2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
14 * https://nvmexpress.org/developers/nvme-specification/
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
25 * See docs/system/nvme.rst for extensive documentation.
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * zoned.auto_transition=<on|off[optional]>, \
38 * sriov_max_vfs=<N[optional]> \
39 * sriov_vq_flexible=<N[optional]> \
40 * sriov_vi_flexible=<N[optional]> \
41 * sriov_max_vi_per_vf=<N[optional]> \
42 * sriov_max_vq_per_vf=<N[optional]> \
44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45 * zoned=<true|false[optional]>, \
46 * subsys=<subsys_id>,detached=<true|false[optional]>
48 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
49 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
50 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
51 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
53 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
55 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
56 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
58 * The PMR will use BAR 4/5 exclusively.
60 * To place controller(s) and namespace(s) to a subsystem, then provide
61 * nvme-subsys device as above.
63 * nvme subsystem device parameters
64 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
66 * This parameter provides the `<nqn_id>` part of the string
67 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
68 * of subsystem controllers. Note that `<nqn_id>` should be unique per
69 * subsystem, but this is not enforced by QEMU. If not specified, it will
70 * default to the value of the `id` parameter (`<subsys_id>`).
72 * nvme device parameters
73 * ~~~~~~~~~~~~~~~~~~~~~~
75 * Specifying this parameter attaches the controller to the subsystem and
76 * the SUBNQN field in the controller will report the NQN of the subsystem
77 * device. This also enables multi controller capability represented in
78 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
79 * Namespace Sharing Capabilities).
82 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
83 * of concurrently outstanding Asynchronous Event Request commands support
84 * by the controller. This is a 0's based value.
87 * This is the maximum number of events that the device will enqueue for
88 * completion when there are no outstanding AERs. When the maximum number of
89 * enqueued events are reached, subsequent events will be dropped.
92 * Indicates the maximum data transfer size for a command that transfers data
93 * between host-accessible memory and the controller. The value is specified
94 * as a power of two (2^n) and is in units of the minimum memory page size
95 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
98 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
99 * this value is specified as a power of two (2^n) and is in units of the
100 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
104 * Indicates the maximum data transfer size for the Zone Append command. Like
105 * `mdts`, the value is specified as a power of two (2^n) and is in units of
106 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
107 * defaulting to the value of `mdts`).
109 * - `zoned.auto_transition`
110 * Indicates if zones in zone state implicitly opened can be automatically
111 * transitioned to zone state closed for resource management purposes.
115 * Indicates the maximum number of PCIe virtual functions supported
116 * by the controller. The default value is 0. Specifying a non-zero value
117 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
118 * Virtual function controllers will not report SR-IOV capability.
120 * NOTE: Single Root I/O Virtualization support is experimental.
121 * All the related parameters may be subject to change.
123 * - `sriov_vq_flexible`
124 * Indicates the total number of flexible queue resources assignable to all
125 * the secondary controllers. Implicitly sets the number of primary
126 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
128 * - `sriov_vi_flexible`
129 * Indicates the total number of flexible interrupt resources assignable to
130 * all the secondary controllers. Implicitly sets the number of primary
131 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
133 * - `sriov_max_vi_per_vf`
134 * Indicates the maximum number of virtual interrupt resources assignable
135 * to a secondary controller. The default 0 resolves to
136 * `(sriov_vi_flexible / sriov_max_vfs)`.
138 * - `sriov_max_vq_per_vf`
139 * Indicates the maximum number of virtual queue resources assignable to
140 * a secondary controller. The default 0 resolves to
141 * `(sriov_vq_flexible / sriov_max_vfs)`.
143 * nvme namespace device parameters
144 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
146 * When the parent nvme device (as defined explicitly by the 'bus' parameter
147 * or implicitly by the most recently defined NvmeBus) is linked to an
148 * nvme-subsys device, the namespace will be attached to all controllers in
149 * the subsystem. If set to 'off' (the default), the namespace will remain a
150 * private namespace and may only be attached to a single controller at a
154 * This parameter is only valid together with the `subsys` parameter. If left
155 * at the default value (`false/off`), the namespace will be attached to all
156 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
157 * namespace will be available in the subsystem but not attached to any
160 * Setting `zoned` to true selects Zoned Command Set at the namespace.
161 * In this case, the following namespace properties are available to configure
163 * zoned.zone_size=<zone size in bytes, default: 128MiB>
164 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
166 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
167 * The value 0 (default) forces zone capacity to be the same as zone
168 * size. The value of this property may not exceed zone size.
170 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
171 * This value needs to be specified in 64B units. If it is zero,
172 * namespace(s) will not support zone descriptor extensions.
174 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
175 * The default value means there is no limit to the number of
176 * concurrently active zones.
178 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
179 * The default value means there is no limit to the number of
180 * concurrently open zones.
182 * zoned.cross_read=<enable RAZB, default: false>
183 * Setting this property to true enables Read Across Zone Boundaries.
186 #include "qemu/osdep.h"
187 #include "qemu/cutils.h"
188 #include "qemu/error-report.h"
189 #include "qemu/log.h"
190 #include "qemu/units.h"
191 #include "qemu/range.h"
192 #include "qapi/error.h"
193 #include "qapi/visitor.h"
194 #include "sysemu/sysemu.h"
195 #include "sysemu/block-backend.h"
196 #include "sysemu/hostmem.h"
197 #include "hw/pci/msix.h"
198 #include "hw/pci/pcie_sriov.h"
199 #include "migration/vmstate.h"
205 #define NVME_MAX_IOQPAIRS 0xffff
206 #define NVME_DB_SIZE 4
207 #define NVME_SPEC_VER 0x00010400
208 #define NVME_CMB_BIR 2
209 #define NVME_PMR_BIR 4
210 #define NVME_TEMPERATURE 0x143
211 #define NVME_TEMPERATURE_WARNING 0x157
212 #define NVME_TEMPERATURE_CRITICAL 0x175
213 #define NVME_NUM_FW_SLOTS 1
214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
215 #define NVME_MAX_VFS 127
216 #define NVME_VF_RES_GRANULARITY 1
217 #define NVME_VF_OFFSET 0x1
218 #define NVME_VF_STRIDE 1
220 #define NVME_GUEST_ERR(trace, fmt, ...) \
222 (trace_##trace)(__VA_ARGS__); \
223 qemu_log_mask(LOG_GUEST_ERROR, #trace \
224 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
227 static const bool nvme_feature_support
[NVME_FID_MAX
] = {
228 [NVME_ARBITRATION
] = true,
229 [NVME_POWER_MANAGEMENT
] = true,
230 [NVME_TEMPERATURE_THRESHOLD
] = true,
231 [NVME_ERROR_RECOVERY
] = true,
232 [NVME_VOLATILE_WRITE_CACHE
] = true,
233 [NVME_NUMBER_OF_QUEUES
] = true,
234 [NVME_INTERRUPT_COALESCING
] = true,
235 [NVME_INTERRUPT_VECTOR_CONF
] = true,
236 [NVME_WRITE_ATOMICITY
] = true,
237 [NVME_ASYNCHRONOUS_EVENT_CONF
] = true,
238 [NVME_TIMESTAMP
] = true,
239 [NVME_HOST_BEHAVIOR_SUPPORT
] = true,
240 [NVME_COMMAND_SET_PROFILE
] = true,
241 [NVME_FDP_MODE
] = true,
242 [NVME_FDP_EVENTS
] = true,
245 static const uint32_t nvme_feature_cap
[NVME_FID_MAX
] = {
246 [NVME_TEMPERATURE_THRESHOLD
] = NVME_FEAT_CAP_CHANGE
,
247 [NVME_ERROR_RECOVERY
] = NVME_FEAT_CAP_CHANGE
| NVME_FEAT_CAP_NS
,
248 [NVME_VOLATILE_WRITE_CACHE
] = NVME_FEAT_CAP_CHANGE
,
249 [NVME_NUMBER_OF_QUEUES
] = NVME_FEAT_CAP_CHANGE
,
250 [NVME_ASYNCHRONOUS_EVENT_CONF
] = NVME_FEAT_CAP_CHANGE
,
251 [NVME_TIMESTAMP
] = NVME_FEAT_CAP_CHANGE
,
252 [NVME_HOST_BEHAVIOR_SUPPORT
] = NVME_FEAT_CAP_CHANGE
,
253 [NVME_COMMAND_SET_PROFILE
] = NVME_FEAT_CAP_CHANGE
,
254 [NVME_FDP_MODE
] = NVME_FEAT_CAP_CHANGE
,
255 [NVME_FDP_EVENTS
] = NVME_FEAT_CAP_CHANGE
| NVME_FEAT_CAP_NS
,
258 static const uint32_t nvme_cse_acs
[256] = {
259 [NVME_ADM_CMD_DELETE_SQ
] = NVME_CMD_EFF_CSUPP
,
260 [NVME_ADM_CMD_CREATE_SQ
] = NVME_CMD_EFF_CSUPP
,
261 [NVME_ADM_CMD_GET_LOG_PAGE
] = NVME_CMD_EFF_CSUPP
,
262 [NVME_ADM_CMD_DELETE_CQ
] = NVME_CMD_EFF_CSUPP
,
263 [NVME_ADM_CMD_CREATE_CQ
] = NVME_CMD_EFF_CSUPP
,
264 [NVME_ADM_CMD_IDENTIFY
] = NVME_CMD_EFF_CSUPP
,
265 [NVME_ADM_CMD_ABORT
] = NVME_CMD_EFF_CSUPP
,
266 [NVME_ADM_CMD_SET_FEATURES
] = NVME_CMD_EFF_CSUPP
,
267 [NVME_ADM_CMD_GET_FEATURES
] = NVME_CMD_EFF_CSUPP
,
268 [NVME_ADM_CMD_ASYNC_EV_REQ
] = NVME_CMD_EFF_CSUPP
,
269 [NVME_ADM_CMD_NS_ATTACHMENT
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_NIC
,
270 [NVME_ADM_CMD_VIRT_MNGMT
] = NVME_CMD_EFF_CSUPP
,
271 [NVME_ADM_CMD_DBBUF_CONFIG
] = NVME_CMD_EFF_CSUPP
,
272 [NVME_ADM_CMD_FORMAT_NVM
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
273 [NVME_ADM_CMD_DIRECTIVE_RECV
] = NVME_CMD_EFF_CSUPP
,
274 [NVME_ADM_CMD_DIRECTIVE_SEND
] = NVME_CMD_EFF_CSUPP
,
277 static const uint32_t nvme_cse_iocs_none
[256];
279 static const uint32_t nvme_cse_iocs_nvm
[256] = {
280 [NVME_CMD_FLUSH
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
281 [NVME_CMD_WRITE_ZEROES
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
282 [NVME_CMD_WRITE
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
283 [NVME_CMD_READ
] = NVME_CMD_EFF_CSUPP
,
284 [NVME_CMD_DSM
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
285 [NVME_CMD_VERIFY
] = NVME_CMD_EFF_CSUPP
,
286 [NVME_CMD_COPY
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
287 [NVME_CMD_COMPARE
] = NVME_CMD_EFF_CSUPP
,
288 [NVME_CMD_IO_MGMT_RECV
] = NVME_CMD_EFF_CSUPP
,
289 [NVME_CMD_IO_MGMT_SEND
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
292 static const uint32_t nvme_cse_iocs_zoned
[256] = {
293 [NVME_CMD_FLUSH
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
294 [NVME_CMD_WRITE_ZEROES
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
295 [NVME_CMD_WRITE
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
296 [NVME_CMD_READ
] = NVME_CMD_EFF_CSUPP
,
297 [NVME_CMD_DSM
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
298 [NVME_CMD_VERIFY
] = NVME_CMD_EFF_CSUPP
,
299 [NVME_CMD_COPY
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
300 [NVME_CMD_COMPARE
] = NVME_CMD_EFF_CSUPP
,
301 [NVME_CMD_ZONE_APPEND
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
302 [NVME_CMD_ZONE_MGMT_SEND
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
303 [NVME_CMD_ZONE_MGMT_RECV
] = NVME_CMD_EFF_CSUPP
,
306 static void nvme_process_sq(void *opaque
);
307 static void nvme_ctrl_reset(NvmeCtrl
*n
, NvmeResetType rst
);
308 static inline uint64_t nvme_get_timestamp(const NvmeCtrl
*n
);
310 static uint16_t nvme_sqid(NvmeRequest
*req
)
312 return le16_to_cpu(req
->sq
->sqid
);
315 static inline uint16_t nvme_make_pid(NvmeNamespace
*ns
, uint16_t rg
,
318 uint16_t rgif
= ns
->endgrp
->fdp
.rgif
;
324 return (rg
<< (16 - rgif
)) | ph
;
327 static inline bool nvme_ph_valid(NvmeNamespace
*ns
, uint16_t ph
)
329 return ph
< ns
->fdp
.nphs
;
332 static inline bool nvme_rg_valid(NvmeEnduranceGroup
*endgrp
, uint16_t rg
)
334 return rg
< endgrp
->fdp
.nrg
;
337 static inline uint16_t nvme_pid2ph(NvmeNamespace
*ns
, uint16_t pid
)
339 uint16_t rgif
= ns
->endgrp
->fdp
.rgif
;
345 return pid
& ((1 << (15 - rgif
)) - 1);
348 static inline uint16_t nvme_pid2rg(NvmeNamespace
*ns
, uint16_t pid
)
350 uint16_t rgif
= ns
->endgrp
->fdp
.rgif
;
356 return pid
>> (16 - rgif
);
359 static inline bool nvme_parse_pid(NvmeNamespace
*ns
, uint16_t pid
,
360 uint16_t *ph
, uint16_t *rg
)
362 *rg
= nvme_pid2rg(ns
, pid
);
363 *ph
= nvme_pid2ph(ns
, pid
);
365 return nvme_ph_valid(ns
, *ph
) && nvme_rg_valid(ns
->endgrp
, *rg
);
368 static void nvme_assign_zone_state(NvmeNamespace
*ns
, NvmeZone
*zone
,
371 if (QTAILQ_IN_USE(zone
, entry
)) {
372 switch (nvme_get_zone_state(zone
)) {
373 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
374 QTAILQ_REMOVE(&ns
->exp_open_zones
, zone
, entry
);
376 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
377 QTAILQ_REMOVE(&ns
->imp_open_zones
, zone
, entry
);
379 case NVME_ZONE_STATE_CLOSED
:
380 QTAILQ_REMOVE(&ns
->closed_zones
, zone
, entry
);
382 case NVME_ZONE_STATE_FULL
:
383 QTAILQ_REMOVE(&ns
->full_zones
, zone
, entry
);
389 nvme_set_zone_state(zone
, state
);
392 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
393 QTAILQ_INSERT_TAIL(&ns
->exp_open_zones
, zone
, entry
);
395 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
396 QTAILQ_INSERT_TAIL(&ns
->imp_open_zones
, zone
, entry
);
398 case NVME_ZONE_STATE_CLOSED
:
399 QTAILQ_INSERT_TAIL(&ns
->closed_zones
, zone
, entry
);
401 case NVME_ZONE_STATE_FULL
:
402 QTAILQ_INSERT_TAIL(&ns
->full_zones
, zone
, entry
);
403 case NVME_ZONE_STATE_READ_ONLY
:
410 static uint16_t nvme_zns_check_resources(NvmeNamespace
*ns
, uint32_t act
,
411 uint32_t opn
, uint32_t zrwa
)
413 if (ns
->params
.max_active_zones
!= 0 &&
414 ns
->nr_active_zones
+ act
> ns
->params
.max_active_zones
) {
415 trace_pci_nvme_err_insuff_active_res(ns
->params
.max_active_zones
);
416 return NVME_ZONE_TOO_MANY_ACTIVE
| NVME_DNR
;
419 if (ns
->params
.max_open_zones
!= 0 &&
420 ns
->nr_open_zones
+ opn
> ns
->params
.max_open_zones
) {
421 trace_pci_nvme_err_insuff_open_res(ns
->params
.max_open_zones
);
422 return NVME_ZONE_TOO_MANY_OPEN
| NVME_DNR
;
425 if (zrwa
> ns
->zns
.numzrwa
) {
426 return NVME_NOZRWA
| NVME_DNR
;
433 * Check if we can open a zone without exceeding open/active limits.
434 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
436 static uint16_t nvme_aor_check(NvmeNamespace
*ns
, uint32_t act
, uint32_t opn
)
438 return nvme_zns_check_resources(ns
, act
, opn
, 0);
441 static NvmeFdpEvent
*nvme_fdp_alloc_event(NvmeCtrl
*n
, NvmeFdpEventBuffer
*ebuf
)
443 NvmeFdpEvent
*ret
= NULL
;
444 bool is_full
= ebuf
->next
== ebuf
->start
&& ebuf
->nelems
;
446 ret
= &ebuf
->events
[ebuf
->next
++];
447 if (unlikely(ebuf
->next
== NVME_FDP_MAX_EVENTS
)) {
451 ebuf
->start
= ebuf
->next
;
456 memset(ret
, 0, sizeof(NvmeFdpEvent
));
457 ret
->timestamp
= nvme_get_timestamp(n
);
462 static inline int log_event(NvmeRuHandle
*ruh
, uint8_t event_type
)
464 return (ruh
->event_filter
>> nvme_fdp_evf_shifts
[event_type
]) & 0x1;
467 static bool nvme_update_ruh(NvmeCtrl
*n
, NvmeNamespace
*ns
, uint16_t pid
)
469 NvmeEnduranceGroup
*endgrp
= ns
->endgrp
;
472 NvmeFdpEvent
*e
= NULL
;
473 uint16_t ph
, rg
, ruhid
;
475 if (!nvme_parse_pid(ns
, pid
, &ph
, &rg
)) {
479 ruhid
= ns
->fdp
.phs
[ph
];
481 ruh
= &endgrp
->fdp
.ruhs
[ruhid
];
485 if (log_event(ruh
, FDP_EVT_RU_NOT_FULLY_WRITTEN
)) {
486 e
= nvme_fdp_alloc_event(n
, &endgrp
->fdp
.host_events
);
487 e
->type
= FDP_EVT_RU_NOT_FULLY_WRITTEN
;
488 e
->flags
= FDPEF_PIV
| FDPEF_NSIDV
| FDPEF_LV
;
489 e
->pid
= cpu_to_le16(pid
);
490 e
->nsid
= cpu_to_le32(ns
->params
.nsid
);
491 e
->rgid
= cpu_to_le16(rg
);
492 e
->ruhid
= cpu_to_le16(ruhid
);
495 /* log (eventual) GC overhead of prematurely swapping the RU */
496 nvme_fdp_stat_inc(&endgrp
->fdp
.mbmw
, nvme_l2b(ns
, ru
->ruamw
));
499 ru
->ruamw
= ruh
->ruamw
;
504 static bool nvme_addr_is_cmb(NvmeCtrl
*n
, hwaddr addr
)
512 lo
= n
->params
.legacy_cmb
? n
->cmb
.mem
.addr
: n
->cmb
.cba
;
513 hi
= lo
+ int128_get64(n
->cmb
.mem
.size
);
515 return addr
>= lo
&& addr
< hi
;
518 static inline void *nvme_addr_to_cmb(NvmeCtrl
*n
, hwaddr addr
)
520 hwaddr base
= n
->params
.legacy_cmb
? n
->cmb
.mem
.addr
: n
->cmb
.cba
;
521 return &n
->cmb
.buf
[addr
- base
];
524 static bool nvme_addr_is_pmr(NvmeCtrl
*n
, hwaddr addr
)
532 hi
= n
->pmr
.cba
+ int128_get64(n
->pmr
.dev
->mr
.size
);
534 return addr
>= n
->pmr
.cba
&& addr
< hi
;
537 static inline void *nvme_addr_to_pmr(NvmeCtrl
*n
, hwaddr addr
)
539 return memory_region_get_ram_ptr(&n
->pmr
.dev
->mr
) + (addr
- n
->pmr
.cba
);
542 static inline bool nvme_addr_is_iomem(NvmeCtrl
*n
, hwaddr addr
)
547 * The purpose of this check is to guard against invalid "local" access to
548 * the iomem (i.e. controller registers). Thus, we check against the range
549 * covered by the 'bar0' MemoryRegion since that is currently composed of
550 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
551 * that if the device model is ever changed to allow the CMB to be located
552 * in BAR0 as well, then this must be changed.
555 hi
= lo
+ int128_get64(n
->bar0
.size
);
557 return addr
>= lo
&& addr
< hi
;
560 static int nvme_addr_read(NvmeCtrl
*n
, hwaddr addr
, void *buf
, int size
)
562 hwaddr hi
= addr
+ size
- 1;
567 if (n
->bar
.cmbsz
&& nvme_addr_is_cmb(n
, addr
) && nvme_addr_is_cmb(n
, hi
)) {
568 memcpy(buf
, nvme_addr_to_cmb(n
, addr
), size
);
572 if (nvme_addr_is_pmr(n
, addr
) && nvme_addr_is_pmr(n
, hi
)) {
573 memcpy(buf
, nvme_addr_to_pmr(n
, addr
), size
);
577 return pci_dma_read(PCI_DEVICE(n
), addr
, buf
, size
);
580 static int nvme_addr_write(NvmeCtrl
*n
, hwaddr addr
, const void *buf
, int size
)
582 hwaddr hi
= addr
+ size
- 1;
587 if (n
->bar
.cmbsz
&& nvme_addr_is_cmb(n
, addr
) && nvme_addr_is_cmb(n
, hi
)) {
588 memcpy(nvme_addr_to_cmb(n
, addr
), buf
, size
);
592 if (nvme_addr_is_pmr(n
, addr
) && nvme_addr_is_pmr(n
, hi
)) {
593 memcpy(nvme_addr_to_pmr(n
, addr
), buf
, size
);
597 return pci_dma_write(PCI_DEVICE(n
), addr
, buf
, size
);
600 static bool nvme_nsid_valid(NvmeCtrl
*n
, uint32_t nsid
)
603 (nsid
== NVME_NSID_BROADCAST
|| nsid
<= NVME_MAX_NAMESPACES
);
606 static int nvme_check_sqid(NvmeCtrl
*n
, uint16_t sqid
)
608 return sqid
< n
->conf_ioqpairs
+ 1 && n
->sq
[sqid
] != NULL
? 0 : -1;
611 static int nvme_check_cqid(NvmeCtrl
*n
, uint16_t cqid
)
613 return cqid
< n
->conf_ioqpairs
+ 1 && n
->cq
[cqid
] != NULL
? 0 : -1;
616 static void nvme_inc_cq_tail(NvmeCQueue
*cq
)
619 if (cq
->tail
>= cq
->size
) {
621 cq
->phase
= !cq
->phase
;
625 static void nvme_inc_sq_head(NvmeSQueue
*sq
)
627 sq
->head
= (sq
->head
+ 1) % sq
->size
;
630 static uint8_t nvme_cq_full(NvmeCQueue
*cq
)
632 return (cq
->tail
+ 1) % cq
->size
== cq
->head
;
635 static uint8_t nvme_sq_empty(NvmeSQueue
*sq
)
637 return sq
->head
== sq
->tail
;
640 static void nvme_irq_check(NvmeCtrl
*n
)
642 PCIDevice
*pci
= PCI_DEVICE(n
);
643 uint32_t intms
= ldl_le_p(&n
->bar
.intms
);
645 if (msix_enabled(pci
)) {
648 if (~intms
& n
->irq_status
) {
651 pci_irq_deassert(pci
);
655 static void nvme_irq_assert(NvmeCtrl
*n
, NvmeCQueue
*cq
)
657 PCIDevice
*pci
= PCI_DEVICE(n
);
659 if (cq
->irq_enabled
) {
660 if (msix_enabled(pci
)) {
661 trace_pci_nvme_irq_msix(cq
->vector
);
662 msix_notify(pci
, cq
->vector
);
664 trace_pci_nvme_irq_pin();
665 assert(cq
->vector
< 32);
666 n
->irq_status
|= 1 << cq
->vector
;
670 trace_pci_nvme_irq_masked();
674 static void nvme_irq_deassert(NvmeCtrl
*n
, NvmeCQueue
*cq
)
676 if (cq
->irq_enabled
) {
677 if (msix_enabled(PCI_DEVICE(n
))) {
680 assert(cq
->vector
< 32);
681 if (!n
->cq_pending
) {
682 n
->irq_status
&= ~(1 << cq
->vector
);
689 static void nvme_req_clear(NvmeRequest
*req
)
694 memset(&req
->cqe
, 0x0, sizeof(req
->cqe
));
695 req
->status
= NVME_SUCCESS
;
698 static inline void nvme_sg_init(NvmeCtrl
*n
, NvmeSg
*sg
, bool dma
)
701 pci_dma_sglist_init(&sg
->qsg
, PCI_DEVICE(n
), 0);
702 sg
->flags
= NVME_SG_DMA
;
704 qemu_iovec_init(&sg
->iov
, 0);
707 sg
->flags
|= NVME_SG_ALLOC
;
710 static inline void nvme_sg_unmap(NvmeSg
*sg
)
712 if (!(sg
->flags
& NVME_SG_ALLOC
)) {
716 if (sg
->flags
& NVME_SG_DMA
) {
717 qemu_sglist_destroy(&sg
->qsg
);
719 qemu_iovec_destroy(&sg
->iov
);
722 memset(sg
, 0x0, sizeof(*sg
));
726 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
727 * holds both data and metadata. This function splits the data and metadata
728 * into two separate QSG/IOVs.
730 static void nvme_sg_split(NvmeSg
*sg
, NvmeNamespace
*ns
, NvmeSg
*data
,
734 uint32_t trans_len
, count
= ns
->lbasz
;
736 bool dma
= sg
->flags
& NVME_SG_DMA
;
738 size_t sg_len
= dma
? sg
->qsg
.size
: sg
->iov
.size
;
741 assert(sg
->flags
& NVME_SG_ALLOC
);
744 sge_len
= dma
? sg
->qsg
.sg
[sg_idx
].len
: sg
->iov
.iov
[sg_idx
].iov_len
;
746 trans_len
= MIN(sg_len
, count
);
747 trans_len
= MIN(trans_len
, sge_len
- offset
);
751 qemu_sglist_add(&dst
->qsg
, sg
->qsg
.sg
[sg_idx
].base
+ offset
,
754 qemu_iovec_add(&dst
->iov
,
755 sg
->iov
.iov
[sg_idx
].iov_base
+ offset
,
765 dst
= (dst
== data
) ? mdata
: data
;
766 count
= (dst
== data
) ? ns
->lbasz
: ns
->lbaf
.ms
;
769 if (sge_len
== offset
) {
776 static uint16_t nvme_map_addr_cmb(NvmeCtrl
*n
, QEMUIOVector
*iov
, hwaddr addr
,
783 trace_pci_nvme_map_addr_cmb(addr
, len
);
785 if (!nvme_addr_is_cmb(n
, addr
) || !nvme_addr_is_cmb(n
, addr
+ len
- 1)) {
786 return NVME_DATA_TRAS_ERROR
;
789 qemu_iovec_add(iov
, nvme_addr_to_cmb(n
, addr
), len
);
794 static uint16_t nvme_map_addr_pmr(NvmeCtrl
*n
, QEMUIOVector
*iov
, hwaddr addr
,
801 if (!nvme_addr_is_pmr(n
, addr
) || !nvme_addr_is_pmr(n
, addr
+ len
- 1)) {
802 return NVME_DATA_TRAS_ERROR
;
805 qemu_iovec_add(iov
, nvme_addr_to_pmr(n
, addr
), len
);
810 static uint16_t nvme_map_addr(NvmeCtrl
*n
, NvmeSg
*sg
, hwaddr addr
, size_t len
)
812 bool cmb
= false, pmr
= false;
818 trace_pci_nvme_map_addr(addr
, len
);
820 if (nvme_addr_is_iomem(n
, addr
)) {
821 return NVME_DATA_TRAS_ERROR
;
824 if (nvme_addr_is_cmb(n
, addr
)) {
826 } else if (nvme_addr_is_pmr(n
, addr
)) {
831 if (sg
->flags
& NVME_SG_DMA
) {
832 return NVME_INVALID_USE_OF_CMB
| NVME_DNR
;
835 if (sg
->iov
.niov
+ 1 > IOV_MAX
) {
836 goto max_mappings_exceeded
;
840 return nvme_map_addr_cmb(n
, &sg
->iov
, addr
, len
);
842 return nvme_map_addr_pmr(n
, &sg
->iov
, addr
, len
);
846 if (!(sg
->flags
& NVME_SG_DMA
)) {
847 return NVME_INVALID_USE_OF_CMB
| NVME_DNR
;
850 if (sg
->qsg
.nsg
+ 1 > IOV_MAX
) {
851 goto max_mappings_exceeded
;
854 qemu_sglist_add(&sg
->qsg
, addr
, len
);
858 max_mappings_exceeded
:
859 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings
,
860 "number of mappings exceed 1024");
861 return NVME_INTERNAL_DEV_ERROR
| NVME_DNR
;
864 static inline bool nvme_addr_is_dma(NvmeCtrl
*n
, hwaddr addr
)
866 return !(nvme_addr_is_cmb(n
, addr
) || nvme_addr_is_pmr(n
, addr
));
869 static uint16_t nvme_map_prp(NvmeCtrl
*n
, NvmeSg
*sg
, uint64_t prp1
,
870 uint64_t prp2
, uint32_t len
)
872 hwaddr trans_len
= n
->page_size
- (prp1
% n
->page_size
);
873 trans_len
= MIN(len
, trans_len
);
874 int num_prps
= (len
>> n
->page_bits
) + 1;
878 trace_pci_nvme_map_prp(trans_len
, len
, prp1
, prp2
, num_prps
);
880 nvme_sg_init(n
, sg
, nvme_addr_is_dma(n
, prp1
));
882 status
= nvme_map_addr(n
, sg
, prp1
, trans_len
);
889 if (len
> n
->page_size
) {
890 uint64_t prp_list
[n
->max_prp_ents
];
891 uint32_t nents
, prp_trans
;
895 * The first PRP list entry, pointed to by PRP2 may contain offset.
896 * Hence, we need to calculate the number of entries in based on
899 nents
= (n
->page_size
- (prp2
& (n
->page_size
- 1))) >> 3;
900 prp_trans
= MIN(n
->max_prp_ents
, nents
) * sizeof(uint64_t);
901 ret
= nvme_addr_read(n
, prp2
, (void *)prp_list
, prp_trans
);
903 trace_pci_nvme_err_addr_read(prp2
);
904 status
= NVME_DATA_TRAS_ERROR
;
908 uint64_t prp_ent
= le64_to_cpu(prp_list
[i
]);
910 if (i
== nents
- 1 && len
> n
->page_size
) {
911 if (unlikely(prp_ent
& (n
->page_size
- 1))) {
912 trace_pci_nvme_err_invalid_prplist_ent(prp_ent
);
913 status
= NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
918 nents
= (len
+ n
->page_size
- 1) >> n
->page_bits
;
919 nents
= MIN(nents
, n
->max_prp_ents
);
920 prp_trans
= nents
* sizeof(uint64_t);
921 ret
= nvme_addr_read(n
, prp_ent
, (void *)prp_list
,
924 trace_pci_nvme_err_addr_read(prp_ent
);
925 status
= NVME_DATA_TRAS_ERROR
;
928 prp_ent
= le64_to_cpu(prp_list
[i
]);
931 if (unlikely(prp_ent
& (n
->page_size
- 1))) {
932 trace_pci_nvme_err_invalid_prplist_ent(prp_ent
);
933 status
= NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
937 trans_len
= MIN(len
, n
->page_size
);
938 status
= nvme_map_addr(n
, sg
, prp_ent
, trans_len
);
947 if (unlikely(prp2
& (n
->page_size
- 1))) {
948 trace_pci_nvme_err_invalid_prp2_align(prp2
);
949 status
= NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
952 status
= nvme_map_addr(n
, sg
, prp2
, len
);
967 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
968 * number of bytes mapped in len.
970 static uint16_t nvme_map_sgl_data(NvmeCtrl
*n
, NvmeSg
*sg
,
971 NvmeSglDescriptor
*segment
, uint64_t nsgld
,
972 size_t *len
, NvmeCmd
*cmd
)
974 dma_addr_t addr
, trans_len
;
978 for (int i
= 0; i
< nsgld
; i
++) {
979 uint8_t type
= NVME_SGL_TYPE(segment
[i
].type
);
982 case NVME_SGL_DESCR_TYPE_DATA_BLOCK
:
984 case NVME_SGL_DESCR_TYPE_SEGMENT
:
985 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT
:
986 return NVME_INVALID_NUM_SGL_DESCRS
| NVME_DNR
;
988 return NVME_SGL_DESCR_TYPE_INVALID
| NVME_DNR
;
991 dlen
= le32_to_cpu(segment
[i
].len
);
999 * All data has been mapped, but the SGL contains additional
1000 * segments and/or descriptors. The controller might accept
1001 * ignoring the rest of the SGL.
1003 uint32_t sgls
= le32_to_cpu(n
->id_ctrl
.sgls
);
1004 if (sgls
& NVME_CTRL_SGLS_EXCESS_LENGTH
) {
1008 trace_pci_nvme_err_invalid_sgl_excess_length(dlen
);
1009 return NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
1012 trans_len
= MIN(*len
, dlen
);
1014 addr
= le64_to_cpu(segment
[i
].addr
);
1016 if (UINT64_MAX
- addr
< dlen
) {
1017 return NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
1020 status
= nvme_map_addr(n
, sg
, addr
, trans_len
);
1028 return NVME_SUCCESS
;
1031 static uint16_t nvme_map_sgl(NvmeCtrl
*n
, NvmeSg
*sg
, NvmeSglDescriptor sgl
,
1032 size_t len
, NvmeCmd
*cmd
)
1035 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
1036 * dynamically allocating a potentially huge SGL. The spec allows the SGL
1037 * to be larger (as in number of bytes required to describe the SGL
1038 * descriptors and segment chain) than the command transfer size, so it is
1039 * not bounded by MDTS.
1041 const int SEG_CHUNK_SIZE
= 256;
1043 NvmeSglDescriptor segment
[SEG_CHUNK_SIZE
], *sgld
, *last_sgld
;
1051 addr
= le64_to_cpu(sgl
.addr
);
1053 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl
.type
), len
);
1055 nvme_sg_init(n
, sg
, nvme_addr_is_dma(n
, addr
));
1058 * If the entire transfer can be described with a single data block it can
1059 * be mapped directly.
1061 if (NVME_SGL_TYPE(sgl
.type
) == NVME_SGL_DESCR_TYPE_DATA_BLOCK
) {
1062 status
= nvme_map_sgl_data(n
, sg
, sgld
, 1, &len
, cmd
);
1071 switch (NVME_SGL_TYPE(sgld
->type
)) {
1072 case NVME_SGL_DESCR_TYPE_SEGMENT
:
1073 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT
:
1076 return NVME_INVALID_SGL_SEG_DESCR
| NVME_DNR
;
1079 seg_len
= le32_to_cpu(sgld
->len
);
1081 /* check the length of the (Last) Segment descriptor */
1082 if (!seg_len
|| seg_len
& 0xf) {
1083 return NVME_INVALID_SGL_SEG_DESCR
| NVME_DNR
;
1086 if (UINT64_MAX
- addr
< seg_len
) {
1087 return NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
1090 nsgld
= seg_len
/ sizeof(NvmeSglDescriptor
);
1092 while (nsgld
> SEG_CHUNK_SIZE
) {
1093 if (nvme_addr_read(n
, addr
, segment
, sizeof(segment
))) {
1094 trace_pci_nvme_err_addr_read(addr
);
1095 status
= NVME_DATA_TRAS_ERROR
;
1099 status
= nvme_map_sgl_data(n
, sg
, segment
, SEG_CHUNK_SIZE
,
1105 nsgld
-= SEG_CHUNK_SIZE
;
1106 addr
+= SEG_CHUNK_SIZE
* sizeof(NvmeSglDescriptor
);
1109 ret
= nvme_addr_read(n
, addr
, segment
, nsgld
*
1110 sizeof(NvmeSglDescriptor
));
1112 trace_pci_nvme_err_addr_read(addr
);
1113 status
= NVME_DATA_TRAS_ERROR
;
1117 last_sgld
= &segment
[nsgld
- 1];
1120 * If the segment ends with a Data Block, then we are done.
