changed. Normally this should not
1185 * happen, but it can happen when with buggy guest
1186 * OSes. Note that there will be a small window that
1187 * we don't have map at all. But that's the best
1188 * effort we can do. The ideal way to emulate this is
1189 * atomically modify the PTE to follow what has
1190 * changed, but we can't. One example is that vfio
1191 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1192 * interface to modify a mapping (meanwhile it seems
1193 * meaningless to even provide one). Anyway, let's
1194 * mark this as a TODO in case one day we'll have
1195 * a better solution.
1197 IOMMUAccessFlags cache_perm = entry->perm;
1198 int ret;
1200 /* Emulate an UNMAP */
1201 event->type = IOMMU_NOTIFIER_UNMAP;
1202 entry->perm = IOMMU_NONE;
1203 trace_vtd_page_walk_one(info->domain_id,
1204 entry->iova,
1205 entry->translated_addr,
1206 entry->addr_mask,
1207 entry->perm);
1208 ret = hook_fn(event, private);
1209 if (ret) {
1210 return ret;
1212 /* Drop any existing mapping */
1213 iova_tree_remove(as->iova_tree, target);
1214 /* Recover the correct type */
1215 event->type = IOMMU_NOTIFIER_MAP;
1216 entry->perm = cache_perm;
1219 iova_tree_insert(as->iova_tree, &target);
1220 } else {
1221 if (!mapped) {
1222 /* Skip since we didn't map this range at all */
1223 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1224 return 0;
1226 iova_tree_remove(as->iova_tree, target);
1229 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1230 entry->translated_addr, entry->addr_mask,
1231 entry->perm);
1232 return hook_fn(event, private);
1236 * vtd_page_walk_level - walk over specific level for IOVA range
1238 * @addr: base GPA addr to start the walk
1239 * @start: IOVA range start address
1240 * @end: IOVA range end address (start <= addr < end)
1241 * @read: whether parent level has read permission
1242 * @write: whether parent level has write permission
1243 * @info: constant information for the page walk
1245 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1246 uint64_t end, uint32_t level, bool read,
1247 bool write, vtd_page_walk_info *info)
1249 bool read_cur, write_cur, entry_valid;
1250 uint32_t offset;
1251 uint64_t slpte;
1252 uint64_t subpage_size, subpage_mask;
1253 IOMMUTLBEvent event;
1254 uint64_t iova = start;
1255 uint64_t iova_next;
1256 int ret = 0;
1258 trace_vtd_page_walk_level(addr, level, start, end);
1260 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1261 subpage_mask = vtd_slpt_level_page_mask(level);
1263 while (iova < end) {
1264 iova_next = (iova & subpage_mask) + subpage_size;
1266 offset = vtd_iova_level_offset(iova, level);
1267 slpte = vtd_get_slpte(addr, offset);
1269 if (slpte == (uint64_t)-1) {
1270 trace_vtd_page_walk_skip_read(iova, iova_next);
1271 goto next;
1274 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1275 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1276 goto next;
1279 /* Permissions are stacked with parents' */
1280 read_cur = read && (slpte & VTD_SL_R);
1281 write_cur = write && (slpte & VTD_SL_W);
1284 * As long as we have either read/write permission, this is a
1285 * valid entry. The rule works for both page entries and page
1286 * table entries.
1288 entry_valid = read_cur | write_cur;
1290 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1292 * This is a valid PDE (or even bigger than PDE). We need
1293 * to walk one further level.
1295 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1296 iova, MIN(iova_next, end), level - 1,
1297 read_cur, write_cur, info);
1298 } else {
1300 * This means we are either:
1302 * (1) the real page entry (either 4K page, or huge page)
1303 * (2) the whole range is invalid
1305 * In either case, we send an IOTLB notification down.
1307 event.entry.target_as = &address_space_memory;
1308 event.entry.iova = iova & subpage_mask;
1309 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1310 event.entry.addr_mask = ~subpage_mask;
1311 /* NOTE: this is only meaningful if entry_valid == true */
1312 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1313 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1314 IOMMU_NOTIFIER_UNMAP;
1315 ret = vtd_page_walk_one(&event, info);
1318 if (ret < 0) {
1319 return ret;
1322 next:
1323 iova = iova_next;
1326 return 0;
1330 * vtd_page_walk - walk specific IOVA range, and call the hook
1332 * @s: intel iommu state
1333 * @ce: context entry to walk upon
1334 * @start: IOVA address to start the walk
1335 * @end: IOVA range end address (start <= addr < end)
1336 * @info: page walking information struct
1338 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1339 uint64_t start, uint64_t end,
1340 vtd_page_walk_info *info,
1341 uint32_t pasid)
1343 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1344 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1346 if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1347 return -VTD_FR_ADDR_BEYOND_MGAW;
1350 if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1351 /* Fix end so that it reaches the maximum */
1352 end = vtd_iova_limit(s, ce, info->aw, pasid);
1355 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1358 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1359 VTDRootEntry *re)
1361 /* Legacy Mode reserved bits check */
1362 if (!s->root_scalable &&
1363 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1364 goto rsvd_err;
1366 /* Scalable Mode reserved bits check */
1367 if (s->root_scalable &&
1368 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1369 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1370 goto rsvd_err;
1372 return 0;
1374 rsvd_err:
1375 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1376 ", lo=0x%"PRIx64,
1377 __func__, re->hi, re->lo);
1378 return -VTD_FR_ROOT_ENTRY_RSVD;
1381 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1382 VTDContextEntry *ce)
1384 if (!s->root_scalable &&
1385 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1386 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1387 error_report_once("%s: invalid context entry: hi=%"PRIx64
1388 ", lo=%"PRIx64" (reserved nonzero)",
1389 __func__, ce->hi, ce->lo);
1390 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1393 if (s->root_scalable &&
1394 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1395 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1396 ce->val[2] ||
1397 ce->val[3])) {
1398 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1399 ", val[2]=%"PRIx64
1400 ", val[1]=%"PRIx64
1401 ", val[0]=%"PRIx64" (reserved nonzero)",
1402 __func__, ce->val[3], ce->val[2],
1403 ce->val[1], ce->val[0]);
1404 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1407 return 0;
1410 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1411 VTDContextEntry *ce)
1413 VTDPASIDEntry pe;
1416 * Make sure in Scalable Mode, a present context entry
1417 * has valid rid2pasid setting, which includes valid
1418 * rid2pasid field and corresponding pasid entry setting
1420 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1423 /* Map a device to its corresponding domain (context-entry) */
1424 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1425 uint8_t devfn, VTDContextEntry *ce)
1427 VTDRootEntry re;
1428 int ret_fr;
1429 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1431 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1432 if (ret_fr) {
1433 return ret_fr;
1436 if (!vtd_root_entry_present(s, &re, devfn)) {
1437 /* Not error - it's okay we don't have root entry. */
1438 trace_vtd_re_not_present(bus_num);
1439 return -VTD_FR_ROOT_ENTRY_P;
1442 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1443 if (ret_fr) {
1444 return ret_fr;
1447 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1448 if (ret_fr) {
1449 return ret_fr;
1452 if (!vtd_ce_present(ce)) {
1453 /* Not error - it's okay we don't have context entry. */
1454 trace_vtd_ce_not_present(bus_num, devfn);
1455 return -VTD_FR_CONTEXT_ENTRY_P;
1458 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1459 if (ret_fr) {
1460 return ret_fr;
1463 /* Check if the programming of context-entry is valid */
1464 if (!s->root_scalable &&
1465 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1466 error_report_once("%s: invalid context entry: hi=%"PRIx64
1467 ", lo=%"PRIx64" (level %d not supported)",
1468 __func__, ce->hi, ce->lo,
1469 vtd_ce_get_level(ce));
1470 return -VTD_FR_CONTEXT_ENTRY_INV;
1473 if (!s->root_scalable) {
1474 /* Do translation type check */
1475 if (!vtd_ce_type_check(x86_iommu, ce)) {
1476 /* Errors dumped in vtd_ce_type_check() */
1477 return -VTD_FR_CONTEXT_ENTRY_INV;
1479 } else {
1481 * Check if the programming of context-entry.rid2pasid
1482 * and corresponding pasid setting is valid, and thus
1483 * avoids to check pasid entry fetching result in future
1484 * helper function calling.
1486 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1487 if (ret_fr) {
1488 return ret_fr;
1492 return 0;
1495 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1496 void *private)
1498 memory_region_notify_iommu(private, 0, *event);
1499 return 0;
1502 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1503 VTDContextEntry *ce,
1504 uint32_t pasid)
1506 VTDPASIDEntry pe;
1508 if (s->root_scalable) {
1509 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1510 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1513 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1516 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1517 VTDContextEntry *ce,
1518 hwaddr addr, hwaddr size)
1520 IntelIOMMUState *s = vtd_as->iommu_state;
1521 vtd_page_walk_info info = {
1522 .hook_fn = vtd_sync_shadow_page_hook,
1523 .private = (void *)&vtd_as->iommu,
1524 .notify_unmap = true,
1525 .aw = s->aw_bits,
1526 .as = vtd_as,
1527 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1530 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1533 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1535 int ret;
1536 VTDContextEntry ce;
1537 IOMMUNotifier *n;
1539 /* If no MAP notifier registered, we simply invalidate all the cache */
1540 if (!vtd_as_has_map_notifier(vtd_as)) {
1541 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1542 memory_region_unmap_iommu_notifier_range(n);
1544 return 0;
1547 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1548 pci_bus_num(vtd_as->bus),
1549 vtd_as->devfn, &ce);
1550 if (ret) {
1551 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1553 * It's a valid scenario to have a context entry that is
1554 * not present. For example, when a device is removed
1555 * from an existing domain then the context entry will be
1556 * zeroed by the guest before it was put into another
1557 * domain. When this happens, instead of synchronizing
1558 * the shadow pages we should invalidate all existing
1559 * mappings and notify the backends.