1122 if (NVME_SGL_TYPE(last_sgld
->type
) == NVME_SGL_DESCR_TYPE_DATA_BLOCK
) {
1123 status
= nvme_map_sgl_data(n
, sg
, segment
, nsgld
, &len
, cmd
);
1132 * If the last descriptor was not a Data Block, then the current
1133 * segment must not be a Last Segment.
1135 if (NVME_SGL_TYPE(sgld
->type
) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT
) {
1136 status
= NVME_INVALID_SGL_SEG_DESCR
| NVME_DNR
;
1141 addr
= le64_to_cpu(sgld
->addr
);
1144 * Do not map the last descriptor; it will be a Segment or Last Segment
1145 * descriptor and is handled by the next iteration.
1147 status
= nvme_map_sgl_data(n
, sg
, segment
, nsgld
- 1, &len
, cmd
);
1154 /* if there is any residual left in len, the SGL was too short */
1156 status
= NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
1160 return NVME_SUCCESS
;
1167 uint16_t nvme_map_dptr(NvmeCtrl
*n
, NvmeSg
*sg
, size_t len
,
1170 uint64_t prp1
, prp2
;
1172 switch (NVME_CMD_FLAGS_PSDT(cmd
->flags
)) {
1174 prp1
= le64_to_cpu(cmd
->dptr
.prp1
);
1175 prp2
= le64_to_cpu(cmd
->dptr
.prp2
);
1177 return nvme_map_prp(n
, sg
, prp1
, prp2
, len
);
1178 case NVME_PSDT_SGL_MPTR_CONTIGUOUS
:
1179 case NVME_PSDT_SGL_MPTR_SGL
:
1180 return nvme_map_sgl(n
, sg
, cmd
->dptr
.sgl
, len
, cmd
);
1182 return NVME_INVALID_FIELD
;
1186 static uint16_t nvme_map_mptr(NvmeCtrl
*n
, NvmeSg
*sg
, size_t len
,
1189 int psdt
= NVME_CMD_FLAGS_PSDT(cmd
->flags
);
1190 hwaddr mptr
= le64_to_cpu(cmd
->mptr
);
1193 if (psdt
== NVME_PSDT_SGL_MPTR_SGL
) {
1194 NvmeSglDescriptor sgl
;
1196 if (nvme_addr_read(n
, mptr
, &sgl
, sizeof(sgl
))) {
1197 return NVME_DATA_TRAS_ERROR
;
1200 status
= nvme_map_sgl(n
, sg
, sgl
, len
, cmd
);
1201 if (status
&& (status
& 0x7ff) == NVME_DATA_SGL_LEN_INVALID
) {
1202 status
= NVME_MD_SGL_LEN_INVALID
| NVME_DNR
;
1208 nvme_sg_init(n
, sg
, nvme_addr_is_dma(n
, mptr
));
1209 status
= nvme_map_addr(n
, sg
, mptr
, len
);
1217 static uint16_t nvme_map_data(NvmeCtrl
*n
, uint32_t nlb
, NvmeRequest
*req
)
1219 NvmeNamespace
*ns
= req
->ns
;
1220 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1221 bool pi
= !!NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
);
1222 bool pract
= !!(le16_to_cpu(rw
->control
) & NVME_RW_PRINFO_PRACT
);
1223 size_t len
= nvme_l2b(ns
, nlb
);
1226 if (nvme_ns_ext(ns
) &&
1227 !(pi
&& pract
&& ns
->lbaf
.ms
== nvme_pi_tuple_size(ns
))) {
1230 len
+= nvme_m2b(ns
, nlb
);
1232 status
= nvme_map_dptr(n
, &sg
, len
, &req
->cmd
);
1237 nvme_sg_init(n
, &req
->sg
, sg
.flags
& NVME_SG_DMA
);
1238 nvme_sg_split(&sg
, ns
, &req
->sg
, NULL
);
1241 return NVME_SUCCESS
;
1244 return nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
1247 static uint16_t nvme_map_mdata(NvmeCtrl
*n
, uint32_t nlb
, NvmeRequest
*req
)
1249 NvmeNamespace
*ns
= req
->ns
;
1250 size_t len
= nvme_m2b(ns
, nlb
);
1253 if (nvme_ns_ext(ns
)) {
1256 len
+= nvme_l2b(ns
, nlb
);
1258 status
= nvme_map_dptr(n
, &sg
, len
, &req
->cmd
);
1263 nvme_sg_init(n
, &req
->sg
, sg
.flags
& NVME_SG_DMA
);
1264 nvme_sg_split(&sg
, ns
, NULL
, &req
->sg
);
1267 return NVME_SUCCESS
;
1270 return nvme_map_mptr(n
, &req
->sg
, len
, &req
->cmd
);
1273 static uint16_t nvme_tx_interleaved(NvmeCtrl
*n
, NvmeSg
*sg
, uint8_t *ptr
,
1274 uint32_t len
, uint32_t bytes
,
1275 int32_t skip_bytes
, int64_t offset
,
1276 NvmeTxDirection dir
)
1279 uint32_t trans_len
, count
= bytes
;
1280 bool dma
= sg
->flags
& NVME_SG_DMA
;
1285 assert(sg
->flags
& NVME_SG_ALLOC
);
1288 sge_len
= dma
? sg
->qsg
.sg
[sg_idx
].len
: sg
->iov
.iov
[sg_idx
].iov_len
;
1290 if (sge_len
- offset
< 0) {
1296 if (sge_len
== offset
) {
1302 trans_len
= MIN(len
, count
);
1303 trans_len
= MIN(trans_len
, sge_len
- offset
);
1306 addr
= sg
->qsg
.sg
[sg_idx
].base
+ offset
;
1308 addr
= (hwaddr
)(uintptr_t)sg
->iov
.iov
[sg_idx
].iov_base
+ offset
;
1311 if (dir
== NVME_TX_DIRECTION_TO_DEVICE
) {
1312 ret
= nvme_addr_read(n
, addr
, ptr
, trans_len
);
1314 ret
= nvme_addr_write(n
, addr
, ptr
, trans_len
);
1318 return NVME_DATA_TRAS_ERROR
;
1324 offset
+= trans_len
;
1328 offset
+= skip_bytes
;
1332 return NVME_SUCCESS
;
1335 static uint16_t nvme_tx(NvmeCtrl
*n
, NvmeSg
*sg
, void *ptr
, uint32_t len
,
1336 NvmeTxDirection dir
)
1338 assert(sg
->flags
& NVME_SG_ALLOC
);
1340 if (sg
->flags
& NVME_SG_DMA
) {
1341 const MemTxAttrs attrs
= MEMTXATTRS_UNSPECIFIED
;
1342 dma_addr_t residual
;
1344 if (dir
== NVME_TX_DIRECTION_TO_DEVICE
) {
1345 dma_buf_write(ptr
, len
, &residual
, &sg
->qsg
, attrs
);
1347 dma_buf_read(ptr
, len
, &residual
, &sg
->qsg
, attrs
);
1350 if (unlikely(residual
)) {
1351 trace_pci_nvme_err_invalid_dma();
1352 return NVME_INVALID_FIELD
| NVME_DNR
;
1357 if (dir
== NVME_TX_DIRECTION_TO_DEVICE
) {
1358 bytes
= qemu_iovec_to_buf(&sg
->iov
, 0, ptr
, len
);
1360 bytes
= qemu_iovec_from_buf(&sg
->iov
, 0, ptr
, len
);
1363 if (unlikely(bytes
!= len
)) {
1364 trace_pci_nvme_err_invalid_dma();
1365 return NVME_INVALID_FIELD
| NVME_DNR
;
1369 return NVME_SUCCESS
;
1372 static inline uint16_t nvme_c2h(NvmeCtrl
*n
, void *ptr
, uint32_t len
,
1377 status
= nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
1382 return nvme_tx(n
, &req
->sg
, ptr
, len
, NVME_TX_DIRECTION_FROM_DEVICE
);
1385 static inline uint16_t nvme_h2c(NvmeCtrl
*n
, void *ptr
, uint32_t len
,
1390 status
= nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
1395 return nvme_tx(n
, &req
->sg
, ptr
, len
, NVME_TX_DIRECTION_TO_DEVICE
);
1398 uint16_t nvme_bounce_data(NvmeCtrl
*n
, void *ptr
, uint32_t len
,
1399 NvmeTxDirection dir
, NvmeRequest
*req
)
1401 NvmeNamespace
*ns
= req
->ns
;
1402 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1403 bool pi
= !!NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
);
1404 bool pract
= !!(le16_to_cpu(rw
->control
) & NVME_RW_PRINFO_PRACT
);
1406 if (nvme_ns_ext(ns
) &&
1407 !(pi
&& pract
&& ns
->lbaf
.ms
== nvme_pi_tuple_size(ns
))) {
1408 return nvme_tx_interleaved(n
, &req
->sg
, ptr
, len
, ns
->lbasz
,
1409 ns
->lbaf
.ms
, 0, dir
);
1412 return nvme_tx(n
, &req
->sg
, ptr
, len
, dir
);
1415 uint16_t nvme_bounce_mdata(NvmeCtrl
*n
, void *ptr
, uint32_t len
,
1416 NvmeTxDirection dir
, NvmeRequest
*req
)
1418 NvmeNamespace
*ns
= req
->ns
;
1421 if (nvme_ns_ext(ns
)) {
1422 return nvme_tx_interleaved(n
, &req
->sg
, ptr
, len
, ns
->lbaf
.ms
,
1423 ns
->lbasz
, ns
->lbasz
, dir
);
1426 nvme_sg_unmap(&req
->sg
);
1428 status
= nvme_map_mptr(n
, &req
->sg
, len
, &req
->cmd
);
1433 return nvme_tx(n
, &req
->sg
, ptr
, len
, dir
);
1436 static inline void nvme_blk_read(BlockBackend
*blk
, int64_t offset
,
1437 uint32_t align
, BlockCompletionFunc
*cb
,
1440 assert(req
->sg
.flags
& NVME_SG_ALLOC
);
1442 if (req
->sg
.flags
& NVME_SG_DMA
) {
1443 req
->aiocb
= dma_blk_read(blk
, &req
->sg
.qsg
, offset
, align
, cb
, req
);
1445 req
->aiocb
= blk_aio_preadv(blk
, offset
, &req
->sg
.iov
, 0, cb
, req
);
1449 static inline void nvme_blk_write(BlockBackend
*blk
, int64_t offset
,
1450 uint32_t align
, BlockCompletionFunc
*cb
,
1453 assert(req
->sg
.flags
& NVME_SG_ALLOC
);
1455 if (req
->sg
.flags
& NVME_SG_DMA
) {
1456 req
->aiocb
= dma_blk_write(blk
, &req
->sg
.qsg
, offset
, align
, cb
, req
);
1458 req
->aiocb
= blk_aio_pwritev(blk
, offset
, &req
->sg
.iov
, 0, cb
, req
);
1462 static void nvme_update_cq_eventidx(const NvmeCQueue
*cq
)
1464 uint32_t v
= cpu_to_le32(cq
->head
);
1466 trace_pci_nvme_update_cq_eventidx(cq
->cqid
, cq
->head
);
1468 pci_dma_write(PCI_DEVICE(cq
->ctrl
), cq
->ei_addr
, &v
, sizeof(v
));
1471 static void nvme_update_cq_head(NvmeCQueue
*cq
)
1475 pci_dma_read(PCI_DEVICE(cq
->ctrl
), cq
->db_addr
, &v
, sizeof(v
));
1477 cq
->head
= le32_to_cpu(v
);
1479 trace_pci_nvme_update_cq_head(cq
->cqid
, cq
->head
);
1482 static void nvme_post_cqes(void *opaque
)
1484 NvmeCQueue
*cq
= opaque
;
1485 NvmeCtrl
*n
= cq
->ctrl
;
1486 NvmeRequest
*req
, *next
;
1487 bool pending
= cq
->head
!= cq
->tail
;
1490 QTAILQ_FOREACH_SAFE(req
, &cq
->req_list
, entry
, next
) {
1494 if (n
->dbbuf_enabled
) {
1495 nvme_update_cq_eventidx(cq
);
1496 nvme_update_cq_head(cq
);
1499 if (nvme_cq_full(cq
)) {
1504 req
->cqe
.status
= cpu_to_le16((req
->status
<< 1) | cq
->phase
);
1505 req
->cqe
.sq_id
= cpu_to_le16(sq
->sqid
);
1506 req
->cqe
.sq_head
= cpu_to_le16(sq
->head
);
1507 addr
= cq
->dma_addr
+ cq
->tail
* n
->cqe_size
;
1508 ret
= pci_dma_write(PCI_DEVICE(n
), addr
, (void *)&req
->cqe
,
1511 trace_pci_nvme_err_addr_write(addr
);
1512 trace_pci_nvme_err_cfs();
1513 stl_le_p(&n
->bar
.csts
, NVME_CSTS_FAILED
);
1516 QTAILQ_REMOVE(&cq
->req_list
, req
, entry
);
1517 nvme_inc_cq_tail(cq
);
1518 nvme_sg_unmap(&req
->sg
);
1519 QTAILQ_INSERT_TAIL(&sq
->req_list
, req
, entry
);
1521 if (cq
->tail
!= cq
->head
) {
1522 if (cq
->irq_enabled
&& !pending
) {
1526 nvme_irq_assert(n
, cq
);
1530 static void nvme_enqueue_req_completion(NvmeCQueue
*cq
, NvmeRequest
*req
)
1532 assert(cq
->cqid
== req
->sq
->cqid
);
1533 trace_pci_nvme_enqueue_req_completion(nvme_cid(req
), cq
->cqid
,
1534 le32_to_cpu(req
->cqe
.result
),
1535 le32_to_cpu(req
->cqe
.dw1
),
1539 trace_pci_nvme_err_req_status(nvme_cid(req
), nvme_nsid(req
->ns
),
1540 req
->status
, req
->cmd
.opcode
);
1543 QTAILQ_REMOVE(&req
->sq
->out_req_list
, req
, entry
);
1544 QTAILQ_INSERT_TAIL(&cq
->req_list
, req
, entry
);
1546 qemu_bh_schedule(cq
->bh
);
1549 static void nvme_process_aers(void *opaque
)
1551 NvmeCtrl
*n
= opaque
;
1552 NvmeAsyncEvent
*event
, *next
;
1554 trace_pci_nvme_process_aers(n
->aer_queued
);
1556 QTAILQ_FOREACH_SAFE(event
, &n
->aer_queue
, entry
, next
) {
1558 NvmeAerResult
*result
;
1560 /* can't post cqe if there is nothing to complete */
1561 if (!n
->outstanding_aers
) {
1562 trace_pci_nvme_no_outstanding_aers();
1566 /* ignore if masked (cqe posted, but event not cleared) */
1567 if (n
->aer_mask
& (1 << event
->result
.event_type
)) {
1568 trace_pci_nvme_aer_masked(event
->result
.event_type
, n
->aer_mask
);
1572 QTAILQ_REMOVE(&n
->aer_queue
, event
, entry
);
1575 n
->aer_mask
|= 1 << event
->result
.event_type
;
1576 n
->outstanding_aers
--;
1578 req
= n
->aer_reqs
[n
->outstanding_aers
];
1580 result
= (NvmeAerResult
*) &req
->cqe
.result
;
1581 result
->event_type
= event
->result
.event_type
;
1582 result
->event_info
= event
->result
.event_info
;
1583 result
->log_page
= event
->result
.log_page
;
1586 trace_pci_nvme_aer_post_cqe(result
->event_type
, result
->event_info
,
1589 nvme_enqueue_req_completion(&n
->admin_cq
, req
);
1593 static void nvme_enqueue_event(NvmeCtrl
*n
, uint8_t event_type
,
1594 uint8_t event_info
, uint8_t log_page
)
1596 NvmeAsyncEvent
*event
;
1598 trace_pci_nvme_enqueue_event(event_type
, event_info
, log_page
);
1600 if (n
->aer_queued
== n
->params
.aer_max_queued
) {
1601 trace_pci_nvme_enqueue_event_noqueue(n
->aer_queued
);
1605 event
= g_new(NvmeAsyncEvent
, 1);
1606 event
->result
= (NvmeAerResult
) {
1607 .event_type
= event_type
,
1608 .event_info
= event_info
,
1609 .log_page
= log_page
,
1612 QTAILQ_INSERT_TAIL(&n
->aer_queue
, event
, entry
);
1615 nvme_process_aers(n
);
1618 static void nvme_smart_event(NvmeCtrl
*n
, uint8_t event
)
1622 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1623 if (!(NVME_AEC_SMART(n
->features
.async_config
) & event
)) {
1628 case NVME_SMART_SPARE
:
1629 aer_info
= NVME_AER_INFO_SMART_SPARE_THRESH
;
1631 case NVME_SMART_TEMPERATURE
:
1632 aer_info
= NVME_AER_INFO_SMART_TEMP_THRESH
;
1634 case NVME_SMART_RELIABILITY
:
1635 case NVME_SMART_MEDIA_READ_ONLY
:
1636 case NVME_SMART_FAILED_VOLATILE_MEDIA
:
1637 case NVME_SMART_PMR_UNRELIABLE
:
1638 aer_info
= NVME_AER_INFO_SMART_RELIABILITY
;
1644 nvme_enqueue_event(n
, NVME_AER_TYPE_SMART
, aer_info
, NVME_LOG_SMART_INFO
);
1647 static void nvme_clear_events(NvmeCtrl
*n
, uint8_t event_type
)
1649 n
->aer_mask
&= ~(1 << event_type
);
1650 if (!QTAILQ_EMPTY(&n
->aer_queue
)) {
1651 nvme_process_aers(n
);
1655 static inline uint16_t nvme_check_mdts(NvmeCtrl
*n
, size_t len
)
1657 uint8_t mdts
= n
->params
.mdts
;
1659 if (mdts
&& len
> n
->page_size
<< mdts
) {
1660 trace_pci_nvme_err_mdts(len
);
1661 return NVME_INVALID_FIELD
| NVME_DNR
;
1664 return NVME_SUCCESS
;
1667 static inline uint16_t nvme_check_bounds(NvmeNamespace
*ns
, uint64_t slba
,
1670 uint64_t nsze
= le64_to_cpu(ns
->id_ns
.nsze
);
1672 if (unlikely(UINT64_MAX
- slba
< nlb
|| slba
+ nlb
> nsze
)) {
1673 trace_pci_nvme_err_invalid_lba_range(slba
, nlb
, nsze
);
1674 return NVME_LBA_RANGE
| NVME_DNR
;
1677 return NVME_SUCCESS
;
1680 static int nvme_block_status_all(NvmeNamespace
*ns
, uint64_t slba
,
1681 uint32_t nlb
, int flags
)
1683 BlockDriverState
*bs
= blk_bs(ns
->blkconf
.blk
);
1685 int64_t pnum
= 0, bytes
= nvme_l2b(ns
, nlb
);
1686 int64_t offset
= nvme_l2b(ns
, slba
);
1690 * `pnum` holds the number of bytes after offset that shares the same
1691 * allocation status as the byte at offset. If `pnum` is different from
1692 * `bytes`, we should check the allocation status of the next range and
1693 * continue this until all bytes have been checked.
1698 ret
= bdrv_block_status(bs
, offset
, bytes
, &pnum
, NULL
, NULL
);
1704 trace_pci_nvme_block_status(offset
, bytes
, pnum
, ret
,
1705 !!(ret
& BDRV_BLOCK_ZERO
));
1707 if (!(ret
& flags
)) {
1712 } while (pnum
!= bytes
);
1717 static uint16_t nvme_check_dulbe(NvmeNamespace
*ns
, uint64_t slba
,
1723 ret
= nvme_block_status_all(ns
, slba
, nlb
, BDRV_BLOCK_DATA
);
1726 error_setg_errno(&err
, -ret
, "unable to get block status");
1727 error_report_err(err
);
1729 return NVME_INTERNAL_DEV_ERROR
;
1735 return NVME_SUCCESS
;
1738 static void nvme_aio_err(NvmeRequest
*req
, int ret
)
1740 uint16_t status
= NVME_SUCCESS
;
1741 Error
*local_err
= NULL
;
1743 switch (req
->cmd
.opcode
) {
1745 status
= NVME_UNRECOVERED_READ
;
1747 case NVME_CMD_FLUSH
:
1748 case NVME_CMD_WRITE
:
1749 case NVME_CMD_WRITE_ZEROES
:
1750 case NVME_CMD_ZONE_APPEND
:
1751 status
= NVME_WRITE_FAULT
;
1754 status
= NVME_INTERNAL_DEV_ERROR
;
1758 trace_pci_nvme_err_aio(nvme_cid(req
), strerror(-ret
), status
);
1760 error_setg_errno(&local_err
, -ret
, "aio failed");
1761 error_report_err(local_err
);
1764 * Set the command status code to the first encountered error but allow a
1765 * subsequent Internal Device Error to trump it.
1767 if (req
->status
&& status
!= NVME_INTERNAL_DEV_ERROR
) {
1771 req
->status
= status
;
1774 static inline uint32_t nvme_zone_idx(NvmeNamespace
*ns
, uint64_t slba
)
1776 return ns
->zone_size_log2
> 0 ? slba
>> ns
->zone_size_log2
:
1777 slba
/ ns
->zone_size
;
1780 static inline NvmeZone
*nvme_get_zone_by_slba(NvmeNamespace
*ns
, uint64_t slba
)
1782 uint32_t zone_idx
= nvme_zone_idx(ns
, slba
);
1784 if (zone_idx
>= ns
->num_zones
) {
1788 return &ns
->zone_array
[zone_idx
];
1791 static uint16_t nvme_check_zone_state_for_write(NvmeZone
*zone
)
1793 uint64_t zslba
= zone
->d
.zslba
;
1795 switch (nvme_get_zone_state(zone
)) {
1796 case NVME_ZONE_STATE_EMPTY
:
1797 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1798 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1799 case NVME_ZONE_STATE_CLOSED
:
1800 return NVME_SUCCESS
;
1801 case NVME_ZONE_STATE_FULL
:
1802 trace_pci_nvme_err_zone_is_full(zslba
);
1803 return NVME_ZONE_FULL
;
1804 case NVME_ZONE_STATE_OFFLINE
:
1805 trace_pci_nvme_err_zone_is_offline(zslba
);
1806 return NVME_ZONE_OFFLINE
;
1807 case NVME_ZONE_STATE_READ_ONLY
:
1808 trace_pci_nvme_err_zone_is_read_only(zslba
);
1809 return NVME_ZONE_READ_ONLY
;
1814 return NVME_INTERNAL_DEV_ERROR
;
1817 static uint16_t nvme_check_zone_write(NvmeNamespace
*ns
, NvmeZone
*zone
,
1818 uint64_t slba
, uint32_t nlb
)
1820 uint64_t zcap
= nvme_zone_wr_boundary(zone
);
1823 status
= nvme_check_zone_state_for_write(zone
);
1828 if (zone
->d
.za
& NVME_ZA_ZRWA_VALID
) {
1829 uint64_t ezrwa
= zone
->w_ptr
+ 2 * ns
->zns
.zrwas
;
1831 if (slba
< zone
->w_ptr
|| slba
+ nlb
> ezrwa
) {
1832 trace_pci_nvme_err_zone_invalid_write(slba
, zone
->w_ptr
);
1833 return NVME_ZONE_INVALID_WRITE
;
1836 if (unlikely(slba
!= zone
->w_ptr
)) {
1837 trace_pci_nvme_err_write_not_at_wp(slba
, zone
->d
.zslba
,
1839 return NVME_ZONE_INVALID_WRITE
;
1843 if (unlikely((slba
+ nlb
) > zcap
)) {
1844 trace_pci_nvme_err_zone_boundary(slba
, nlb
, zcap
);
1845 return NVME_ZONE_BOUNDARY_ERROR
;
1848 return NVME_SUCCESS
;
1851 static uint16_t nvme_check_zone_state_for_read(NvmeZone
*zone
)
1853 switch (nvme_get_zone_state(zone
)) {
1854 case NVME_ZONE_STATE_EMPTY
:
1855 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1856 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1857 case NVME_ZONE_STATE_FULL
:
1858 case NVME_ZONE_STATE_CLOSED
:
1859 case NVME_ZONE_STATE_READ_ONLY
:
1860 return NVME_SUCCESS
;
1861 case NVME_ZONE_STATE_OFFLINE
:
1862 trace_pci_nvme_err_zone_is_offline(zone
->d
.zslba
);
1863 return NVME_ZONE_OFFLINE
;
1868 return NVME_INTERNAL_DEV_ERROR
;
1871 static uint16_t nvme_check_zone_read(NvmeNamespace
*ns
, uint64_t slba
,
1875 uint64_t bndry
, end
;
1878 zone
= nvme_get_zone_by_slba(ns
, slba
);
1881 bndry
= nvme_zone_rd_boundary(ns
, zone
);
1884 status
= nvme_check_zone_state_for_read(zone
);
1887 } else if (unlikely(end
> bndry
)) {
1888 if (!ns
->params
.cross_zone_read
) {
1889 status
= NVME_ZONE_BOUNDARY_ERROR
;
1892 * Read across zone boundary - check that all subsequent
1893 * zones that are being read have an appropriate state.
1897 status
= nvme_check_zone_state_for_read(zone
);
1901 } while (end
> nvme_zone_rd_boundary(ns
, zone
));
1908 static uint16_t nvme_zrm_finish(NvmeNamespace
*ns
, NvmeZone
*zone
)
1910 switch (nvme_get_zone_state(zone
)) {
1911 case NVME_ZONE_STATE_FULL
:
1912 return NVME_SUCCESS
;
1914 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1915 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1916 nvme_aor_dec_open(ns
);
1918 case NVME_ZONE_STATE_CLOSED
:
1919 nvme_aor_dec_active(ns
);
1921 if (zone
->d
.za
& NVME_ZA_ZRWA_VALID
) {
1922 zone
->d
.za
&= ~NVME_ZA_ZRWA_VALID
;
1923 if (ns
->params
.numzrwa
) {
1929 case NVME_ZONE_STATE_EMPTY
:
1930 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_FULL
);
1931 return NVME_SUCCESS
;
1934 return NVME_ZONE_INVAL_TRANSITION
;
1938 static uint16_t nvme_zrm_close(NvmeNamespace
*ns
, NvmeZone
*zone
)
1940 switch (nvme_get_zone_state(zone
)) {
1941 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1942 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1943 nvme_aor_dec_open(ns
);
1944 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_CLOSED
);
1946 case NVME_ZONE_STATE_CLOSED
:
1947 return NVME_SUCCESS
;
1950 return NVME_ZONE_INVAL_TRANSITION
;
1954 static uint16_t nvme_zrm_reset(NvmeNamespace
*ns
, NvmeZone
*zone
)
1956 switch (nvme_get_zone_state(zone
)) {
1957 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1958 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1959 nvme_aor_dec_open(ns
);
1961 case NVME_ZONE_STATE_CLOSED
:
1962 nvme_aor_dec_active(ns
);
1964 if (zone
->d
.za
& NVME_ZA_ZRWA_VALID
) {
1965 if (ns
->params
.numzrwa
) {
1971 case NVME_ZONE_STATE_FULL
:
1972 zone
->w_ptr
= zone
->d
.zslba
;
1973 zone
->d
.wp
= zone
->w_ptr
;
1974 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_EMPTY
);
1976 case NVME_ZONE_STATE_EMPTY
:
1977 return NVME_SUCCESS
;
1980 return NVME_ZONE_INVAL_TRANSITION
;
1984 static void nvme_zrm_auto_transition_zone(NvmeNamespace
*ns
)
1988 if (ns
->params
.max_open_zones
&&
1989 ns
->nr_open_zones
== ns
->params
.max_open_zones
) {
1990 zone
= QTAILQ_FIRST(&ns
->imp_open_zones
);
1993 * Automatically close this implicitly open zone.
1995 QTAILQ_REMOVE(&ns
->imp_open_zones
, zone
, entry
);
1996 nvme_zrm_close(ns
, zone
);
2002 NVME_ZRM_AUTO
= 1 << 0,
2003 NVME_ZRM_ZRWA
= 1 << 1,
2006 static uint16_t nvme_zrm_open_flags(NvmeCtrl
*n
, NvmeNamespace
*ns
,
2007 NvmeZone
*zone
, int flags
)
2012 switch (nvme_get_zone_state(zone
)) {
2013 case NVME_ZONE_STATE_EMPTY
:
2018 case NVME_ZONE_STATE_CLOSED
:
2019 if (n
->params
.auto_transition_zones
) {
2020 nvme_zrm_auto_transition_zone(ns
);
2022 status
= nvme_zns_check_resources(ns
, act
, 1,
2023 (flags
& NVME_ZRM_ZRWA
) ? 1 : 0);
2029 nvme_aor_inc_active(ns
);
2032 nvme_aor_inc_open(ns
);
2034 if (flags
& NVME_ZRM_AUTO
) {
2035 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_IMPLICITLY_OPEN
);
2036 return NVME_SUCCESS
;
2041 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
2042 if (flags
& NVME_ZRM_AUTO
) {
2043 return NVME_SUCCESS
;
2046 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_EXPLICITLY_OPEN
);
2050 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
2051 if (flags
& NVME_ZRM_ZRWA
) {
2054 zone
->d
.za
|= NVME_ZA_ZRWA_VALID
;
2057 return NVME_SUCCESS
;
2060 return NVME_ZONE_INVAL_TRANSITION
;
2064 static inline uint16_t nvme_zrm_auto(NvmeCtrl
*n
, NvmeNamespace
*ns
,
2067 return nvme_zrm_open_flags(n
, ns
, zone
, NVME_ZRM_AUTO
);
2070 static void nvme_advance_zone_wp(NvmeNamespace
*ns
, NvmeZone
*zone
,
2075 if (zone
->d
.wp
== nvme_zone_wr_boundary(zone
)) {
2076 nvme_zrm_finish(ns
, zone
);
2080 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace
*ns
, NvmeZone
*zone
,
2083 uint16_t nzrwafgs
= DIV_ROUND_UP(nlbc
, ns
->zns
.zrwafg
);
2085 nlbc
= nzrwafgs
* ns
->zns
.zrwafg
;
2087 trace_pci_nvme_zoned_zrwa_implicit_flush(zone
->d
.zslba
, nlbc
);
2089 zone
->w_ptr
+= nlbc
;
2091 nvme_advance_zone_wp(ns
, zone
, nlbc
);
2094 static void nvme_finalize_zoned_write(NvmeNamespace
*ns
, NvmeRequest
*req
)
2096 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2101 slba
= le64_to_cpu(rw
->slba
);
2102 nlb
= le16_to_cpu(rw
->nlb
) + 1;
2103 zone
= nvme_get_zone_by_slba(ns
, slba
);
2106 if (zone
->d
.za
& NVME_ZA_ZRWA_VALID
) {
2107 uint64_t ezrwa
= zone
->w_ptr
+ ns
->zns
.zrwas
- 1;
2108 uint64_t elba
= slba
+ nlb
- 1;
2111 nvme_zoned_zrwa_implicit_flush(ns
, zone
, elba
- ezrwa
);
2117 nvme_advance_zone_wp(ns
, zone
, nlb
);
2120 static inline bool nvme_is_write(NvmeRequest
*req
)
2122 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2124 return rw
->opcode
== NVME_CMD_WRITE
||
2125 rw
->opcode
== NVME_CMD_ZONE_APPEND
||
2126 rw
->opcode
== NVME_CMD_WRITE_ZEROES
;
2129 static AioContext
*nvme_get_aio_context(BlockAIOCB
*acb
)
2131 return qemu_get_aio_context();
2134 static void nvme_misc_cb(void *opaque
, int ret
)
2136 NvmeRequest
*req
= opaque
;
2138 trace_pci_nvme_misc_cb(nvme_cid(req
));
2141 nvme_aio_err(req
, ret
);
2144 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2147 void nvme_rw_complete_cb(void *opaque
, int ret
)
2149 NvmeRequest
*req
= opaque
;
2150 NvmeNamespace
*ns
= req
->ns
;
2151 BlockBackend
*blk
= ns
->blkconf
.blk
;
2152 BlockAcctCookie
*acct
= &req
->acct
;
2153 BlockAcctStats
*stats
= blk_get_stats(blk
);
2155 trace_pci_nvme_rw_complete_cb(nvme_cid(req
), blk_name(blk
));
2158 block_acct_failed(stats
, acct
);
2159 nvme_aio_err(req
, ret
);
2161 block_acct_done(stats
, acct
);
2164 if (ns
->params
.zoned
&& nvme_is_write(req
)) {
2165 nvme_finalize_zoned_write(ns
, req
);
2168 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2171 static void nvme_rw_cb(void *opaque
, int ret
)
2173 NvmeRequest
*req
= opaque
;
2174 NvmeNamespace
*ns
= req
->ns
;
2176 BlockBackend
*blk
= ns
->blkconf
.blk
;
2178 trace_pci_nvme_rw_cb(nvme_cid(req
), blk_name(blk
));
2185 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2186 uint64_t slba
= le64_to_cpu(rw
->slba
);
2187 uint32_t nlb
= (uint32_t)le16_to_cpu(rw
->nlb
) + 1;
2188 uint64_t offset
= nvme_moff(ns
, slba
);
2190 if (req
->cmd
.opcode
== NVME_CMD_WRITE_ZEROES
) {
2191 size_t mlen
= nvme_m2b(ns
, nlb
);
2193 req
->aiocb
= blk_aio_pwrite_zeroes(blk
, offset
, mlen
,
2195 nvme_rw_complete_cb
, req
);
2199 if (nvme_ns_ext(ns
) || req
->cmd
.mptr
) {
2202 nvme_sg_unmap(&req
->sg
);
2203 status
= nvme_map_mdata(nvme_ctrl(req
), nlb
, req
);
2209 if (req
->cmd
.opcode
== NVME_CMD_READ
) {
2210 return nvme_blk_read(blk
, offset
, 1, nvme_rw_complete_cb
, req
);
2213 return nvme_blk_write(blk
, offset
, 1, nvme_rw_complete_cb
, req
);
2218 nvme_rw_complete_cb(req
, ret
);
2221 static void nvme_verify_cb(void *opaque
, int ret
)
2223 NvmeBounceContext
*ctx
= opaque
;
2224 NvmeRequest
*req
= ctx
->req
;
2225 NvmeNamespace
*ns
= req
->ns
;
2226 BlockBackend
*blk
= ns
->blkconf
.blk
;
2227 BlockAcctCookie
*acct
= &req
->acct
;
2228 BlockAcctStats
*stats
= blk_get_stats(blk
);
2229 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2230 uint64_t slba
= le64_to_cpu(rw
->slba
);
2231 uint8_t prinfo
= NVME_RW_PRINFO(le16_to_cpu(rw
->control
));
2232 uint16_t apptag
= le16_to_cpu(rw
->apptag
);
2233 uint16_t appmask
= le16_to_cpu(rw
->appmask
);
2234 uint64_t reftag
= le32_to_cpu(rw
->reftag
);
2235 uint64_t cdw3
= le32_to_cpu(rw
->cdw3
);
2238 reftag
|= cdw3
<< 32;
2240 trace_pci_nvme_verify_cb(nvme_cid(req
), prinfo
, apptag
, appmask
, reftag
);
2243 block_acct_failed(stats
, acct
);
2244 nvme_aio_err(req
, ret
);
2248 block_acct_done(stats
, acct
);
2250 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2251 status
= nvme_dif_mangle_mdata(ns
, ctx
->mdata
.bounce
,
2252 ctx
->mdata
.iov
.size
, slba
);
2254 req
->status
= status
;
2258 req
->status
= nvme_dif_check(ns
, ctx
->data
.bounce
, ctx
->data
.iov
.size
,
2259 ctx
->mdata
.bounce
, ctx
->mdata
.iov
.size
,
2260 prinfo
, slba
, apptag
, appmask
, &reftag
);
2264 qemu_iovec_destroy(&ctx
->data
.iov
);
2265 g_free(ctx
->data
.bounce
);
2267 qemu_iovec_destroy(&ctx
->mdata
.iov
);
2268 g_free(ctx
->mdata
.bounce
);
2272 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2276 static void nvme_verify_mdata_in_cb(void *opaque
, int ret
)
2278 NvmeBounceContext
*ctx
= opaque
;
2279 NvmeRequest
*req
= ctx
->req
;
2280 NvmeNamespace
*ns
= req
->ns
;
2281 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2282 uint64_t slba
= le64_to_cpu(rw
->slba
);
2283 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
2284 size_t mlen
= nvme_m2b(ns
, nlb
);
2285 uint64_t offset
= nvme_moff(ns
, slba
);
2286 BlockBackend
*blk
= ns
->blkconf
.blk
;
2288 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req
), blk_name(blk
));
2294 ctx
->mdata
.bounce
= g_malloc(mlen
);
2296 qemu_iovec_reset(&ctx
->mdata
.iov
);
2297 qemu_iovec_add(&ctx
->mdata
.iov
, ctx
->mdata
.bounce
, mlen
);
2299 req
->aiocb
= blk_aio_preadv(blk
, offset
, &ctx
->mdata
.iov
, 0,
2300 nvme_verify_cb
, ctx
);
2304 nvme_verify_cb(ctx
, ret
);
2307 struct nvme_compare_ctx
{
2319 static void nvme_compare_mdata_cb(void *opaque
, int ret
)
2321 NvmeRequest
*req
= opaque
;
2322 NvmeNamespace
*ns
= req
->ns
;
2323 NvmeCtrl
*n
= nvme_ctrl(req
);
2324 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2325 uint8_t prinfo
= NVME_RW_PRINFO(le16_to_cpu(rw
->control
));
2326 uint16_t apptag
= le16_to_cpu(rw
->apptag
);
2327 uint16_t appmask
= le16_to_cpu(rw
->appmask
);
2328 uint64_t reftag
= le32_to_cpu(rw
->reftag
);
2329 uint64_t cdw3
= le32_to_cpu(rw
->cdw3
);
2330 struct nvme_compare_ctx
*ctx
= req
->opaque
;
2331 g_autofree
uint8_t *buf
= NULL
;
2332 BlockBackend
*blk
= ns
->blkconf
.blk
;
2333 BlockAcctCookie
*acct
= &req
->acct
;
2334 BlockAcctStats
*stats
= blk_get_stats(blk
);
2335 uint16_t status
= NVME_SUCCESS
;
2337 reftag
|= cdw3
<< 32;
2339 trace_pci_nvme_compare_mdata_cb(nvme_cid(req
));
2342 block_acct_failed(stats
, acct
);
2343 nvme_aio_err(req
, ret
);
2347 buf
= g_malloc(ctx
->mdata
.iov
.size
);
2349 status
= nvme_bounce_mdata(n
, buf
, ctx
->mdata
.iov
.size
,
2350 NVME_TX_DIRECTION_TO_DEVICE
, req
);
2352 req
->status
= status
;
2356 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2357 uint64_t slba
= le64_to_cpu(rw
->slba
);
2359 uint8_t *mbufp
= ctx
->mdata
.bounce
;
2360 uint8_t *end
= mbufp
+ ctx
->mdata
.iov
.size
;
2363 status
= nvme_dif_check(ns
, ctx
->data
.bounce
, ctx
->data
.iov
.size
,
2364 ctx
->mdata
.bounce
, ctx
->mdata
.iov
.size
, prinfo
,
2365 slba
, apptag
, appmask
, &reftag
);
2367 req
->status
= status
;
2372 * When formatted with protection information, do not compare the DIF
2375 if (!(ns
->id_ns
.dps
& NVME_ID_NS_DPS_FIRST_EIGHT
)) {
2376 pil
= ns
->lbaf
.ms
- nvme_pi_tuple_size(ns
);
2379 for (bufp
= buf
; mbufp
< end
; bufp
+= ns
->lbaf
.ms
, mbufp
+= ns
->lbaf
.ms
) {
2380 if (memcmp(bufp
+ pil
, mbufp
+ pil
, ns
->lbaf
.ms
- pil
)) {
2381 req
->status
= NVME_CMP_FAILURE
| NVME_DNR
;
2389 if (memcmp(buf
, ctx
->mdata
.bounce
, ctx
->mdata
.iov
.size
)) {
2390 req
->status
= NVME_CMP_FAILURE
| NVME_DNR
;
2394 block_acct_done(stats
, acct
);
2397 qemu_iovec_destroy(&ctx
->data
.iov
);
2398 g_free(ctx
->data
.bounce
);
2400 qemu_iovec_destroy(&ctx
->mdata
.iov
);
2401 g_free(ctx
->mdata
.bounce
);
2405 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2408 static void nvme_compare_data_cb(void *opaque
, int ret
)
2410 NvmeRequest
*req
= opaque
;
2411 NvmeCtrl
*n
= nvme_ctrl(req
);
2412 NvmeNamespace
*ns
= req
->ns
;
2413 BlockBackend
*blk
= ns
->blkconf
.blk
;
2414 BlockAcctCookie
*acct
= &req
->acct
;
2415 BlockAcctStats
*stats
= blk_get_stats(blk
);
2417 struct nvme_compare_ctx
*ctx
= req
->opaque
;
2418 g_autofree
uint8_t *buf
= NULL
;
2421 trace_pci_nvme_compare_data_cb(nvme_cid(req
));
2424 block_acct_failed(stats
, acct
);
2425 nvme_aio_err(req
, ret
);
2429 buf
= g_malloc(ctx
->data
.iov
.size
);
2431 status
= nvme_bounce_data(n
, buf
, ctx
->data
.iov
.size
,
2432 NVME_TX_DIRECTION_TO_DEVICE
, req
);
2434 req
->status
= status
;
2438 if (memcmp(buf
, ctx
->data
.bounce
, ctx
->data
.iov
.size
)) {
2439 req
->status
= NVME_CMP_FAILURE
| NVME_DNR
;
2444 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2445 uint64_t slba
= le64_to_cpu(rw
->slba
);
2446 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
2447 size_t mlen
= nvme_m2b(ns
, nlb
);
2448 uint64_t offset
= nvme_moff(ns
, slba
);
2450 ctx
->mdata
.bounce
= g_malloc(mlen
);
2452 qemu_iovec_init(&ctx
->mdata
.iov
, 1);
2453 qemu_iovec_add(&ctx
->mdata
.iov
, ctx
->mdata
.bounce
, mlen
);
2455 req
->aiocb
= blk_aio_preadv(blk
, offset
, &ctx
->mdata
.iov
, 0,
2456 nvme_compare_mdata_cb
, req
);
2460 block_acct_done(stats
, acct
);
2463 qemu_iovec_destroy(&ctx
->data
.iov
);
2464 g_free(ctx
->data
.bounce
);
2467 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2470 typedef struct NvmeDSMAIOCB
{
2476 NvmeDsmRange
*range
;
2481 static void nvme_dsm_cancel(BlockAIOCB
*aiocb
)
2483 NvmeDSMAIOCB
*iocb
= container_of(aiocb
, NvmeDSMAIOCB
, common
);
2485 /* break nvme_dsm_cb loop */
2486 iocb
->idx
= iocb
->nr
;
2487 iocb
->ret
= -ECANCELED
;
2490 blk_aio_cancel_async(iocb
->aiocb
);
2494 * We only reach this if nvme_dsm_cancel() has already been called or
2495 * the command ran to completion.