1561 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1562 vtd_address_space_unmap(vtd_as, n);
1564 ret = 0;
1566 return ret;
1569 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1573 * Check if specific device is configured to bypass address
1574 * translation for DMA requests. In Scalable Mode, bypass
1575 * 1st-level translation or 2nd-level translation, it depends
1576 * on PGTT setting.
1578 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1579 uint32_t pasid)
1581 VTDPASIDEntry pe;
1582 int ret;
1584 if (s->root_scalable) {
1585 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1586 if (ret) {
1588 * This error is guest triggerable. We should assumt PT
1589 * not enabled for safety.
1591 return false;
1593 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1596 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1600 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1602 IntelIOMMUState *s;
1603 VTDContextEntry ce;
1605 assert(as);
1607 s = as->iommu_state;
1608 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1609 &ce)) {
1611 * Possibly failed to parse the context entry for some reason
1612 * (e.g., during init, or any guest configuration errors on
1613 * context entries). We should assume PT not enabled for
1614 * safety.
1616 return false;
1619 return vtd_dev_pt_enabled(s, &ce, as->pasid);
1622 /* Return whether the device is using IOMMU translation. */
1623 static bool vtd_switch_address_space(VTDAddressSpace *as)
1625 bool use_iommu, pt;
1626 /* Whether we need to take the BQL on our own */
1627 bool take_bql = !qemu_mutex_iothread_locked();
1629 assert(as);
1631 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1632 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1634 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1635 VTD_PCI_SLOT(as->devfn),
1636 VTD_PCI_FUNC(as->devfn),
1637 use_iommu);
1640 * It's possible that we reach here without BQL, e.g., when called
1641 * from vtd_pt_enable_fast_path(). However the memory APIs need
1642 * it. We'd better make sure we have had it already, or, take it.
1644 if (take_bql) {
1645 qemu_mutex_lock_iothread();
1648 /* Turn off first then on the other */
1649 if (use_iommu) {
1650 memory_region_set_enabled(&as->nodmar, false);
1651 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1653 * vt-d spec v3.4 3.14:
1655 * """
1656 * Requests-with-PASID with input address in range 0xFEEx_xxxx
1657 * are translated normally like any other request-with-PASID
1658 * through DMA-remapping hardware.
1659 * """
1661 * Need to disable ir for as with PASID.
1663 if (as->pasid != PCI_NO_PASID) {
1664 memory_region_set_enabled(&as->iommu_ir, false);
1665 } else {
1666 memory_region_set_enabled(&as->iommu_ir, true);
1668 } else {
1669 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1670 memory_region_set_enabled(&as->nodmar, true);
1674 * vtd-spec v3.4 3.14:
1676 * """
1677 * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1678 * translated normally like any other request-with-PASID through
1679 * DMA-remapping hardware. However, if such a request is processed
1680 * using pass-through translation, it will be blocked as described
1681 * in the paragraph below.
1683 * Software must not program paging-structure entries to remap any
1684 * address to the interrupt address range. Untranslated requests
1685 * and translation requests that result in an address in the
1686 * interrupt range will be blocked with condition code LGN.4 or
1687 * SGN.8.
1688 * """
1690 * We enable per as memory region (iommu_ir_fault) for catching
1691 * the tranlsation for interrupt range through PASID + PT.
1693 if (pt && as->pasid != PCI_NO_PASID) {
1694 memory_region_set_enabled(&as->iommu_ir_fault, true);
1695 } else {
1696 memory_region_set_enabled(&as->iommu_ir_fault, false);
1699 if (take_bql) {
1700 qemu_mutex_unlock_iothread();
1703 return use_iommu;
1706 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1708 VTDAddressSpace *vtd_as;
1709 GHashTableIter iter;
1711 g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1712 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1713 vtd_switch_address_space(vtd_as);
1717 static const bool vtd_qualified_faults[] = {
1718 [VTD_FR_RESERVED] = false,
1719 [VTD_FR_ROOT_ENTRY_P] = false,
1720 [VTD_FR_CONTEXT_ENTRY_P] = true,
1721 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1722 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1723 [VTD_FR_WRITE] = true,
1724 [VTD_FR_READ] = true,
1725 [VTD_FR_PAGING_ENTRY_INV] = true,
1726 [VTD_FR_ROOT_TABLE_INV] = false,
1727 [VTD_FR_CONTEXT_TABLE_INV] = false,
1728 [VTD_FR_INTERRUPT_ADDR] = true,
1729 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1730 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1731 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1732 [VTD_FR_PASID_TABLE_INV] = false,
1733 [VTD_FR_SM_INTERRUPT_ADDR] = true,
1734 [VTD_FR_MAX] = false,
1737 /* To see if a fault condition is "qualified", which is reported to software
1738 * only if the FPD field in the context-entry used to process the faulting
1739 * request is 0.
1741 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1743 return vtd_qualified_faults[fault];
1746 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1748 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1751 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1752 gpointer user_data)
1754 struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1755 uint16_t target_sid = *(uint16_t *)user_data;
1756 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1757 return sid == target_sid;
1760 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1762 uint8_t bus_num = PCI_BUS_NUM(sid);
1763 VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1765 if (vtd_as &&
1766 (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1767 return vtd_as;
1770 vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1771 s->vtd_as_cache[bus_num] = vtd_as;
1773 return vtd_as;
1776 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1778 VTDAddressSpace *vtd_as;
1779 bool success = false;
1781 vtd_as = vtd_get_as_by_sid(s, source_id);
1782 if (!vtd_as) {
1783 goto out;
1786 if (vtd_switch_address_space(vtd_as) == false) {
1787 /* We switched off IOMMU region successfully. */
1788 success = true;
1791 out:
1792 trace_vtd_pt_enable_fast_path(source_id, success);
1795 static void vtd_report_fault(IntelIOMMUState *s,
1796 int err, bool is_fpd_set,
1797 uint16_t source_id,
1798 hwaddr addr,
1799 bool is_write,
1800 bool is_pasid,
1801 uint32_t pasid)
1803 if (is_fpd_set && vtd_is_qualified_fault(err)) {
1804 trace_vtd_fault_disabled();
1805 } else {
1806 vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1807 is_pasid, pasid);
1811 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1812 * translation.
1814 * Called from RCU critical section.
1816 * @bus_num: The bus number
1817 * @devfn: The devfn, which is the combined of device and function number
1818 * @is_write: The access is a write operation
1819 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1821 * Returns true if translation is successful, otherwise false.
1823 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1824 uint8_t devfn, hwaddr addr, bool is_write,
1825 IOMMUTLBEntry *entry)
1827 IntelIOMMUState *s = vtd_as->iommu_state;
1828 VTDContextEntry ce;
1829 uint8_t bus_num = pci_bus_num(bus);
1830 VTDContextCacheEntry *cc_entry;
1831 uint64_t slpte, page_mask;
1832 uint32_t level, pasid = vtd_as->pasid;
1833 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1834 int ret_fr;
1835 bool is_fpd_set = false;
1836 bool reads = true;
1837 bool writes = true;
1838 uint8_t access_flags;
1839 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1840 VTDIOTLBEntry *iotlb_entry;
1843 * We have standalone memory region for interrupt addresses, we
1844 * should never receive translation requests in this region.
1846 assert(!vtd_is_interrupt_addr(addr));
1848 vtd_iommu_lock(s);
1850 cc_entry = &vtd_as->context_cache_entry;
1852 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1853 if (!rid2pasid) {
1854 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1855 if (iotlb_entry) {
1856 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1857 iotlb_entry->domain_id);
1858 slpte = iotlb_entry->slpte;
1859 access_flags = iotlb_entry->access_flags;
1860 page_mask = iotlb_entry->mask;
1861 goto out;
1865 /* Try to fetch context-entry from cache first */
1866 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1867 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1868 cc_entry->context_entry.lo,
1869 cc_entry->context_cache_gen);
1870 ce = cc_entry->context_entry;
1871 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1872 if (!is_fpd_set && s->root_scalable) {
1873 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1874 if (ret_fr) {
1875 vtd_report_fault(s, -ret_fr, is_fpd_set,
1876 source_id, addr, is_write,
1877 false, 0);
1878 goto error;
1881 } else {
1882 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1883 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1884 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1885 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1887 if (ret_fr) {
1888 vtd_report_fault(s, -ret_fr, is_fpd_set,
1889 source_id, addr, is_write,
1890 false, 0);
1891 goto error;
1893 /* Update context-cache */
1894 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1895 cc_entry->context_cache_gen,
1896 s->context_cache_gen);
1897 cc_entry->context_entry = ce;
1898 cc_entry->context_cache_gen = s->context_cache_gen;
1901 if (rid2pasid) {
1902 pasid = VTD_CE_GET_RID2PASID(&ce);
1906 * We don't need to translate for pass-through context entries.
1907 * Also, let's ignore IOTLB caching as well for PT devices.
1909 if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1910 entry->iova = addr & VTD_PAGE_MASK_4K;
1911 entry->translated_addr = entry->iova;
1912 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1913 entry->perm = IOMMU_RW;
1914 trace_vtd_translate_pt(source_id, entry->iova);
1917 * When this happens, it means firstly caching-mode is not
1918 * enabled, and this is the first passthrough translation for
1919 * the device. Let's enable the fast path for passthrough.
1921 * When passthrough is disabled again for the device, we can
1922 * capture it via the context entry invalidation, then the
1923 * IOMMU region can be swapped back.
1925 vtd_pt_enable_fast_path(s, source_id);
1926 vtd_iommu_unlock(s);
1927 return true;
1930 /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1931 if (rid2pasid) {
1932 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1933 if (iotlb_entry) {
1934 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1935 iotlb_entry->domain_id);
1936 slpte = iotlb_entry->slpte;
1937 access_flags = iotlb_entry->access_flags;
1938 page_mask = iotlb_entry->mask;
1939 goto out;
1943 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1944 &reads, &writes, s->aw_bits, pasid);
1945 if (ret_fr) {
1946 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
1947 addr, is_write, pasid != PCI_NO_PASID, pasid);
1948 goto error;
1951 page_mask = vtd_slpt_level_page_mask(level);
1952 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1953 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
1954 addr, slpte, access_flags, level, pasid);
1955 out:
1956 vtd_iommu_unlock(s);
1957 entry->iova = addr & page_mask;
1958 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1959 entry->addr_mask = ~page_mask;
1960 entry->perm = access_flags;
1961 return true;
1963 error:
1964 vtd_iommu_unlock(s);
1965 entry->iova = 0;
1966 entry->translated_addr = 0;
1967 entry->addr_mask = 0;
1968 entry->perm = IOMMU_NONE;
1969 return false;
1972 static void vtd_root_table_setup(IntelIOMMUState *s)
1974 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1975 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1977 vtd_update_scalable_state(s);
1979 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1982 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1983 uint32_t index, uint32_t mask)
1985 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1988 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1990 uint64_t value = 0;
1991 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1992 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1993 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1994 s->intr_eime = value & VTD_IRTA_EIME;
1996 /* Notify global invalidation */
1997 vtd_iec_notify_all(s, true, 0, 0);
1999 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2002 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2004 VTDAddressSpace *vtd_as;
2006 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2007 vtd_address_space_sync(vtd_as);
2011 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2013 trace_vtd_inv_desc_cc_global();
2014 /* Protects context cache */
2015 vtd_iommu_lock(s);
2016 s->context_cache_gen++;
2017 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2018 vtd_reset_context_cache_locked(s);
2020 vtd_iommu_unlock(s);
2021 vtd_address_space_refresh_all(s);
2023 * From VT-d spec 6.5.2.1, a global context entry invalidation
2024 * should be followed by a IOTLB global invalidation, so we should
2025 * be safe even without this. Hoewever, let's replay the region as
2026 * well to be safer, and go back here when we need finer tunes for
2027 * VT-d emulation codes.
2029 vtd_iommu_replay_all(s);
2032 /* Do a context-cache device-selective invalidation.
2033 * @func_mask: FM field after shifting
2035 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2036 uint16_t source_id,
2037 uint16_t func_mask)
2039 GHashTableIter as_it;
2040 uint16_t mask;
2041 VTDAddressSpace *vtd_as;
2042 uint8_t bus_n, devfn;
2044 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2046 switch (func_mask & 3) {
2047 case 0:
2048 mask = 0; /* No bits in the SID field masked */
2049 break;
2050 case 1:
2051 mask = 4; /* Mask bit 2 in the SID field */
2052 break;
2053 case 2:
2054 mask = 6; /* Mask bit 2:1 in the SID field */
2055 break;
2056 case 3:
2057 mask = 7; /* Mask bit 2:0 in the SID field */
2058 break;
2059 default:
2060 g_assert_not_reached();
2062 mask = ~mask;
2064 bus_n = VTD_SID_TO_BUS(source_id);
2065 devfn = VTD_SID_TO_DEVFN(source_id);
2067 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2068 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2069 if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2070 (vtd_as->devfn & mask) == (devfn & mask)) {
2071 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2072 VTD_PCI_FUNC(vtd_as->devfn));
2073 vtd_iommu_lock(s);
2074 vtd_as->context_cache_entry.context_cache_gen = 0;
2075 vtd_iommu_unlock(s);
2077 * Do switch address space when needed, in case if the
2078 * device passthrough bit is switched.
2080 vtd_switch_address_space(vtd_as);
2082 * So a device is moving out of (or moving into) a
2083 * domain, resync the shadow page table.
2084 * This won't bring bad even if we have no such
2085 * notifier registered - the IOMMU notification
2086 * framework will skip MAP notifications if that
2087 * happened.
2089 vtd_address_space_sync(vtd_as);
2094 /* Context-cache invalidation
2095 * Returns the Context Actual Invalidation Granularity.
2096 * @val: the content of the CCMD_REG
2098 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2100 uint64_t caig;
2101 uint64_t type = val & VTD_CCMD_CIRG_MASK;
2103 switch (type) {
2104 case VTD_CCMD_DOMAIN_INVL:
2105 /* Fall through */
2106 case VTD_CCMD_GLOBAL_INVL:
2107 caig = VTD_CCMD_GLOBAL_INVL_A;
2108 vtd_context_global_invalidate(s);
2109 break;
2111 case VTD_CCMD_DEVICE_INVL:
2112 caig = VTD_CCMD_DEVICE_INVL_A;
2113 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2114 break;
2116 default:
2117 error_report_once("%s: invalid context: 0x%" PRIx64,
2118 __func__, val);
2119 caig = 0;
2121 return caig;
2124 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2126 trace_vtd_inv_desc_iotlb_global();
2127 vtd_reset_iotlb(s);
2128 vtd_iommu_replay_all(s);
2131 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2133 VTDContextEntry ce;
2134 VTDAddressSpace *vtd_as;
2136 trace_vtd_inv_desc_iotlb_domain(domain_id);
2138 vtd_iommu_lock(s);
2139 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2140 &domain_id);
2141 vtd_iommu_unlock(s);
2143 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2144 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2145 vtd_as->devfn, &ce) &&
2146 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2147 vtd_address_space_sync(vtd_as);
2152 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2153 uint16_t domain_id, hwaddr addr,
2154 uint8_t am, uint32_t pasid)
2156 VTDAddressSpace *vtd_as;
2157 VTDContextEntry ce;
2158 int ret;
2159 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2161 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2162 if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2163 continue;
2165 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2166 vtd_as->devfn, &ce);
2167 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2168 if (vtd_as_has_map_notifier(vtd_as)) {
2170 * As long as we have MAP notifications registered in
2171 * any of our IOMMU notifiers, we need to sync the
2172 * shadow page table.
2174 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2175 } else {
2177 * For UNMAP-only notifiers, we don't need to walk the
2178 * page tables. We just deliver the PSI down to
2179 * invalidate caches.
2181 IOMMUTLBEvent event = {
2182 .type = IOMMU_NOTIFIER_UNMAP,
2183 .entry = {
2184 .target_as = &address_space_memory,
2185 .iova = addr,
2186 .translated_addr = 0,
2187 .addr_mask = size - 1,
2188 .perm = IOMMU_NONE,
2191 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2197 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2198 hwaddr addr, uint8_t am)
2200 VTDIOTLBPageInvInfo info;
2202 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2204 assert(am <= VTD_MAMV);
2205 info.domain_id = domain_id;
2206 info.addr = addr;
2207 info.mask = ~((1 << am) - 1);
2208 vtd_iommu_lock(s);
2209 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2210 vtd_iommu_unlock(s);
2211 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2214 /* Flush IOTLB
2215 * Returns the IOTLB Actual Invalidation Granularity.
2216 * @val: the content of the IOTLB_REG
2218 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2220 uint64_t iaig;
2221 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2222 uint16_t domain_id;
2223 hwaddr addr;
2224 uint8_t am;
2226 switch (type) {
2227 case VTD_TLB_GLOBAL_FLUSH:
2228 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2229 vtd_iotlb_global_invalidate(s);
2230 break;
2232 case VTD_TLB_DSI_FLUSH:
2233 domain_id = VTD_TLB_DID(val);
2234 iaig = VTD_TLB_DSI_FLUSH_A;
2235 vtd_iotlb_domain_invalidate(s, domain_id);
2236 break;
2238 case VTD_TLB_PSI_FLUSH:
2239 domain_id = VTD_TLB_DID(val);
2240 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2241 am = VTD_IVA_AM(addr);
2242 addr = VTD_IVA_ADDR(addr);
2243 if (am > VTD_MAMV) {
2244 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2245 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2246 iaig = 0;
2247 break;
2249 iaig = VTD_TLB_PSI_FLUSH_A;
2250 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2251 break;
2253 default:
2254 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2255 __func__, val);
2256 iaig = 0;
2258 return iaig;
2261 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2263 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2265 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2266 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2269 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2271 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2273 trace_vtd_inv_qi_enable(en);
2275 if (en) {
2276 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2277 /* 2^(x+8) entries */
2278 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2279 s->qi_enabled = true;
2280 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2281 /* Ok - report back to driver */
2282 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2284 if (s->iq_tail != 0) {
2286 * This is a spec violation but Windows guests are known to set up
2287 * Queued Invalidation this way so we allow the write and process
2288 * Invalidation Descriptors right away.