2497 assert(iocb
->idx
== iocb
->nr
);
2501 static const AIOCBInfo nvme_dsm_aiocb_info
= {
2502 .aiocb_size
= sizeof(NvmeDSMAIOCB
),
2503 .cancel_async
= nvme_dsm_cancel
,
2506 static void nvme_dsm_cb(void *opaque
, int ret
);
2508 static void nvme_dsm_md_cb(void *opaque
, int ret
)
2510 NvmeDSMAIOCB
*iocb
= opaque
;
2511 NvmeRequest
*req
= iocb
->req
;
2512 NvmeNamespace
*ns
= req
->ns
;
2513 NvmeDsmRange
*range
;
2517 if (ret
< 0 || iocb
->ret
< 0 || !ns
->lbaf
.ms
) {
2521 range
= &iocb
->range
[iocb
->idx
- 1];
2522 slba
= le64_to_cpu(range
->slba
);
2523 nlb
= le32_to_cpu(range
->nlb
);
2526 * Check that all block were discarded (zeroed); otherwise we do not zero
2530 ret
= nvme_block_status_all(ns
, slba
, nlb
, BDRV_BLOCK_ZERO
);
2536 nvme_dsm_cb(iocb
, 0);
2540 iocb
->aiocb
= blk_aio_pwrite_zeroes(ns
->blkconf
.blk
, nvme_moff(ns
, slba
),
2541 nvme_m2b(ns
, nlb
), BDRV_REQ_MAY_UNMAP
,
2546 nvme_dsm_cb(iocb
, ret
);
2549 static void nvme_dsm_cb(void *opaque
, int ret
)
2551 NvmeDSMAIOCB
*iocb
= opaque
;
2552 NvmeRequest
*req
= iocb
->req
;
2553 NvmeCtrl
*n
= nvme_ctrl(req
);
2554 NvmeNamespace
*ns
= req
->ns
;
2555 NvmeDsmRange
*range
;
2559 if (iocb
->ret
< 0) {
2561 } else if (ret
< 0) {
2567 if (iocb
->idx
== iocb
->nr
) {
2571 range
= &iocb
->range
[iocb
->idx
++];
2572 slba
= le64_to_cpu(range
->slba
);
2573 nlb
= le32_to_cpu(range
->nlb
);
2575 trace_pci_nvme_dsm_deallocate(slba
, nlb
);
2577 if (nlb
> n
->dmrsl
) {
2578 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb
, n
->dmrsl
);
2582 if (nvme_check_bounds(ns
, slba
, nlb
)) {
2583 trace_pci_nvme_err_invalid_lba_range(slba
, nlb
,
2588 iocb
->aiocb
= blk_aio_pdiscard(ns
->blkconf
.blk
, nvme_l2b(ns
, slba
),
2590 nvme_dsm_md_cb
, iocb
);
2595 iocb
->common
.cb(iocb
->common
.opaque
, iocb
->ret
);
2596 qemu_aio_unref(iocb
);
2599 static uint16_t nvme_dsm(NvmeCtrl
*n
, NvmeRequest
*req
)
2601 NvmeNamespace
*ns
= req
->ns
;
2602 NvmeDsmCmd
*dsm
= (NvmeDsmCmd
*) &req
->cmd
;
2603 uint32_t attr
= le32_to_cpu(dsm
->attributes
);
2604 uint32_t nr
= (le32_to_cpu(dsm
->nr
) & 0xff) + 1;
2605 uint16_t status
= NVME_SUCCESS
;
2607 trace_pci_nvme_dsm(nr
, attr
);
2609 if (attr
& NVME_DSMGMT_AD
) {
2610 NvmeDSMAIOCB
*iocb
= blk_aio_get(&nvme_dsm_aiocb_info
, ns
->blkconf
.blk
,
2615 iocb
->range
= g_new(NvmeDsmRange
, nr
);
2619 status
= nvme_h2c(n
, (uint8_t *)iocb
->range
, sizeof(NvmeDsmRange
) * nr
,
2622 g_free(iocb
->range
);
2623 qemu_aio_unref(iocb
);
2628 req
->aiocb
= &iocb
->common
;
2629 nvme_dsm_cb(iocb
, 0);
2631 return NVME_NO_COMPLETE
;
2637 static uint16_t nvme_verify(NvmeCtrl
*n
, NvmeRequest
*req
)
2639 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2640 NvmeNamespace
*ns
= req
->ns
;
2641 BlockBackend
*blk
= ns
->blkconf
.blk
;
2642 uint64_t slba
= le64_to_cpu(rw
->slba
);
2643 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
2644 size_t len
= nvme_l2b(ns
, nlb
);
2645 int64_t offset
= nvme_l2b(ns
, slba
);
2646 uint8_t prinfo
= NVME_RW_PRINFO(le16_to_cpu(rw
->control
));
2647 uint32_t reftag
= le32_to_cpu(rw
->reftag
);
2648 NvmeBounceContext
*ctx
= NULL
;
2651 trace_pci_nvme_verify(nvme_cid(req
), nvme_nsid(ns
), slba
, nlb
);
2653 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2654 status
= nvme_check_prinfo(ns
, prinfo
, slba
, reftag
);
2659 if (prinfo
& NVME_PRINFO_PRACT
) {
2660 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
2664 if (len
> n
->page_size
<< n
->params
.vsl
) {
2665 return NVME_INVALID_FIELD
| NVME_DNR
;
2668 status
= nvme_check_bounds(ns
, slba
, nlb
);
2673 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
2674 status
= nvme_check_dulbe(ns
, slba
, nlb
);
2680 ctx
= g_new0(NvmeBounceContext
, 1);
2683 ctx
->data
.bounce
= g_malloc(len
);
2685 qemu_iovec_init(&ctx
->data
.iov
, 1);
2686 qemu_iovec_add(&ctx
->data
.iov
, ctx
->data
.bounce
, len
);
2688 block_acct_start(blk_get_stats(blk
), &req
->acct
, ctx
->data
.iov
.size
,
2691 req
->aiocb
= blk_aio_preadv(ns
->blkconf
.blk
, offset
, &ctx
->data
.iov
, 0,
2692 nvme_verify_mdata_in_cb
, ctx
);
2693 return NVME_NO_COMPLETE
;
2696 typedef struct NvmeCopyAIOCB
{
2703 unsigned int format
;
2710 BlockAcctCookie read
;
2711 BlockAcctCookie write
;
2720 static void nvme_copy_cancel(BlockAIOCB
*aiocb
)
2722 NvmeCopyAIOCB
*iocb
= container_of(aiocb
, NvmeCopyAIOCB
, common
);
2724 iocb
->ret
= -ECANCELED
;
2727 blk_aio_cancel_async(iocb
->aiocb
);
2732 static const AIOCBInfo nvme_copy_aiocb_info
= {
2733 .aiocb_size
= sizeof(NvmeCopyAIOCB
),
2734 .cancel_async
= nvme_copy_cancel
,
2737 static void nvme_copy_done(NvmeCopyAIOCB
*iocb
)
2739 NvmeRequest
*req
= iocb
->req
;
2740 NvmeNamespace
*ns
= req
->ns
;
2741 BlockAcctStats
*stats
= blk_get_stats(ns
->blkconf
.blk
);
2743 if (iocb
->idx
!= iocb
->nr
) {
2744 req
->cqe
.result
= cpu_to_le32(iocb
->idx
);
2747 qemu_iovec_destroy(&iocb
->iov
);
2748 g_free(iocb
->bounce
);
2750 if (iocb
->ret
< 0) {
2751 block_acct_failed(stats
, &iocb
->acct
.read
);
2752 block_acct_failed(stats
, &iocb
->acct
.write
);
2754 block_acct_done(stats
, &iocb
->acct
.read
);
2755 block_acct_done(stats
, &iocb
->acct
.write
);
2758 iocb
->common
.cb(iocb
->common
.opaque
, iocb
->ret
);
2759 qemu_aio_unref(iocb
);
2762 static void nvme_do_copy(NvmeCopyAIOCB
*iocb
);
2764 static void nvme_copy_source_range_parse_format0(void *ranges
, int idx
,
2765 uint64_t *slba
, uint32_t *nlb
,
2770 NvmeCopySourceRangeFormat0
*_ranges
= ranges
;
2773 *slba
= le64_to_cpu(_ranges
[idx
].slba
);
2777 *nlb
= le16_to_cpu(_ranges
[idx
].nlb
) + 1;
2781 *apptag
= le16_to_cpu(_ranges
[idx
].apptag
);
2785 *appmask
= le16_to_cpu(_ranges
[idx
].appmask
);
2789 *reftag
= le32_to_cpu(_ranges
[idx
].reftag
);
2793 static void nvme_copy_source_range_parse_format1(void *ranges
, int idx
,
2794 uint64_t *slba
, uint32_t *nlb
,
2799 NvmeCopySourceRangeFormat1
*_ranges
= ranges
;
2802 *slba
= le64_to_cpu(_ranges
[idx
].slba
);
2806 *nlb
= le16_to_cpu(_ranges
[idx
].nlb
) + 1;
2810 *apptag
= le16_to_cpu(_ranges
[idx
].apptag
);
2814 *appmask
= le16_to_cpu(_ranges
[idx
].appmask
);
2820 *reftag
|= (uint64_t)_ranges
[idx
].sr
[4] << 40;
2821 *reftag
|= (uint64_t)_ranges
[idx
].sr
[5] << 32;
2822 *reftag
|= (uint64_t)_ranges
[idx
].sr
[6] << 24;
2823 *reftag
|= (uint64_t)_ranges
[idx
].sr
[7] << 16;
2824 *reftag
|= (uint64_t)_ranges
[idx
].sr
[8] << 8;
2825 *reftag
|= (uint64_t)_ranges
[idx
].sr
[9];
2829 static void nvme_copy_source_range_parse(void *ranges
, int idx
, uint8_t format
,
2830 uint64_t *slba
, uint32_t *nlb
,
2831 uint16_t *apptag
, uint16_t *appmask
,
2835 case NVME_COPY_FORMAT_0
:
2836 nvme_copy_source_range_parse_format0(ranges
, idx
, slba
, nlb
, apptag
,
2840 case NVME_COPY_FORMAT_1
:
2841 nvme_copy_source_range_parse_format1(ranges
, idx
, slba
, nlb
, apptag
,
2850 static void nvme_copy_out_completed_cb(void *opaque
, int ret
)
2852 NvmeCopyAIOCB
*iocb
= opaque
;
2853 NvmeRequest
*req
= iocb
->req
;
2854 NvmeNamespace
*ns
= req
->ns
;
2857 nvme_copy_source_range_parse(iocb
->ranges
, iocb
->idx
, iocb
->format
, NULL
,
2858 &nlb
, NULL
, NULL
, NULL
);
2863 } else if (iocb
->ret
< 0) {
2867 if (ns
->params
.zoned
) {
2868 nvme_advance_zone_wp(ns
, iocb
->zone
, nlb
);
2877 static void nvme_copy_out_cb(void *opaque
, int ret
)
2879 NvmeCopyAIOCB
*iocb
= opaque
;
2880 NvmeRequest
*req
= iocb
->req
;
2881 NvmeNamespace
*ns
= req
->ns
;
2886 if (ret
< 0 || iocb
->ret
< 0 || !ns
->lbaf
.ms
) {
2890 nvme_copy_source_range_parse(iocb
->ranges
, iocb
->idx
, iocb
->format
, NULL
,
2891 &nlb
, NULL
, NULL
, NULL
);
2893 mlen
= nvme_m2b(ns
, nlb
);
2894 mbounce
= iocb
->bounce
+ nvme_l2b(ns
, nlb
);
2896 qemu_iovec_reset(&iocb
->iov
);
2897 qemu_iovec_add(&iocb
->iov
, mbounce
, mlen
);
2899 iocb
->aiocb
= blk_aio_pwritev(ns
->blkconf
.blk
, nvme_moff(ns
, iocb
->slba
),
2900 &iocb
->iov
, 0, nvme_copy_out_completed_cb
,
2906 nvme_copy_out_completed_cb(iocb
, ret
);
2909 static void nvme_copy_in_completed_cb(void *opaque
, int ret
)
2911 NvmeCopyAIOCB
*iocb
= opaque
;
2912 NvmeRequest
*req
= iocb
->req
;
2913 NvmeNamespace
*ns
= req
->ns
;
2916 uint16_t apptag
, appmask
;
2924 } else if (iocb
->ret
< 0) {
2928 nvme_copy_source_range_parse(iocb
->ranges
, iocb
->idx
, iocb
->format
, &slba
,
2929 &nlb
, &apptag
, &appmask
, &reftag
);
2930 len
= nvme_l2b(ns
, nlb
);
2932 trace_pci_nvme_copy_out(iocb
->slba
, nlb
);
2934 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2935 NvmeCopyCmd
*copy
= (NvmeCopyCmd
*)&req
->cmd
;
2937 uint16_t prinfor
= ((copy
->control
[0] >> 4) & 0xf);
2938 uint16_t prinfow
= ((copy
->control
[2] >> 2) & 0xf);
2940 size_t mlen
= nvme_m2b(ns
, nlb
);
2941 uint8_t *mbounce
= iocb
->bounce
+ nvme_l2b(ns
, nlb
);
2943 status
= nvme_dif_mangle_mdata(ns
, mbounce
, mlen
, slba
);
2947 status
= nvme_dif_check(ns
, iocb
->bounce
, len
, mbounce
, mlen
, prinfor
,
2948 slba
, apptag
, appmask
, &reftag
);
2953 apptag
= le16_to_cpu(copy
->apptag
);
2954 appmask
= le16_to_cpu(copy
->appmask
);
2956 if (prinfow
& NVME_PRINFO_PRACT
) {
2957 status
= nvme_check_prinfo(ns
, prinfow
, iocb
->slba
, iocb
->reftag
);
2962 nvme_dif_pract_generate_dif(ns
, iocb
->bounce
, len
, mbounce
, mlen
,
2963 apptag
, &iocb
->reftag
);
2965 status
= nvme_dif_check(ns
, iocb
->bounce
, len
, mbounce
, mlen
,
2966 prinfow
, iocb
->slba
, apptag
, appmask
,
2974 status
= nvme_check_bounds(ns
, iocb
->slba
, nlb
);
2979 if (ns
->params
.zoned
) {
2980 status
= nvme_check_zone_write(ns
, iocb
->zone
, iocb
->slba
, nlb
);
2985 if (!(iocb
->zone
->d
.za
& NVME_ZA_ZRWA_VALID
)) {
2986 iocb
->zone
->w_ptr
+= nlb
;
2990 qemu_iovec_reset(&iocb
->iov
);
2991 qemu_iovec_add(&iocb
->iov
, iocb
->bounce
, len
);
2993 iocb
->aiocb
= blk_aio_pwritev(ns
->blkconf
.blk
, nvme_l2b(ns
, iocb
->slba
),
2994 &iocb
->iov
, 0, nvme_copy_out_cb
, iocb
);
2999 req
->status
= status
;
3005 static void nvme_copy_in_cb(void *opaque
, int ret
)
3007 NvmeCopyAIOCB
*iocb
= opaque
;
3008 NvmeRequest
*req
= iocb
->req
;
3009 NvmeNamespace
*ns
= req
->ns
;
3013 if (ret
< 0 || iocb
->ret
< 0 || !ns
->lbaf
.ms
) {
3017 nvme_copy_source_range_parse(iocb
->ranges
, iocb
->idx
, iocb
->format
, &slba
,
3018 &nlb
, NULL
, NULL
, NULL
);
3020 qemu_iovec_reset(&iocb
->iov
);
3021 qemu_iovec_add(&iocb
->iov
, iocb
->bounce
+ nvme_l2b(ns
, nlb
),
3024 iocb
->aiocb
= blk_aio_preadv(ns
->blkconf
.blk
, nvme_moff(ns
, slba
),
3025 &iocb
->iov
, 0, nvme_copy_in_completed_cb
,
3030 nvme_copy_in_completed_cb(iocb
, ret
);
3033 static void nvme_do_copy(NvmeCopyAIOCB
*iocb
)
3035 NvmeRequest
*req
= iocb
->req
;
3036 NvmeNamespace
*ns
= req
->ns
;
3042 if (iocb
->ret
< 0) {
3046 if (iocb
->idx
== iocb
->nr
) {
3050 nvme_copy_source_range_parse(iocb
->ranges
, iocb
->idx
, iocb
->format
, &slba
,
3051 &nlb
, NULL
, NULL
, NULL
);
3052 len
= nvme_l2b(ns
, nlb
);
3054 trace_pci_nvme_copy_source_range(slba
, nlb
);
3056 if (nlb
> le16_to_cpu(ns
->id_ns
.mssrl
)) {
3057 status
= NVME_CMD_SIZE_LIMIT
| NVME_DNR
;
3061 status
= nvme_check_bounds(ns
, slba
, nlb
);
3066 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
3067 status
= nvme_check_dulbe(ns
, slba
, nlb
);
3073 if (ns
->params
.zoned
) {
3074 status
= nvme_check_zone_read(ns
, slba
, nlb
);
3080 qemu_iovec_reset(&iocb
->iov
);
3081 qemu_iovec_add(&iocb
->iov
, iocb
->bounce
, len
);
3083 iocb
->aiocb
= blk_aio_preadv(ns
->blkconf
.blk
, nvme_l2b(ns
, slba
),
3084 &iocb
->iov
, 0, nvme_copy_in_cb
, iocb
);
3088 req
->status
= status
;
3091 nvme_copy_done(iocb
);
3094 static uint16_t nvme_copy(NvmeCtrl
*n
, NvmeRequest
*req
)
3096 NvmeNamespace
*ns
= req
->ns
;
3097 NvmeCopyCmd
*copy
= (NvmeCopyCmd
*)&req
->cmd
;
3098 NvmeCopyAIOCB
*iocb
= blk_aio_get(&nvme_copy_aiocb_info
, ns
->blkconf
.blk
,
3100 uint16_t nr
= copy
->nr
+ 1;
3101 uint8_t format
= copy
->control
[0] & 0xf;
3102 uint16_t prinfor
= ((copy
->control
[0] >> 4) & 0xf);
3103 uint16_t prinfow
= ((copy
->control
[2] >> 2) & 0xf);
3104 size_t len
= sizeof(NvmeCopySourceRangeFormat0
);
3108 trace_pci_nvme_copy(nvme_cid(req
), nvme_nsid(ns
), nr
, format
);
3110 iocb
->ranges
= NULL
;
3113 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
) &&
3114 ((prinfor
& NVME_PRINFO_PRACT
) != (prinfow
& NVME_PRINFO_PRACT
))) {
3115 status
= NVME_INVALID_FIELD
| NVME_DNR
;
3119 if (!(n
->id_ctrl
.ocfs
& (1 << format
))) {
3120 trace_pci_nvme_err_copy_invalid_format(format
);
3121 status
= NVME_INVALID_FIELD
| NVME_DNR
;
3125 if (nr
> ns
->id_ns
.msrc
+ 1) {
3126 status
= NVME_CMD_SIZE_LIMIT
| NVME_DNR
;
3130 if ((ns
->pif
== 0x0 && format
!= 0x0) ||
3131 (ns
->pif
!= 0x0 && format
!= 0x1)) {
3132 status
= NVME_INVALID_FORMAT
| NVME_DNR
;
3137 len
= sizeof(NvmeCopySourceRangeFormat1
);
3140 iocb
->format
= format
;
3141 iocb
->ranges
= g_malloc_n(nr
, len
);
3142 status
= nvme_h2c(n
, (uint8_t *)iocb
->ranges
, len
* nr
, req
);
3147 iocb
->slba
= le64_to_cpu(copy
->sdlba
);
3149 if (ns
->params
.zoned
) {
3150 iocb
->zone
= nvme_get_zone_by_slba(ns
, iocb
->slba
);
3152 status
= NVME_LBA_RANGE
| NVME_DNR
;
3156 status
= nvme_zrm_auto(n
, ns
, iocb
->zone
);
3166 iocb
->reftag
= le32_to_cpu(copy
->reftag
);
3167 iocb
->reftag
|= (uint64_t)le32_to_cpu(copy
->cdw3
) << 32;
3168 iocb
->bounce
= g_malloc_n(le16_to_cpu(ns
->id_ns
.mssrl
),
3169 ns
->lbasz
+ ns
->lbaf
.ms
);
3171 qemu_iovec_init(&iocb
->iov
, 1);
3173 block_acct_start(blk_get_stats(ns
->blkconf
.blk
), &iocb
->acct
.read
, 0,
3175 block_acct_start(blk_get_stats(ns
->blkconf
.blk
), &iocb
->acct
.write
, 0,
3178 req
->aiocb
= &iocb
->common
;
3181 return NVME_NO_COMPLETE
;
3184 g_free(iocb
->ranges
);
3185 qemu_aio_unref(iocb
);
3189 static uint16_t nvme_compare(NvmeCtrl
*n
, NvmeRequest
*req
)
3191 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
3192 NvmeNamespace
*ns
= req
->ns
;
3193 BlockBackend
*blk
= ns
->blkconf
.blk
;
3194 uint64_t slba
= le64_to_cpu(rw
->slba
);
3195 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
3196 uint8_t prinfo
= NVME_RW_PRINFO(le16_to_cpu(rw
->control
));
3197 size_t data_len
= nvme_l2b(ns
, nlb
);
3198 size_t len
= data_len
;
3199 int64_t offset
= nvme_l2b(ns
, slba
);
3200 struct nvme_compare_ctx
*ctx
= NULL
;
3203 trace_pci_nvme_compare(nvme_cid(req
), nvme_nsid(ns
), slba
, nlb
);
3205 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
) && (prinfo
& NVME_PRINFO_PRACT
)) {
3206 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
3209 if (nvme_ns_ext(ns
)) {
3210 len
+= nvme_m2b(ns
, nlb
);
3213 status
= nvme_check_mdts(n
, len
);
3218 status
= nvme_check_bounds(ns
, slba
, nlb
);
3223 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
3224 status
= nvme_check_dulbe(ns
, slba
, nlb
);
3230 status
= nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
3235 ctx
= g_new(struct nvme_compare_ctx
, 1);
3236 ctx
->data
.bounce
= g_malloc(data_len
);
3240 qemu_iovec_init(&ctx
->data
.iov
, 1);
3241 qemu_iovec_add(&ctx
->data
.iov
, ctx
->data
.bounce
, data_len
);
3243 block_acct_start(blk_get_stats(blk
), &req
->acct
, data_len
,
3245 req
->aiocb
= blk_aio_preadv(blk
, offset
, &ctx
->data
.iov
, 0,
3246 nvme_compare_data_cb
, req
);
3248 return NVME_NO_COMPLETE
;
3251 typedef struct NvmeFlushAIOCB
{
3262 static void nvme_flush_cancel(BlockAIOCB
*acb
)
3264 NvmeFlushAIOCB
*iocb
= container_of(acb
, NvmeFlushAIOCB
, common
);
3266 iocb
->ret
= -ECANCELED
;
3269 blk_aio_cancel_async(iocb
->aiocb
);
3274 static const AIOCBInfo nvme_flush_aiocb_info
= {
3275 .aiocb_size
= sizeof(NvmeFlushAIOCB
),
3276 .cancel_async
= nvme_flush_cancel
,
3277 .get_aio_context
= nvme_get_aio_context
,
3280 static void nvme_do_flush(NvmeFlushAIOCB
*iocb
);
3282 static void nvme_flush_ns_cb(void *opaque
, int ret
)
3284 NvmeFlushAIOCB
*iocb
= opaque
;
3285 NvmeNamespace
*ns
= iocb
->ns
;
3290 } else if (iocb
->ret
< 0) {
3295 trace_pci_nvme_flush_ns(iocb
->nsid
);
3298 iocb
->aiocb
= blk_aio_flush(ns
->blkconf
.blk
, nvme_flush_ns_cb
, iocb
);
3303 nvme_do_flush(iocb
);
3306 static void nvme_do_flush(NvmeFlushAIOCB
*iocb
)
3308 NvmeRequest
*req
= iocb
->req
;
3309 NvmeCtrl
*n
= nvme_ctrl(req
);
3312 if (iocb
->ret
< 0) {
3316 if (iocb
->broadcast
) {
3317 for (i
= iocb
->nsid
+ 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
3318 iocb
->ns
= nvme_ns(n
, i
);
3330 nvme_flush_ns_cb(iocb
, 0);
3334 iocb
->common
.cb(iocb
->common
.opaque
, iocb
->ret
);
3335 qemu_aio_unref(iocb
);
3338 static uint16_t nvme_flush(NvmeCtrl
*n
, NvmeRequest
*req
)
3340 NvmeFlushAIOCB
*iocb
;
3341 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
3344 iocb
= qemu_aio_get(&nvme_flush_aiocb_info
, NULL
, nvme_misc_cb
, req
);
3350 iocb
->broadcast
= (nsid
== NVME_NSID_BROADCAST
);
3352 if (!iocb
->broadcast
) {
3353 if (!nvme_nsid_valid(n
, nsid
)) {
3354 status
= NVME_INVALID_NSID
| NVME_DNR
;
3358 iocb
->ns
= nvme_ns(n
, nsid
);
3360 status
= NVME_INVALID_FIELD
| NVME_DNR
;
3367 req
->aiocb
= &iocb
->common
;
3368 nvme_do_flush(iocb
);
3370 return NVME_NO_COMPLETE
;
3373 qemu_aio_unref(iocb
);
3378 static uint16_t nvme_read(NvmeCtrl
*n
, NvmeRequest
*req
)
3380 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
3381 NvmeNamespace
*ns
= req
->ns
;
3382 uint64_t slba
= le64_to_cpu(rw
->slba
);
3383 uint32_t nlb
= (uint32_t)le16_to_cpu(rw
->nlb
) + 1;
3384 uint8_t prinfo
= NVME_RW_PRINFO(le16_to_cpu(rw
->control
));
3385 uint64_t data_size
= nvme_l2b(ns
, nlb
);
3386 uint64_t mapped_size
= data_size
;
3387 uint64_t data_offset
;
3388 BlockBackend
*blk
= ns
->blkconf
.blk
;
3391 if (nvme_ns_ext(ns
)) {
3392 mapped_size
+= nvme_m2b(ns
, nlb
);
3394 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3395 bool pract
= prinfo
& NVME_PRINFO_PRACT
;
3397 if (pract
&& ns
->lbaf
.ms
== nvme_pi_tuple_size(ns
)) {
3398 mapped_size
= data_size
;
3403 trace_pci_nvme_read(nvme_cid(req
), nvme_nsid(ns
), nlb
, mapped_size
, slba
);
3405 status
= nvme_check_mdts(n
, mapped_size
);
3410 status
= nvme_check_bounds(ns
, slba
, nlb
);
3415 if (ns
->params
.zoned
) {
3416 status
= nvme_check_zone_read(ns
, slba
, nlb
);
3418 trace_pci_nvme_err_zone_read_not_ok(slba
, nlb
, status
);
3423 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
3424 status
= nvme_check_dulbe(ns
, slba
, nlb
);
3430 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3431 return nvme_dif_rw(n
, req
);
3434 status
= nvme_map_data(n
, nlb
, req
);
3439 data_offset
= nvme_l2b(ns
, slba
);
3441 block_acct_start(blk_get_stats(blk
), &req
->acct
, data_size
,
3443 nvme_blk_read(blk
, data_offset
, BDRV_SECTOR_SIZE
, nvme_rw_cb
, req
);
3444 return NVME_NO_COMPLETE
;
3447 block_acct_invalid(blk_get_stats(blk
), BLOCK_ACCT_READ
);
3448 return status
| NVME_DNR
;
3451 static void nvme_do_write_fdp(NvmeCtrl
*n
, NvmeRequest
*req
, uint64_t slba
,
3454 NvmeNamespace
*ns
= req
->ns
;
3455 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
3456 uint64_t data_size
= nvme_l2b(ns
, nlb
);
3457 uint32_t dw12
= le32_to_cpu(req
->cmd
.cdw12
);
3458 uint8_t dtype
= (dw12
>> 20) & 0xf;
3459 uint16_t pid
= le16_to_cpu(rw
->dspec
);
3460 uint16_t ph
, rg
, ruhid
;
3461 NvmeReclaimUnit
*ru
;
3463 if (dtype
!= NVME_DIRECTIVE_DATA_PLACEMENT
||
3464 !nvme_parse_pid(ns
, pid
, &ph
, &rg
)) {
3469 ruhid
= ns
->fdp
.phs
[ph
];
3470 ru
= &ns
->endgrp
->fdp
.ruhs
[ruhid
].rus
[rg
];
3472 nvme_fdp_stat_inc(&ns
->endgrp
->fdp
.hbmw
, data_size
);
3473 nvme_fdp_stat_inc(&ns
->endgrp
->fdp
.mbmw
, data_size
);
3476 if (nlb
< ru
->ruamw
) {
3482 nvme_update_ruh(n
, ns
, pid
);
3486 static uint16_t nvme_do_write(NvmeCtrl
*n
, NvmeRequest
*req
, bool append
,
3489 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
3490 NvmeNamespace
*ns
= req
->ns
;
3491 uint64_t slba
= le64_to_cpu(rw
->slba
);
3492 uint32_t nlb
= (uint32_t)le16_to_cpu(rw
->nlb
) + 1;
3493 uint16_t ctrl
= le16_to_cpu(rw
->control
);
3494 uint8_t prinfo
= NVME_RW_PRINFO(ctrl
);
3495 uint64_t data_size
= nvme_l2b(ns
, nlb
);
3496 uint64_t mapped_size
= data_size
;
3497 uint64_t data_offset
;
3499 NvmeZonedResult
*res
= (NvmeZonedResult
*)&req
->cqe
;
3500 BlockBackend
*blk
= ns
->blkconf
.blk
;
3503 if (nvme_ns_ext(ns
)) {
3504 mapped_size
+= nvme_m2b(ns
, nlb
);
3506 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3507 bool pract
= prinfo
& NVME_PRINFO_PRACT
;
3509 if (pract
&& ns
->lbaf
.ms
== nvme_pi_tuple_size(ns
)) {
3510 mapped_size
-= nvme_m2b(ns
, nlb
);
3515 trace_pci_nvme_write(nvme_cid(req
), nvme_io_opc_str(rw
->opcode
),
3516 nvme_nsid(ns
), nlb
, mapped_size
, slba
);
3519 status
= nvme_check_mdts(n
, mapped_size
);
3525 status
= nvme_check_bounds(ns
, slba
, nlb
);
3530 if (ns
->params
.zoned
) {
3531 zone
= nvme_get_zone_by_slba(ns
, slba
);
3535 bool piremap
= !!(ctrl
& NVME_RW_PIREMAP
);
3537 if (unlikely(zone
->d
.za
& NVME_ZA_ZRWA_VALID
)) {
3538 return NVME_INVALID_ZONE_OP
| NVME_DNR
;
3541 if (unlikely(slba
!= zone
->d
.zslba
)) {
3542 trace_pci_nvme_err_append_not_at_start(slba
, zone
->d
.zslba
);
3543 status
= NVME_INVALID_FIELD
;
3547 if (n
->params
.zasl
&&
3548 data_size
> (uint64_t)n
->page_size
<< n
->params
.zasl
) {
3549 trace_pci_nvme_err_zasl(data_size
);
3550 return NVME_INVALID_FIELD
| NVME_DNR
;
3554 rw
->slba
= cpu_to_le64(slba
);
3555 res
->slba
= cpu_to_le64(slba
);
3557 switch (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3558 case NVME_ID_NS_DPS_TYPE_1
:
3560 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
3565 case NVME_ID_NS_DPS_TYPE_2
:
3567 uint32_t reftag
= le32_to_cpu(rw
->reftag
);
3568 rw
->reftag
= cpu_to_le32(reftag
+ (slba
- zone
->d
.zslba
));
3573 case NVME_ID_NS_DPS_TYPE_3
:
3575 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
3582 status
= nvme_check_zone_write(ns
, zone
, slba
, nlb
);
3587 status
= nvme_zrm_auto(n
, ns
, zone
);
3592 if (!(zone
->d
.za
& NVME_ZA_ZRWA_VALID
)) {
3595 } else if (ns
->endgrp
&& ns
->endgrp
->fdp
.enabled
) {
3596 nvme_do_write_fdp(n
, req
, slba
, nlb
);
3599 data_offset
= nvme_l2b(ns
, slba
);
3601 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3602 return nvme_dif_rw(n
, req
);
3606 status
= nvme_map_data(n
, nlb
, req
);
3611 block_acct_start(blk_get_stats(blk
), &req
->acct
, data_size
,
3613 nvme_blk_write(blk
, data_offset
, BDRV_SECTOR_SIZE
, nvme_rw_cb
, req
);
3615 req
->aiocb
= blk_aio_pwrite_zeroes(blk
, data_offset
, data_size
,
3616 BDRV_REQ_MAY_UNMAP
, nvme_rw_cb
,
3620 return NVME_NO_COMPLETE
;
3623 block_acct_invalid(blk_get_stats(blk
), BLOCK_ACCT_WRITE
);
3624 return status
| NVME_DNR
;
3627 static inline uint16_t nvme_write(NvmeCtrl
*n
, NvmeRequest
*req
)
3629 return nvme_do_write(n
, req
, false, false);
3632 static inline uint16_t nvme_write_zeroes(NvmeCtrl
*n
, NvmeRequest
*req
)
3634 return nvme_do_write(n
, req
, false, true);
3637 static inline uint16_t nvme_zone_append(NvmeCtrl
*n
, NvmeRequest
*req
)
3639 return nvme_do_write(n
, req
, true, false);
3642 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace
*ns
, NvmeCmd
*c
,
3643 uint64_t *slba
, uint32_t *zone_idx
)
3645 uint32_t dw10
= le32_to_cpu(c
->cdw10
);
3646 uint32_t dw11
= le32_to_cpu(c
->cdw11
);
3648 if (!ns
->params
.zoned
) {
3649 trace_pci_nvme_err_invalid_opc(c
->opcode
);
3650 return NVME_INVALID_OPCODE
| NVME_DNR
;
3653 *slba
= ((uint64_t)dw11
) << 32 | dw10
;
3654 if (unlikely(*slba
>= ns
->id_ns
.nsze
)) {
3655 trace_pci_nvme_err_invalid_lba_range(*slba
, 0, ns
->id_ns
.nsze
);
3657 return NVME_LBA_RANGE
| NVME_DNR
;
3660 *zone_idx
= nvme_zone_idx(ns
, *slba
);
3661 assert(*zone_idx
< ns
->num_zones
);
3663 return NVME_SUCCESS
;
3666 typedef uint16_t (*op_handler_t
)(NvmeNamespace
*, NvmeZone
*, NvmeZoneState
,
3669 enum NvmeZoneProcessingMask
{
3670 NVME_PROC_CURRENT_ZONE
= 0,
3671 NVME_PROC_OPENED_ZONES
= 1 << 0,
3672 NVME_PROC_CLOSED_ZONES
= 1 << 1,
3673 NVME_PROC_READ_ONLY_ZONES
= 1 << 2,
3674 NVME_PROC_FULL_ZONES
= 1 << 3,
3677 static uint16_t nvme_open_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3678 NvmeZoneState state
, NvmeRequest
*req
)
3680 NvmeZoneSendCmd
*cmd
= (NvmeZoneSendCmd
*)&req
->cmd
;
3683 if (cmd
->zsflags
& NVME_ZSFLAG_ZRWA_ALLOC
) {
3684 uint16_t ozcs
= le16_to_cpu(ns
->id_ns_zoned
->ozcs
);
3686 if (!(ozcs
& NVME_ID_NS_ZONED_OZCS_ZRWASUP
)) {
3687 return NVME_INVALID_ZONE_OP
| NVME_DNR
;
3690 if (zone
->w_ptr
% ns
->zns
.zrwafg
) {
3691 return NVME_NOZRWA
| NVME_DNR
;
3694 flags
= NVME_ZRM_ZRWA
;
3697 return nvme_zrm_open_flags(nvme_ctrl(req
), ns
, zone
, flags
);
3700 static uint16_t nvme_close_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3701 NvmeZoneState state
, NvmeRequest
*req
)
3703 return nvme_zrm_close(ns
, zone
);
3706 static uint16_t nvme_finish_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3707 NvmeZoneState state
, NvmeRequest
*req
)
3709 return nvme_zrm_finish(ns
, zone
);
3712 static uint16_t nvme_offline_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3713 NvmeZoneState state
, NvmeRequest
*req
)
3716 case NVME_ZONE_STATE_READ_ONLY
:
3717 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_OFFLINE
);
3719 case NVME_ZONE_STATE_OFFLINE
:
3720 return NVME_SUCCESS
;
3722 return NVME_ZONE_INVAL_TRANSITION
;
3726 static uint16_t nvme_set_zd_ext(NvmeNamespace
*ns
, NvmeZone
*zone
)
3729 uint8_t state
= nvme_get_zone_state(zone
);
3731 if (state
== NVME_ZONE_STATE_EMPTY
) {
3732 status
= nvme_aor_check(ns
, 1, 0);
3736 nvme_aor_inc_active(ns
);
3737 zone
->d
.za
|= NVME_ZA_ZD_EXT_VALID
;
3738 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_CLOSED
);
3739 return NVME_SUCCESS
;
3742 return NVME_ZONE_INVAL_TRANSITION
;
3745 static uint16_t nvme_bulk_proc_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3746 enum NvmeZoneProcessingMask proc_mask
,
3747 op_handler_t op_hndlr
, NvmeRequest
*req
)
3749 uint16_t status
= NVME_SUCCESS
;
3750 NvmeZoneState zs
= nvme_get_zone_state(zone
);
3754 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
3755 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
3756 proc_zone
= proc_mask
& NVME_PROC_OPENED_ZONES
;
3758 case NVME_ZONE_STATE_CLOSED
:
3759 proc_zone
= proc_mask
& NVME_PROC_CLOSED_ZONES
;
3761 case NVME_ZONE_STATE_READ_ONLY
:
3762 proc_zone
= proc_mask
& NVME_PROC_READ_ONLY_ZONES
;
3764 case NVME_ZONE_STATE_FULL
:
3765 proc_zone
= proc_mask
& NVME_PROC_FULL_ZONES
;
3772 status
= op_hndlr(ns
, zone
, zs
, req
);
3778 static uint16_t nvme_do_zone_op(NvmeNamespace
*ns
, NvmeZone
*zone
,
3779 enum NvmeZoneProcessingMask proc_mask
,
3780 op_handler_t op_hndlr
, NvmeRequest
*req
)
3783 uint16_t status
= NVME_SUCCESS
;
3787 status
= op_hndlr(ns
, zone
, nvme_get_zone_state(zone
), req
);
3789 if (proc_mask
& NVME_PROC_CLOSED_ZONES
) {
3790 QTAILQ_FOREACH_SAFE(zone
, &ns
->closed_zones
, entry
, next
) {
3791 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3793 if (status
&& status
!= NVME_NO_COMPLETE
) {
3798 if (proc_mask
& NVME_PROC_OPENED_ZONES
) {
3799 QTAILQ_FOREACH_SAFE(zone
, &ns
->imp_open_zones
, entry
, next
) {
3800 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3802 if (status
&& status
!= NVME_NO_COMPLETE
) {
3807 QTAILQ_FOREACH_SAFE(zone
, &ns
->exp_open_zones
, entry
, next
) {
3808 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3810 if (status
&& status
!= NVME_NO_COMPLETE
) {
3815 if (proc_mask
& NVME_PROC_FULL_ZONES
) {
3816 QTAILQ_FOREACH_SAFE(zone
, &ns
->full_zones
, entry
, next
) {
3817 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3819 if (status
&& status
!= NVME_NO_COMPLETE
) {
3825 if (proc_mask
& NVME_PROC_READ_ONLY_ZONES
) {
3826 for (i
= 0; i
< ns
->num_zones
; i
++, zone
++) {
3827 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3829 if (status
&& status
!= NVME_NO_COMPLETE
) {
3840 typedef struct NvmeZoneResetAIOCB
{
3849 } NvmeZoneResetAIOCB
;
3851 static void nvme_zone_reset_cancel(BlockAIOCB
*aiocb
)
3853 NvmeZoneResetAIOCB
*iocb
= container_of(aiocb
, NvmeZoneResetAIOCB
, common
);
3854 NvmeRequest
*req
= iocb
->req
;
3855 NvmeNamespace
*ns
= req
->ns
;
3857 iocb
->idx
= ns
->num_zones
;
3859 iocb
->ret
= -ECANCELED
;
3862 blk_aio_cancel_async(iocb
->aiocb
);
3867 static const AIOCBInfo nvme_zone_reset_aiocb_info
= {
3868 .aiocb_size
= sizeof(NvmeZoneResetAIOCB
),
3869 .cancel_async
= nvme_zone_reset_cancel
,
3872 static void nvme_zone_reset_cb(void *opaque
, int ret
);
3874 static void nvme_zone_reset_epilogue_cb(void *opaque
, int ret
)
3876 NvmeZoneResetAIOCB
*iocb
= opaque
;
3877 NvmeRequest
*req
= iocb
->req
;
3878 NvmeNamespace
*ns
= req
->ns
;
3882 if (ret
< 0 || iocb
->ret
< 0 || !ns
->lbaf
.ms
) {
3886 moff
= nvme_moff(ns
, iocb
->zone
->d
.zslba
);
3887 count
= nvme_m2b(ns
, ns
->zone_size
);
3889 iocb
->aiocb
= blk_aio_pwrite_zeroes(ns
->blkconf
.blk
, moff
, count
,
3891 nvme_zone_reset_cb
, iocb
);
3895 nvme_zone_reset_cb(iocb
, ret
);
3898 static void nvme_zone_reset_cb(void *opaque
, int ret
)
3900 NvmeZoneResetAIOCB
*iocb
= opaque
;
3901 NvmeRequest
*req
= iocb
->req
;
3902 NvmeNamespace
*ns
= req
->ns
;
3904 if (iocb
->ret
< 0) {
3906 } else if (ret
< 0) {
3912 nvme_zrm_reset(ns
, iocb
->zone
);
3919 while (iocb
->idx
< ns
->num_zones
) {
3920 NvmeZone
*zone
= &ns
->zone_array
[iocb
->idx
++];
3922 switch (nvme_get_zone_state(zone
)) {
3923 case NVME_ZONE_STATE_EMPTY
:
3930 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
3931 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
3932 case NVME_ZONE_STATE_CLOSED
:
3933 case NVME_ZONE_STATE_FULL
:
3941 trace_pci_nvme_zns_zone_reset(zone
->d
.zslba
);
3943 iocb
->aiocb
= blk_aio_pwrite_zeroes(ns
->blkconf
.blk
,
3944 nvme_l2b(ns
, zone
->d
.zslba
),
3945 nvme_l2b(ns
, ns
->zone_size
),
3947 nvme_zone_reset_epilogue_cb
,
3955 iocb
->common
.cb(iocb
->common
.opaque
, iocb
->ret
);
3956 qemu_aio_unref(iocb
);
3959 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl
*n
, NvmeZone
*zone
,
3960 uint64_t elba
, NvmeRequest
*req
)
3962 NvmeNamespace
*ns
= req
->ns
;
3963 uint16_t ozcs
= le16_to_cpu(ns
->id_ns_zoned
->ozcs
);
3964 uint64_t wp
= zone
->d
.wp
;
3965 uint32_t nlb
= elba
- wp
+ 1;
3969 if (!(ozcs
& NVME_ID_NS_ZONED_OZCS_ZRWASUP
)) {
3970 return NVME_INVALID_ZONE_OP
| NVME_DNR
;
3973 if (!(zone
->d
.za
& NVME_ZA_ZRWA_VALID
)) {
3974 return NVME_INVALID_FIELD
| NVME_DNR
;
3977 if (elba
< wp
|| elba
> wp
+ ns
->zns
.zrwas
) {
3978 return NVME_ZONE_BOUNDARY_ERROR
| NVME_DNR
;
3981 if (nlb
% ns
->zns
.zrwafg
) {
3982 return NVME_INVALID_FIELD
| NVME_DNR
;
3985 status
= nvme_zrm_auto(n
, ns
, zone
);
3992 nvme_advance_zone_wp(ns
, zone
, nlb
);
3994 return NVME_SUCCESS
;
3997 static uint16_t nvme_zone_mgmt_send(NvmeCtrl
*n
, NvmeRequest
*req
)
3999 NvmeZoneSendCmd
*cmd
= (NvmeZoneSendCmd
*)&req
->cmd
;
4000 NvmeNamespace
*ns
= req
->ns
;
4002 NvmeZoneResetAIOCB
*iocb
;
4005 uint32_t zone_idx
= 0;
4007 uint8_t action
= cmd
->zsa
;
4009 enum NvmeZoneProcessingMask proc_mask
= NVME_PROC_CURRENT_ZONE
;
4011 all
= cmd
->zsflags
& NVME_ZSFLAG_SELECT_ALL
;
4013 req
->status
= NVME_SUCCESS
;
4016 status
= nvme_get_mgmt_zone_slba_idx(ns
, &req
->cmd
, &slba
, &zone_idx
);
4022 zone
= &ns
->zone_array
[zone_idx
];
4023 if (slba
!= zone
->d
.zslba
&& action
!= NVME_ZONE_ACTION_ZRWA_FLUSH
) {
4024 trace_pci_nvme_err_unaligned_zone_cmd(action
, slba
, zone
->d
.zslba
);
4025 return NVME_INVALID_FIELD
| NVME_DNR
;
4030 case NVME_ZONE_ACTION_OPEN
:
4032 proc_mask
= NVME_PROC_CLOSED_ZONES
;
4034 trace_pci_nvme_open_zone(slba
, zone_idx
, all
);
4035 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_open_zone
, req
);
4038 case NVME_ZONE_ACTION_CLOSE
:
4040 proc_mask
= NVME_PROC_OPENED_ZONES
;
4042 trace_pci_nvme_close_zone(slba
, zone_idx
, all
);
4043 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_close_zone
, req
);
4046 case NVME_ZONE_ACTION_FINISH
:
4048 proc_mask
= NVME_PROC_OPENED_ZONES
| NVME_PROC_CLOSED_ZONES
;
4050 trace_pci_nvme_finish_zone(slba
, zone_idx
, all
);
4051 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_finish_zone
, req
);
4054 case NVME_ZONE_ACTION_RESET
:
4055 trace_pci_nvme_reset_zone(slba
, zone_idx
, all
);
4057 iocb
= blk_aio_get(&nvme_zone_reset_aiocb_info
, ns
->blkconf
.blk
,
4063 iocb
->idx
= zone_idx
;
4066 req
->aiocb
= &iocb
->common
;
4067 nvme_zone_reset_cb(iocb
, 0);
4069 return NVME_NO_COMPLETE
;
4071 case NVME_ZONE_ACTION_OFFLINE
:
4073 proc_mask
= NVME_PROC_READ_ONLY_ZONES
;
4075 trace_pci_nvme_offline_zone(slba
, zone_idx
, all
);
4076 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_offline_zone
, req
);
4079 case NVME_ZONE_ACTION_SET_ZD_EXT
:
4080 trace_pci_nvme_set_descriptor_extension(slba
, zone_idx
);
4081 if (all
|| !ns
->params
.zd_extension_size
) {
4082 return NVME_INVALID_FIELD
| NVME_DNR
;
4084 zd_ext
= nvme_get_zd_extension(ns
, zone_idx
);
4085 status
= nvme_h2c(n
, zd_ext
, ns
->params
.zd_extension_size
, req
);
4087 trace_pci_nvme_err_zd_extension_map_error(zone_idx
);
4091 status
= nvme_set_zd_ext(ns
, zone
);
4092 if (status
== NVME_SUCCESS
) {
4093 trace_pci_nvme_zd_extension_set(zone_idx
);
4098 case NVME_ZONE_ACTION_ZRWA_FLUSH
:
4100 return NVME_INVALID_FIELD
| NVME_DNR
;
4103 return nvme_zone_mgmt_send_zrwa_flush(n
, zone
, slba
, req
);
4106 trace_pci_nvme_err_invalid_mgmt_action(action
);
4107 status
= NVME_INVALID_FIELD
;
4110 if (status
== NVME_ZONE_INVAL_TRANSITION
) {
4111 trace_pci_nvme_err_invalid_zone_state_transition(action
, slba
,
4121 static bool nvme_zone_matches_filter(uint32_t zafs
, NvmeZone
*zl
)
4123 NvmeZoneState zs
= nvme_get_zone_state(zl
);
4126 case NVME_ZONE_REPORT_ALL
:
4128 case NVME_ZONE_REPORT_EMPTY
:
4129 return zs
== NVME_ZONE_STATE_EMPTY
;
4130 case NVME_ZONE_REPORT_IMPLICITLY_OPEN
:
4131 return zs
== NVME_ZONE_STATE_IMPLICITLY_OPEN
;
4132 case NVME_ZONE_REPORT_EXPLICITLY_OPEN
:
4133 return zs
== NVME_ZONE_STATE_EXPLICITLY_OPEN
;
4134 case NVME_ZONE_REPORT_CLOSED
:
4135 return zs
== NVME_ZONE_STATE_CLOSED
;
4136 case NVME_ZONE_REPORT_FULL
:
4137 return zs
== NVME_ZONE_STATE_FULL
;
4138 case NVME_ZONE_REPORT_READ_ONLY
:
4139 return zs
== NVME_ZONE_STATE_READ_ONLY
;
4140 case NVME_ZONE_REPORT_OFFLINE
:
4141 return zs
== NVME_ZONE_STATE_OFFLINE
;
4147 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl
*n
, NvmeRequest
*req
)
4149 NvmeCmd
*cmd
= (NvmeCmd
*)&req
->cmd
;
4150 NvmeNamespace
*ns
= req
->ns
;
4151 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4152 uint32_t data_size
= (le32_to_cpu(cmd
->cdw12
) + 1) << 2;
4153 uint32_t dw13
= le32_to_cpu(cmd
->cdw13
);
4154 uint32_t zone_idx
, zra
, zrasf
, partial
;
4155 uint64_t max_zones
, nr_zones
= 0;
4160 NvmeZoneReportHeader
*header
;
4162 size_t zone_entry_sz
;
4165 req
->status
= NVME_SUCCESS
;
4167 status
= nvme_get_mgmt_zone_slba_idx(ns
, cmd
, &slba
, &zone_idx
);
4173 if (zra
!= NVME_ZONE_REPORT
&& zra
!= NVME_ZONE_REPORT_EXTENDED
) {
4174 return NVME_INVALID_FIELD
| NVME_DNR
;
4176 if (zra
== NVME_ZONE_REPORT_EXTENDED
&& !ns
->params
.zd_extension_size
) {
4177 return NVME_INVALID_FIELD
| NVME_DNR
;
4180 zrasf
= (dw13
>> 8) & 0xff;
4181 if (zrasf
> NVME_ZONE_REPORT_OFFLINE
) {
4182 return NVME_INVALID_FIELD
| NVME_DNR
;
4185 if (data_size
< sizeof(NvmeZoneReportHeader
)) {
4186 return NVME_INVALID_FIELD
| NVME_DNR
;
4189 status
= nvme_check_mdts(n
, data_size
);
4194 partial
= (dw13
>> 16) & 0x01;
4196 zone_entry_sz
= sizeof(NvmeZoneDescr
);
4197 if (zra
== NVME_ZONE_REPORT_EXTENDED
) {
4198 zone_entry_sz
+= ns
->params
.zd_extension_size
;
4201 max_zones
= (data_size
- sizeof(NvmeZoneReportHeader
)) / zone_entry_sz
;
4202 buf
= g_malloc0(data_size
);
4204 zone
= &ns
->zone_array
[zone_idx
];
4205 for (i
= zone_idx
; i
< ns
->num_zones
; i
++) {
4206 if (partial
&& nr_zones
>= max_zones
) {
4209 if (nvme_zone_matches_filter(zrasf
, zone
++)) {
4214 header
->nr_zones
= cpu_to_le64(nr_zones
);
4216 buf_p
= buf
+ sizeof(NvmeZoneReportHeader
);
4217 for (; zone_idx
< ns
->num_zones
&& max_zones
> 0; zone_idx
++) {
4218 zone
= &ns
->zone_array
[zone_idx
];
4219 if (nvme_zone_matches_filter(zrasf
, zone
)) {
4221 buf_p
+= sizeof(NvmeZoneDescr
);
4225 z
->zcap
= cpu_to_le64(zone
->d
.zcap
);
4226 z
->zslba
= cpu_to_le64(zone
->d
.zslba
);
4229 if (nvme_wp_is_valid(zone
)) {
4230 z
->wp
= cpu_to_le64(zone
->d
.wp
);
4232 z
->wp
= cpu_to_le64(~0ULL);
4235 if (zra
== NVME_ZONE_REPORT_EXTENDED
) {
4236 if (zone
->d
.za
& NVME_ZA_ZD_EXT_VALID
) {
4237 memcpy(buf_p
, nvme_get_zd_extension(ns
, zone_idx
),
4238 ns
->params
.zd_extension_size
);
4240 buf_p
+= ns
->params
.zd_extension_size
;
4247 status
= nvme_c2h(n
, (uint8_t *)buf
, data_size
, req
);
4254 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl
*n
, NvmeRequest
*req
,
4257 NvmeNamespace
*ns
= req
->ns
;
4258 NvmeEnduranceGroup
*endgrp
;
4260 NvmeRuhStatusDescr
*ruhsd
;
4261 unsigned int nruhsd
;
4262 uint16_t rg
, ph
, *ruhid
;
4264 g_autofree
uint8_t *buf
= NULL
;
4267 return NVME_INVALID_FIELD
| NVME_DNR
;
4270 if (ns
->params
.nsid
== 0 || ns
->params
.nsid
== 0xffffffff) {
4271 return NVME_INVALID_NSID
| NVME_DNR
;
4274 if (!n
->subsys
->endgrp
.fdp
.enabled
) {
4275 return NVME_FDP_DISABLED
| NVME_DNR
;
4278 endgrp
= ns
->endgrp
;
4280 nruhsd
= ns
->fdp
.nphs
* endgrp
->fdp
.nrg
;
4281 trans_len
= sizeof(NvmeRuhStatus
) + nruhsd
* sizeof(NvmeRuhStatusDescr
);
4282 buf
= g_malloc(trans_len
);
4284 trans_len
= MIN(trans_len
, len
);
4286 hdr
= (NvmeRuhStatus
*)buf
;
4287 ruhsd
= (NvmeRuhStatusDescr
*)(buf
+ sizeof(NvmeRuhStatus
));
4289 hdr
->nruhsd
= cpu_to_le16(nruhsd
);
4291 ruhid
= ns
->fdp
.phs
;
4293 for (ph
= 0; ph
< ns
->fdp
.nphs
; ph
++, ruhid
++) {
4294 NvmeRuHandle
*ruh
= &endgrp
->fdp
.ruhs
[*ruhid
];
4296 for (rg
= 0; rg
< endgrp
->fdp
.nrg
; rg
++, ruhsd
++) {
4297 uint16_t pid
= nvme_make_pid(ns
, rg
, ph
);
4299 ruhsd
->pid
= cpu_to_le16(pid
);
4300 ruhsd
->ruhid
= *ruhid
;
4302 ruhsd
->ruamw
= cpu_to_le64(ruh
->rus
[rg
].ruamw
);
4306 return nvme_c2h(n
, buf
, trans_len
, req
);
4309 static uint16_t nvme_io_mgmt_recv(NvmeCtrl
*n
, NvmeRequest
*req
)
4311 NvmeCmd
*cmd
= &req
->cmd
;
4312 uint32_t cdw10
= le32_to_cpu(cmd
->cdw10
);
4313 uint32_t numd
= le32_to_cpu(cmd
->cdw11
);
4314 uint8_t mo
= (cdw10
& 0xff);
4315 size_t len
= (numd
+ 1) << 2;
4318 case NVME_IOMR_MO_NOP
:
4320 case NVME_IOMR_MO_RUH_STATUS
:
4321 return nvme_io_mgmt_recv_ruhs(n
, req
, len
);
4323 return NVME_INVALID_FIELD
| NVME_DNR
;
4327 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl
*n
, NvmeRequest
*req
)
4329 NvmeCmd
*cmd
= &req
->cmd
;
4330 NvmeNamespace
*ns
= req
->ns
;
4331 uint32_t cdw10
= le32_to_cpu(cmd
->cdw10
);
4332 uint16_t ret
= NVME_SUCCESS
;
4333 uint32_t npid
= (cdw10
>> 1) + 1;
4335 g_autofree
uint16_t *pids
= NULL
;
4336 uint32_t maxnpid
= n
->subsys
->endgrp
.fdp
.nrg
* n
->subsys
->endgrp
.fdp
.nruh
;
4338 if (unlikely(npid
>= MIN(NVME_FDP_MAXPIDS
, maxnpid
))) {
4339 return NVME_INVALID_FIELD
| NVME_DNR
;
4342 pids
= g_new(uint16_t, npid
);
4344 ret
= nvme_h2c(n
, pids
, npid
* sizeof(uint16_t), req
);
4349 for (; i
< npid
; i
++) {
4350 if (!nvme_update_ruh(n
, ns
, pids
[i
])) {
4351 return NVME_INVALID_FIELD
| NVME_DNR
;
4358 static uint16_t nvme_io_mgmt_send(NvmeCtrl
*n
, NvmeRequest
*req
)
4360 NvmeCmd
*cmd
= &req
->cmd
;
4361 uint32_t cdw10
= le32_to_cpu(cmd
->cdw10
);
4362 uint8_t mo
= (cdw10
& 0xff);
4365 case NVME_IOMS_MO_NOP
:
4367 case NVME_IOMS_MO_RUH_UPDATE
:
4368 return nvme_io_mgmt_send_ruh_update(n
, req
);
4370 return NVME_INVALID_FIELD
| NVME_DNR
;
4374 static uint16_t nvme_io_cmd(NvmeCtrl
*n
, NvmeRequest
*req
)
4377 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
4379 trace_pci_nvme_io_cmd(nvme_cid(req
), nsid
, nvme_sqid(req
),
4380 req
->cmd
.opcode
, nvme_io_opc_str(req
->cmd
.opcode
));
4382 if (!nvme_nsid_valid(n
, nsid
)) {
4383 return NVME_INVALID_NSID
| NVME_DNR
;
4387 * In the base NVM command set, Flush may apply to all namespaces
4388 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4389 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4391 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4392 * opcode with a specific command since we cannot determine a unique I/O
4393 * command set. Opcode 0h could have any other meaning than something
4394 * equivalent to flushing and say it DOES have completely different
4395 * semantics in some other command set - does an NSID of FFFFFFFFh then
4396 * mean "for all namespaces, apply whatever command set specific command
4397 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4398 * whatever command that uses the 0h opcode if, and only if, it allows NSID
4401 * Anyway (and luckily), for now, we do not care about this since the
4402 * device only supports namespace types that includes the NVM Flush command
4403 * (NVM and Zoned), so always do an NVM Flush.