2290 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2291 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2292 vtd_fetch_inv_desc(s);
2295 } else {
2296 if (vtd_queued_inv_disable_check(s)) {
2297 /* disable Queued Invalidation */
2298 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2299 s->iq_head = 0;
2300 s->qi_enabled = false;
2301 /* Ok - report back to driver */
2302 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2303 } else {
2304 error_report_once("%s: detected improper state when disable QI "
2305 "(head=0x%x, tail=0x%x, last_type=%d)",
2306 __func__,
2307 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2312 /* Set Root Table Pointer */
2313 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2315 vtd_root_table_setup(s);
2316 /* Ok - report back to driver */
2317 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2318 vtd_reset_caches(s);
2319 vtd_address_space_refresh_all(s);
2322 /* Set Interrupt Remap Table Pointer */
2323 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2325 vtd_interrupt_remap_table_setup(s);
2326 /* Ok - report back to driver */
2327 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2330 /* Handle Translation Enable/Disable */
2331 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2333 if (s->dmar_enabled == en) {
2334 return;
2337 trace_vtd_dmar_enable(en);
2339 if (en) {
2340 s->dmar_enabled = true;
2341 /* Ok - report back to driver */
2342 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2343 } else {
2344 s->dmar_enabled = false;
2346 /* Clear the index of Fault Recording Register */
2347 s->next_frcd_reg = 0;
2348 /* Ok - report back to driver */
2349 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2352 vtd_reset_caches(s);
2353 vtd_address_space_refresh_all(s);
2356 /* Handle Interrupt Remap Enable/Disable */
2357 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2359 trace_vtd_ir_enable(en);
2361 if (en) {
2362 s->intr_enabled = true;
2363 /* Ok - report back to driver */
2364 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2365 } else {
2366 s->intr_enabled = false;
2367 /* Ok - report back to driver */
2368 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2372 /* Handle write to Global Command Register */
2373 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2375 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2376 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2377 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2378 uint32_t changed = status ^ val;
2380 trace_vtd_reg_write_gcmd(status, val);
2381 if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2382 /* Translation enable/disable */
2383 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2385 if (val & VTD_GCMD_SRTP) {
2386 /* Set/update the root-table pointer */
2387 vtd_handle_gcmd_srtp(s);
2389 if (changed & VTD_GCMD_QIE) {
2390 /* Queued Invalidation Enable */
2391 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2393 if (val & VTD_GCMD_SIRTP) {
2394 /* Set/update the interrupt remapping root-table pointer */
2395 vtd_handle_gcmd_sirtp(s);
2397 if ((changed & VTD_GCMD_IRE) &&
2398 x86_iommu_ir_supported(x86_iommu)) {
2399 /* Interrupt remap enable/disable */
2400 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2404 /* Handle write to Context Command Register */
2405 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2407 uint64_t ret;
2408 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2410 /* Context-cache invalidation request */
2411 if (val & VTD_CCMD_ICC) {
2412 if (s->qi_enabled) {
2413 error_report_once("Queued Invalidation enabled, "
2414 "should not use register-based invalidation");
2415 return;
2417 ret = vtd_context_cache_invalidate(s, val);
2418 /* Invalidation completed. Change something to show */
2419 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2420 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2421 ret);
2425 /* Handle write to IOTLB Invalidation Register */
2426 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2428 uint64_t ret;
2429 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2431 /* IOTLB invalidation request */
2432 if (val & VTD_TLB_IVT) {
2433 if (s->qi_enabled) {
2434 error_report_once("Queued Invalidation enabled, "
2435 "should not use register-based invalidation");
2436 return;
2438 ret = vtd_iotlb_flush(s, val);
2439 /* Invalidation completed. Change something to show */
2440 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2441 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2442 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2446 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2447 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2448 VTDInvDesc *inv_desc)
2450 dma_addr_t base_addr = s->iq;
2451 uint32_t offset = s->iq_head;
2452 uint32_t dw = s->iq_dw ? 32 : 16;
2453 dma_addr_t addr = base_addr + offset * dw;
2455 if (dma_memory_read(&address_space_memory, addr,
2456 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2457 error_report_once("Read INV DESC failed.");
2458 return false;
2460 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2461 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2462 if (dw == 32) {
2463 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2464 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2466 return true;
2469 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2471 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2472 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2473 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2474 " (reserved nonzero)", __func__, inv_desc->hi,
2475 inv_desc->lo);
2476 return false;
2478 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2479 /* Status Write */
2480 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2481 VTD_INV_DESC_WAIT_DATA_SHIFT);
2483 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2485 /* FIXME: need to be masked with HAW? */
2486 dma_addr_t status_addr = inv_desc->hi;
2487 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2488 status_data = cpu_to_le32(status_data);
2489 if (dma_memory_write(&address_space_memory, status_addr,
2490 &status_data, sizeof(status_data),
2491 MEMTXATTRS_UNSPECIFIED)) {
2492 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2493 return false;
2495 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2496 /* Interrupt flag */
2497 vtd_generate_completion_event(s);
2498 } else {
2499 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2500 " (unknown type)", __func__, inv_desc->hi,
2501 inv_desc->lo);
2502 return false;
2504 return true;
2507 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2508 VTDInvDesc *inv_desc)
2510 uint16_t sid, fmask;
2512 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2513 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2514 " (reserved nonzero)", __func__, inv_desc->hi,
2515 inv_desc->lo);
2516 return false;
2518 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2519 case VTD_INV_DESC_CC_DOMAIN:
2520 trace_vtd_inv_desc_cc_domain(
2521 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2522 /* Fall through */
2523 case VTD_INV_DESC_CC_GLOBAL:
2524 vtd_context_global_invalidate(s);
2525 break;
2527 case VTD_INV_DESC_CC_DEVICE:
2528 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2529 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2530 vtd_context_device_invalidate(s, sid, fmask);
2531 break;
2533 default:
2534 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2535 " (invalid type)", __func__, inv_desc->hi,
2536 inv_desc->lo);
2537 return false;
2539 return true;
2542 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2544 uint16_t domain_id;
2545 uint8_t am;
2546 hwaddr addr;
2548 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2549 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2550 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2551 ", lo=0x%"PRIx64" (reserved bits unzero)",
2552 __func__, inv_desc->hi, inv_desc->lo);
2553 return false;
2556 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2557 case VTD_INV_DESC_IOTLB_GLOBAL:
2558 vtd_iotlb_global_invalidate(s);
2559 break;
2561 case VTD_INV_DESC_IOTLB_DOMAIN:
2562 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2563 vtd_iotlb_domain_invalidate(s, domain_id);
2564 break;
2566 case VTD_INV_DESC_IOTLB_PAGE:
2567 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2568 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2569 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2570 if (am > VTD_MAMV) {
2571 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2572 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2573 __func__, inv_desc->hi, inv_desc->lo,
2574 am, (unsigned)VTD_MAMV);
2575 return false;
2577 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2578 break;
2580 default:
2581 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2582 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2583 __func__, inv_desc->hi, inv_desc->lo,
2584 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2585 return false;
2587 return true;
2590 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2591 VTDInvDesc *inv_desc)
2593 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2594 inv_desc->iec.index,
2595 inv_desc->iec.index_mask);
2597 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2598 inv_desc->iec.index,
2599 inv_desc->iec.index_mask);
2600 return true;
2603 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2604 VTDInvDesc *inv_desc)
2606 VTDAddressSpace *vtd_dev_as;
2607 IOMMUTLBEvent event;
2608 hwaddr addr;
2609 uint64_t sz;
2610 uint16_t sid;
2611 bool size;
2613 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2614 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2615 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2617 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2618 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2619 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2620 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2621 inv_desc->hi, inv_desc->lo);
2622 return false;
2626 * Using sid is OK since the guest should have finished the
2627 * initialization of both the bus and device.
2629 vtd_dev_as = vtd_get_as_by_sid(s, sid);
2630 if (!vtd_dev_as) {
2631 goto done;
2634 /* According to ATS spec table 2.4:
2635 * S = 0, bits 15:12 = xxxx range size: 4K
2636 * S = 1, bits 15:12 = xxx0 range size: 8K
2637 * S = 1, bits 15:12 = xx01 range size: 16K
2638 * S = 1, bits 15:12 = x011 range size: 32K
2639 * S = 1, bits 15:12 = 0111 range size: 64K
2640 * ...
2642 if (size) {
2643 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2644 addr &= ~(sz - 1);
2645 } else {
2646 sz = VTD_PAGE_SIZE;
2649 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2650 event.entry.target_as = &vtd_dev_as->as;
2651 event.entry.addr_mask = sz - 1;
2652 event.entry.iova = addr;
2653 event.entry.perm = IOMMU_NONE;
2654 event.entry.translated_addr = 0;
2655 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2657 done:
2658 return true;
2661 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2663 VTDInvDesc inv_desc;
2664 uint8_t desc_type;
2666 trace_vtd_inv_qi_head(s->iq_head);
2667 if (!vtd_get_inv_desc(s, &inv_desc)) {
2668 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2669 return false;
2672 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2673 /* FIXME: should update at first or at last? */
2674 s->iq_last_desc_type = desc_type;
2676 switch (desc_type) {
2677 case VTD_INV_DESC_CC:
2678 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2679 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2680 return false;
2682 break;
2684 case VTD_INV_DESC_IOTLB:
2685 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2686 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2687 return false;
2689 break;
2692 * TODO: the entity of below two cases will be implemented in future series.
2693 * To make guest (which integrates scalable mode support patch set in
2694 * iommu driver) work, just return true is enough so far.
2696 case VTD_INV_DESC_PC:
2697 break;
2699 case VTD_INV_DESC_PIOTLB:
2700 break;
2702 case VTD_INV_DESC_WAIT:
2703 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2704 if (!vtd_process_wait_desc(s, &inv_desc)) {
2705 return false;
2707 break;
2709 case VTD_INV_DESC_IEC:
2710 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2711 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2712 return false;
2714 break;
2716 case VTD_INV_DESC_DEVICE:
2717 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2718 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2719 return false;
2721 break;
2723 default:
2724 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2725 " (unknown type)", __func__, inv_desc.hi,
2726 inv_desc.lo);
2727 return false;
2729 s->iq_head++;
2730 if (s->iq_head == s->iq_size) {
2731 s->iq_head = 0;
2733 return true;
2736 /* Try to fetch and process more Invalidation Descriptors */
2737 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2739 int qi_shift;
2741 /* Refer to 10.4.23 of VT-d spec 3.0 */
2742 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2744 trace_vtd_inv_qi_fetch();
2746 if (s->iq_tail >= s->iq_size) {
2747 /* Detects an invalid Tail pointer */
2748 error_report_once("%s: detected invalid QI tail "
2749 "(tail=0x%x, size=0x%x)",
2750 __func__, s->iq_tail, s->iq_size);
2751 vtd_handle_inv_queue_error(s);
2752 return;
2754 while (s->iq_head != s->iq_tail) {
2755 if (!vtd_process_inv_desc(s)) {
2756 /* Invalidation Queue Errors */
2757 vtd_handle_inv_queue_error(s);
2758 break;
2760 /* Must update the IQH_REG in time */
2761 vtd_set_quad_raw(s, DMAR_IQH_REG,
2762 (((uint64_t)(s->iq_head)) << qi_shift) &
2763 VTD_IQH_QH_MASK);
2767 /* Handle write to Invalidation Queue Tail Register */
2768 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2770 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2772 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2773 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2774 __func__, val);
2775 return;
2777 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2778 trace_vtd_inv_qi_tail(s->iq_tail);
2780 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2781 /* Process Invalidation Queue here */
2782 vtd_fetch_inv_desc(s);
2786 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2788 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2789 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2790 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2792 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2793 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2794 trace_vtd_fsts_clear_ip();
2796 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2797 * Descriptors if there are any when Queued Invalidation is enabled?
2801 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2803 uint32_t fectl_reg;
2804 /* FIXME: when software clears the IM field, check the IP field. But do we
2805 * need to compare the old value and the new value to conclude that
2806 * software clears the IM field? Or just check if the IM field is zero?
2808 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2810 trace_vtd_reg_write_fectl(fectl_reg);
2812 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2813 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2814 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2818 static void vtd_handle_ics_write(IntelIOMMUState *s)
2820 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2821 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2823 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2824 trace_vtd_reg_ics_clear_ip();
2825 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2829 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2831 uint32_t iectl_reg;
2832 /* FIXME: when software clears the IM field, check the IP field. But do we
2833 * need to compare the old value and the new value to conclude that
2834 * software clears the IM field? Or just check if the IM field is zero?
2836 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2838 trace_vtd_reg_write_iectl(iectl_reg);
2840 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2841 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2842 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2846 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2848 IntelIOMMUState *s = opaque;
2849 uint64_t val;
2851 trace_vtd_reg_read(addr, size);
2853 if (addr + size > DMAR_REG_SIZE) {
2854 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2855 " size=0x%x", __func__, addr, size);
2856 return (uint64_t)-1;
2859 switch (addr) {
2860 /* Root Table Address Register, 64-bit */
2861 case DMAR_RTADDR_REG:
2862 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2863 if (size == 4) {
2864 val = val & ((1ULL << 32) - 1);
2866 break;
2868 case DMAR_RTADDR_REG_HI:
2869 assert(size == 4);
2870 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2871 break;
2873 /* Invalidation Queue Address Register, 64-bit */
2874 case DMAR_IQA_REG:
2875 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2876 if (size == 4) {
2877 val = val & ((1ULL << 32) - 1);
2879 break;
2881 case DMAR_IQA_REG_HI:
2882 assert(size == 4);
2883 val = s->iq >> 32;
2884 break;
2886 default:
2887 if (size == 4) {
2888 val = vtd_get_long(s, addr);
2889 } else {
2890 val = vtd_get_quad(s, addr);
2894 return val;
2897 static void vtd_mem_write(void *opaque, hwaddr addr,
2898 uint64_t val, unsigned size)
2900 IntelIOMMUState *s = opaque;
2902 trace_vtd_reg_write(addr, size, val);
2904 if (addr + size > DMAR_REG_SIZE) {
2905 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2906 " size=0x%x", __func__, addr, size);
2907 return;
2910 switch (addr) {
2911 /* Global Command Register, 32-bit */
2912 case DMAR_GCMD_REG:
2913 vtd_set_long(s, addr, val);
2914 vtd_handle_gcmd_write(s);
2915 break;
2917 /* Context Command Register, 64-bit */
2918 case DMAR_CCMD_REG:
2919 if (size == 4) {
2920 vtd_set_long(s, addr, val);
2921 } else {
2922 vtd_set_quad(s, addr, val);
2923 vtd_handle_ccmd_write(s);
2925 break;
2927 case DMAR_CCMD_REG_HI:
2928 assert(size == 4);
2929 vtd_set_long(s, addr, val);
2930 vtd_handle_ccmd_write(s);
2931 break;
2933 /* IOTLB Invalidation Register, 64-bit */
2934 case DMAR_IOTLB_REG:
2935 if (size == 4) {
2936 vtd_set_long(s, addr, val);
2937 } else {
2938 vtd_set_quad(s, addr, val);
2939 vtd_handle_iotlb_write(s);
2941 break;
2943 case DMAR_IOTLB_REG_HI:
2944 assert(size == 4);
2945 vtd_set_long(s, addr, val);
2946 vtd_handle_iotlb_write(s);
2947 break;
2949 /* Invalidate Address Register, 64-bit */
2950 case DMAR_IVA_REG:
2951 if (size == 4) {
2952 vtd_set_long(s, addr, val);
2953 } else {
2954 vtd_set_quad(s, addr, val);
2956 break;
2958 case DMAR_IVA_REG_HI:
2959 assert(size == 4);
2960 vtd_set_long(s, addr, val);
2961 break;
2963 /* Fault Status Register, 32-bit */
2964 case DMAR_FSTS_REG:
2965 assert(size == 4);
2966 vtd_set_long(s, addr, val);
2967 vtd_handle_fsts_write(s);
2968 break;
2970 /* Fault Event Control Register, 32-bit */
2971 case DMAR_FECTL_REG:
2972 assert(size == 4);
2973 vtd_set_long(s, addr, val);
2974 vtd_handle_fectl_write(s);
2975 break;
2977 /* Fault Event Data Register, 32-bit */
2978 case DMAR_FEDATA_REG:
2979 assert(size == 4);
2980 vtd_set_long(s, addr, val);
2981 break;
2983 /* Fault Event Address Register, 32-bit */
2984 case DMAR_FEADDR_REG:
2985 if (size == 4) {
2986 vtd_set_long(s, addr, val);
2987 } else {
2989 * While the register is 32-bit only, some guests (Xen...) write to
2990 * it with 64-bit.
2992 vtd_set_quad(s, addr, val);
2994 break;
2996 /* Fault Event Upper Address Register, 32-bit */
2997 case DMAR_FEUADDR_REG:
2998 assert(size == 4);
2999 vtd_set_long(s, addr, val);
3000 break;
3002 /* Protected Memory Enable Register, 32-bit */
3003 case DMAR_PMEN_REG:
3004 assert(size == 4);
3005 vtd_set_long(s, addr, val);
3006 break;
3008 /* Root Table Address Register, 64-bit */
3009 case DMAR_RTADDR_REG:
3010 if (size == 4) {
3011 vtd_set_long(s, addr, val);
3012 } else {
3013 vtd_set_quad(s, addr, val);
3015 break;
3017 case DMAR_RTADDR_REG_HI:
3018 assert(size == 4);
3019 vtd_set_long(s, addr, val);
3020 break;
3022 /* Invalidation Queue Tail Register, 64-bit */
3023 case DMAR_IQT_REG:
3024 if (size == 4) {
3025 vtd_set_long(s, addr, val);
3026 } else {
3027 vtd_set_quad(s, addr, val);
3029 vtd_handle_iqt_write(s);
3030 break;
3032 case DMAR_IQT_REG_HI:
3033 assert(size == 4);
3034 vtd_set_long(s, addr, val);
3035 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3036 break;
3038 /* Invalidation Queue Address Register, 64-bit */
3039 case DMAR_IQA_REG:
3040 if (size == 4) {
3041 vtd_set_long(s, addr, val);
3042 } else {
3043 vtd_set_quad(s, addr, val);
3045 vtd_update_iq_dw(s);
3046 break;
3048 case DMAR_IQA_REG_HI:
3049 assert(size == 4);
3050 vtd_set_long(s, addr, val);
3051 break;
3053 /* Invalidation Completion Status Register, 32-bit */
3054 case DMAR_ICS_REG:
3055 assert(size == 4);
3056 vtd_set_long(s, addr, val);
3057 vtd_handle_ics_write(s);
3058 break;
3060 /* Invalidation Event Control Register, 32-bit */
3061 case DMAR_IECTL_REG:
3062 assert(size == 4);
3063 vtd_set_long(s, addr, val);
3064 vtd_handle_iectl_write(s);
3065 break;
3067 /* Invalidation Event Data Register, 32-bit */
3068 case DMAR_IEDATA_REG:
3069 assert(size == 4);
3070 vtd_set_long(s, addr, val);
3071 break;
3073 /* Invalidation Event Address Register, 32-bit */
3074 case DMAR_IEADDR_REG:
3075 assert(size == 4);
3076 vtd_set_long(s, addr, val);
3077 break;
3079 /* Invalidation Event Upper Address Register, 32-bit */
3080 case DMAR_IEUADDR_REG:
3081 assert(size == 4);
3082 vtd_set_long(s, addr, val);
3083 break;
3085 /* Fault Recording Registers, 128-bit */
3086 case DMAR_FRCD_REG_0_0:
3087 if (size == 4) {
3088 vtd_set_long(s, addr, val);
3089 } else {
3090 vtd_set_quad(s, addr, val);
3092 break;
3094 case DMAR_FRCD_REG_0_1:
3095 assert(size == 4);
3096 vtd_set_long(s, addr, val);
3097 break;
3099 case DMAR_FRCD_REG_0_2:
3100 if (size == 4) {
3101 vtd_set_long(s, addr, val);
3102 } else {
3103 vtd_set_quad(s, addr, val);
3104 /* May clear bit 127 (Fault), update PPF */
3105 vtd_update_fsts_ppf(s);
3107 break;
3109 case DMAR_FRCD_REG_0_3:
3110 assert(size == 4);
3111 vtd_set_long(s, addr, val);
3112 /* May clear bit 127 (Fault), update PPF */
3113 vtd_update_fsts_ppf(s);
3114 break;
3116 case DMAR_IRTA_REG:
3117 if (size == 4) {
3118 vtd_set_long(s, addr, val);
3119 } else {
3120 vtd_set_quad(s, addr, val);
3122 break;
3124 case DMAR_IRTA_REG_HI:
3125 assert(size == 4);
3126 vtd_set_long(s, addr, val);
3127 break;
3129 default:
3130 if (size == 4) {
3131 vtd_set_long(s, addr, val);
3132 } else {
3133 vtd_set_quad(s, addr, val);
3138 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3139 IOMMUAccessFlags flag, int iommu_idx)
3141 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3142 IntelIOMMUState *s = vtd_as->iommu_state;
3143 IOMMUTLBEntry iotlb = {
3144 /* We'll fill in the rest later. */