4405 if (req
->cmd
.opcode
== NVME_CMD_FLUSH
) {
4406 return nvme_flush(n
, req
);
4409 ns
= nvme_ns(n
, nsid
);
4410 if (unlikely(!ns
)) {
4411 return NVME_INVALID_FIELD
| NVME_DNR
;
4414 if (!(ns
->iocs
[req
->cmd
.opcode
] & NVME_CMD_EFF_CSUPP
)) {
4415 trace_pci_nvme_err_invalid_opc(req
->cmd
.opcode
);
4416 return NVME_INVALID_OPCODE
| NVME_DNR
;
4423 if (NVME_CMD_FLAGS_FUSE(req
->cmd
.flags
)) {
4424 return NVME_INVALID_FIELD
;
4429 switch (req
->cmd
.opcode
) {
4430 case NVME_CMD_WRITE_ZEROES
:
4431 return nvme_write_zeroes(n
, req
);
4432 case NVME_CMD_ZONE_APPEND
:
4433 return nvme_zone_append(n
, req
);
4434 case NVME_CMD_WRITE
:
4435 return nvme_write(n
, req
);
4437 return nvme_read(n
, req
);
4438 case NVME_CMD_COMPARE
:
4439 return nvme_compare(n
, req
);
4441 return nvme_dsm(n
, req
);
4442 case NVME_CMD_VERIFY
:
4443 return nvme_verify(n
, req
);
4445 return nvme_copy(n
, req
);
4446 case NVME_CMD_ZONE_MGMT_SEND
:
4447 return nvme_zone_mgmt_send(n
, req
);
4448 case NVME_CMD_ZONE_MGMT_RECV
:
4449 return nvme_zone_mgmt_recv(n
, req
);
4450 case NVME_CMD_IO_MGMT_RECV
:
4451 return nvme_io_mgmt_recv(n
, req
);
4452 case NVME_CMD_IO_MGMT_SEND
:
4453 return nvme_io_mgmt_send(n
, req
);
4458 return NVME_INVALID_OPCODE
| NVME_DNR
;
4461 static void nvme_cq_notifier(EventNotifier
*e
)
4463 NvmeCQueue
*cq
= container_of(e
, NvmeCQueue
, notifier
);
4464 NvmeCtrl
*n
= cq
->ctrl
;
4466 if (!event_notifier_test_and_clear(e
)) {
4470 nvme_update_cq_head(cq
);
4472 if (cq
->tail
== cq
->head
) {
4473 if (cq
->irq_enabled
) {
4477 nvme_irq_deassert(n
, cq
);
4480 qemu_bh_schedule(cq
->bh
);
4483 static int nvme_init_cq_ioeventfd(NvmeCQueue
*cq
)
4485 NvmeCtrl
*n
= cq
->ctrl
;
4486 uint16_t offset
= (cq
->cqid
<< 3) + (1 << 2);
4489 ret
= event_notifier_init(&cq
->notifier
, 0);
4494 event_notifier_set_handler(&cq
->notifier
, nvme_cq_notifier
);
4495 memory_region_add_eventfd(&n
->iomem
,
4496 0x1000 + offset
, 4, false, 0, &cq
->notifier
);
4501 static void nvme_sq_notifier(EventNotifier
*e
)
4503 NvmeSQueue
*sq
= container_of(e
, NvmeSQueue
, notifier
);
4505 if (!event_notifier_test_and_clear(e
)) {
4509 nvme_process_sq(sq
);
4512 static int nvme_init_sq_ioeventfd(NvmeSQueue
*sq
)
4514 NvmeCtrl
*n
= sq
->ctrl
;
4515 uint16_t offset
= sq
->sqid
<< 3;
4518 ret
= event_notifier_init(&sq
->notifier
, 0);
4523 event_notifier_set_handler(&sq
->notifier
, nvme_sq_notifier
);
4524 memory_region_add_eventfd(&n
->iomem
,
4525 0x1000 + offset
, 4, false, 0, &sq
->notifier
);
4530 static void nvme_free_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
)
4532 uint16_t offset
= sq
->sqid
<< 3;
4534 n
->sq
[sq
->sqid
] = NULL
;
4535 qemu_bh_delete(sq
->bh
);
4536 if (sq
->ioeventfd_enabled
) {
4537 memory_region_del_eventfd(&n
->iomem
,
4538 0x1000 + offset
, 4, false, 0, &sq
->notifier
);
4539 event_notifier_set_handler(&sq
->notifier
, NULL
);
4540 event_notifier_cleanup(&sq
->notifier
);
4548 static uint16_t nvme_del_sq(NvmeCtrl
*n
, NvmeRequest
*req
)
4550 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)&req
->cmd
;
4551 NvmeRequest
*r
, *next
;
4554 uint16_t qid
= le16_to_cpu(c
->qid
);
4556 if (unlikely(!qid
|| nvme_check_sqid(n
, qid
))) {
4557 trace_pci_nvme_err_invalid_del_sq(qid
);
4558 return NVME_INVALID_QID
| NVME_DNR
;
4561 trace_pci_nvme_del_sq(qid
);
4564 while (!QTAILQ_EMPTY(&sq
->out_req_list
)) {
4565 r
= QTAILQ_FIRST(&sq
->out_req_list
);
4567 blk_aio_cancel(r
->aiocb
);
4570 assert(QTAILQ_EMPTY(&sq
->out_req_list
));
4572 if (!nvme_check_cqid(n
, sq
->cqid
)) {
4573 cq
= n
->cq
[sq
->cqid
];
4574 QTAILQ_REMOVE(&cq
->sq_list
, sq
, entry
);
4577 QTAILQ_FOREACH_SAFE(r
, &cq
->req_list
, entry
, next
) {
4579 QTAILQ_REMOVE(&cq
->req_list
, r
, entry
);
4580 QTAILQ_INSERT_TAIL(&sq
->req_list
, r
, entry
);
4585 nvme_free_sq(sq
, n
);
4586 return NVME_SUCCESS
;
4589 static void nvme_init_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
, uint64_t dma_addr
,
4590 uint16_t sqid
, uint16_t cqid
, uint16_t size
)
4596 sq
->dma_addr
= dma_addr
;
4600 sq
->head
= sq
->tail
= 0;
4601 sq
->io_req
= g_new0(NvmeRequest
, sq
->size
);
4603 QTAILQ_INIT(&sq
->req_list
);
4604 QTAILQ_INIT(&sq
->out_req_list
);
4605 for (i
= 0; i
< sq
->size
; i
++) {
4606 sq
->io_req
[i
].sq
= sq
;
4607 QTAILQ_INSERT_TAIL(&(sq
->req_list
), &sq
->io_req
[i
], entry
);
4610 sq
->bh
= qemu_bh_new(nvme_process_sq
, sq
);
4612 if (n
->dbbuf_enabled
) {
4613 sq
->db_addr
= n
->dbbuf_dbs
+ (sqid
<< 3);
4614 sq
->ei_addr
= n
->dbbuf_eis
+ (sqid
<< 3);
4616 if (n
->params
.ioeventfd
&& sq
->sqid
!= 0) {
4617 if (!nvme_init_sq_ioeventfd(sq
)) {
4618 sq
->ioeventfd_enabled
= true;
4623 assert(n
->cq
[cqid
]);
4625 QTAILQ_INSERT_TAIL(&(cq
->sq_list
), sq
, entry
);
4629 static uint16_t nvme_create_sq(NvmeCtrl
*n
, NvmeRequest
*req
)
4632 NvmeCreateSq
*c
= (NvmeCreateSq
*)&req
->cmd
;
4634 uint16_t cqid
= le16_to_cpu(c
->cqid
);
4635 uint16_t sqid
= le16_to_cpu(c
->sqid
);
4636 uint16_t qsize
= le16_to_cpu(c
->qsize
);
4637 uint16_t qflags
= le16_to_cpu(c
->sq_flags
);
4638 uint64_t prp1
= le64_to_cpu(c
->prp1
);
4640 trace_pci_nvme_create_sq(prp1
, sqid
, cqid
, qsize
, qflags
);
4642 if (unlikely(!cqid
|| nvme_check_cqid(n
, cqid
))) {
4643 trace_pci_nvme_err_invalid_create_sq_cqid(cqid
);
4644 return NVME_INVALID_CQID
| NVME_DNR
;
4646 if (unlikely(!sqid
|| sqid
> n
->conf_ioqpairs
|| n
->sq
[sqid
] != NULL
)) {
4647 trace_pci_nvme_err_invalid_create_sq_sqid(sqid
);
4648 return NVME_INVALID_QID
| NVME_DNR
;
4650 if (unlikely(!qsize
|| qsize
> NVME_CAP_MQES(ldq_le_p(&n
->bar
.cap
)))) {
4651 trace_pci_nvme_err_invalid_create_sq_size(qsize
);
4652 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
4654 if (unlikely(prp1
& (n
->page_size
- 1))) {
4655 trace_pci_nvme_err_invalid_create_sq_addr(prp1
);
4656 return NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
4658 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags
)))) {
4659 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags
));
4660 return NVME_INVALID_FIELD
| NVME_DNR
;
4662 sq
= g_malloc0(sizeof(*sq
));
4663 nvme_init_sq(sq
, n
, prp1
, sqid
, cqid
, qsize
+ 1);
4664 return NVME_SUCCESS
;
4668 uint64_t units_read
;
4669 uint64_t units_written
;
4670 uint64_t read_commands
;
4671 uint64_t write_commands
;
4674 static void nvme_set_blk_stats(NvmeNamespace
*ns
, struct nvme_stats
*stats
)
4676 BlockAcctStats
*s
= blk_get_stats(ns
->blkconf
.blk
);
4678 stats
->units_read
+= s
->nr_bytes
[BLOCK_ACCT_READ
];
4679 stats
->units_written
+= s
->nr_bytes
[BLOCK_ACCT_WRITE
];
4680 stats
->read_commands
+= s
->nr_ops
[BLOCK_ACCT_READ
];
4681 stats
->write_commands
+= s
->nr_ops
[BLOCK_ACCT_WRITE
];
4684 static uint16_t nvme_smart_info(NvmeCtrl
*n
, uint8_t rae
, uint32_t buf_len
,
4685 uint64_t off
, NvmeRequest
*req
)
4687 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
4688 struct nvme_stats stats
= { 0 };
4689 NvmeSmartLog smart
= { 0 };
4693 uint64_t u_read
, u_written
;
4695 if (off
>= sizeof(smart
)) {
4696 return NVME_INVALID_FIELD
| NVME_DNR
;
4699 if (nsid
!= 0xffffffff) {
4700 ns
= nvme_ns(n
, nsid
);
4702 return NVME_INVALID_NSID
| NVME_DNR
;
4704 nvme_set_blk_stats(ns
, &stats
);
4708 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
4713 nvme_set_blk_stats(ns
, &stats
);
4717 trans_len
= MIN(sizeof(smart
) - off
, buf_len
);
4718 smart
.critical_warning
= n
->smart_critical_warning
;
4720 u_read
= DIV_ROUND_UP(stats
.units_read
>> BDRV_SECTOR_BITS
, 1000);
4721 u_written
= DIV_ROUND_UP(stats
.units_written
>> BDRV_SECTOR_BITS
, 1000);
4723 smart
.data_units_read
[0] = cpu_to_le64(u_read
);
4724 smart
.data_units_written
[0] = cpu_to_le64(u_written
);
4725 smart
.host_read_commands
[0] = cpu_to_le64(stats
.read_commands
);
4726 smart
.host_write_commands
[0] = cpu_to_le64(stats
.write_commands
);
4728 smart
.temperature
= cpu_to_le16(n
->temperature
);
4730 if ((n
->temperature
>= n
->features
.temp_thresh_hi
) ||
4731 (n
->temperature
<= n
->features
.temp_thresh_low
)) {
4732 smart
.critical_warning
|= NVME_SMART_TEMPERATURE
;
4735 current_ms
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
4736 smart
.power_on_hours
[0] =
4737 cpu_to_le64((((current_ms
- n
->starttime_ms
) / 1000) / 60) / 60);
4740 nvme_clear_events(n
, NVME_AER_TYPE_SMART
);
4743 return nvme_c2h(n
, (uint8_t *) &smart
+ off
, trans_len
, req
);
4746 static uint16_t nvme_endgrp_info(NvmeCtrl
*n
, uint8_t rae
, uint32_t buf_len
,
4747 uint64_t off
, NvmeRequest
*req
)
4749 uint32_t dw11
= le32_to_cpu(req
->cmd
.cdw11
);
4750 uint16_t endgrpid
= (dw11
>> 16) & 0xffff;
4751 struct nvme_stats stats
= {};
4752 NvmeEndGrpLog info
= {};
4755 if (!n
->subsys
|| endgrpid
!= 0x1) {
4756 return NVME_INVALID_FIELD
| NVME_DNR
;
4759 if (off
>= sizeof(info
)) {
4760 return NVME_INVALID_FIELD
| NVME_DNR
;
4763 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
4764 NvmeNamespace
*ns
= nvme_subsys_ns(n
->subsys
, i
);
4769 nvme_set_blk_stats(ns
, &stats
);
4772 info
.data_units_read
[0] =
4773 cpu_to_le64(DIV_ROUND_UP(stats
.units_read
/ 1000000000, 1000000000));
4774 info
.data_units_written
[0] =
4775 cpu_to_le64(DIV_ROUND_UP(stats
.units_written
/ 1000000000, 1000000000));
4776 info
.media_units_written
[0] =
4777 cpu_to_le64(DIV_ROUND_UP(stats
.units_written
/ 1000000000, 1000000000));
4779 info
.host_read_commands
[0] = cpu_to_le64(stats
.read_commands
);
4780 info
.host_write_commands
[0] = cpu_to_le64(stats
.write_commands
);
4782 buf_len
= MIN(sizeof(info
) - off
, buf_len
);
4784 return nvme_c2h(n
, (uint8_t *)&info
+ off
, buf_len
, req
);
4788 static uint16_t nvme_fw_log_info(NvmeCtrl
*n
, uint32_t buf_len
, uint64_t off
,
4792 NvmeFwSlotInfoLog fw_log
= {
4796 if (off
>= sizeof(fw_log
)) {
4797 return NVME_INVALID_FIELD
| NVME_DNR
;
4800 strpadcpy((char *)&fw_log
.frs1
, sizeof(fw_log
.frs1
), "1.0", ' ');
4801 trans_len
= MIN(sizeof(fw_log
) - off
, buf_len
);
4803 return nvme_c2h(n
, (uint8_t *) &fw_log
+ off
, trans_len
, req
);
4806 static uint16_t nvme_error_info(NvmeCtrl
*n
, uint8_t rae
, uint32_t buf_len
,
4807 uint64_t off
, NvmeRequest
*req
)
4810 NvmeErrorLog errlog
;
4812 if (off
>= sizeof(errlog
)) {
4813 return NVME_INVALID_FIELD
| NVME_DNR
;
4817 nvme_clear_events(n
, NVME_AER_TYPE_ERROR
);
4820 memset(&errlog
, 0x0, sizeof(errlog
));
4821 trans_len
= MIN(sizeof(errlog
) - off
, buf_len
);
4823 return nvme_c2h(n
, (uint8_t *)&errlog
, trans_len
, req
);
4826 static uint16_t nvme_changed_nslist(NvmeCtrl
*n
, uint8_t rae
, uint32_t buf_len
,
4827 uint64_t off
, NvmeRequest
*req
)
4829 uint32_t nslist
[1024];
4834 if (off
>= sizeof(nslist
)) {
4835 trace_pci_nvme_err_invalid_log_page_offset(off
, sizeof(nslist
));
4836 return NVME_INVALID_FIELD
| NVME_DNR
;
4839 memset(nslist
, 0x0, sizeof(nslist
));
4840 trans_len
= MIN(sizeof(nslist
) - off
, buf_len
);
4842 while ((nsid
= find_first_bit(n
->changed_nsids
, NVME_CHANGED_NSID_SIZE
)) !=
4843 NVME_CHANGED_NSID_SIZE
) {
4845 * If more than 1024 namespaces, the first entry in the log page should
4846 * be set to FFFFFFFFh and the others to 0 as spec.
4848 if (i
== ARRAY_SIZE(nslist
)) {
4849 memset(nslist
, 0x0, sizeof(nslist
));
4850 nslist
[0] = 0xffffffff;
4855 clear_bit(nsid
, n
->changed_nsids
);
4859 * Remove all the remaining list entries in case returns directly due to
4860 * more than 1024 namespaces.
4862 if (nslist
[0] == 0xffffffff) {
4863 bitmap_zero(n
->changed_nsids
, NVME_CHANGED_NSID_SIZE
);
4867 nvme_clear_events(n
, NVME_AER_TYPE_NOTICE
);
4870 return nvme_c2h(n
, ((uint8_t *)nslist
) + off
, trans_len
, req
);
4873 static uint16_t nvme_cmd_effects(NvmeCtrl
*n
, uint8_t csi
, uint32_t buf_len
,
4874 uint64_t off
, NvmeRequest
*req
)
4876 NvmeEffectsLog log
= {};
4877 const uint32_t *src_iocs
= NULL
;
4880 if (off
>= sizeof(log
)) {
4881 trace_pci_nvme_err_invalid_log_page_offset(off
, sizeof(log
));
4882 return NVME_INVALID_FIELD
| NVME_DNR
;
4885 switch (NVME_CC_CSS(ldl_le_p(&n
->bar
.cc
))) {
4886 case NVME_CC_CSS_NVM
:
4887 src_iocs
= nvme_cse_iocs_nvm
;
4889 case NVME_CC_CSS_ADMIN_ONLY
:
4891 case NVME_CC_CSS_CSI
:
4894 src_iocs
= nvme_cse_iocs_nvm
;
4896 case NVME_CSI_ZONED
:
4897 src_iocs
= nvme_cse_iocs_zoned
;
4902 memcpy(log
.acs
, nvme_cse_acs
, sizeof(nvme_cse_acs
));
4905 memcpy(log
.iocs
, src_iocs
, sizeof(log
.iocs
));
4908 trans_len
= MIN(sizeof(log
) - off
, buf_len
);
4910 return nvme_c2h(n
, ((uint8_t *)&log
) + off
, trans_len
, req
);
4913 static size_t sizeof_fdp_conf_descr(size_t nruh
, size_t vss
)
4915 size_t entry_siz
= sizeof(NvmeFdpDescrHdr
) + nruh
* sizeof(NvmeRuhDescr
)
4917 return ROUND_UP(entry_siz
, 8);
4920 static uint16_t nvme_fdp_confs(NvmeCtrl
*n
, uint32_t endgrpid
, uint32_t buf_len
,
4921 uint64_t off
, NvmeRequest
*req
)
4923 uint32_t log_size
, trans_len
;
4924 g_autofree
uint8_t *buf
= NULL
;
4925 NvmeFdpDescrHdr
*hdr
;
4927 NvmeEnduranceGroup
*endgrp
;
4928 NvmeFdpConfsHdr
*log
;
4929 size_t nruh
, fdp_descr_size
;
4932 if (endgrpid
!= 1 || !n
->subsys
) {
4933 return NVME_INVALID_FIELD
| NVME_DNR
;
4936 endgrp
= &n
->subsys
->endgrp
;
4938 if (endgrp
->fdp
.enabled
) {
4939 nruh
= endgrp
->fdp
.nruh
;
4944 fdp_descr_size
= sizeof_fdp_conf_descr(nruh
, FDPVSS
);
4945 log_size
= sizeof(NvmeFdpConfsHdr
) + fdp_descr_size
;
4947 if (off
>= log_size
) {
4948 return NVME_INVALID_FIELD
| NVME_DNR
;
4951 trans_len
= MIN(log_size
- off
, buf_len
);
4953 buf
= g_malloc0(log_size
);
4954 log
= (NvmeFdpConfsHdr
*)buf
;
4955 hdr
= (NvmeFdpDescrHdr
*)(log
+ 1);
4956 ruhd
= (NvmeRuhDescr
*)(buf
+ sizeof(*log
) + sizeof(*hdr
));
4958 log
->num_confs
= cpu_to_le16(0);
4959 log
->size
= cpu_to_le32(log_size
);
4961 hdr
->descr_size
= cpu_to_le16(fdp_descr_size
);
4962 if (endgrp
->fdp
.enabled
) {
4963 hdr
->fdpa
= FIELD_DP8(hdr
->fdpa
, FDPA
, VALID
, 1);
4964 hdr
->fdpa
= FIELD_DP8(hdr
->fdpa
, FDPA
, RGIF
, endgrp
->fdp
.rgif
);
4965 hdr
->nrg
= cpu_to_le16(endgrp
->fdp
.nrg
);
4966 hdr
->nruh
= cpu_to_le16(endgrp
->fdp
.nruh
);
4967 hdr
->maxpids
= cpu_to_le16(NVME_FDP_MAXPIDS
- 1);
4968 hdr
->nnss
= cpu_to_le32(NVME_MAX_NAMESPACES
);
4969 hdr
->runs
= cpu_to_le64(endgrp
->fdp
.runs
);
4971 for (i
= 0; i
< nruh
; i
++) {
4972 ruhd
->ruht
= NVME_RUHT_INITIALLY_ISOLATED
;
4976 /* 1 bit for RUH in PIF -> 2 RUHs max. */
4977 hdr
->nrg
= cpu_to_le16(1);
4978 hdr
->nruh
= cpu_to_le16(1);
4979 hdr
->maxpids
= cpu_to_le16(NVME_FDP_MAXPIDS
- 1);
4980 hdr
->nnss
= cpu_to_le32(1);
4981 hdr
->runs
= cpu_to_le64(96 * MiB
);
4983 ruhd
->ruht
= NVME_RUHT_INITIALLY_ISOLATED
;
4986 return nvme_c2h(n
, (uint8_t *)buf
+ off
, trans_len
, req
);
4989 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl
*n
, uint32_t endgrpid
,
4990 uint32_t dw10
, uint32_t dw12
,
4991 uint32_t buf_len
, uint64_t off
,
4996 NvmeRuhuDescr
*ruhud
;
4997 NvmeEnduranceGroup
*endgrp
;
4998 g_autofree
uint8_t *buf
= NULL
;
4999 uint32_t log_size
, trans_len
;
5002 if (endgrpid
!= 1 || !n
->subsys
) {
5003 return NVME_INVALID_FIELD
| NVME_DNR
;
5006 endgrp
= &n
->subsys
->endgrp
;
5008 if (!endgrp
->fdp
.enabled
) {
5009 return NVME_FDP_DISABLED
| NVME_DNR
;
5012 log_size
= sizeof(NvmeRuhuLog
) + endgrp
->fdp
.nruh
* sizeof(NvmeRuhuDescr
);
5014 if (off
>= log_size
) {
5015 return NVME_INVALID_FIELD
| NVME_DNR
;
5018 trans_len
= MIN(log_size
- off
, buf_len
);
5020 buf
= g_malloc0(log_size
);
5021 hdr
= (NvmeRuhuLog
*)buf
;
5022 ruhud
= (NvmeRuhuDescr
*)(hdr
+ 1);
5024 ruh
= endgrp
->fdp
.ruhs
;
5025 hdr
->nruh
= cpu_to_le16(endgrp
->fdp
.nruh
);
5027 for (i
= 0; i
< endgrp
->fdp
.nruh
; i
++, ruhud
++, ruh
++) {
5028 ruhud
->ruha
= ruh
->ruha
;
5031 return nvme_c2h(n
, (uint8_t *)buf
+ off
, trans_len
, req
);
5034 static uint16_t nvme_fdp_stats(NvmeCtrl
*n
, uint32_t endgrpid
, uint32_t buf_len
,
5035 uint64_t off
, NvmeRequest
*req
)
5037 NvmeEnduranceGroup
*endgrp
;
5038 NvmeFdpStatsLog log
= {};
5041 if (off
>= sizeof(NvmeFdpStatsLog
)) {
5042 return NVME_INVALID_FIELD
| NVME_DNR
;
5045 if (endgrpid
!= 1 || !n
->subsys
) {
5046 return NVME_INVALID_FIELD
| NVME_DNR
;
5049 if (!n
->subsys
->endgrp
.fdp
.enabled
) {
5050 return NVME_FDP_DISABLED
| NVME_DNR
;
5053 endgrp
= &n
->subsys
->endgrp
;
5055 trans_len
= MIN(sizeof(log
) - off
, buf_len
);
5057 /* spec value is 128 bit, we only use 64 bit */
5058 log
.hbmw
[0] = cpu_to_le64(endgrp
->fdp
.hbmw
);
5059 log
.mbmw
[0] = cpu_to_le64(endgrp
->fdp
.mbmw
);
5060 log
.mbe
[0] = cpu_to_le64(endgrp
->fdp
.mbe
);
5062 return nvme_c2h(n
, (uint8_t *)&log
+ off
, trans_len
, req
);
5065 static uint16_t nvme_fdp_events(NvmeCtrl
*n
, uint32_t endgrpid
,
5066 uint32_t buf_len
, uint64_t off
,
5069 NvmeEnduranceGroup
*endgrp
;
5070 NvmeCmd
*cmd
= &req
->cmd
;
5071 bool host_events
= (cmd
->cdw10
>> 8) & 0x1;
5072 uint32_t log_size
, trans_len
;
5073 NvmeFdpEventBuffer
*ebuf
;
5074 g_autofree NvmeFdpEventsLog
*elog
= NULL
;
5075 NvmeFdpEvent
*event
;
5077 if (endgrpid
!= 1 || !n
->subsys
) {
5078 return NVME_INVALID_FIELD
| NVME_DNR
;
5081 endgrp
= &n
->subsys
->endgrp
;
5083 if (!endgrp
->fdp
.enabled
) {
5084 return NVME_FDP_DISABLED
| NVME_DNR
;
5088 ebuf
= &endgrp
->fdp
.host_events
;
5090 ebuf
= &endgrp
->fdp
.ctrl_events
;
5093 log_size
= sizeof(NvmeFdpEventsLog
) + ebuf
->nelems
* sizeof(NvmeFdpEvent
);
5094 trans_len
= MIN(log_size
- off
, buf_len
);
5095 elog
= g_malloc0(log_size
);
5096 elog
->num_events
= cpu_to_le32(ebuf
->nelems
);
5097 event
= (NvmeFdpEvent
*)(elog
+ 1);
5099 if (ebuf
->nelems
&& ebuf
->start
== ebuf
->next
) {
5100 unsigned int nelems
= (NVME_FDP_MAX_EVENTS
- ebuf
->start
);
5101 /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */
5102 memcpy(event
, &ebuf
->events
[ebuf
->start
],
5103 sizeof(NvmeFdpEvent
) * nelems
);
5104 memcpy(event
+ nelems
, ebuf
->events
,
5105 sizeof(NvmeFdpEvent
) * ebuf
->next
);
5106 } else if (ebuf
->start
< ebuf
->next
) {
5107 memcpy(event
, &ebuf
->events
[ebuf
->start
],
5108 sizeof(NvmeFdpEvent
) * (ebuf
->next
- ebuf
->start
));
5111 return nvme_c2h(n
, (uint8_t *)elog
+ off
, trans_len
, req
);
5114 static uint16_t nvme_get_log(NvmeCtrl
*n
, NvmeRequest
*req
)
5116 NvmeCmd
*cmd
= &req
->cmd
;
5118 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
5119 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
5120 uint32_t dw12
= le32_to_cpu(cmd
->cdw12
);
5121 uint32_t dw13
= le32_to_cpu(cmd
->cdw13
);
5122 uint8_t lid
= dw10
& 0xff;
5123 uint8_t lsp
= (dw10
>> 8) & 0xf;
5124 uint8_t rae
= (dw10
>> 15) & 0x1;
5125 uint8_t csi
= le32_to_cpu(cmd
->cdw14
) >> 24;
5126 uint32_t numdl
, numdu
, lspi
;
5127 uint64_t off
, lpol
, lpou
;
5131 numdl
= (dw10
>> 16);
5132 numdu
= (dw11
& 0xffff);
5133 lspi
= (dw11
>> 16);
5137 len
= (((numdu
<< 16) | numdl
) + 1) << 2;
5138 off
= (lpou
<< 32ULL) | lpol
;
5141 return NVME_INVALID_FIELD
| NVME_DNR
;
5144 trace_pci_nvme_get_log(nvme_cid(req
), lid
, lsp
, rae
, len
, off
);
5146 status
= nvme_check_mdts(n
, len
);
5152 case NVME_LOG_ERROR_INFO
:
5153 return nvme_error_info(n
, rae
, len
, off
, req
);
5154 case NVME_LOG_SMART_INFO
:
5155 return nvme_smart_info(n
, rae
, len
, off
, req
);
5156 case NVME_LOG_FW_SLOT_INFO
:
5157 return nvme_fw_log_info(n
, len
, off
, req
);
5158 case NVME_LOG_CHANGED_NSLIST
:
5159 return nvme_changed_nslist(n
, rae
, len
, off
, req
);
5160 case NVME_LOG_CMD_EFFECTS
:
5161 return nvme_cmd_effects(n
, csi
, len
, off
, req
);
5162 case NVME_LOG_ENDGRP
:
5163 return nvme_endgrp_info(n
, rae
, len
, off
, req
);
5164 case NVME_LOG_FDP_CONFS
:
5165 return nvme_fdp_confs(n
, lspi
, len
, off
, req
);
5166 case NVME_LOG_FDP_RUH_USAGE
:
5167 return nvme_fdp_ruh_usage(n
, lspi
, dw10
, dw12
, len
, off
, req
);
5168 case NVME_LOG_FDP_STATS
:
5169 return nvme_fdp_stats(n
, lspi
, len
, off
, req
);
5170 case NVME_LOG_FDP_EVENTS
:
5171 return nvme_fdp_events(n
, lspi
, len
, off
, req
);
5173 trace_pci_nvme_err_invalid_log_page(nvme_cid(req
), lid
);
5174 return NVME_INVALID_FIELD
| NVME_DNR
;
5178 static void nvme_free_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
)
5180 PCIDevice
*pci
= PCI_DEVICE(n
);
5181 uint16_t offset
= (cq
->cqid
<< 3) + (1 << 2);
5183 n
->cq
[cq
->cqid
] = NULL
;
5184 qemu_bh_delete(cq
->bh
);
5185 if (cq
->ioeventfd_enabled
) {
5186 memory_region_del_eventfd(&n
->iomem
,
5187 0x1000 + offset
, 4, false, 0, &cq
->notifier
);
5188 event_notifier_set_handler(&cq
->notifier
, NULL
);
5189 event_notifier_cleanup(&cq
->notifier
);
5191 if (msix_enabled(pci
)) {
5192 msix_vector_unuse(pci
, cq
->vector
);
5199 static uint16_t nvme_del_cq(NvmeCtrl
*n
, NvmeRequest
*req
)
5201 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)&req
->cmd
;
5203 uint16_t qid
= le16_to_cpu(c
->qid
);
5205 if (unlikely(!qid
|| nvme_check_cqid(n
, qid
))) {
5206 trace_pci_nvme_err_invalid_del_cq_cqid(qid
);
5207 return NVME_INVALID_CQID
| NVME_DNR
;
5211 if (unlikely(!QTAILQ_EMPTY(&cq
->sq_list
))) {
5212 trace_pci_nvme_err_invalid_del_cq_notempty(qid
);
5213 return NVME_INVALID_QUEUE_DEL
;
5216 if (cq
->irq_enabled
&& cq
->tail
!= cq
->head
) {
5220 nvme_irq_deassert(n
, cq
);
5221 trace_pci_nvme_del_cq(qid
);
5222 nvme_free_cq(cq
, n
);
5223 return NVME_SUCCESS
;
5226 static void nvme_init_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
, uint64_t dma_addr
,
5227 uint16_t cqid
, uint16_t vector
, uint16_t size
,
5228 uint16_t irq_enabled
)
5230 PCIDevice
*pci
= PCI_DEVICE(n
);
5232 if (msix_enabled(pci
)) {
5233 msix_vector_use(pci
, vector
);
5238 cq
->dma_addr
= dma_addr
;
5240 cq
->irq_enabled
= irq_enabled
;
5241 cq
->vector
= vector
;
5242 cq
->head
= cq
->tail
= 0;
5243 QTAILQ_INIT(&cq
->req_list
);
5244 QTAILQ_INIT(&cq
->sq_list
);
5245 if (n
->dbbuf_enabled
) {
5246 cq
->db_addr
= n
->dbbuf_dbs
+ (cqid
<< 3) + (1 << 2);
5247 cq
->ei_addr
= n
->dbbuf_eis
+ (cqid
<< 3) + (1 << 2);
5249 if (n
->params
.ioeventfd
&& cqid
!= 0) {
5250 if (!nvme_init_cq_ioeventfd(cq
)) {
5251 cq
->ioeventfd_enabled
= true;
5256 cq
->bh
= qemu_bh_new(nvme_post_cqes
, cq
);
5259 static uint16_t nvme_create_cq(NvmeCtrl
*n
, NvmeRequest
*req
)
5262 NvmeCreateCq
*c
= (NvmeCreateCq
*)&req
->cmd
;
5263 uint16_t cqid
= le16_to_cpu(c
->cqid
);
5264 uint16_t vector
= le16_to_cpu(c
->irq_vector
);
5265 uint16_t qsize
= le16_to_cpu(c
->qsize
);
5266 uint16_t qflags
= le16_to_cpu(c
->cq_flags
);
5267 uint64_t prp1
= le64_to_cpu(c
->prp1
);
5269 trace_pci_nvme_create_cq(prp1
, cqid
, vector
, qsize
, qflags
,
5270 NVME_CQ_FLAGS_IEN(qflags
) != 0);
5272 if (unlikely(!cqid
|| cqid
> n
->conf_ioqpairs
|| n
->cq
[cqid
] != NULL
)) {
5273 trace_pci_nvme_err_invalid_create_cq_cqid(cqid
);
5274 return NVME_INVALID_QID
| NVME_DNR
;
5276 if (unlikely(!qsize
|| qsize
> NVME_CAP_MQES(ldq_le_p(&n
->bar
.cap
)))) {
5277 trace_pci_nvme_err_invalid_create_cq_size(qsize
);
5278 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
5280 if (unlikely(prp1
& (n
->page_size
- 1))) {
5281 trace_pci_nvme_err_invalid_create_cq_addr(prp1
);
5282 return NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
5284 if (unlikely(!msix_enabled(PCI_DEVICE(n
)) && vector
)) {
5285 trace_pci_nvme_err_invalid_create_cq_vector(vector
);
5286 return NVME_INVALID_IRQ_VECTOR
| NVME_DNR
;
5288 if (unlikely(vector
>= n
->conf_msix_qsize
)) {
5289 trace_pci_nvme_err_invalid_create_cq_vector(vector
);
5290 return NVME_INVALID_IRQ_VECTOR
| NVME_DNR
;
5292 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags
)))) {
5293 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags
));
5294 return NVME_INVALID_FIELD
| NVME_DNR
;
5297 cq
= g_malloc0(sizeof(*cq
));
5298 nvme_init_cq(cq
, n
, prp1
, cqid
, vector
, qsize
+ 1,
5299 NVME_CQ_FLAGS_IEN(qflags
));
5302 * It is only required to set qs_created when creating a completion queue;
5303 * creating a submission queue without a matching completion queue will
5306 n
->qs_created
= true;
5307 return NVME_SUCCESS
;
5310 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl
*n
, NvmeRequest
*req
)
5312 uint8_t id
[NVME_IDENTIFY_DATA_SIZE
] = {};
5314 return nvme_c2h(n
, id
, sizeof(id
), req
);
5317 static uint16_t nvme_identify_ctrl(NvmeCtrl
*n
, NvmeRequest
*req
)
5319 trace_pci_nvme_identify_ctrl();
5321 return nvme_c2h(n
, (uint8_t *)&n
->id_ctrl
, sizeof(n
->id_ctrl
), req
);
5324 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl
*n
, NvmeRequest
*req
)
5326 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
5327 uint8_t id
[NVME_IDENTIFY_DATA_SIZE
] = {};
5328 NvmeIdCtrlNvm
*id_nvm
= (NvmeIdCtrlNvm
*)&id
;
5330 trace_pci_nvme_identify_ctrl_csi(c
->csi
);
5334 id_nvm
->vsl
= n
->params
.vsl
;
5335 id_nvm
->dmrsl
= cpu_to_le32(n
->dmrsl
);
5338 case NVME_CSI_ZONED
:
5339 ((NvmeIdCtrlZoned
*)&id
)->zasl
= n
->params
.zasl
;
5343 return NVME_INVALID_FIELD
| NVME_DNR
;
5346 return nvme_c2h(n
, id
, sizeof(id
), req
);
5349 static uint16_t nvme_identify_ns(NvmeCtrl
*n
, NvmeRequest
*req
, bool active
)
5352 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
5353 uint32_t nsid
= le32_to_cpu(c
->nsid
);
5355 trace_pci_nvme_identify_ns(nsid
);
5357 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
5358 return NVME_INVALID_NSID
| NVME_DNR
;
5361 ns
= nvme_ns(n
, nsid
);
5362 if (unlikely(!ns
)) {
5364 ns
= nvme_subsys_ns(n
->subsys
, nsid
);
5366 return nvme_rpt_empty_id_struct(n
, req
);
5369 return nvme_rpt_empty_id_struct(n
, req
);
5373 if (active
|| ns
->csi
== NVME_CSI_NVM
) {
5374 return nvme_c2h(n
, (uint8_t *)&ns
->id_ns
, sizeof(NvmeIdNs
), req
);
5377 return NVME_INVALID_CMD_SET
| NVME_DNR
;
5380 static uint16_t nvme_identify_ctrl_list(NvmeCtrl
*n
, NvmeRequest
*req
,
5383 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
5384 uint32_t nsid
= le32_to_cpu(c
->nsid
);
5385 uint16_t min_id
= le16_to_cpu(c
->ctrlid
);
5386 uint16_t list
[NVME_CONTROLLER_LIST_SIZE
] = {};
5387 uint16_t *ids
= &list
[1];
5390 int cntlid
, nr_ids
= 0;
5392 trace_pci_nvme_identify_ctrl_list(c
->cns
, min_id
);
5395 return NVME_INVALID_FIELD
| NVME_DNR
;
5399 if (nsid
== NVME_NSID_BROADCAST
) {
5400 return NVME_INVALID_FIELD
| NVME_DNR
;
5403 ns
= nvme_subsys_ns(n
->subsys
, nsid
);
5405 return NVME_INVALID_FIELD
| NVME_DNR
;
5409 for (cntlid
= min_id
; cntlid
< ARRAY_SIZE(n
->subsys
->ctrls
); cntlid
++) {
5410 ctrl
= nvme_subsys_ctrl(n
->subsys
, cntlid
);
5415 if (attached
&& !nvme_ns(ctrl
, nsid
)) {
5419 ids
[nr_ids
++] = cntlid
;
5424 return nvme_c2h(n
, (uint8_t *)list
, sizeof(list
), req
);
5427 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl
*n
, NvmeRequest
*req
)
5429 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n
->pri_ctrl_cap
.cntlid
));
5431 return nvme_c2h(n
, (uint8_t *)&n
->pri_ctrl_cap
,
5432 sizeof(NvmePriCtrlCap
), req
);
5435 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl
*n
, NvmeRequest
*req
)
5437 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
5438 uint16_t pri_ctrl_id
= le16_to_cpu(n
->pri_ctrl_cap
.cntlid
);
5439 uint16_t min_id
= le16_to_cpu(c
->ctrlid
);
5440 uint8_t num_sec_ctrl
= n
->sec_ctrl_list
.numcntl
;
5441 NvmeSecCtrlList list
= {0};
5444 for (i
= 0; i
< num_sec_ctrl
; i
++) {
5445 if (n
->sec_ctrl_list
.sec
[i
].scid
>= min_id
) {
5446 list
.numcntl
= num_sec_ctrl
- i
;
5447 memcpy(&list
.sec
, n
->sec_ctrl_list
.sec
+ i
,
5448 list
.numcntl
* sizeof(NvmeSecCtrlEntry
));
5453 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id
, list
.numcntl
);
5455 return nvme_c2h(n
, (uint8_t *)&list
, sizeof(list
), req
);
5458 static uint16_t nvme_identify_ns_csi(NvmeCtrl
*n
, NvmeRequest
*req
,
5462 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
5463 uint32_t nsid
= le32_to_cpu(c
->nsid
);
5465 trace_pci_nvme_identify_ns_csi(nsid
, c
->csi
);
5467 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
5468 return NVME_INVALID_NSID
| NVME_DNR
;
5471 ns
= nvme_ns(n
, nsid
);
5472 if (unlikely(!ns
)) {
5474 ns
= nvme_subsys_ns(n
->subsys
, nsid
);
5476 return nvme_rpt_empty_id_struct(n
, req
);
5479 return nvme_rpt_empty_id_struct(n
, req
);
5483 if (c
->csi
== NVME_CSI_NVM
) {
5484 return nvme_c2h(n
, (uint8_t *)&ns
->id_ns_nvm
, sizeof(NvmeIdNsNvm
),
5486 } else if (c
->csi
== NVME_CSI_ZONED
&& ns
->csi
== NVME_CSI_ZONED
) {
5487 return nvme_c2h(n
, (uint8_t *)ns
->id_ns_zoned
, sizeof(NvmeIdNsZoned
),
5491 return NVME_INVALID_FIELD
| NVME_DNR
;
5494 static uint16_t nvme_identify_nslist(NvmeCtrl
*n
, NvmeRequest
*req
,
5498 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
5499 uint32_t min_nsid
= le32_to_cpu(c
->nsid
);
5500 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
5501 static const int data_len
= sizeof(list
);
5502 uint32_t *list_ptr
= (uint32_t *)list
;
5505 trace_pci_nvme_identify_nslist(min_nsid
);
5508 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5509 * since the Active Namespace ID List should return namespaces with ids
5510 * *higher* than the NSID specified in the command. This is also specified
5511 * in the spec (NVM Express v1.3d, Section 5.15.4).