3145 .target_as = &address_space_memory,
3147 bool success;
3149 if (likely(s->dmar_enabled)) {
3150 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3151 addr, flag & IOMMU_WO, &iotlb);
3152 } else {
3153 /* DMAR disabled, passthrough, use 4k-page*/
3154 iotlb.iova = addr & VTD_PAGE_MASK_4K;
3155 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3156 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3157 iotlb.perm = IOMMU_RW;
3158 success = true;
3161 if (likely(success)) {
3162 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3163 VTD_PCI_SLOT(vtd_as->devfn),
3164 VTD_PCI_FUNC(vtd_as->devfn),
3165 iotlb.iova, iotlb.translated_addr,
3166 iotlb.addr_mask);
3167 } else {
3168 error_report_once("%s: detected translation failure "
3169 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3170 __func__, pci_bus_num(vtd_as->bus),
3171 VTD_PCI_SLOT(vtd_as->devfn),
3172 VTD_PCI_FUNC(vtd_as->devfn),
3173 addr);
3176 return iotlb;
3179 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3180 IOMMUNotifierFlag old,
3181 IOMMUNotifierFlag new,
3182 Error **errp)
3184 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3185 IntelIOMMUState *s = vtd_as->iommu_state;
3186 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3188 /* TODO: add support for VFIO and vhost users */
3189 if (s->snoop_control) {
3190 error_setg_errno(errp, ENOTSUP,
3191 "Snoop Control with vhost or VFIO is not supported");
3192 return -ENOTSUP;
3194 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3195 error_setg_errno(errp, ENOTSUP,
3196 "device %02x.%02x.%x requires caching mode",
3197 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3198 PCI_FUNC(vtd_as->devfn));
3199 return -ENOTSUP;
3201 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3202 error_setg_errno(errp, ENOTSUP,
3203 "device %02x.%02x.%x requires device IOTLB mode",
3204 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3205 PCI_FUNC(vtd_as->devfn));
3206 return -ENOTSUP;
3209 /* Update per-address-space notifier flags */
3210 vtd_as->notifier_flags = new;
3212 if (old == IOMMU_NOTIFIER_NONE) {
3213 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3214 } else if (new == IOMMU_NOTIFIER_NONE) {
3215 QLIST_REMOVE(vtd_as, next);
3217 return 0;
3220 static int vtd_post_load(void *opaque, int version_id)
3222 IntelIOMMUState *iommu = opaque;
3225 * We don't need to migrate the root_scalable because we can
3226 * simply do the calculation after the loading is complete. We
3227 * can actually do similar things with root, dmar_enabled, etc.
3228 * however since we've had them already so we'd better keep them
3229 * for compatibility of migration.
3231 vtd_update_scalable_state(iommu);
3233 vtd_update_iq_dw(iommu);
3236 * Memory regions are dynamically turned on/off depending on
3237 * context entry configurations from the guest. After migration,
3238 * we need to make sure the memory regions are still correct.
3240 vtd_switch_address_space_all(iommu);
3242 return 0;
3245 static const VMStateDescription vtd_vmstate = {
3246 .name = "iommu-intel",
3247 .version_id = 1,
3248 .minimum_version_id = 1,
3249 .priority = MIG_PRI_IOMMU,
3250 .post_load = vtd_post_load,
3251 .fields = (VMStateField[]) {
3252 VMSTATE_UINT64(root, IntelIOMMUState),
3253 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3254 VMSTATE_UINT64(iq, IntelIOMMUState),
3255 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3256 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3257 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3258 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3259 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3260 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3261 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3262 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3263 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3264 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3265 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3266 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3267 VMSTATE_END_OF_LIST()
3271 static const MemoryRegionOps vtd_mem_ops = {
3272 .read = vtd_mem_read,
3273 .write = vtd_mem_write,
3274 .endianness = DEVICE_LITTLE_ENDIAN,
3275 .impl = {
3276 .min_access_size = 4,
3277 .max_access_size = 8,
3279 .valid = {
3280 .min_access_size = 4,
3281 .max_access_size = 8,
3285 static Property vtd_properties[] = {
3286 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3287 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3288 ON_OFF_AUTO_AUTO),
3289 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3290 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3291 VTD_HOST_ADDRESS_WIDTH),
3292 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3293 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3294 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3295 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3296 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3297 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3298 DEFINE_PROP_END_OF_LIST(),
3301 /* Read IRTE entry with specific index */
3302 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3303 VTD_IR_TableEntry *entry, uint16_t sid)
3305 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3306 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3307 dma_addr_t addr = 0x00;
3308 uint16_t mask, source_id;
3309 uint8_t bus, bus_max, bus_min;
3311 if (index >= iommu->intr_size) {
3312 error_report_once("%s: index too large: ind=0x%x",
3313 __func__, index);
3314 return -VTD_FR_IR_INDEX_OVER;
3317 addr = iommu->intr_root + index * sizeof(*entry);
3318 if (dma_memory_read(&address_space_memory, addr,
3319 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3320 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3321 __func__, index, addr);
3322 return -VTD_FR_IR_ROOT_INVAL;
3325 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3326 le64_to_cpu(entry->data[0]));
3328 if (!entry->irte.present) {
3329 error_report_once("%s: detected non-present IRTE "
3330 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3331 __func__, index, le64_to_cpu(entry->data[1]),
3332 le64_to_cpu(entry->data[0]));
3333 return -VTD_FR_IR_ENTRY_P;
3336 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3337 entry->irte.__reserved_2) {
3338 error_report_once("%s: detected non-zero reserved IRTE "
3339 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3340 __func__, index, le64_to_cpu(entry->data[1]),
3341 le64_to_cpu(entry->data[0]));
3342 return -VTD_FR_IR_IRTE_RSVD;
3345 if (sid != X86_IOMMU_SID_INVALID) {
3346 /* Validate IRTE SID */
3347 source_id = le32_to_cpu(entry->irte.source_id);
3348 switch (entry->irte.sid_vtype) {
3349 case VTD_SVT_NONE:
3350 break;
3352 case VTD_SVT_ALL:
3353 mask = vtd_svt_mask[entry->irte.sid_q];
3354 if ((source_id & mask) != (sid & mask)) {
3355 error_report_once("%s: invalid IRTE SID "
3356 "(index=%u, sid=%u, source_id=%u)",
3357 __func__, index, sid, source_id);
3358 return -VTD_FR_IR_SID_ERR;
3360 break;
3362 case VTD_SVT_BUS:
3363 bus_max = source_id >> 8;
3364 bus_min = source_id & 0xff;
3365 bus = sid >> 8;
3366 if (bus > bus_max || bus < bus_min) {
3367 error_report_once("%s: invalid SVT_BUS "
3368 "(index=%u, bus=%u, min=%u, max=%u)",
3369 __func__, index, bus, bus_min, bus_max);
3370 return -VTD_FR_IR_SID_ERR;
3372 break;
3374 default:
3375 error_report_once("%s: detected invalid IRTE SVT "
3376 "(index=%u, type=%d)", __func__,
3377 index, entry->irte.sid_vtype);
3378 /* Take this as verification failure. */
3379 return -VTD_FR_IR_SID_ERR;
3383 return 0;
3386 /* Fetch IRQ information of specific IR index */
3387 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3388 X86IOMMUIrq *irq, uint16_t sid)
3390 VTD_IR_TableEntry irte = {};
3391 int ret = 0;
3393 ret = vtd_irte_get(iommu, index, &irte, sid);
3394 if (ret) {
3395 return ret;
3398 irq->trigger_mode = irte.irte.trigger_mode;
3399 irq->vector = irte.irte.vector;
3400 irq->delivery_mode = irte.irte.delivery_mode;
3401 irq->dest = le32_to_cpu(irte.irte.dest_id);
3402 if (!iommu->intr_eime) {
3403 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3404 #define VTD_IR_APIC_DEST_SHIFT (8)
3405 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3406 VTD_IR_APIC_DEST_SHIFT;
3408 irq->dest_mode = irte.irte.dest_mode;
3409 irq->redir_hint = irte.irte.redir_hint;
3411 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3412 irq->delivery_mode, irq->dest, irq->dest_mode);
3414 return 0;
3417 /* Interrupt remapping for MSI/MSI-X entry */
3418 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3419 MSIMessage *origin,
3420 MSIMessage *translated,
3421 uint16_t sid)
3423 int ret = 0;
3424 VTD_IR_MSIAddress addr;
3425 uint16_t index;
3426 X86IOMMUIrq irq = {};
3428 assert(origin && translated);
3430 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3432 if (!iommu || !iommu->intr_enabled) {
3433 memcpy(translated, origin, sizeof(*origin));
3434 goto out;
3437 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3438 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3439 "address=0x%" PRIx64, __func__, origin->address);
3440 return -VTD_FR_IR_REQ_RSVD;
3443 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3444 if (addr.addr.__head != 0xfee) {
3445 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3446 __func__, addr.data);
3447 return -VTD_FR_IR_REQ_RSVD;
3450 /* This is compatible mode. */
3451 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3452 memcpy(translated, origin, sizeof(*origin));
3453 goto out;
3456 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3458 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3459 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3461 if (addr.addr.sub_valid) {
3462 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3463 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3466 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3467 if (ret) {
3468 return ret;
3471 if (addr.addr.sub_valid) {
3472 trace_vtd_ir_remap_type("MSI");
3473 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3474 error_report_once("%s: invalid IR MSI "
3475 "(sid=%u, address=0x%" PRIx64
3476 ", data=0x%" PRIx32 ")",
3477 __func__, sid, origin->address, origin->data);
3478 return -VTD_FR_IR_REQ_RSVD;
3480 } else {
3481 uint8_t vector = origin->data & 0xff;
3482 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3484 trace_vtd_ir_remap_type("IOAPIC");
3485 /* IOAPIC entry vector should be aligned with IRTE vector
3486 * (see vt-d spec 5.1.5.1). */
3487 if (vector != irq.vector) {
3488 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3491 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3492 * (see vt-d spec 5.1.5.1). */
3493 if (trigger_mode != irq.trigger_mode) {
3494 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3495 irq.trigger_mode);
3500 * We'd better keep the last two bits, assuming that guest OS
3501 * might modify it. Keep it does not hurt after all.
3503 irq.msi_addr_last_bits = addr.addr.__not_care;
3505 /* Translate X86IOMMUIrq to MSI message */
3506 x86_iommu_irq_to_msi_message(&irq, translated);
3508 out:
3509 trace_vtd_ir_remap_msi(origin->address, origin->data,
3510 translated->address, translated->data);
3511 return 0;
3514 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3515 MSIMessage *dst, uint16_t sid)
3517 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3518 src, dst, sid);
3521 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3522 uint64_t *data, unsigned size,
3523 MemTxAttrs attrs)
3525 return MEMTX_OK;
3528 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3529 uint64_t value, unsigned size,
3530 MemTxAttrs attrs)
3532 int ret = 0;
3533 MSIMessage from = {}, to = {};
3534 uint16_t sid = X86_IOMMU_SID_INVALID;
3536 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3537 from.data = (uint32_t) value;
3539 if (!attrs.unspecified) {
3540 /* We have explicit Source ID */
3541 sid = attrs.requester_id;
3544 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3545 if (ret) {
3546 /* TODO: report error */
3547 /* Drop this interrupt */
3548 return MEMTX_ERROR;
3551 apic_get_class(NULL)->send_msi(&to);
3553 return MEMTX_OK;
3556 static const MemoryRegionOps vtd_mem_ir_ops = {
3557 .read_with_attrs = vtd_mem_ir_read,
3558 .write_with_attrs = vtd_mem_ir_write,
3559 .endianness = DEVICE_LITTLE_ENDIAN,
3560 .impl = {
3561 .min_access_size = 4,
3562 .max_access_size = 4,
3564 .valid = {
3565 .min_access_size = 4,
3566 .max_access_size = 4,
3570 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3571 hwaddr addr, bool is_write)
3573 IntelIOMMUState *s = vtd_as->iommu_state;
3574 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3575 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3576 bool is_fpd_set = false;
3577 VTDContextEntry ce;
3579 assert(vtd_as->pasid != PCI_NO_PASID);
3581 /* Try out best to fetch FPD, we can't do anything more */
3582 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3583 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3584 if (!is_fpd_set && s->root_scalable) {
3585 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3589 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3590 is_fpd_set, sid, addr, is_write,
3591 true, vtd_as->pasid);
3594 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3595 uint64_t *data, unsigned size,
3596 MemTxAttrs attrs)
3598 vtd_report_ir_illegal_access(opaque, addr, false);
3600 return MEMTX_ERROR;
3603 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3604 uint64_t value, unsigned size,
3605 MemTxAttrs attrs)
3607 vtd_report_ir_illegal_access(opaque, addr, true);
3609 return MEMTX_ERROR;
3612 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3613 .read_with_attrs = vtd_mem_ir_fault_read,
3614 .write_with_attrs = vtd_mem_ir_fault_write,
3615 .endianness = DEVICE_LITTLE_ENDIAN,
3616 .impl = {
3617 .min_access_size = 1,
3618 .max_access_size = 8,
3620 .valid = {
3621 .min_access_size = 1,
3622 .max_access_size = 8,
3626 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3627 int devfn, unsigned int pasid)
3630 * We can't simply use sid here since the bus number might not be
3631 * initialized by the guest.
3633 struct vtd_as_key key = {
3634 .bus = bus,
3635 .devfn = devfn,
3636 .pasid = pasid,
3638 VTDAddressSpace *vtd_dev_as;
3639 char name[128];
3641 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3642 if (!vtd_dev_as) {
3643 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3645 new_key->bus = bus;
3646 new_key->devfn = devfn;
3647 new_key->pasid = pasid;
3649 if (pasid == PCI_NO_PASID) {
3650 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3651 PCI_FUNC(devfn));
3652 } else {
3653 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3654 PCI_FUNC(devfn), pasid);
3657 vtd_dev_as = g_new0(VTDAddressSpace, 1);
3659 vtd_dev_as->bus = bus;
3660 vtd_dev_as->devfn = (uint8_t)devfn;
3661 vtd_dev_as->pasid = pasid;
3662 vtd_dev_as->iommu_state = s;
3663 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3664 vtd_dev_as->iova_tree = iova_tree_new();
3666 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3667 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3670 * Build the DMAR-disabled container with aliases to the
3671 * shared MRs. Note that aliasing to a shared memory region
3672 * could help the memory API to detect same FlatViews so we
3673 * can have devices to share the same FlatView when DMAR is
3674 * disabled (either by not providing "intel_iommu=on" or with
3675 * "iommu=pt"). It will greatly reduce the total number of
3676 * FlatViews of the system hence VM runs faster.
3678 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3679 "vtd-nodmar", &s->mr_nodmar, 0,
3680 memory_region_size(&s->mr_nodmar));
3683 * Build the per-device DMAR-enabled container.
3685 * TODO: currently we have per-device IOMMU memory region only
3686 * because we have per-device IOMMU notifiers for devices. If
3687 * one day we can abstract the IOMMU notifiers out of the
3688 * memory regions then we can also share the same memory
3689 * region here just like what we've done above with the nodmar
3690 * region.
3692 strcat(name, "-dmar");
3693 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3694 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3695 name, UINT64_MAX);
3696 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3697 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3698 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3699 VTD_INTERRUPT_ADDR_FIRST,
3700 &vtd_dev_as->iommu_ir, 1);
3703 * This region is used for catching fault to access interrupt
3704 * range via passthrough + PASID. See also
3705 * vtd_switch_address_space(). We can't use alias since we
3706 * need to know the sid which is valid for MSI who uses
3707 * bus_master_as (see msi_send_message()).
3709 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3710 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3711 VTD_INTERRUPT_ADDR_SIZE);
3713 * Hook to root since when PT is enabled vtd_dev_as->iommu
3714 * will be disabled.
3716 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3717 VTD_INTERRUPT_ADDR_FIRST,
3718 &vtd_dev_as->iommu_ir_fault, 2);
3721 * Hook both the containers under the root container, we
3722 * switch between DMAR & noDMAR by enable/disable
3723 * corresponding sub-containers
3725 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3726 MEMORY_REGION(&vtd_dev_as->iommu),
3728 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3729 &vtd_dev_as->nodmar, 0);
3731 vtd_switch_address_space(vtd_dev_as);
3733 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3735 return vtd_dev_as;
3738 /* Unmap the whole range in the notifier's scope. */
3739 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3741 hwaddr size, remain;
3742 hwaddr start = n->start;
3743 hwaddr end = n->end;
3744 IntelIOMMUState *s = as->iommu_state;
3745 DMAMap map;
3748 * Note: all the codes in this function has a assumption that IOVA
3749 * bits are no more than VTD_MGAW bits (which is restricted by
3750 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3753 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3755 * Don't need to unmap regions that is bigger than the whole
3756 * VT-d supported address space size
3758 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3761 assert(start <= end);
3762 size = remain = end - start + 1;
3764 while (remain >= VTD_PAGE_SIZE) {
3765 IOMMUTLBEvent event;
3766 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3767 uint64_t size = mask + 1;
3769 assert(size);
3771 event.type = IOMMU_NOTIFIER_UNMAP;
3772 event.entry.iova = start;
3773 event.entry.addr_mask = mask;
3774 event.entry.target_as = &address_space_memory;
3775 event.entry.perm = IOMMU_NONE;
3776 /* This field is meaningless for unmap */
3777 event.entry.translated_addr = 0;
3779 memory_region_notify_iommu_one(n, &event);
3781 start += size;
3782 remain -= size;
3785 assert(!remain);
3787 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3788 VTD_PCI_SLOT(as->devfn),
3789 VTD_PCI_FUNC(as->devfn),
3790 n->start, size);
3792 map.iova = n->start;
3793 map.size = size;
3794 iova_tree_remove(as->iova_tree, map);
3797 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3799 VTDAddressSpace *vtd_as;
3800 IOMMUNotifier *n;
3802 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3803 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3804 vtd_address_space_unmap(vtd_as, n);
3809 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3811 vtd_address_space_unmap_all(s);
3812 vtd_switch_address_space_all(s);
3815 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3817 memory_region_notify_iommu_one(private, event);
3818 return 0;
3821 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3823 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3824 IntelIOMMUState *s = vtd_as->iommu_state;
3825 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3826 VTDContextEntry ce;
3829 * The replay can be triggered by either a invalidation or a newly
3830 * created entry. No matter what, we release existing mappings
3831 * (it means flushing caches for UNMAP-only registers).