5513 if (min_nsid
>= NVME_NSID_BROADCAST
- 1) {
5514 return NVME_INVALID_NSID
| NVME_DNR
;
5517 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5521 ns
= nvme_subsys_ns(n
->subsys
, i
);
5529 if (ns
->params
.nsid
<= min_nsid
) {
5532 list_ptr
[j
++] = cpu_to_le32(ns
->params
.nsid
);
5533 if (j
== data_len
/ sizeof(uint32_t)) {
5538 return nvme_c2h(n
, list
, data_len
, req
);
5541 static uint16_t nvme_identify_nslist_csi(NvmeCtrl
*n
, NvmeRequest
*req
,
5545 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
5546 uint32_t min_nsid
= le32_to_cpu(c
->nsid
);
5547 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
5548 static const int data_len
= sizeof(list
);
5549 uint32_t *list_ptr
= (uint32_t *)list
;
5552 trace_pci_nvme_identify_nslist_csi(min_nsid
, c
->csi
);
5555 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5557 if (min_nsid
>= NVME_NSID_BROADCAST
- 1) {
5558 return NVME_INVALID_NSID
| NVME_DNR
;
5561 if (c
->csi
!= NVME_CSI_NVM
&& c
->csi
!= NVME_CSI_ZONED
) {
5562 return NVME_INVALID_FIELD
| NVME_DNR
;
5565 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5569 ns
= nvme_subsys_ns(n
->subsys
, i
);
5577 if (ns
->params
.nsid
<= min_nsid
|| c
->csi
!= ns
->csi
) {
5580 list_ptr
[j
++] = cpu_to_le32(ns
->params
.nsid
);
5581 if (j
== data_len
/ sizeof(uint32_t)) {
5586 return nvme_c2h(n
, list
, data_len
, req
);
5589 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl
*n
, NvmeRequest
*req
)
5592 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
5593 uint32_t nsid
= le32_to_cpu(c
->nsid
);
5594 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
5595 uint8_t *pos
= list
;
5598 uint8_t v
[NVME_NIDL_UUID
];
5599 } QEMU_PACKED uuid
= {};
5603 } QEMU_PACKED eui64
= {};
5607 } QEMU_PACKED csi
= {};
5609 trace_pci_nvme_identify_ns_descr_list(nsid
);
5611 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
5612 return NVME_INVALID_NSID
| NVME_DNR
;
5615 ns
= nvme_ns(n
, nsid
);
5616 if (unlikely(!ns
)) {
5617 return NVME_INVALID_FIELD
| NVME_DNR
;
5620 if (!qemu_uuid_is_null(&ns
->params
.uuid
)) {
5621 uuid
.hdr
.nidt
= NVME_NIDT_UUID
;
5622 uuid
.hdr
.nidl
= NVME_NIDL_UUID
;
5623 memcpy(uuid
.v
, ns
->params
.uuid
.data
, NVME_NIDL_UUID
);
5624 memcpy(pos
, &uuid
, sizeof(uuid
));
5625 pos
+= sizeof(uuid
);
5628 if (ns
->params
.eui64
) {
5629 eui64
.hdr
.nidt
= NVME_NIDT_EUI64
;
5630 eui64
.hdr
.nidl
= NVME_NIDL_EUI64
;
5631 eui64
.v
= cpu_to_be64(ns
->params
.eui64
);
5632 memcpy(pos
, &eui64
, sizeof(eui64
));
5633 pos
+= sizeof(eui64
);
5636 csi
.hdr
.nidt
= NVME_NIDT_CSI
;
5637 csi
.hdr
.nidl
= NVME_NIDL_CSI
;
5639 memcpy(pos
, &csi
, sizeof(csi
));
5642 return nvme_c2h(n
, list
, sizeof(list
), req
);
5645 static uint16_t nvme_identify_cmd_set(NvmeCtrl
*n
, NvmeRequest
*req
)
5647 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
5648 static const int data_len
= sizeof(list
);
5650 trace_pci_nvme_identify_cmd_set();
5652 NVME_SET_CSI(*list
, NVME_CSI_NVM
);
5653 NVME_SET_CSI(*list
, NVME_CSI_ZONED
);
5655 return nvme_c2h(n
, list
, data_len
, req
);
5658 static uint16_t nvme_identify(NvmeCtrl
*n
, NvmeRequest
*req
)
5660 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
5662 trace_pci_nvme_identify(nvme_cid(req
), c
->cns
, le16_to_cpu(c
->ctrlid
),
5666 case NVME_ID_CNS_NS
:
5667 return nvme_identify_ns(n
, req
, true);
5668 case NVME_ID_CNS_NS_PRESENT
:
5669 return nvme_identify_ns(n
, req
, false);
5670 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST
:
5671 return nvme_identify_ctrl_list(n
, req
, true);
5672 case NVME_ID_CNS_CTRL_LIST
:
5673 return nvme_identify_ctrl_list(n
, req
, false);
5674 case NVME_ID_CNS_PRIMARY_CTRL_CAP
:
5675 return nvme_identify_pri_ctrl_cap(n
, req
);
5676 case NVME_ID_CNS_SECONDARY_CTRL_LIST
:
5677 return nvme_identify_sec_ctrl_list(n
, req
);
5678 case NVME_ID_CNS_CS_NS
:
5679 return nvme_identify_ns_csi(n
, req
, true);
5680 case NVME_ID_CNS_CS_NS_PRESENT
:
5681 return nvme_identify_ns_csi(n
, req
, false);
5682 case NVME_ID_CNS_CTRL
:
5683 return nvme_identify_ctrl(n
, req
);
5684 case NVME_ID_CNS_CS_CTRL
:
5685 return nvme_identify_ctrl_csi(n
, req
);
5686 case NVME_ID_CNS_NS_ACTIVE_LIST
:
5687 return nvme_identify_nslist(n
, req
, true);
5688 case NVME_ID_CNS_NS_PRESENT_LIST
:
5689 return nvme_identify_nslist(n
, req
, false);
5690 case NVME_ID_CNS_CS_NS_ACTIVE_LIST
:
5691 return nvme_identify_nslist_csi(n
, req
, true);
5692 case NVME_ID_CNS_CS_NS_PRESENT_LIST
:
5693 return nvme_identify_nslist_csi(n
, req
, false);
5694 case NVME_ID_CNS_NS_DESCR_LIST
:
5695 return nvme_identify_ns_descr_list(n
, req
);
5696 case NVME_ID_CNS_IO_COMMAND_SET
:
5697 return nvme_identify_cmd_set(n
, req
);
5699 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c
->cns
));
5700 return NVME_INVALID_FIELD
| NVME_DNR
;
5704 static uint16_t nvme_abort(NvmeCtrl
*n
, NvmeRequest
*req
)
5706 uint16_t sqid
= le32_to_cpu(req
->cmd
.cdw10
) & 0xffff;
5708 req
->cqe
.result
= 1;
5709 if (nvme_check_sqid(n
, sqid
)) {
5710 return NVME_INVALID_FIELD
| NVME_DNR
;
5713 return NVME_SUCCESS
;
5716 static inline void nvme_set_timestamp(NvmeCtrl
*n
, uint64_t ts
)
5718 trace_pci_nvme_setfeat_timestamp(ts
);
5720 n
->host_timestamp
= le64_to_cpu(ts
);
5721 n
->timestamp_set_qemu_clock_ms
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
5724 static inline uint64_t nvme_get_timestamp(const NvmeCtrl
*n
)
5726 uint64_t current_time
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
5727 uint64_t elapsed_time
= current_time
- n
->timestamp_set_qemu_clock_ms
;
5729 union nvme_timestamp
{
5731 uint64_t timestamp
:48;
5739 union nvme_timestamp ts
;
5741 ts
.timestamp
= n
->host_timestamp
+ elapsed_time
;
5743 /* If the host timestamp is non-zero, set the timestamp origin */
5744 ts
.origin
= n
->host_timestamp
? 0x01 : 0x00;
5746 trace_pci_nvme_getfeat_timestamp(ts
.all
);
5748 return cpu_to_le64(ts
.all
);
5751 static uint16_t nvme_get_feature_timestamp(NvmeCtrl
*n
, NvmeRequest
*req
)
5753 uint64_t timestamp
= nvme_get_timestamp(n
);
5755 return nvme_c2h(n
, (uint8_t *)×tamp
, sizeof(timestamp
), req
);
5758 static int nvme_get_feature_fdp(NvmeCtrl
*n
, uint32_t endgrpid
,
5763 if (!n
->subsys
|| !n
->subsys
->endgrp
.fdp
.enabled
) {
5764 return NVME_INVALID_FIELD
| NVME_DNR
;
5767 *result
= FIELD_DP16(0, FEAT_FDP
, FDPE
, 1);
5768 *result
= FIELD_DP16(*result
, FEAT_FDP
, CONF_NDX
, 0);
5770 return NVME_SUCCESS
;
5773 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl
*n
, NvmeNamespace
*ns
,
5774 NvmeRequest
*req
, uint32_t *result
)
5776 NvmeCmd
*cmd
= &req
->cmd
;
5777 uint32_t cdw11
= le32_to_cpu(cmd
->cdw11
);
5778 uint16_t ph
= cdw11
& 0xffff;
5779 uint8_t noet
= (cdw11
>> 16) & 0xff;
5780 uint16_t ruhid
, ret
;
5781 uint32_t nentries
= 0;
5782 uint8_t s_events_ndx
= 0;
5783 size_t s_events_siz
= sizeof(NvmeFdpEventDescr
) * noet
;
5784 g_autofree NvmeFdpEventDescr
*s_events
= g_malloc0(s_events_siz
);
5786 NvmeFdpEventDescr
*s_event
;
5788 if (!n
->subsys
|| !n
->subsys
->endgrp
.fdp
.enabled
) {
5789 return NVME_FDP_DISABLED
| NVME_DNR
;
5792 if (!nvme_ph_valid(ns
, ph
)) {
5793 return NVME_INVALID_FIELD
| NVME_DNR
;
5796 ruhid
= ns
->fdp
.phs
[ph
];
5797 ruh
= &n
->subsys
->endgrp
.fdp
.ruhs
[ruhid
];
5801 if (unlikely(noet
== 0)) {
5802 return NVME_INVALID_FIELD
| NVME_DNR
;
5805 for (uint8_t event_type
= 0; event_type
< FDP_EVT_MAX
; event_type
++) {
5806 uint8_t shift
= nvme_fdp_evf_shifts
[event_type
];
5807 if (!shift
&& event_type
) {
5809 * only first entry (event_type == 0) has a shift value of 0
5810 * other entries are simply unpopulated.
5817 s_event
= &s_events
[s_events_ndx
];
5818 s_event
->evt
= event_type
;
5819 s_event
->evta
= (ruh
->event_filter
>> shift
) & 0x1;
5821 /* break if all `noet` entries are filled */
5822 if ((++s_events_ndx
) == noet
) {
5827 ret
= nvme_c2h(n
, s_events
, s_events_siz
, req
);
5833 return NVME_SUCCESS
;
5836 static uint16_t nvme_get_feature(NvmeCtrl
*n
, NvmeRequest
*req
)
5838 NvmeCmd
*cmd
= &req
->cmd
;
5839 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
5840 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
5841 uint32_t nsid
= le32_to_cpu(cmd
->nsid
);
5843 uint8_t fid
= NVME_GETSETFEAT_FID(dw10
);
5844 NvmeGetFeatureSelect sel
= NVME_GETFEAT_SELECT(dw10
);
5848 uint16_t endgrpid
= 0, ret
= NVME_SUCCESS
;
5850 static const uint32_t nvme_feature_default
[NVME_FID_MAX
] = {
5851 [NVME_ARBITRATION
] = NVME_ARB_AB_NOLIMIT
,
5854 trace_pci_nvme_getfeat(nvme_cid(req
), nsid
, fid
, sel
, dw11
);
5856 if (!nvme_feature_support
[fid
]) {
5857 return NVME_INVALID_FIELD
| NVME_DNR
;
5860 if (nvme_feature_cap
[fid
] & NVME_FEAT_CAP_NS
) {
5861 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
5863 * The Reservation Notification Mask and Reservation Persistence
5864 * features require a status code of Invalid Field in Command when
5865 * NSID is FFFFFFFFh. Since the device does not support those
5866 * features we can always return Invalid Namespace or Format as we
5867 * should do for all other features.
5869 return NVME_INVALID_NSID
| NVME_DNR
;
5872 if (!nvme_ns(n
, nsid
)) {
5873 return NVME_INVALID_FIELD
| NVME_DNR
;
5878 case NVME_GETFEAT_SELECT_CURRENT
:
5880 case NVME_GETFEAT_SELECT_SAVED
:
5881 /* no features are saveable by the controller; fallthrough */
5882 case NVME_GETFEAT_SELECT_DEFAULT
:
5884 case NVME_GETFEAT_SELECT_CAP
:
5885 result
= nvme_feature_cap
[fid
];
5890 case NVME_TEMPERATURE_THRESHOLD
:
5894 * The controller only implements the Composite Temperature sensor, so
5895 * return 0 for all other sensors.
5897 if (NVME_TEMP_TMPSEL(dw11
) != NVME_TEMP_TMPSEL_COMPOSITE
) {
5901 switch (NVME_TEMP_THSEL(dw11
)) {
5902 case NVME_TEMP_THSEL_OVER
:
5903 result
= n
->features
.temp_thresh_hi
;
5905 case NVME_TEMP_THSEL_UNDER
:
5906 result
= n
->features
.temp_thresh_low
;
5910 return NVME_INVALID_FIELD
| NVME_DNR
;
5911 case NVME_ERROR_RECOVERY
:
5912 if (!nvme_nsid_valid(n
, nsid
)) {
5913 return NVME_INVALID_NSID
| NVME_DNR
;
5916 ns
= nvme_ns(n
, nsid
);
5917 if (unlikely(!ns
)) {
5918 return NVME_INVALID_FIELD
| NVME_DNR
;
5921 result
= ns
->features
.err_rec
;
5923 case NVME_VOLATILE_WRITE_CACHE
:
5925 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5931 result
= blk_enable_write_cache(ns
->blkconf
.blk
);
5936 trace_pci_nvme_getfeat_vwcache(result
? "enabled" : "disabled");
5938 case NVME_ASYNCHRONOUS_EVENT_CONF
:
5939 result
= n
->features
.async_config
;
5941 case NVME_TIMESTAMP
:
5942 return nvme_get_feature_timestamp(n
, req
);
5943 case NVME_HOST_BEHAVIOR_SUPPORT
:
5944 return nvme_c2h(n
, (uint8_t *)&n
->features
.hbs
,
5945 sizeof(n
->features
.hbs
), req
);
5947 endgrpid
= dw11
& 0xff;
5949 if (endgrpid
!= 0x1) {
5950 return NVME_INVALID_FIELD
| NVME_DNR
;
5953 ret
= nvme_get_feature_fdp(n
, endgrpid
, &result
);
5958 case NVME_FDP_EVENTS
:
5959 if (!nvme_nsid_valid(n
, nsid
)) {
5960 return NVME_INVALID_NSID
| NVME_DNR
;
5963 ns
= nvme_ns(n
, nsid
);
5964 if (unlikely(!ns
)) {
5965 return NVME_INVALID_FIELD
| NVME_DNR
;
5968 ret
= nvme_get_feature_fdp_events(n
, ns
, req
, &result
);
5979 case NVME_TEMPERATURE_THRESHOLD
:
5982 if (NVME_TEMP_TMPSEL(dw11
) != NVME_TEMP_TMPSEL_COMPOSITE
) {
5986 if (NVME_TEMP_THSEL(dw11
) == NVME_TEMP_THSEL_OVER
) {
5987 result
= NVME_TEMPERATURE_WARNING
;
5991 case NVME_NUMBER_OF_QUEUES
:
5992 result
= (n
->conf_ioqpairs
- 1) | ((n
->conf_ioqpairs
- 1) << 16);
5993 trace_pci_nvme_getfeat_numq(result
);
5995 case NVME_INTERRUPT_VECTOR_CONF
:
5997 if (iv
>= n
->conf_ioqpairs
+ 1) {
5998 return NVME_INVALID_FIELD
| NVME_DNR
;
6002 if (iv
== n
->admin_cq
.vector
) {
6003 result
|= NVME_INTVC_NOCOALESCING
;
6007 endgrpid
= dw11
& 0xff;
6009 if (endgrpid
!= 0x1) {
6010 return NVME_INVALID_FIELD
| NVME_DNR
;
6013 ret
= nvme_get_feature_fdp(n
, endgrpid
, &result
);
6021 result
= nvme_feature_default
[fid
];
6026 req
->cqe
.result
= cpu_to_le32(result
);
6030 static uint16_t nvme_set_feature_timestamp(NvmeCtrl
*n
, NvmeRequest
*req
)
6035 ret
= nvme_h2c(n
, (uint8_t *)×tamp
, sizeof(timestamp
), req
);
6040 nvme_set_timestamp(n
, timestamp
);
6042 return NVME_SUCCESS
;
6045 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl
*n
, NvmeNamespace
*ns
,
6048 NvmeCmd
*cmd
= &req
->cmd
;
6049 uint32_t cdw11
= le32_to_cpu(cmd
->cdw11
);
6050 uint16_t ph
= cdw11
& 0xffff;
6051 uint8_t noet
= (cdw11
>> 16) & 0xff;
6052 uint16_t ret
, ruhid
;
6053 uint8_t enable
= le32_to_cpu(cmd
->cdw12
) & 0x1;
6054 uint8_t event_mask
= 0;
6056 g_autofree
uint8_t *events
= g_malloc0(noet
);
6057 NvmeRuHandle
*ruh
= NULL
;
6061 if (!n
->subsys
|| !n
->subsys
->endgrp
.fdp
.enabled
) {
6062 return NVME_FDP_DISABLED
| NVME_DNR
;
6065 if (!nvme_ph_valid(ns
, ph
)) {
6066 return NVME_INVALID_FIELD
| NVME_DNR
;
6069 ruhid
= ns
->fdp
.phs
[ph
];
6070 ruh
= &n
->subsys
->endgrp
.fdp
.ruhs
[ruhid
];
6072 ret
= nvme_h2c(n
, events
, noet
, req
);
6077 for (i
= 0; i
< noet
; i
++) {
6078 event_mask
|= (1 << nvme_fdp_evf_shifts
[events
[i
]]);
6082 ruh
->event_filter
|= event_mask
;
6084 ruh
->event_filter
= ruh
->event_filter
& ~event_mask
;
6087 return NVME_SUCCESS
;
6090 static uint16_t nvme_set_feature(NvmeCtrl
*n
, NvmeRequest
*req
)
6092 NvmeNamespace
*ns
= NULL
;
6094 NvmeCmd
*cmd
= &req
->cmd
;
6095 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
6096 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
6097 uint32_t nsid
= le32_to_cpu(cmd
->nsid
);
6098 uint8_t fid
= NVME_GETSETFEAT_FID(dw10
);
6099 uint8_t save
= NVME_SETFEAT_SAVE(dw10
);
6103 trace_pci_nvme_setfeat(nvme_cid(req
), nsid
, fid
, save
, dw11
);
6105 if (save
&& !(nvme_feature_cap
[fid
] & NVME_FEAT_CAP_SAVE
)) {
6106 return NVME_FID_NOT_SAVEABLE
| NVME_DNR
;
6109 if (!nvme_feature_support
[fid
]) {
6110 return NVME_INVALID_FIELD
| NVME_DNR
;
6113 if (nvme_feature_cap
[fid
] & NVME_FEAT_CAP_NS
) {
6114 if (nsid
!= NVME_NSID_BROADCAST
) {
6115 if (!nvme_nsid_valid(n
, nsid
)) {
6116 return NVME_INVALID_NSID
| NVME_DNR
;
6119 ns
= nvme_ns(n
, nsid
);
6120 if (unlikely(!ns
)) {
6121 return NVME_INVALID_FIELD
| NVME_DNR
;
6124 } else if (nsid
&& nsid
!= NVME_NSID_BROADCAST
) {
6125 if (!nvme_nsid_valid(n
, nsid
)) {
6126 return NVME_INVALID_NSID
| NVME_DNR
;
6129 return NVME_FEAT_NOT_NS_SPEC
| NVME_DNR
;
6132 if (!(nvme_feature_cap
[fid
] & NVME_FEAT_CAP_CHANGE
)) {
6133 return NVME_FEAT_NOT_CHANGEABLE
| NVME_DNR
;
6137 case NVME_TEMPERATURE_THRESHOLD
:
6138 if (NVME_TEMP_TMPSEL(dw11
) != NVME_TEMP_TMPSEL_COMPOSITE
) {
6142 switch (NVME_TEMP_THSEL(dw11
)) {
6143 case NVME_TEMP_THSEL_OVER
:
6144 n
->features
.temp_thresh_hi
= NVME_TEMP_TMPTH(dw11
);
6146 case NVME_TEMP_THSEL_UNDER
:
6147 n
->features
.temp_thresh_low
= NVME_TEMP_TMPTH(dw11
);
6150 return NVME_INVALID_FIELD
| NVME_DNR
;
6153 if ((n
->temperature
>= n
->features
.temp_thresh_hi
) ||
6154 (n
->temperature
<= n
->features
.temp_thresh_low
)) {
6155 nvme_smart_event(n
, NVME_SMART_TEMPERATURE
);
6159 case NVME_ERROR_RECOVERY
:
6160 if (nsid
== NVME_NSID_BROADCAST
) {
6161 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
6168 if (NVME_ID_NS_NSFEAT_DULBE(ns
->id_ns
.nsfeat
)) {
6169 ns
->features
.err_rec
= dw11
;
6177 if (NVME_ID_NS_NSFEAT_DULBE(ns
->id_ns
.nsfeat
)) {
6178 ns
->features
.err_rec
= dw11
;
6181 case NVME_VOLATILE_WRITE_CACHE
:
6182 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
6188 if (!(dw11
& 0x1) && blk_enable_write_cache(ns
->blkconf
.blk
)) {
6189 blk_flush(ns
->blkconf
.blk
);
6192 blk_set_enable_write_cache(ns
->blkconf
.blk
, dw11
& 1);
6197 case NVME_NUMBER_OF_QUEUES
:
6198 if (n
->qs_created
) {
6199 return NVME_CMD_SEQ_ERROR
| NVME_DNR
;
6203 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
6206 if ((dw11
& 0xffff) == 0xffff || ((dw11
>> 16) & 0xffff) == 0xffff) {
6207 return NVME_INVALID_FIELD
| NVME_DNR
;
6210 trace_pci_nvme_setfeat_numq((dw11
& 0xffff) + 1,
6211 ((dw11
>> 16) & 0xffff) + 1,
6214 req
->cqe
.result
= cpu_to_le32((n
->conf_ioqpairs
- 1) |
6215 ((n
->conf_ioqpairs
- 1) << 16));
6217 case NVME_ASYNCHRONOUS_EVENT_CONF
:
6218 n
->features
.async_config
= dw11
;
6220 case NVME_TIMESTAMP
:
6221 return nvme_set_feature_timestamp(n
, req
);
6222 case NVME_HOST_BEHAVIOR_SUPPORT
:
6223 status
= nvme_h2c(n
, (uint8_t *)&n
->features
.hbs
,
6224 sizeof(n
->features
.hbs
), req
);
6229 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
6236 ns
->id_ns
.nlbaf
= ns
->nlbaf
- 1;
6237 if (!n
->features
.hbs
.lbafee
) {
6238 ns
->id_ns
.nlbaf
= MIN(ns
->id_ns
.nlbaf
, 15);
6243 case NVME_COMMAND_SET_PROFILE
:
6245 trace_pci_nvme_err_invalid_iocsci(dw11
& 0x1ff);
6246 return NVME_CMD_SET_CMB_REJECTED
| NVME_DNR
;
6250 /* spec: abort with cmd seq err if there's one or more NS' in endgrp */
6251 return NVME_CMD_SEQ_ERROR
| NVME_DNR
;
6252 case NVME_FDP_EVENTS
:
6253 return nvme_set_feature_fdp_events(n
, ns
, req
);
6255 return NVME_FEAT_NOT_CHANGEABLE
| NVME_DNR
;
6257 return NVME_SUCCESS
;
6260 static uint16_t nvme_aer(NvmeCtrl
*n
, NvmeRequest
*req
)
6262 trace_pci_nvme_aer(nvme_cid(req
));
6264 if (n
->outstanding_aers
> n
->params
.aerl
) {
6265 trace_pci_nvme_aer_aerl_exceeded();
6266 return NVME_AER_LIMIT_EXCEEDED
;
6269 n
->aer_reqs
[n
->outstanding_aers
] = req
;
6270 n
->outstanding_aers
++;
6272 if (!QTAILQ_EMPTY(&n
->aer_queue
)) {
6273 nvme_process_aers(n
);
6276 return NVME_NO_COMPLETE
;
6279 static void nvme_update_dmrsl(NvmeCtrl
*n
)
6283 for (nsid
= 1; nsid
<= NVME_MAX_NAMESPACES
; nsid
++) {
6284 NvmeNamespace
*ns
= nvme_ns(n
, nsid
);
6289 n
->dmrsl
= MIN_NON_ZERO(n
->dmrsl
,
6290 BDRV_REQUEST_MAX_BYTES
/ nvme_l2b(ns
, 1));
6294 static void nvme_select_iocs_ns(NvmeCtrl
*n
, NvmeNamespace
*ns
)
6296 uint32_t cc
= ldl_le_p(&n
->bar
.cc
);
6298 ns
->iocs
= nvme_cse_iocs_none
;
6301 if (NVME_CC_CSS(cc
) != NVME_CC_CSS_ADMIN_ONLY
) {
6302 ns
->iocs
= nvme_cse_iocs_nvm
;
6305 case NVME_CSI_ZONED
:
6306 if (NVME_CC_CSS(cc
) == NVME_CC_CSS_CSI
) {
6307 ns
->iocs
= nvme_cse_iocs_zoned
;
6308 } else if (NVME_CC_CSS(cc
) == NVME_CC_CSS_NVM
) {
6309 ns
->iocs
= nvme_cse_iocs_nvm
;
6315 static uint16_t nvme_ns_attachment(NvmeCtrl
*n
, NvmeRequest
*req
)
6319 uint16_t list
[NVME_CONTROLLER_LIST_SIZE
] = {};
6320 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
6321 uint32_t dw10
= le32_to_cpu(req
->cmd
.cdw10
);
6322 uint8_t sel
= dw10
& 0xf;
6323 uint16_t *nr_ids
= &list
[0];
6324 uint16_t *ids
= &list
[1];
6328 trace_pci_nvme_ns_attachment(nvme_cid(req
), dw10
& 0xf);
6330 if (!nvme_nsid_valid(n
, nsid
)) {
6331 return NVME_INVALID_NSID
| NVME_DNR
;
6334 ns
= nvme_subsys_ns(n
->subsys
, nsid
);
6336 return NVME_INVALID_FIELD
| NVME_DNR
;
6339 ret
= nvme_h2c(n
, (uint8_t *)list
, 4096, req
);
6345 return NVME_NS_CTRL_LIST_INVALID
| NVME_DNR
;
6348 *nr_ids
= MIN(*nr_ids
, NVME_CONTROLLER_LIST_SIZE
- 1);
6349 for (i
= 0; i
< *nr_ids
; i
++) {
6350 ctrl
= nvme_subsys_ctrl(n
->subsys
, ids
[i
]);
6352 return NVME_NS_CTRL_LIST_INVALID
| NVME_DNR
;
6356 case NVME_NS_ATTACHMENT_ATTACH
:
6357 if (nvme_ns(ctrl
, nsid
)) {
6358 return NVME_NS_ALREADY_ATTACHED
| NVME_DNR
;
6361 if (ns
->attached
&& !ns
->params
.shared
) {
6362 return NVME_NS_PRIVATE
| NVME_DNR
;
6365 nvme_attach_ns(ctrl
, ns
);
6366 nvme_select_iocs_ns(ctrl
, ns
);
6370 case NVME_NS_ATTACHMENT_DETACH
:
6371 if (!nvme_ns(ctrl
, nsid
)) {
6372 return NVME_NS_NOT_ATTACHED
| NVME_DNR
;
6375 ctrl
->namespaces
[nsid
] = NULL
;
6378 nvme_update_dmrsl(ctrl
);
6383 return NVME_INVALID_FIELD
| NVME_DNR
;
6387 * Add namespace id to the changed namespace id list for event clearing
6388 * via Get Log Page command.
6390 if (!test_and_set_bit(nsid
, ctrl
->changed_nsids
)) {
6391 nvme_enqueue_event(ctrl
, NVME_AER_TYPE_NOTICE
,
6392 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED
,
6393 NVME_LOG_CHANGED_NSLIST
);
6397 return NVME_SUCCESS
;
6400 typedef struct NvmeFormatAIOCB
{
6417 static void nvme_format_cancel(BlockAIOCB
*aiocb
)
6419 NvmeFormatAIOCB
*iocb
= container_of(aiocb
, NvmeFormatAIOCB
, common
);
6421 iocb
->ret
= -ECANCELED
;
6424 blk_aio_cancel_async(iocb
->aiocb
);
6429 static const AIOCBInfo nvme_format_aiocb_info
= {
6430 .aiocb_size
= sizeof(NvmeFormatAIOCB
),
6431 .cancel_async
= nvme_format_cancel
,
6432 .get_aio_context
= nvme_get_aio_context
,
6435 static void nvme_format_set(NvmeNamespace
*ns
, uint8_t lbaf
, uint8_t mset
,
6436 uint8_t pi
, uint8_t pil
)
6438 uint8_t lbafl
= lbaf
& 0xf;
6439 uint8_t lbafu
= lbaf
>> 4;
6441 trace_pci_nvme_format_set(ns
->params
.nsid
, lbaf
, mset
, pi
, pil
);
6443 ns
->id_ns
.dps
= (pil
<< 3) | pi
;
6444 ns
->id_ns
.flbas
= (lbafu
<< 5) | (mset
<< 4) | lbafl
;
6446 nvme_ns_init_format(ns
);
6449 static void nvme_do_format(NvmeFormatAIOCB
*iocb
);
6451 static void nvme_format_ns_cb(void *opaque
, int ret
)
6453 NvmeFormatAIOCB
*iocb
= opaque
;
6454 NvmeNamespace
*ns
= iocb
->ns
;
6457 if (iocb
->ret
< 0) {
6459 } else if (ret
< 0) {
6466 if (iocb
->offset
< ns
->size
) {
6467 bytes
= MIN(BDRV_REQUEST_MAX_BYTES
, ns
->size
- iocb
->offset
);
6469 iocb
->aiocb
= blk_aio_pwrite_zeroes(ns
->blkconf
.blk
, iocb
->offset
,
6470 bytes
, BDRV_REQ_MAY_UNMAP
,
6471 nvme_format_ns_cb
, iocb
);
6473 iocb
->offset
+= bytes
;
6477 nvme_format_set(ns
, iocb
->lbaf
, iocb
->mset
, iocb
->pi
, iocb
->pil
);
6483 nvme_do_format(iocb
);
6486 static uint16_t nvme_format_check(NvmeNamespace
*ns
, uint8_t lbaf
, uint8_t pi
)
6488 if (ns
->params
.zoned
) {
6489 return NVME_INVALID_FORMAT
| NVME_DNR
;
6492 if (lbaf
> ns
->id_ns
.nlbaf
) {
6493 return NVME_INVALID_FORMAT
| NVME_DNR
;
6496 if (pi
&& (ns
->id_ns
.lbaf
[lbaf
].ms
< nvme_pi_tuple_size(ns
))) {
6497 return NVME_INVALID_FORMAT
| NVME_DNR
;
6500 if (pi
&& pi
> NVME_ID_NS_DPS_TYPE_3
) {
6501 return NVME_INVALID_FIELD
| NVME_DNR
;
6504 return NVME_SUCCESS
;
6507 static void nvme_do_format(NvmeFormatAIOCB
*iocb
)
6509 NvmeRequest
*req
= iocb
->req
;
6510 NvmeCtrl
*n
= nvme_ctrl(req
);
6511 uint32_t dw10
= le32_to_cpu(req
->cmd
.cdw10
);
6512 uint8_t lbaf
= dw10
& 0xf;
6513 uint8_t pi
= (dw10
>> 5) & 0x7;
6517 if (iocb
->ret
< 0) {
6521 if (iocb
->broadcast
) {
6522 for (i
= iocb
->nsid
+ 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
6523 iocb
->ns
= nvme_ns(n
, i
);
6535 status
= nvme_format_check(iocb
->ns
, lbaf
, pi
);
6537 req
->status
= status
;
6541 iocb
->ns
->status
= NVME_FORMAT_IN_PROGRESS
;
6542 nvme_format_ns_cb(iocb
, 0);
6546 iocb
->common
.cb(iocb
->common
.opaque
, iocb
->ret
);
6547 qemu_aio_unref(iocb
);
6550 static uint16_t nvme_format(NvmeCtrl
*n
, NvmeRequest
*req
)
6552 NvmeFormatAIOCB
*iocb
;
6553 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
6554 uint32_t dw10
= le32_to_cpu(req
->cmd
.cdw10
);
6555 uint8_t lbaf
= dw10
& 0xf;
6556 uint8_t mset
= (dw10
>> 4) & 0x1;
6557 uint8_t pi
= (dw10
>> 5) & 0x7;
6558 uint8_t pil
= (dw10
>> 8) & 0x1;
6559 uint8_t lbafu
= (dw10
>> 12) & 0x3;
6562 iocb
= qemu_aio_get(&nvme_format_aiocb_info
, NULL
, nvme_misc_cb
, req
);
6572 iocb
->broadcast
= (nsid
== NVME_NSID_BROADCAST
);
6575 if (n
->features
.hbs
.lbafee
) {
6576 iocb
->lbaf
|= lbafu
<< 4;
6579 if (!iocb
->broadcast
) {
6580 if (!nvme_nsid_valid(n
, nsid
)) {
6581 status
= NVME_INVALID_NSID
| NVME_DNR
;
6585 iocb
->ns
= nvme_ns(n
, nsid
);
6587 status
= NVME_INVALID_FIELD
| NVME_DNR
;
6592 req
->aiocb
= &iocb
->common
;
6593 nvme_do_format(iocb
);
6595 return NVME_NO_COMPLETE
;
6598 qemu_aio_unref(iocb
);
6603 static void nvme_get_virt_res_num(NvmeCtrl
*n
, uint8_t rt
, int *num_total
,
6604 int *num_prim
, int *num_sec
)
6606 *num_total
= le32_to_cpu(rt
?
6607 n
->pri_ctrl_cap
.vifrt
: n
->pri_ctrl_cap
.vqfrt
);
6608 *num_prim
= le16_to_cpu(rt
?