3833 vtd_address_space_unmap(vtd_as, n);
3835 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3836 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3837 "legacy mode",
3838 bus_n, PCI_SLOT(vtd_as->devfn),
3839 PCI_FUNC(vtd_as->devfn),
3840 vtd_get_domain_id(s, &ce, vtd_as->pasid),
3841 ce.hi, ce.lo);
3842 if (vtd_as_has_map_notifier(vtd_as)) {
3843 /* This is required only for MAP typed notifiers */
3844 vtd_page_walk_info info = {
3845 .hook_fn = vtd_replay_hook,
3846 .private = (void *)n,
3847 .notify_unmap = false,
3848 .aw = s->aw_bits,
3849 .as = vtd_as,
3850 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
3853 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
3855 } else {
3856 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3857 PCI_FUNC(vtd_as->devfn));
3860 return;
3863 /* Do the initialization. It will also be called when reset, so pay
3864 * attention when adding new initialization stuff.
3866 static void vtd_init(IntelIOMMUState *s)
3868 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3870 memset(s->csr, 0, DMAR_REG_SIZE);
3871 memset(s->wmask, 0, DMAR_REG_SIZE);
3872 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3873 memset(s->womask, 0, DMAR_REG_SIZE);
3875 s->root = 0;
3876 s->root_scalable = false;
3877 s->dmar_enabled = false;
3878 s->intr_enabled = false;
3879 s->iq_head = 0;
3880 s->iq_tail = 0;
3881 s->iq = 0;
3882 s->iq_size = 0;
3883 s->qi_enabled = false;
3884 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3885 s->iq_dw = false;
3886 s->next_frcd_reg = 0;
3887 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3888 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3889 VTD_CAP_MGAW(s->aw_bits);
3890 if (s->dma_drain) {
3891 s->cap |= VTD_CAP_DRAIN;
3893 if (s->dma_translation) {
3894 if (s->aw_bits >= VTD_HOST_AW_39BIT) {
3895 s->cap |= VTD_CAP_SAGAW_39bit;
3897 if (s->aw_bits >= VTD_HOST_AW_48BIT) {
3898 s->cap |= VTD_CAP_SAGAW_48bit;
3901 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3904 * Rsvd field masks for spte
3906 vtd_spte_rsvd[0] = ~0ULL;
3907 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3908 x86_iommu->dt_supported);
3909 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3910 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3911 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3913 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3914 x86_iommu->dt_supported);
3915 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3916 x86_iommu->dt_supported);
3918 if (s->scalable_mode || s->snoop_control) {
3919 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3920 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3921 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3924 if (x86_iommu_ir_supported(x86_iommu)) {
3925 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3926 if (s->intr_eim == ON_OFF_AUTO_ON) {
3927 s->ecap |= VTD_ECAP_EIM;
3929 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3932 if (x86_iommu->dt_supported) {
3933 s->ecap |= VTD_ECAP_DT;
3936 if (x86_iommu->pt_supported) {
3937 s->ecap |= VTD_ECAP_PT;
3940 if (s->caching_mode) {
3941 s->cap |= VTD_CAP_CM;
3944 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3945 if (s->scalable_mode) {
3946 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3949 if (s->snoop_control) {
3950 s->ecap |= VTD_ECAP_SC;
3953 if (s->pasid) {
3954 s->ecap |= VTD_ECAP_PASID;
3957 vtd_reset_caches(s);
3959 /* Define registers with default values and bit semantics */
3960 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3961 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3962 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3963 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3964 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3965 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3966 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3967 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3968 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3970 /* Advanced Fault Logging not supported */
3971 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3972 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3973 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3974 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3976 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3977 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3979 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3981 /* Treated as RO for implementations that PLMR and PHMR fields reported
3982 * as Clear in the CAP_REG.
3983 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3985 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3987 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3988 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3989 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3990 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3991 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3992 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3993 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3994 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3995 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3997 /* IOTLB registers */
3998 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3999 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4000 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4002 /* Fault Recording Registers, 128-bit */
4003 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4004 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4007 * Interrupt remapping registers.
4009 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4012 /* Should not reset address_spaces when reset because devices will still use
4013 * the address space they got at first (won't ask the bus again).
4015 static void vtd_reset(DeviceState *dev)
4017 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4019 vtd_init(s);
4020 vtd_address_space_refresh_all(s);
4023 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4025 IntelIOMMUState *s = opaque;
4026 VTDAddressSpace *vtd_as;
4028 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4030 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4031 return &vtd_as->as;
4034 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4036 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4038 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4039 error_setg(errp, "eim=on cannot be selected without intremap=on");
4040 return false;
4043 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4044 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4045 && x86_iommu_ir_supported(x86_iommu) ?
4046 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4048 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4049 if (!kvm_irqchip_is_split()) {
4050 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
4051 return false;
4053 if (!kvm_enable_x2apic()) {
4054 error_setg(errp, "eim=on requires support on the KVM side"
4055 "(X2APIC_API, first shipped in v4.7)");
4056 return false;
4060 /* Currently only address widths supported are 39 and 48 bits */
4061 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4062 (s->aw_bits != VTD_HOST_AW_48BIT)) {
4063 error_setg(errp, "Supported values for aw-bits are: %d, %d",
4064 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4065 return false;
4068 if (s->scalable_mode && !s->dma_drain) {
4069 error_setg(errp, "Need to set dma_drain for scalable mode");
4070 return false;
4073 if (s->pasid && !s->scalable_mode) {
4074 error_setg(errp, "Need to set scalable mode for PASID");
4075 return false;
4078 return true;
4081 static int vtd_machine_done_notify_one(Object *child, void *unused)
4083 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4086 * We hard-coded here because vfio-pci is the only special case
4087 * here. Let's be more elegant in the future when we can, but so
4088 * far there seems to be no better way.
4090 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4091 vtd_panic_require_caching_mode();
4094 return 0;
4097 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4099 object_child_foreach_recursive(object_get_root(),
4100 vtd_machine_done_notify_one, NULL);
4103 static Notifier vtd_machine_done_notify = {
4104 .notify = vtd_machine_done_hook,
4107 static void vtd_realize(DeviceState *dev, Error **errp)
4109 MachineState *ms = MACHINE(qdev_get_machine());
4110 PCMachineState *pcms = PC_MACHINE(ms);
4111 X86MachineState *x86ms = X86_MACHINE(ms);
4112 PCIBus *bus = pcms->bus;
4113 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4114 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4116 if (s->pasid && x86_iommu->dt_supported) {
4118 * PASID-based-Device-TLB Invalidate Descriptor is not
4119 * implemented and it requires support from vhost layer which
4120 * needs to be implemented in the future.
4122 error_setg(errp, "PASID based device IOTLB is not supported");
4123 return;
4126 if (!vtd_decide_config(s, errp)) {
4127 return;
4130 QLIST_INIT(&s->vtd_as_with_notifiers);
4131 qemu_mutex_init(&s->iommu_lock);
4132 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4133 "intel_iommu", DMAR_REG_SIZE);
4135 /* Create the shared memory regions by all devices */
4136 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4137 UINT64_MAX);
4138 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4139 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4140 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4141 "vtd-sys-alias", get_system_memory(), 0,
4142 memory_region_size(get_system_memory()));
4143 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4144 &s->mr_sys_alias, 0);
4145 memory_region_add_subregion_overlap(&s->mr_nodmar,
4146 VTD_INTERRUPT_ADDR_FIRST,
4147 &s->mr_ir, 1);
4149 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
4150 /* No corresponding destroy */
4151 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4152 g_free, g_free);
4153 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4154 g_free, g_free);
4155 vtd_init(s);
4156 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
4157 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
4158 /* Pseudo address space under root PCI bus. */
4159 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4160 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4163 static void vtd_class_init(ObjectClass *klass, void *data)
4165 DeviceClass *dc = DEVICE_CLASS(klass);
4166 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4168 dc->reset = vtd_reset;
4169 dc->vmsd = &vtd_vmstate;
4170 device_class_set_props(dc, vtd_properties);
4171 dc->hotpluggable = false;
4172 x86_class->realize = vtd_realize;
4173 x86_class->int_remap = vtd_int_remap;
4174 /* Supported by the pc-q35-* machine types */
4175 dc->user_creatable = true;
4176 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4177 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4180 static const TypeInfo vtd_info = {
4181 .name = TYPE_INTEL_IOMMU_DEVICE,
4182 .parent = TYPE_X86_IOMMU_DEVICE,
4183 .instance_size = sizeof(IntelIOMMUState),
4184 .class_init = vtd_class_init,
4187 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4188 void *data)
4190 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4192 imrc->translate = vtd_iommu_translate;
4193 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4194 imrc->replay = vtd_iommu_replay;
4197 static const TypeInfo vtd_iommu_memory_region_info = {
4198 .parent = TYPE_IOMMU_MEMORY_REGION,
4199 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4200 .class_init = vtd_iommu_memory_region_class_init,
4203 static void vtd_register_types(void)
4205 type_register_static(&vtd_info);
4206 type_register_static(&vtd_iommu_memory_region_info);
4209 type_init(vtd_register_types)