6609 n
->pri_ctrl_cap
.virfap
: n
->pri_ctrl_cap
.vqrfap
);
6610 *num_sec
= le16_to_cpu(rt
? n
->pri_ctrl_cap
.virfa
: n
->pri_ctrl_cap
.vqrfa
);
6613 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl
*n
, NvmeRequest
*req
,
6614 uint16_t cntlid
, uint8_t rt
,
6617 int num_total
, num_prim
, num_sec
;
6619 if (cntlid
!= n
->cntlid
) {
6620 return NVME_INVALID_CTRL_ID
| NVME_DNR
;
6623 nvme_get_virt_res_num(n
, rt
, &num_total
, &num_prim
, &num_sec
);
6625 if (nr
> num_total
) {
6626 return NVME_INVALID_NUM_RESOURCES
| NVME_DNR
;
6629 if (nr
> num_total
- num_sec
) {
6630 return NVME_INVALID_RESOURCE_ID
| NVME_DNR
;
6634 n
->next_pri_ctrl_cap
.virfap
= cpu_to_le16(nr
);
6636 n
->next_pri_ctrl_cap
.vqrfap
= cpu_to_le16(nr
);
6639 req
->cqe
.result
= cpu_to_le32(nr
);
6643 static void nvme_update_virt_res(NvmeCtrl
*n
, NvmeSecCtrlEntry
*sctrl
,
6646 int prev_nr
, prev_total
;
6649 prev_nr
= le16_to_cpu(sctrl
->nvi
);
6650 prev_total
= le32_to_cpu(n
->pri_ctrl_cap
.virfa
);
6651 sctrl
->nvi
= cpu_to_le16(nr
);
6652 n
->pri_ctrl_cap
.virfa
= cpu_to_le32(prev_total
+ nr
- prev_nr
);
6654 prev_nr
= le16_to_cpu(sctrl
->nvq
);
6655 prev_total
= le32_to_cpu(n
->pri_ctrl_cap
.vqrfa
);
6656 sctrl
->nvq
= cpu_to_le16(nr
);
6657 n
->pri_ctrl_cap
.vqrfa
= cpu_to_le32(prev_total
+ nr
- prev_nr
);
6661 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl
*n
, NvmeRequest
*req
,
6662 uint16_t cntlid
, uint8_t rt
, int nr
)
6664 int num_total
, num_prim
, num_sec
, num_free
, diff
, limit
;
6665 NvmeSecCtrlEntry
*sctrl
;
6667 sctrl
= nvme_sctrl_for_cntlid(n
, cntlid
);
6669 return NVME_INVALID_CTRL_ID
| NVME_DNR
;
6673 return NVME_INVALID_SEC_CTRL_STATE
| NVME_DNR
;
6676 limit
= le16_to_cpu(rt
? n
->pri_ctrl_cap
.vifrsm
: n
->pri_ctrl_cap
.vqfrsm
);
6678 return NVME_INVALID_NUM_RESOURCES
| NVME_DNR
;
6681 nvme_get_virt_res_num(n
, rt
, &num_total
, &num_prim
, &num_sec
);
6682 num_free
= num_total
- num_prim
- num_sec
;
6683 diff
= nr
- le16_to_cpu(rt
? sctrl
->nvi
: sctrl
->nvq
);
6685 if (diff
> num_free
) {
6686 return NVME_INVALID_RESOURCE_ID
| NVME_DNR
;
6689 nvme_update_virt_res(n
, sctrl
, rt
, nr
);
6690 req
->cqe
.result
= cpu_to_le32(nr
);
6695 static uint16_t nvme_virt_set_state(NvmeCtrl
*n
, uint16_t cntlid
, bool online
)
6697 PCIDevice
*pci
= PCI_DEVICE(n
);
6698 NvmeCtrl
*sn
= NULL
;
6699 NvmeSecCtrlEntry
*sctrl
;
6702 sctrl
= nvme_sctrl_for_cntlid(n
, cntlid
);
6704 return NVME_INVALID_CTRL_ID
| NVME_DNR
;
6707 if (!pci_is_vf(pci
)) {
6708 vf_index
= le16_to_cpu(sctrl
->vfn
) - 1;
6709 sn
= NVME(pcie_sriov_get_vf_at_index(pci
, vf_index
));
6713 if (!sctrl
->nvi
|| (le16_to_cpu(sctrl
->nvq
) < 2) || !sn
) {
6714 return NVME_INVALID_SEC_CTRL_STATE
| NVME_DNR
;
6719 nvme_ctrl_reset(sn
, NVME_RESET_FUNCTION
);
6722 nvme_update_virt_res(n
, sctrl
, NVME_VIRT_RES_INTERRUPT
, 0);
6723 nvme_update_virt_res(n
, sctrl
, NVME_VIRT_RES_QUEUE
, 0);
6728 nvme_ctrl_reset(sn
, NVME_RESET_FUNCTION
);
6733 return NVME_SUCCESS
;
6736 static uint16_t nvme_virt_mngmt(NvmeCtrl
*n
, NvmeRequest
*req
)
6738 uint32_t dw10
= le32_to_cpu(req
->cmd
.cdw10
);
6739 uint32_t dw11
= le32_to_cpu(req
->cmd
.cdw11
);
6740 uint8_t act
= dw10
& 0xf;
6741 uint8_t rt
= (dw10
>> 8) & 0x7;
6742 uint16_t cntlid
= (dw10
>> 16) & 0xffff;
6743 int nr
= dw11
& 0xffff;
6745 trace_pci_nvme_virt_mngmt(nvme_cid(req
), act
, cntlid
, rt
? "VI" : "VQ", nr
);
6747 if (rt
!= NVME_VIRT_RES_QUEUE
&& rt
!= NVME_VIRT_RES_INTERRUPT
) {
6748 return NVME_INVALID_RESOURCE_ID
| NVME_DNR
;
6752 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN
:
6753 return nvme_assign_virt_res_to_sec(n
, req
, cntlid
, rt
, nr
);
6754 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC
:
6755 return nvme_assign_virt_res_to_prim(n
, req
, cntlid
, rt
, nr
);
6756 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE
:
6757 return nvme_virt_set_state(n
, cntlid
, true);
6758 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE
:
6759 return nvme_virt_set_state(n
, cntlid
, false);
6761 return NVME_INVALID_FIELD
| NVME_DNR
;
6765 static uint16_t nvme_dbbuf_config(NvmeCtrl
*n
, const NvmeRequest
*req
)
6767 PCIDevice
*pci
= PCI_DEVICE(n
);
6768 uint64_t dbs_addr
= le64_to_cpu(req
->cmd
.dptr
.prp1
);
6769 uint64_t eis_addr
= le64_to_cpu(req
->cmd
.dptr
.prp2
);
6772 /* Address should be page aligned */
6773 if (dbs_addr
& (n
->page_size
- 1) || eis_addr
& (n
->page_size
- 1)) {
6774 return NVME_INVALID_FIELD
| NVME_DNR
;
6777 /* Save shadow buffer base addr for use during queue creation */
6778 n
->dbbuf_dbs
= dbs_addr
;
6779 n
->dbbuf_eis
= eis_addr
;
6780 n
->dbbuf_enabled
= true;
6782 for (i
= 0; i
< n
->params
.max_ioqpairs
+ 1; i
++) {
6783 NvmeSQueue
*sq
= n
->sq
[i
];
6784 NvmeCQueue
*cq
= n
->cq
[i
];
6788 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6789 * nvme_process_db() uses this hard-coded way to calculate
6790 * doorbell offsets. Be consistent with that here.
6792 sq
->db_addr
= dbs_addr
+ (i
<< 3);
6793 sq
->ei_addr
= eis_addr
+ (i
<< 3);
6794 pci_dma_write(pci
, sq
->db_addr
, &sq
->tail
, sizeof(sq
->tail
));
6796 if (n
->params
.ioeventfd
&& sq
->sqid
!= 0) {
6797 if (!nvme_init_sq_ioeventfd(sq
)) {
6798 sq
->ioeventfd_enabled
= true;
6804 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6805 cq
->db_addr
= dbs_addr
+ (i
<< 3) + (1 << 2);
6806 cq
->ei_addr
= eis_addr
+ (i
<< 3) + (1 << 2);
6807 pci_dma_write(pci
, cq
->db_addr
, &cq
->head
, sizeof(cq
->head
));
6809 if (n
->params
.ioeventfd
&& cq
->cqid
!= 0) {
6810 if (!nvme_init_cq_ioeventfd(cq
)) {
6811 cq
->ioeventfd_enabled
= true;
6817 trace_pci_nvme_dbbuf_config(dbs_addr
, eis_addr
);
6819 return NVME_SUCCESS
;
6822 static uint16_t nvme_directive_send(NvmeCtrl
*n
, NvmeRequest
*req
)
6824 return NVME_INVALID_FIELD
| NVME_DNR
;
6827 static uint16_t nvme_directive_receive(NvmeCtrl
*n
, NvmeRequest
*req
)
6830 uint32_t dw10
= le32_to_cpu(req
->cmd
.cdw10
);
6831 uint32_t dw11
= le32_to_cpu(req
->cmd
.cdw11
);
6832 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
6833 uint8_t doper
, dtype
;
6834 uint32_t numd
, trans_len
;
6835 NvmeDirectiveIdentify id
= {
6836 .supported
= 1 << NVME_DIRECTIVE_IDENTIFY
,
6837 .enabled
= 1 << NVME_DIRECTIVE_IDENTIFY
,
6841 doper
= dw11
& 0xff;
6842 dtype
= (dw11
>> 8) & 0xff;
6844 trans_len
= MIN(sizeof(NvmeDirectiveIdentify
), numd
<< 2);
6846 if (nsid
== NVME_NSID_BROADCAST
|| dtype
!= NVME_DIRECTIVE_IDENTIFY
||
6847 doper
!= NVME_DIRECTIVE_RETURN_PARAMS
) {
6848 return NVME_INVALID_FIELD
| NVME_DNR
;
6851 ns
= nvme_ns(n
, nsid
);
6853 return NVME_INVALID_FIELD
| NVME_DNR
;
6857 case NVME_DIRECTIVE_IDENTIFY
:
6859 case NVME_DIRECTIVE_RETURN_PARAMS
:
6860 if (ns
->endgrp
->fdp
.enabled
) {
6861 id
.supported
|= 1 << NVME_DIRECTIVE_DATA_PLACEMENT
;
6862 id
.enabled
|= 1 << NVME_DIRECTIVE_DATA_PLACEMENT
;
6863 id
.persistent
|= 1 << NVME_DIRECTIVE_DATA_PLACEMENT
;
6866 return nvme_c2h(n
, (uint8_t *)&id
, trans_len
, req
);
6869 return NVME_INVALID_FIELD
| NVME_DNR
;
6873 return NVME_INVALID_FIELD
;
6877 static uint16_t nvme_admin_cmd(NvmeCtrl
*n
, NvmeRequest
*req
)
6879 trace_pci_nvme_admin_cmd(nvme_cid(req
), nvme_sqid(req
), req
->cmd
.opcode
,
6880 nvme_adm_opc_str(req
->cmd
.opcode
));
6882 if (!(nvme_cse_acs
[req
->cmd
.opcode
] & NVME_CMD_EFF_CSUPP
)) {
6883 trace_pci_nvme_err_invalid_admin_opc(req
->cmd
.opcode
);
6884 return NVME_INVALID_OPCODE
| NVME_DNR
;
6887 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6888 if (NVME_CMD_FLAGS_PSDT(req
->cmd
.flags
) != NVME_PSDT_PRP
) {
6889 return NVME_INVALID_FIELD
| NVME_DNR
;
6892 if (NVME_CMD_FLAGS_FUSE(req
->cmd
.flags
)) {
6893 return NVME_INVALID_FIELD
;
6896 switch (req
->cmd
.opcode
) {
6897 case NVME_ADM_CMD_DELETE_SQ
:
6898 return nvme_del_sq(n
, req
);
6899 case NVME_ADM_CMD_CREATE_SQ
:
6900 return nvme_create_sq(n
, req
);
6901 case NVME_ADM_CMD_GET_LOG_PAGE
:
6902 return nvme_get_log(n
, req
);
6903 case NVME_ADM_CMD_DELETE_CQ
:
6904 return nvme_del_cq(n
, req
);
6905 case NVME_ADM_CMD_CREATE_CQ
:
6906 return nvme_create_cq(n
, req
);
6907 case NVME_ADM_CMD_IDENTIFY
:
6908 return nvme_identify(n
, req
);
6909 case NVME_ADM_CMD_ABORT
:
6910 return nvme_abort(n
, req
);
6911 case NVME_ADM_CMD_SET_FEATURES
:
6912 return nvme_set_feature(n
, req
);
6913 case NVME_ADM_CMD_GET_FEATURES
:
6914 return nvme_get_feature(n
, req
);
6915 case NVME_ADM_CMD_ASYNC_EV_REQ
:
6916 return nvme_aer(n
, req
);
6917 case NVME_ADM_CMD_NS_ATTACHMENT
:
6918 return nvme_ns_attachment(n
, req
);
6919 case NVME_ADM_CMD_VIRT_MNGMT
:
6920 return nvme_virt_mngmt(n
, req
);
6921 case NVME_ADM_CMD_DBBUF_CONFIG
:
6922 return nvme_dbbuf_config(n
, req
);
6923 case NVME_ADM_CMD_FORMAT_NVM
:
6924 return nvme_format(n
, req
);
6925 case NVME_ADM_CMD_DIRECTIVE_SEND
:
6926 return nvme_directive_send(n
, req
);
6927 case NVME_ADM_CMD_DIRECTIVE_RECV
:
6928 return nvme_directive_receive(n
, req
);
6933 return NVME_INVALID_OPCODE
| NVME_DNR
;
6936 static void nvme_update_sq_eventidx(const NvmeSQueue
*sq
)
6938 uint32_t v
= cpu_to_le32(sq
->tail
);
6940 trace_pci_nvme_update_sq_eventidx(sq
->sqid
, sq
->tail
);
6942 pci_dma_write(PCI_DEVICE(sq
->ctrl
), sq
->ei_addr
, &v
, sizeof(v
));
6945 static void nvme_update_sq_tail(NvmeSQueue
*sq
)
6949 pci_dma_read(PCI_DEVICE(sq
->ctrl
), sq
->db_addr
, &v
, sizeof(v
));
6951 sq
->tail
= le32_to_cpu(v
);
6953 trace_pci_nvme_update_sq_tail(sq
->sqid
, sq
->tail
);
6956 static void nvme_process_sq(void *opaque
)
6958 NvmeSQueue
*sq
= opaque
;
6959 NvmeCtrl
*n
= sq
->ctrl
;
6960 NvmeCQueue
*cq
= n
->cq
[sq
->cqid
];
6967 if (n
->dbbuf_enabled
) {
6968 nvme_update_sq_tail(sq
);
6971 while (!(nvme_sq_empty(sq
) || QTAILQ_EMPTY(&sq
->req_list
))) {
6972 addr
= sq
->dma_addr
+ sq
->head
* n
->sqe_size
;
6973 if (nvme_addr_read(n
, addr
, (void *)&cmd
, sizeof(cmd
))) {
6974 trace_pci_nvme_err_addr_read(addr
);
6975 trace_pci_nvme_err_cfs();
6976 stl_le_p(&n
->bar
.csts
, NVME_CSTS_FAILED
);
6979 nvme_inc_sq_head(sq
);
6981 req
= QTAILQ_FIRST(&sq
->req_list
);
6982 QTAILQ_REMOVE(&sq
->req_list
, req
, entry
);
6983 QTAILQ_INSERT_TAIL(&sq
->out_req_list
, req
, entry
);
6984 nvme_req_clear(req
);
6985 req
->cqe
.cid
= cmd
.cid
;
6986 memcpy(&req
->cmd
, &cmd
, sizeof(NvmeCmd
));
6988 status
= sq
->sqid
? nvme_io_cmd(n
, req
) :
6989 nvme_admin_cmd(n
, req
);
6990 if (status
!= NVME_NO_COMPLETE
) {
6991 req
->status
= status
;
6992 nvme_enqueue_req_completion(cq
, req
);
6995 if (n
->dbbuf_enabled
) {
6996 nvme_update_sq_eventidx(sq
);
6997 nvme_update_sq_tail(sq
);
7002 static void nvme_update_msixcap_ts(PCIDevice
*pci_dev
, uint32_t table_size
)
7006 if (!msix_present(pci_dev
)) {
7010 assert(table_size
> 0 && table_size
<= pci_dev
->msix_entries_nr
);
7012 config
= pci_dev
->config
+ pci_dev
->msix_cap
;
7013 pci_set_word_by_mask(config
+ PCI_MSIX_FLAGS
, PCI_MSIX_FLAGS_QSIZE
,
7017 static void nvme_activate_virt_res(NvmeCtrl
*n
)
7019 PCIDevice
*pci_dev
= PCI_DEVICE(n
);
7020 NvmePriCtrlCap
*cap
= &n
->pri_ctrl_cap
;
7021 NvmeSecCtrlEntry
*sctrl
;
7023 /* -1 to account for the admin queue */
7024 if (pci_is_vf(pci_dev
)) {
7025 sctrl
= nvme_sctrl(n
);
7026 cap
->vqprt
= sctrl
->nvq
;
7027 cap
->viprt
= sctrl
->nvi
;
7028 n
->conf_ioqpairs
= sctrl
->nvq
? le16_to_cpu(sctrl
->nvq
) - 1 : 0;
7029 n
->conf_msix_qsize
= sctrl
->nvi
? le16_to_cpu(sctrl
->nvi
) : 1;
7031 cap
->vqrfap
= n
->next_pri_ctrl_cap
.vqrfap
;
7032 cap
->virfap
= n
->next_pri_ctrl_cap
.virfap
;
7033 n
->conf_ioqpairs
= le16_to_cpu(cap
->vqprt
) +
7034 le16_to_cpu(cap
->vqrfap
) - 1;
7035 n
->conf_msix_qsize
= le16_to_cpu(cap
->viprt
) +
7036 le16_to_cpu(cap
->virfap
);
7040 static void nvme_ctrl_reset(NvmeCtrl
*n
, NvmeResetType rst
)
7042 PCIDevice
*pci_dev
= PCI_DEVICE(n
);
7043 NvmeSecCtrlEntry
*sctrl
;
7047 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
7056 for (i
= 0; i
< n
->params
.max_ioqpairs
+ 1; i
++) {
7057 if (n
->sq
[i
] != NULL
) {
7058 nvme_free_sq(n
->sq
[i
], n
);
7061 for (i
= 0; i
< n
->params
.max_ioqpairs
+ 1; i
++) {
7062 if (n
->cq
[i
] != NULL
) {
7063 nvme_free_cq(n
->cq
[i
], n
);
7067 while (!QTAILQ_EMPTY(&n
->aer_queue
)) {
7068 NvmeAsyncEvent
*event
= QTAILQ_FIRST(&n
->aer_queue
);
7069 QTAILQ_REMOVE(&n
->aer_queue
, event
, entry
);
7073 if (n
->params
.sriov_max_vfs
) {
7074 if (!pci_is_vf(pci_dev
)) {
7075 for (i
= 0; i
< n
->sec_ctrl_list
.numcntl
; i
++) {
7076 sctrl
= &n
->sec_ctrl_list
.sec
[i
];
7077 nvme_virt_set_state(n
, le16_to_cpu(sctrl
->scid
), false);
7080 if (rst
!= NVME_RESET_CONTROLLER
) {
7081 pcie_sriov_pf_disable_vfs(pci_dev
);
7085 if (rst
!= NVME_RESET_CONTROLLER
) {
7086 nvme_activate_virt_res(n
);
7092 n
->outstanding_aers
= 0;
7093 n
->qs_created
= false;
7095 nvme_update_msixcap_ts(pci_dev
, n
->conf_msix_qsize
);
7097 if (pci_is_vf(pci_dev
)) {
7098 sctrl
= nvme_sctrl(n
);
7100 stl_le_p(&n
->bar
.csts
, sctrl
->scs
? 0 : NVME_CSTS_FAILED
);
7102 stl_le_p(&n
->bar
.csts
, 0);
7105 stl_le_p(&n
->bar
.intms
, 0);
7106 stl_le_p(&n
->bar
.intmc
, 0);
7107 stl_le_p(&n
->bar
.cc
, 0);
7111 n
->dbbuf_enabled
= false;
7114 static void nvme_ctrl_shutdown(NvmeCtrl
*n
)
7120 memory_region_msync(&n
->pmr
.dev
->mr
, 0, n
->pmr
.dev
->size
);
7123 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
7129 nvme_ns_shutdown(ns
);
7133 static void nvme_select_iocs(NvmeCtrl
*n
)
7138 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
7144 nvme_select_iocs_ns(n
, ns
);
7148 static int nvme_start_ctrl(NvmeCtrl
*n
)
7150 uint64_t cap
= ldq_le_p(&n
->bar
.cap
);
7151 uint32_t cc
= ldl_le_p(&n
->bar
.cc
);
7152 uint32_t aqa
= ldl_le_p(&n
->bar
.aqa
);
7153 uint64_t asq
= ldq_le_p(&n
->bar
.asq
);
7154 uint64_t acq
= ldq_le_p(&n
->bar
.acq
);
7155 uint32_t page_bits
= NVME_CC_MPS(cc
) + 12;
7156 uint32_t page_size
= 1 << page_bits
;
7157 NvmeSecCtrlEntry
*sctrl
= nvme_sctrl(n
);
7159 if (pci_is_vf(PCI_DEVICE(n
)) && !sctrl
->scs
) {
7160 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl
->nvi
),
7161 le16_to_cpu(sctrl
->nvq
));
7164 if (unlikely(n
->cq
[0])) {
7165 trace_pci_nvme_err_startfail_cq();
7168 if (unlikely(n
->sq
[0])) {
7169 trace_pci_nvme_err_startfail_sq();
7172 if (unlikely(asq
& (page_size
- 1))) {
7173 trace_pci_nvme_err_startfail_asq_misaligned(asq
);
7176 if (unlikely(acq
& (page_size
- 1))) {
7177 trace_pci_nvme_err_startfail_acq_misaligned(acq
);
7180 if (unlikely(!(NVME_CAP_CSS(cap
) & (1 << NVME_CC_CSS(cc
))))) {
7181 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc
));
7184 if (unlikely(NVME_CC_MPS(cc
) < NVME_CAP_MPSMIN(cap
))) {
7185 trace_pci_nvme_err_startfail_page_too_small(
7187 NVME_CAP_MPSMIN(cap
));
7190 if (unlikely(NVME_CC_MPS(cc
) >
7191 NVME_CAP_MPSMAX(cap
))) {
7192 trace_pci_nvme_err_startfail_page_too_large(
7194 NVME_CAP_MPSMAX(cap
));
7197 if (unlikely(NVME_CC_IOCQES(cc
) <
7198 NVME_CTRL_CQES_MIN(n
->id_ctrl
.cqes
))) {
7199 trace_pci_nvme_err_startfail_cqent_too_small(
7201 NVME_CTRL_CQES_MIN(cap
));
7204 if (unlikely(NVME_CC_IOCQES(cc
) >
7205 NVME_CTRL_CQES_MAX(n
->id_ctrl
.cqes
))) {
7206 trace_pci_nvme_err_startfail_cqent_too_large(
7208 NVME_CTRL_CQES_MAX(cap
));
7211 if (unlikely(NVME_CC_IOSQES(cc
) <
7212 NVME_CTRL_SQES_MIN(n
->id_ctrl
.sqes
))) {
7213 trace_pci_nvme_err_startfail_sqent_too_small(
7215 NVME_CTRL_SQES_MIN(cap
));
7218 if (unlikely(NVME_CC_IOSQES(cc
) >
7219 NVME_CTRL_SQES_MAX(n
->id_ctrl
.sqes
))) {
7220 trace_pci_nvme_err_startfail_sqent_too_large(
7222 NVME_CTRL_SQES_MAX(cap
));
7225 if (unlikely(!NVME_AQA_ASQS(aqa
))) {
7226 trace_pci_nvme_err_startfail_asqent_sz_zero();
7229 if (unlikely(!NVME_AQA_ACQS(aqa
))) {
7230 trace_pci_nvme_err_startfail_acqent_sz_zero();
7234 n
->page_bits
= page_bits
;
7235 n
->page_size
= page_size
;
7236 n
->max_prp_ents
= n
->page_size
/ sizeof(uint64_t);
7237 n
->cqe_size
= 1 << NVME_CC_IOCQES(cc
);
7238 n
->sqe_size
= 1 << NVME_CC_IOSQES(cc
);
7239 nvme_init_cq(&n
->admin_cq
, n
, acq
, 0, 0, NVME_AQA_ACQS(aqa
) + 1, 1);
7240 nvme_init_sq(&n
->admin_sq
, n
, asq
, 0, 0, NVME_AQA_ASQS(aqa
) + 1);
7242 nvme_set_timestamp(n
, 0ULL);
7244 nvme_select_iocs(n
);
7249 static void nvme_cmb_enable_regs(NvmeCtrl
*n
)
7251 uint32_t cmbloc
= ldl_le_p(&n
->bar
.cmbloc
);
7252 uint32_t cmbsz
= ldl_le_p(&n
->bar
.cmbsz
);
7254 NVME_CMBLOC_SET_CDPCILS(cmbloc
, 1);
7255 NVME_CMBLOC_SET_CDPMLS(cmbloc
, 1);
7256 NVME_CMBLOC_SET_BIR(cmbloc
, NVME_CMB_BIR
);
7257 stl_le_p(&n
->bar
.cmbloc
, cmbloc
);
7259 NVME_CMBSZ_SET_SQS(cmbsz
, 1);
7260 NVME_CMBSZ_SET_CQS(cmbsz
, 0);
7261 NVME_CMBSZ_SET_LISTS(cmbsz
, 1);
7262 NVME_CMBSZ_SET_RDS(cmbsz
, 1);
7263 NVME_CMBSZ_SET_WDS(cmbsz
, 1);
7264 NVME_CMBSZ_SET_SZU(cmbsz
, 2); /* MBs */
7265 NVME_CMBSZ_SET_SZ(cmbsz
, n
->params
.cmb_size_mb
);
7266 stl_le_p(&n
->bar
.cmbsz
, cmbsz
);
7269 static void nvme_write_bar(NvmeCtrl
*n
, hwaddr offset
, uint64_t data
,
7272 PCIDevice
*pci
= PCI_DEVICE(n
);
7273 uint64_t cap
= ldq_le_p(&n
->bar
.cap
);
7274 uint32_t cc
= ldl_le_p(&n
->bar
.cc
);
7275 uint32_t intms
= ldl_le_p(&n
->bar
.intms
);
7276 uint32_t csts
= ldl_le_p(&n
->bar
.csts
);
7277 uint32_t pmrsts
= ldl_le_p(&n
->bar
.pmrsts
);
7279 if (unlikely(offset
& (sizeof(uint32_t) - 1))) {
7280 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32
,
7281 "MMIO write not 32-bit aligned,"
7282 " offset=0x%"PRIx64
"", offset
);
7283 /* should be ignored, fall through for now */
7286 if (unlikely(size
< sizeof(uint32_t))) {
7287 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall
,
7288 "MMIO write smaller than 32-bits,"
7289 " offset=0x%"PRIx64
", size=%u",
7291 /* should be ignored, fall through for now */
7295 case NVME_REG_INTMS
:
7296 if (unlikely(msix_enabled(pci
))) {
7297 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix
,
7298 "undefined access to interrupt mask set"
7299 " when MSI-X is enabled");
7300 /* should be ignored, fall through for now */
7303 stl_le_p(&n
->bar
.intms
, intms
);
7304 n
->bar
.intmc
= n
->bar
.intms
;
7305 trace_pci_nvme_mmio_intm_set(data
& 0xffffffff, intms
);
7308 case NVME_REG_INTMC
:
7309 if (unlikely(msix_enabled(pci
))) {
7310 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix
,
7311 "undefined access to interrupt mask clr"
7312 " when MSI-X is enabled");
7313 /* should be ignored, fall through for now */
7316 stl_le_p(&n
->bar
.intms
, intms
);
7317 n
->bar
.intmc
= n
->bar
.intms
;
7318 trace_pci_nvme_mmio_intm_clr(data
& 0xffffffff, intms
);
7322 stl_le_p(&n
->bar
.cc
, data
);
7324 trace_pci_nvme_mmio_cfg(data
& 0xffffffff);
7326 if (NVME_CC_SHN(data
) && !(NVME_CC_SHN(cc
))) {
7327 trace_pci_nvme_mmio_shutdown_set();
7328 nvme_ctrl_shutdown(n
);
7329 csts
&= ~(CSTS_SHST_MASK
<< CSTS_SHST_SHIFT
);
7330 csts
|= NVME_CSTS_SHST_COMPLETE
;
7331 } else if (!NVME_CC_SHN(data
) && NVME_CC_SHN(cc
)) {
7332 trace_pci_nvme_mmio_shutdown_cleared();
7333 csts
&= ~(CSTS_SHST_MASK
<< CSTS_SHST_SHIFT
);
7336 if (NVME_CC_EN(data
) && !NVME_CC_EN(cc
)) {
7337 if (unlikely(nvme_start_ctrl(n
))) {
7338 trace_pci_nvme_err_startfail();
7339 csts
= NVME_CSTS_FAILED
;
7341 trace_pci_nvme_mmio_start_success();
7342 csts
= NVME_CSTS_READY
;
7344 } else if (!NVME_CC_EN(data
) && NVME_CC_EN(cc
)) {
7345 trace_pci_nvme_mmio_stopped();
7346 nvme_ctrl_reset(n
, NVME_RESET_CONTROLLER
);
7351 stl_le_p(&n
->bar
.csts
, csts
);
7355 if (data
& (1 << 4)) {
7356 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported
,
7357 "attempted to W1C CSTS.NSSRO"
7358 " but CAP.NSSRS is zero (not supported)");
7359 } else if (data
!= 0) {
7360 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts
,
7361 "attempted to set a read only bit"
7362 " of controller status");
7366 if (data
== 0x4e564d65) {
7367 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
7369 /* The spec says that writes of other values have no effect */
7374 stl_le_p(&n
->bar
.aqa
, data
);
7375 trace_pci_nvme_mmio_aqattr(data
& 0xffffffff);
7378 stn_le_p(&n
->bar
.asq
, size
, data
);
7379 trace_pci_nvme_mmio_asqaddr(data
);
7381 case NVME_REG_ASQ
+ 4:
7382 stl_le_p((uint8_t *)&n
->bar
.asq
+ 4, data
);
7383 trace_pci_nvme_mmio_asqaddr_hi(data
, ldq_le_p(&n
->bar
.asq
));
7386 trace_pci_nvme_mmio_acqaddr(data
);
7387 stn_le_p(&n
->bar
.acq
, size
, data
);
7389 case NVME_REG_ACQ
+ 4:
7390 stl_le_p((uint8_t *)&n
->bar
.acq
+ 4, data
);
7391 trace_pci_nvme_mmio_acqaddr_hi(data
, ldq_le_p(&n
->bar
.acq
));
7393 case NVME_REG_CMBLOC
:
7394 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved
,
7395 "invalid write to reserved CMBLOC"
7396 " when CMBSZ is zero, ignored");
7398 case NVME_REG_CMBSZ
:
7399 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly
,
7400 "invalid write to read only CMBSZ, ignored");
7402 case NVME_REG_CMBMSC
:
7403 if (!NVME_CAP_CMBS(cap
)) {
7407 stn_le_p(&n
->bar
.cmbmsc
, size
, data
);
7408 n
->cmb
.cmse
= false;
7410 if (NVME_CMBMSC_CRE(data
)) {
7411 nvme_cmb_enable_regs(n
);
7413 if (NVME_CMBMSC_CMSE(data
)) {
7414 uint64_t cmbmsc
= ldq_le_p(&n
->bar
.cmbmsc
);
7415 hwaddr cba
= NVME_CMBMSC_CBA(cmbmsc
) << CMBMSC_CBA_SHIFT
;
7416 if (cba
+ int128_get64(n
->cmb
.mem
.size
) < cba
) {
7417 uint32_t cmbsts
= ldl_le_p(&n
->bar
.cmbsts
);
7418 NVME_CMBSTS_SET_CBAI(cmbsts
, 1);
7419 stl_le_p(&n
->bar
.cmbsts
, cmbsts
);
7432 case NVME_REG_CMBMSC
+ 4:
7433 stl_le_p((uint8_t *)&n
->bar
.cmbmsc
+ 4, data
);
7436 case NVME_REG_PMRCAP
:
7437 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly
,
7438 "invalid write to PMRCAP register, ignored");
7440 case NVME_REG_PMRCTL
:
7441 if (!NVME_CAP_PMRS(cap
)) {
7445 stl_le_p(&n
->bar
.pmrctl
, data
);
7446 if (NVME_PMRCTL_EN(data
)) {
7447 memory_region_set_enabled(&n
->pmr
.dev
->mr
, true);
7450 memory_region_set_enabled(&n
->pmr
.dev
->mr
, false);
7451 NVME_PMRSTS_SET_NRDY(pmrsts
, 1);
7452 n
->pmr
.cmse
= false;
7454 stl_le_p(&n
->bar
.pmrsts
, pmrsts
);
7456 case NVME_REG_PMRSTS
:
7457 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly
,
7458 "invalid write to PMRSTS register, ignored");
7460 case NVME_REG_PMREBS
:
7461 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly
,
7462 "invalid write to PMREBS register, ignored");
7464 case NVME_REG_PMRSWTP
:
7465 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly
,
7466 "invalid write to PMRSWTP register, ignored");
7468 case NVME_REG_PMRMSCL
:
7469 if (!NVME_CAP_PMRS(cap
)) {
7473 stl_le_p(&n
->bar
.pmrmscl
, data
);
7474 n
->pmr
.cmse
= false;
7476 if (NVME_PMRMSCL_CMSE(data
)) {
7477 uint64_t pmrmscu
= ldl_le_p(&n
->bar
.pmrmscu
);
7478 hwaddr cba
= pmrmscu
<< 32 |
7479 (NVME_PMRMSCL_CBA(data
) << PMRMSCL_CBA_SHIFT
);
7480 if (cba
+ int128_get64(n
->pmr
.dev
->mr
.size
) < cba
) {
7481 NVME_PMRSTS_SET_CBAI(pmrsts
, 1);
7482 stl_le_p(&n
->bar
.pmrsts
, pmrsts
);
7491 case NVME_REG_PMRMSCU
:
7492 if (!NVME_CAP_PMRS(cap
)) {
7496 stl_le_p(&n
->bar
.pmrmscu
, data
);
7499 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid
,
7500 "invalid MMIO write,"
7501 " offset=0x%"PRIx64
", data=%"PRIx64
"",
7507 static uint64_t nvme_mmio_read(void *opaque
, hwaddr addr
, unsigned size
)
7509 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
7510 uint8_t *ptr
= (uint8_t *)&n
->bar
;
7512 trace_pci_nvme_mmio_read(addr
, size
);
7514 if (unlikely(addr
& (sizeof(uint32_t) - 1))) {
7515 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32
,
7516 "MMIO read not 32-bit aligned,"
7517 " offset=0x%"PRIx64
"", addr
);
7518 /* should RAZ, fall through for now */
7519 } else if (unlikely(size
< sizeof(uint32_t))) {
7520 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall
,
7521 "MMIO read smaller than 32-bits,"
7522 " offset=0x%"PRIx64
"", addr
);
7523 /* should RAZ, fall through for now */
7526 if (addr
> sizeof(n
->bar
) - size
) {
7527 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs
,
7528 "MMIO read beyond last register,"
7529 " offset=0x%"PRIx64
", returning 0", addr
);
7534 if (pci_is_vf(PCI_DEVICE(n
)) && !nvme_sctrl(n
)->scs
&&
7535 addr
!= NVME_REG_CSTS
) {
7536 trace_pci_nvme_err_ignored_mmio_vf_offline(addr
, size
);
7541 * When PMRWBM bit 1 is set then read from
7542 * from PMRSTS should ensure prior writes
7543 * made it to persistent media
7545 if (addr
== NVME_REG_PMRSTS
&&
7546 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n
->bar
.pmrcap
)) & 0x02)) {
7547 memory_region_msync(&n
->pmr
.dev
->mr
, 0, n
->pmr
.dev
->size
);
7550 return ldn_le_p(ptr
+ addr
, size
);
7553 static void nvme_process_db(NvmeCtrl
*n
, hwaddr addr
, int val
)
7555 PCIDevice
*pci
= PCI_DEVICE(n
);
7558 if (unlikely(addr
& ((1 << 2) - 1))) {
7559 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned
,
7560 "doorbell write not 32-bit aligned,"
7561 " offset=0x%"PRIx64
", ignoring", addr
);
7565 if (((addr
- 0x1000) >> 2) & 1) {
7566 /* Completion queue doorbell write */
7568 uint16_t new_head
= val
& 0xffff;
7572 qid
= (addr
- (0x1000 + (1 << 2))) >> 3;
7573 if (unlikely(nvme_check_cqid(n
, qid
))) {
7574 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq
,
7575 "completion queue doorbell write"
7576 " for nonexistent queue,"
7577 " sqid=%"PRIu32
", ignoring", qid
);
7580 * NVM Express v1.3d, Section 4.1 state: "If host software writes
7581 * an invalid value to the Submission Queue Tail Doorbell or
7582 * Completion Queue Head Doorbell regiter and an Asynchronous Event
7583 * Request command is outstanding, then an asynchronous event is
7584 * posted to the Admin Completion Queue with a status code of
7585 * Invalid Doorbell Write Value."
7587 * Also note that the spec includes the "Invalid Doorbell Register"
7588 * status code, but nowhere does it specify when to use it.
7589 * However, it seems reasonable to use it here in a similar
7592 if (n
->outstanding_aers
) {
7593 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
7594 NVME_AER_INFO_ERR_INVALID_DB_REGISTER
,
7595 NVME_LOG_ERROR_INFO
);
7602 if (unlikely(new_head
>= cq
->size
)) {
7603 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead
,
7604 "completion queue doorbell write value"
7605 " beyond queue size, sqid=%"PRIu32
","
7606 " new_head=%"PRIu16
", ignoring",
7609 if (n
->outstanding_aers
) {
7610 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
7611 NVME_AER_INFO_ERR_INVALID_DB_VALUE
,
7612 NVME_LOG_ERROR_INFO
);
7618 trace_pci_nvme_mmio_doorbell_cq(cq
->cqid
, new_head
);
7620 start_sqs
= nvme_cq_full(cq
) ? 1 : 0;
7621 cq
->head
= new_head
;
7622 if (!qid
&& n
->dbbuf_enabled
) {
7623 pci_dma_write(pci
, cq
->db_addr
, &cq
->head
, sizeof(cq
->head
));
7627 QTAILQ_FOREACH(sq
, &cq
->sq_list
, entry
) {
7628 qemu_bh_schedule(sq
->bh
);
7630 qemu_bh_schedule(cq
->bh
);
7633 if (cq
->tail
== cq
->head
) {
7634 if (cq
->irq_enabled
) {
7638 nvme_irq_deassert(n
, cq
);
7641 /* Submission queue doorbell write */
7643 uint16_t new_tail
= val
& 0xffff;
7646 qid
= (addr
- 0x1000) >> 3;
7647 if (unlikely(nvme_check_sqid(n
, qid
))) {
7648 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq
,
7649 "submission queue doorbell write"
7650 " for nonexistent queue,"
7651 " sqid=%"PRIu32
", ignoring", qid
);
7653 if (n
->outstanding_aers
) {
7654 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
7655 NVME_AER_INFO_ERR_INVALID_DB_REGISTER
,
7656 NVME_LOG_ERROR_INFO
);
7663 if (unlikely(new_tail
>= sq
->size
)) {
7664 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail
,
7665 "submission queue doorbell write value"
7666 " beyond queue size, sqid=%"PRIu32
","
7667 " new_tail=%"PRIu16
", ignoring",
7670 if (n
->outstanding_aers
) {
7671 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
7672 NVME_AER_INFO_ERR_INVALID_DB_VALUE
,
7673 NVME_LOG_ERROR_INFO
);
7679 trace_pci_nvme_mmio_doorbell_sq(sq
->sqid
, new_tail
);
7681 sq
->tail
= new_tail
;
7682 if (!qid
&& n
->dbbuf_enabled
) {
7684 * The spec states "the host shall also update the controller's
7685 * corresponding doorbell property to match the value of that entry
7686 * in the Shadow Doorbell buffer."
7688 * Since this context is currently a VM trap, we can safely enforce
7689 * the requirement from the device side in case the host is
7692 * Note, we shouldn't have to do this, but various drivers
7693 * including ones that run on Linux, are not updating Admin Queues,
7694 * so we can't trust reading it for an appropriate sq tail.
7696 pci_dma_write(pci
, sq
->db_addr
, &sq
->tail
, sizeof(sq
->tail
));
7699 qemu_bh_schedule(sq
->bh
);
7703 static void nvme_mmio_write(void *opaque
, hwaddr addr
, uint64_t data
,
7706 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
7708 trace_pci_nvme_mmio_write(addr
, data
, size
);
7710 if (pci_is_vf(PCI_DEVICE(n
)) && !nvme_sctrl(n
)->scs
&&
7711 addr
!= NVME_REG_CSTS
) {
7712 trace_pci_nvme_err_ignored_mmio_vf_offline(addr
, size
);
7716 if (addr
< sizeof(n
->bar
)) {
7717 nvme_write_bar(n
, addr
, data
, size
);
7719 nvme_process_db(n
, addr
, data
);
7723 static const MemoryRegionOps nvme_mmio_ops
= {
7724 .read
= nvme_mmio_read
,
7725 .write
= nvme_mmio_write
,
7726 .endianness
= DEVICE_LITTLE_ENDIAN
,
7728 .min_access_size
= 2,
7729 .max_access_size
= 8,
7733 static void nvme_cmb_write(void *opaque
, hwaddr addr
, uint64_t data
,
7736 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
7737 stn_le_p(&n
->cmb
.buf
[addr
], size
, data
);
7740 static uint64_t nvme_cmb_read(void *opaque
, hwaddr addr
, unsigned size
)
7742 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
7743 return ldn_le_p(&n
->cmb
.buf
[addr
], size
);
7746 static const MemoryRegionOps nvme_cmb_ops
= {
7747 .read
= nvme_cmb_read
,
7748 .write
= nvme_cmb_write
,
7749 .endianness
= DEVICE_LITTLE_ENDIAN
,
7751 .min_access_size
= 1,
7752 .max_access_size
= 8,
7756 static bool nvme_check_params(NvmeCtrl
*n
, Error
**errp
)
7758 NvmeParams
*params
= &n
->params
;
7760 if (params
->num_queues
) {
7761 warn_report("num_queues is deprecated; please use max_ioqpairs "
7764 params
->max_ioqpairs
= params
->num_queues
- 1;
7767 if (n
->namespace.blkconf
.blk
&& n
->subsys
) {
7768 error_setg(errp
, "subsystem support is unavailable with legacy "
7769 "namespace ('drive' property)");
7773 if (params
->max_ioqpairs
< 1 ||
7774 params
->max_ioqpairs
> NVME_MAX_IOQPAIRS
) {
7775 error_setg(errp
, "max_ioqpairs must be between 1 and %d",
7780 if (params
->msix_qsize
< 1 ||
7781 params
->msix_qsize
> PCI_MSIX_FLAGS_QSIZE
+ 1) {
7782 error_setg(errp
, "msix_qsize must be between 1 and %d",
7783 PCI_MSIX_FLAGS_QSIZE
+ 1);
7787 if (!params
->serial
) {
7788 error_setg(errp
, "serial property not set");
7793 if (host_memory_backend_is_mapped(n
->pmr
.dev
)) {
7794 error_setg(errp
, "can't use already busy memdev: %s",
7795 object_get_canonical_path_component(OBJECT(n
->pmr
.dev
)));
7799 if (!is_power_of_2(n
->pmr
.dev
->size
)) {
7800 error_setg(errp
, "pmr backend size needs to be power of 2 in size");
7804 host_memory_backend_set_mapped(n
->pmr
.dev
, true);
7807 if (n
->params
.zasl
> n
->params
.mdts
) {
7808 error_setg(errp
, "zoned.zasl (Zone Append Size Limit) must be less "
7809 "than or equal to mdts (Maximum Data Transfer Size)");
7813 if (!n
->params
.vsl
) {
7814 error_setg(errp
, "vsl must be non-zero");
7818 if (params
->sriov_max_vfs
) {
7820 error_setg(errp
, "subsystem is required for the use of SR-IOV");
7824 if (params
->sriov_max_vfs
> NVME_MAX_VFS
) {
7825 error_setg(errp
, "sriov_max_vfs must be between 0 and %d",
7830 if (params
->cmb_size_mb
) {
7831 error_setg(errp
, "CMB is not supported with SR-IOV");
7836 error_setg(errp
, "PMR is not supported with SR-IOV");
7840 if (!params
->sriov_vq_flexible
|| !params
->sriov_vi_flexible
) {
7841 error_setg(errp
, "both sriov_vq_flexible and sriov_vi_flexible"
7842 " must be set for the use of SR-IOV");
7846 if (params
->sriov_vq_flexible
< params
->sriov_max_vfs
* 2) {
7847 error_setg(errp
, "sriov_vq_flexible must be greater than or equal"
7848 " to %d (sriov_max_vfs * 2)", params
->sriov_max_vfs
* 2);
7852 if (params
->max_ioqpairs
< params
->sriov_vq_flexible
+ 2) {
7853 error_setg(errp
, "(max_ioqpairs - sriov_vq_flexible) must be"
7854 " greater than or equal to 2");
7858 if (params
->sriov_vi_flexible
< params
->sriov_max_vfs
) {
7859 error_setg(errp
, "sriov_vi_flexible must be greater than or equal"
7860 " to %d (sriov_max_vfs)", params
->sriov_max_vfs
);
7864 if (params
->msix_qsize
< params
->sriov_vi_flexible
+ 1) {
7865 error_setg(errp
, "(msix_qsize - sriov_vi_flexible) must be"
7866 " greater than or equal to 1");
7870 if (params
->sriov_max_vi_per_vf
&&
7871 (params
->sriov_max_vi_per_vf
- 1) % NVME_VF_RES_GRANULARITY
) {
7872 error_setg(errp
, "sriov_max_vi_per_vf must meet:"
7873 " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7874 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY
);
7878 if (params
->sriov_max_vq_per_vf
&&
7879 (params
->sriov_max_vq_per_vf
< 2 ||
7880 (params
->sriov_max_vq_per_vf
- 1) % NVME_VF_RES_GRANULARITY
)) {
7881 error_setg(errp
, "sriov_max_vq_per_vf must meet:"
7882 " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7883 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY
);
7891 static void nvme_init_state(NvmeCtrl
*n
)
7893 NvmePriCtrlCap
*cap
= &n
->pri_ctrl_cap
;
7894 NvmeSecCtrlList
*list
= &n
->sec_ctrl_list
;
7895 NvmeSecCtrlEntry
*sctrl
;
7896 PCIDevice
*pci
= PCI_DEVICE(n
);
7900 if (pci_is_vf(pci
)) {
7901 sctrl
= nvme_sctrl(n
);
7903 n
->conf_ioqpairs
= sctrl
->nvq
? le16_to_cpu(sctrl
->nvq
) - 1 : 0;
7904 n
->conf_msix_qsize
= sctrl
->nvi
? le16_to_cpu(sctrl
->nvi
) : 1;
7906 max_vfs
= n
->params
.sriov_max_vfs
;
7907 n
->conf_ioqpairs
= n
->params
.max_ioqpairs
;
7908 n
->conf_msix_qsize
= n
->params
.msix_qsize
;
7911 n
->sq
= g_new0(NvmeSQueue
*, n
->params
.max_ioqpairs
+ 1);
7912 n
->cq
= g_new0(NvmeCQueue
*, n
->params
.max_ioqpairs
+ 1);
7913 n
->temperature
= NVME_TEMPERATURE
;
7914 n
->features
.temp_thresh_hi
= NVME_TEMPERATURE_WARNING
;
7915 n
->starttime_ms
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
7916 n
->aer_reqs
= g_new0(NvmeRequest
*, n
->params
.aerl
+ 1);
7917 QTAILQ_INIT(&n
->aer_queue
);
7919 list
->numcntl
= cpu_to_le16(max_vfs
);
7920 for (i
= 0; i
< max_vfs
; i
++) {
7921 sctrl
= &list
->sec
[i
];
7922 sctrl
->pcid
= cpu_to_le16(n
->cntlid
);
7923 sctrl
->vfn
= cpu_to_le16(i
+ 1);
7926 cap
->cntlid
= cpu_to_le16(n
->cntlid
);
7927 cap
->crt
= NVME_CRT_VQ
| NVME_CRT_VI
;
7929 if (pci_is_vf(pci
)) {
7930 cap
->vqprt
= cpu_to_le16(1 + n
->conf_ioqpairs
);
7932 cap
->vqprt
= cpu_to_le16(1 + n
->params
.max_ioqpairs
-
7933 n
->params
.sriov_vq_flexible
);
7934 cap
->vqfrt
= cpu_to_le32(n
->params
.sriov_vq_flexible
);
7935 cap
->vqrfap
= cap
->vqfrt
;
7936 cap
->vqgran
= cpu_to_le16(NVME_VF_RES_GRANULARITY
);
7937 cap
->vqfrsm
= n
->params
.sriov_max_vq_per_vf
?
7938 cpu_to_le16(n
->params
.sriov_max_vq_per_vf
) :
7939 cap
->vqfrt
/ MAX(max_vfs
, 1);
7942 if (pci_is_vf(pci
)) {
7943 cap
->viprt
= cpu_to_le16(n
->conf_msix_qsize
);
7945 cap
->viprt
= cpu_to_le16(n
->params
.msix_qsize
-
7946 n
->params
.sriov_vi_flexible
);
7947 cap
->vifrt
= cpu_to_le32(n
->params
.sriov_vi_flexible
);
7948 cap
->virfap
= cap
->vifrt
;
7949 cap
->vigran
= cpu_to_le16(NVME_VF_RES_GRANULARITY
);
7950 cap
->vifrsm
= n
->params
.sriov_max_vi_per_vf
?
7951 cpu_to_le16(n
->params
.sriov_max_vi_per_vf
) :
7952 cap
->vifrt
/ MAX(max_vfs
, 1);
7956 static void nvme_init_cmb(NvmeCtrl
*n
, PCIDevice
*pci_dev
)
7958 uint64_t cmb_size
= n
->params
.cmb_size_mb
* MiB
;
7959 uint64_t cap
= ldq_le_p(&n
->bar
.cap
);
7961 n
->cmb
.buf
= g_malloc0(cmb_size
);
7962 memory_region_init_io(&n
->cmb
.mem
, OBJECT(n
), &nvme_cmb_ops
, n
,
7963 "nvme-cmb", cmb_size
);
7964 pci_register_bar(pci_dev
, NVME_CMB_BIR
,
7965 PCI_BASE_ADDRESS_SPACE_MEMORY
|
7966 PCI_BASE_ADDRESS_MEM_TYPE_64
|
7967 PCI_BASE_ADDRESS_MEM_PREFETCH
, &n
->cmb
.mem
);
7969 NVME_CAP_SET_CMBS(cap
, 1);
7970 stq_le_p(&n
->bar
.cap
, cap
);
7972 if (n
->params
.legacy_cmb
) {
7973 nvme_cmb_enable_regs(n
);
7978 static void nvme_init_pmr(NvmeCtrl
*n
, PCIDevice
*pci_dev
)
7980 uint32_t pmrcap
= ldl_le_p(&n
->bar
.pmrcap
);
7982 NVME_PMRCAP_SET_RDS(pmrcap
, 1);
7983 NVME_PMRCAP_SET_WDS(pmrcap
, 1);
7984 NVME_PMRCAP_SET_BIR(pmrcap
, NVME_PMR_BIR
);
7985 /* Turn on bit 1 support */
7986 NVME_PMRCAP_SET_PMRWBM(pmrcap
, 0x02);
7987 NVME_PMRCAP_SET_CMSS(pmrcap
, 1);
7988 stl_le_p(&n
->bar
.pmrcap
, pmrcap
);
7990 pci_register_bar(pci_dev
, NVME_PMR_BIR
,
7991 PCI_BASE_ADDRESS_SPACE_MEMORY
|
7992 PCI_BASE_ADDRESS_MEM_TYPE_64
|
7993 PCI_BASE_ADDRESS_MEM_PREFETCH
, &n
->pmr
.dev
->mr
);
7995 memory_region_set_enabled(&n
->pmr
.dev
->mr
, false);
7998 static uint64_t nvme_bar_size(unsigned total_queues
, unsigned total_irqs
,
7999 unsigned *msix_table_offset
,
8000 unsigned *msix_pba_offset
)
8002 uint64_t bar_size
, msix_table_size
, msix_pba_size
;
8004 bar_size
= sizeof(NvmeBar
) + 2 * total_queues
* NVME_DB_SIZE
;
8005 bar_size
= QEMU_ALIGN_UP(bar_size
, 4 * KiB
);
8007 if (msix_table_offset
) {
8008 *msix_table_offset
= bar_size
;
8011 msix_table_size
= PCI_MSIX_ENTRY_SIZE
* total_irqs
;
8012 bar_size
+= msix_table_size
;
8013 bar_size
= QEMU_ALIGN_UP(bar_size
, 4 * KiB
);
8015 if (msix_pba_offset
) {
8016 *msix_pba_offset
= bar_size
;
8019 msix_pba_size
= QEMU_ALIGN_UP(total_irqs
, 64) / 8;
8020 bar_size
+= msix_pba_size
;
8022 bar_size
= pow2ceil(bar_size
);
8026 static void nvme_init_sriov(NvmeCtrl
*n
, PCIDevice
*pci_dev
, uint16_t offset
)
8028 uint16_t vf_dev_id
= n
->params
.use_intel_id
?
8029 PCI_DEVICE_ID_INTEL_NVME
: PCI_DEVICE_ID_REDHAT_NVME
;
8030 NvmePriCtrlCap
*cap
= &n
->pri_ctrl_cap
;
8031 uint64_t bar_size
= nvme_bar_size(le16_to_cpu(cap
->vqfrsm
),
8032 le16_to_cpu(cap
->vifrsm
),
8035 pcie_sriov_pf_init(pci_dev
, offset
, "nvme", vf_dev_id
,
8036 n
->params
.sriov_max_vfs
, n
->params
.sriov_max_vfs
,
8037 NVME_VF_OFFSET
, NVME_VF_STRIDE
);
8039 pcie_sriov_pf_init_vf_bar(pci_dev
, 0, PCI_BASE_ADDRESS_SPACE_MEMORY
|
8040 PCI_BASE_ADDRESS_MEM_TYPE_64
, bar_size
);
8043 static int nvme_add_pm_capability(PCIDevice
*pci_dev
, uint8_t offset
)
8048 ret
= pci_add_capability(pci_dev
, PCI_CAP_ID_PM
, offset
,
8049 PCI_PM_SIZEOF
, &err
);
8051 error_report_err(err
);
8055 pci_set_word(pci_dev
->config
+ offset
+ PCI_PM_PMC
,
8056 PCI_PM_CAP_VER_1_2
);
8057 pci_set_word(pci_dev
->config
+ offset
+ PCI_PM_CTRL
,
8058 PCI_PM_CTRL_NO_SOFT_RESET
);
8059 pci_set_word(pci_dev
->wmask
+ offset
+ PCI_PM_CTRL
,
8060 PCI_PM_CTRL_STATE_MASK
);
8065 static bool nvme_init_pci(NvmeCtrl
*n
, PCIDevice
*pci_dev
, Error
**errp
)
8068 uint8_t *pci_conf
= pci_dev
->config
;
8070 unsigned msix_table_offset
, msix_pba_offset
;
8073 pci_conf
[PCI_INTERRUPT_PIN
] = 1;
8074 pci_config_set_prog_interface(pci_conf
, 0x2);
8076 if (n
->params
.use_intel_id
) {
8077 pci_config_set_vendor_id(pci_conf
, PCI_VENDOR_ID_INTEL
);
8078 pci_config_set_device_id(pci_conf
, PCI_DEVICE_ID_INTEL_NVME
);
8080 pci_config_set_vendor_id(pci_conf
, PCI_VENDOR_ID_REDHAT
);
8081 pci_config_set_device_id(pci_conf
, PCI_DEVICE_ID_REDHAT_NVME
);
8084 pci_config_set_class(pci_conf
, PCI_CLASS_STORAGE_EXPRESS
);
8085 nvme_add_pm_capability(pci_dev
, 0x60);
8086 pcie_endpoint_cap_init(pci_dev
, 0x80);
8087 pcie_cap_flr_init(pci_dev
);
8088 if (n
->params
.sriov_max_vfs
) {
8089 pcie_ari_init(pci_dev
, 0x100, 1);
8092 /* add one to max_ioqpairs to account for the admin queue pair */
8093 bar_size
= nvme_bar_size(n
->params
.max_ioqpairs
+ 1, n
->params
.msix_qsize
,
8094 &msix_table_offset
, &msix_pba_offset
);
8096 memory_region_init(&n
->bar0
, OBJECT(n
), "nvme-bar0", bar_size
);
8097 memory_region_init_io(&n
->iomem
, OBJECT(n
), &nvme_mmio_ops
, n
, "nvme",
8099 memory_region_add_subregion(&n
->bar0
, 0, &n
->iomem
);
8101 if (pci_is_vf(pci_dev
)) {
8102 pcie_sriov_vf_register_bar(pci_dev
, 0, &n
->bar0
);
8104 pci_register_bar(pci_dev
, 0, PCI_BASE_ADDRESS_SPACE_MEMORY
|
8105 PCI_BASE_ADDRESS_MEM_TYPE_64
, &n
->bar0
);
8107 ret
= msix_init(pci_dev
, n
->params
.msix_qsize
,
8108 &n
->bar0
, 0, msix_table_offset
,
8109 &n
->bar0
, 0, msix_pba_offset
, 0, errp
);
8110 if (ret
== -ENOTSUP
) {
8111 /* report that msix is not supported, but do not error out */
8112 warn_report_err(*errp
);
8114 } else if (ret
< 0) {
8115 /* propagate error to caller */
8119 nvme_update_msixcap_ts(pci_dev
, n
->conf_msix_qsize
);
8121 if (n
->params
.cmb_size_mb
) {
8122 nvme_init_cmb(n
, pci_dev
);
8126 nvme_init_pmr(n
, pci_dev
);
8129 if (!pci_is_vf(pci_dev
) && n
->params
.sriov_max_vfs
) {
8130 nvme_init_sriov(n
, pci_dev
, 0x120);
8136 static void nvme_init_subnqn(NvmeCtrl
*n
)
8138 NvmeSubsystem
*subsys
= n
->subsys
;
8139 NvmeIdCtrl
*id
= &n
->id_ctrl
;
8142 snprintf((char *)id
->subnqn
, sizeof(id
->subnqn
),
8143 "nqn.2019-08.org.qemu:%s", n
->params
.serial
);
8145 pstrcpy((char *)id
->subnqn
, sizeof(id
->subnqn
), (char*)subsys
->subnqn
);
8149 static void nvme_init_ctrl(NvmeCtrl
*n
, PCIDevice
*pci_dev
)
8151 NvmeIdCtrl
*id
= &n
->id_ctrl
;
8152 uint8_t *pci_conf
= pci_dev
->config
;
8153 uint64_t cap
= ldq_le_p(&n
->bar
.cap
);
8154 NvmeSecCtrlEntry
*sctrl
= nvme_sctrl(n
);
8157 id
->vid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_VENDOR_ID
));
8158 id
->ssvid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_SUBSYSTEM_VENDOR_ID
));
8159 strpadcpy((char *)id
->mn
, sizeof(id
->mn
), "QEMU NVMe Ctrl", ' ');
8160 strpadcpy((char *)id
->fr
, sizeof(id
->fr
), QEMU_VERSION
, ' ');
8161 strpadcpy((char *)id
->sn
, sizeof(id
->sn
), n
->params
.serial
, ' ');
8163 id
->cntlid
= cpu_to_le16(n
->cntlid
);
8165 id
->oaes
= cpu_to_le32(NVME_OAES_NS_ATTR
);
8166 ctratt
= NVME_CTRATT_ELBAS
;
8170 if (n
->params
.use_intel_id
) {
8180 id
->mdts
= n
->params
.mdts
;
8181 id
->ver
= cpu_to_le32(NVME_SPEC_VER
);
8183 cpu_to_le16(NVME_OACS_NS_MGMT
| NVME_OACS_FORMAT
| NVME_OACS_DBBUF
|
8184 NVME_OACS_DIRECTIVES
);
8185 id
->cntrltype
= 0x1;
8188 * Because the controller always completes the Abort command immediately,
8189 * there can never be more than one concurrently executing Abort command,
8190 * so this value is never used for anything. Note that there can easily be
8191 * many Abort commands in the queues, but they are not considered
8192 * "executing" until processed by nvme_abort.
8194 * The specification recommends a value of 3 for Abort Command Limit (four
8195 * concurrently outstanding Abort commands), so lets use that though it is
8199 id
->aerl
= n
->params
.aerl
;
8200 id
->frmw
= (NVME_NUM_FW_SLOTS
<< 1) | NVME_FRMW_SLOT1_RO
;
8201 id
->lpa
= NVME_LPA_NS_SMART
| NVME_LPA_CSE
| NVME_LPA_EXTENDED
;
8203 /* recommended default value (~70 C) */
8204 id
->wctemp
= cpu_to_le16(NVME_TEMPERATURE_WARNING
);
8205 id
->cctemp
= cpu_to_le16(NVME_TEMPERATURE_CRITICAL
);
8207 id
->sqes
= (0x6 << 4) | 0x6;
8208 id
->cqes
= (0x4 << 4) | 0x4;
8209 id
->nn
= cpu_to_le32(NVME_MAX_NAMESPACES
);
8210 id
->oncs
= cpu_to_le16(NVME_ONCS_WRITE_ZEROES
| NVME_ONCS_TIMESTAMP
|
8211 NVME_ONCS_FEATURES
| NVME_ONCS_DSM
|
8212 NVME_ONCS_COMPARE
| NVME_ONCS_COPY
);
8215 * NOTE: If this device ever supports a command set that does NOT use 0x0
8216 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
8217 * should probably be removed.
8219 * See comment in nvme_io_cmd.
8221 id
->vwc
= NVME_VWC_NSID_BROADCAST_SUPPORT
| NVME_VWC_PRESENT
;
8223 id
->ocfs
= cpu_to_le16(NVME_OCFS_COPY_FORMAT_0
| NVME_OCFS_COPY_FORMAT_1
);
8224 id
->sgls
= cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN
);
8226 nvme_init_subnqn(n
);
8228 id
->psd
[0].mp
= cpu_to_le16(0x9c4);
8229 id
->psd
[0].enlat
= cpu_to_le32(0x10);
8230 id
->psd
[0].exlat
= cpu_to_le32(0x4);
8233 id
->cmic
|= NVME_CMIC_MULTI_CTRL
;
8234 ctratt
|= NVME_CTRATT_ENDGRPS
;
8236 id
->endgidmax
= cpu_to_le16(0x1);
8238 if (n
->subsys
->endgrp
.fdp
.enabled
) {
8239 ctratt
|= NVME_CTRATT_FDPS
;
8243 id
->ctratt
= cpu_to_le32(ctratt
);
8245 NVME_CAP_SET_MQES(cap
, 0x7ff);
8246 NVME_CAP_SET_CQR(cap
, 1);
8247 NVME_CAP_SET_TO(cap
, 0xf);
8248 NVME_CAP_SET_CSS(cap
, NVME_CAP_CSS_NVM
);
8249 NVME_CAP_SET_CSS(cap
, NVME_CAP_CSS_CSI_SUPP
);
8250 NVME_CAP_SET_CSS(cap
, NVME_CAP_CSS_ADMIN_ONLY
);
8251 NVME_CAP_SET_MPSMAX(cap
, 4);
8252 NVME_CAP_SET_CMBS(cap
, n
->params
.cmb_size_mb
? 1 : 0);
8253 NVME_CAP_SET_PMRS(cap
, n
->pmr
.dev
? 1 : 0);
8254 stq_le_p(&n
->bar
.cap
, cap
);
8256 stl_le_p(&n
->bar
.vs
, NVME_SPEC_VER
);
8257 n
->bar
.intmc
= n
->bar
.intms
= 0;
8259 if (pci_is_vf(pci_dev
) && !sctrl
->scs
) {
8260 stl_le_p(&n
->bar
.csts
, NVME_CSTS_FAILED
);
8264 static int nvme_init_subsys(NvmeCtrl
*n
, Error
**errp
)
8272 cntlid
= nvme_subsys_register_ctrl(n
, errp
);
8282 void nvme_attach_ns(NvmeCtrl
*n
, NvmeNamespace
*ns
)
8284 uint32_t nsid
= ns
->params
.nsid
;
8285 assert(nsid
&& nsid
<= NVME_MAX_NAMESPACES
);
8287 n
->namespaces
[nsid
] = ns
;
8290 n
->dmrsl
= MIN_NON_ZERO(n
->dmrsl
,
8291 BDRV_REQUEST_MAX_BYTES
/ nvme_l2b(ns
, 1));
8294 static void nvme_realize(PCIDevice
*pci_dev
, Error
**errp
)
8296 NvmeCtrl
*n
= NVME(pci_dev
);
8297 DeviceState
*dev
= DEVICE(pci_dev
);
8299 NvmeCtrl
*pn
= NVME(pcie_sriov_get_pf(pci_dev
));
8301 if (pci_is_vf(pci_dev
)) {
8303 * VFs derive settings from the parent. PF's lifespan exceeds
8304 * that of VF's, so it's safe to share params.serial.
8306 memcpy(&n
->params
, &pn
->params
, sizeof(NvmeParams
));
8307 n
->subsys
= pn
->subsys
;
8310 if (!nvme_check_params(n
, errp
)) {
8314 qbus_init(&n
->bus
, sizeof(NvmeBus
), TYPE_NVME_BUS
, dev
, dev
->id
);
8316 if (nvme_init_subsys(n
, errp
)) {
8320 if (!nvme_init_pci(n
, pci_dev
, errp
)) {
8323 nvme_init_ctrl(n
, pci_dev
);
8325 /* setup a namespace if the controller drive property was given */
8326 if (n
->namespace.blkconf
.blk
) {
8328 ns
->params
.nsid
= 1;
8330 if (nvme_ns_setup(ns
, errp
)) {
8334 nvme_attach_ns(n
, ns
);
8338 static void nvme_exit(PCIDevice
*pci_dev
)
8340 NvmeCtrl
*n
= NVME(pci_dev
);
8344 nvme_ctrl_reset(n
, NVME_RESET_FUNCTION
);
8347 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
8354 nvme_subsys_unregister_ctrl(n
->subsys
, n
);
8359 g_free(n
->aer_reqs
);
8361 if (n
->params
.cmb_size_mb
) {
8366 host_memory_backend_set_mapped(n
->pmr
.dev
, false);
8369 if (!pci_is_vf(pci_dev
) && n
->params
.sriov_max_vfs
) {
8370 pcie_sriov_pf_exit(pci_dev
);
8373 msix_uninit(pci_dev
, &n
->bar0
, &n
->bar0
);
8374 memory_region_del_subregion(&n
->bar0
, &n
->iomem
);
8377 static Property nvme_props
[] = {
8378 DEFINE_BLOCK_PROPERTIES(NvmeCtrl
, namespace.blkconf
),
8379 DEFINE_PROP_LINK("pmrdev", NvmeCtrl
, pmr
.dev
, TYPE_MEMORY_BACKEND
,
8380 HostMemoryBackend
*),
8381 DEFINE_PROP_LINK("subsys", NvmeCtrl
, subsys
, TYPE_NVME_SUBSYS
,
8383 DEFINE_PROP_STRING("serial", NvmeCtrl
, params
.serial
),
8384 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl
, params
.cmb_size_mb
, 0),
8385 DEFINE_PROP_UINT32("num_queues", NvmeCtrl
, params
.num_queues
, 0),
8386 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl
, params
.max_ioqpairs
, 64),
8387 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl
, params
.msix_qsize
, 65),
8388 DEFINE_PROP_UINT8("aerl", NvmeCtrl
, params
.aerl
, 3),
8389 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl
, params
.aer_max_queued
, 64),
8390 DEFINE_PROP_UINT8("mdts", NvmeCtrl
, params
.mdts
, 7),
8391 DEFINE_PROP_UINT8("vsl", NvmeCtrl
, params
.vsl
, 7),
8392 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl
, params
.use_intel_id
, false),
8393 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl
, params
.legacy_cmb
, false),
8394 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl
, params
.ioeventfd
, false),
8395 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl
, params
.zasl
, 0),
8396 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl
,
8397 params
.auto_transition_zones
, true),
8398 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl
, params
.sriov_max_vfs
, 0),
8399 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl
,
8400 params
.sriov_vq_flexible
, 0),
8401 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl
,
8402 params
.sriov_vi_flexible
, 0),
8403 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl
,
8404 params
.sriov_max_vi_per_vf
, 0),
8405 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl
,
8406 params
.sriov_max_vq_per_vf
, 0),
8407 DEFINE_PROP_END_OF_LIST(),
8410 static void nvme_get_smart_warning(Object
*obj
, Visitor
*v
, const char *name
,
8411 void *opaque
, Error
**errp
)
8413 NvmeCtrl
*n
= NVME(obj
);
8414 uint8_t value
= n
->smart_critical_warning
;
8416 visit_type_uint8(v
, name
, &value
, errp
);
8419 static void nvme_set_smart_warning(Object
*obj
, Visitor
*v
, const char *name
,
8420 void *opaque
, Error
**errp
)
8422 NvmeCtrl
*n
= NVME(obj
);
8423 uint8_t value
, old_value
, cap
= 0, index
, event
;
8425 if (!visit_type_uint8(v
, name
, &value
, errp
)) {
8429 cap
= NVME_SMART_SPARE
| NVME_SMART_TEMPERATURE
| NVME_SMART_RELIABILITY
8430 | NVME_SMART_MEDIA_READ_ONLY
| NVME_SMART_FAILED_VOLATILE_MEDIA
;
8431 if (NVME_CAP_PMRS(ldq_le_p(&n
->bar
.cap
))) {
8432 cap
|= NVME_SMART_PMR_UNRELIABLE
;
8435 if ((value
& cap
) != value
) {
8436 error_setg(errp
, "unsupported smart critical warning bits: 0x%x",
8441 old_value
= n
->smart_critical_warning
;
8442 n
->smart_critical_warning
= value
;
8444 /* only inject new bits of smart critical warning */
8445 for (index
= 0; index
< NVME_SMART_WARN_MAX
; index
++) {
8447 if (value
& ~old_value
& event
)
8448 nvme_smart_event(n
, event
);
8452 static void nvme_pci_reset(DeviceState
*qdev
)
8454 PCIDevice
*pci_dev
= PCI_DEVICE(qdev
);
8455 NvmeCtrl
*n
= NVME(pci_dev
);
8457 trace_pci_nvme_pci_reset();
8458 nvme_ctrl_reset(n
, NVME_RESET_FUNCTION
);
8461 static void nvme_sriov_pre_write_ctrl(PCIDevice
*dev
, uint32_t address
,
8462 uint32_t val
, int len
)
8464 NvmeCtrl
*n
= NVME(dev
);
8465 NvmeSecCtrlEntry
*sctrl
;
8466 uint16_t sriov_cap
= dev
->exp
.sriov_cap
;
8467 uint32_t off
= address
- sriov_cap
;
8474 if (range_covers_byte(off
, len
, PCI_SRIOV_CTRL
)) {
8475 if (!(val
& PCI_SRIOV_CTRL_VFE
)) {
8476 num_vfs
= pci_get_word(dev
->config
+ sriov_cap
+ PCI_SRIOV_NUM_VF
);
8477 for (i
= 0; i
< num_vfs
; i
++) {
8478 sctrl
= &n
->sec_ctrl_list
.sec
[i
];
8479 nvme_virt_set_state(n
, le16_to_cpu(sctrl
->scid
), false);
8485 static void nvme_pci_write_config(PCIDevice
*dev
, uint32_t address
,
8486 uint32_t val
, int len
)
8488 nvme_sriov_pre_write_ctrl(dev
, address
, val
, len
);
8489 pci_default_write_config(dev
, address
, val
, len
);
8490 pcie_cap_flr_write_config(dev
, address
, val
, len
);
8493 static const VMStateDescription nvme_vmstate
= {
8498 static void nvme_class_init(ObjectClass
*oc
, void *data
)
8500 DeviceClass
*dc
= DEVICE_CLASS(oc
);
8501 PCIDeviceClass
*pc
= PCI_DEVICE_CLASS(oc
);
8503 pc
->realize
= nvme_realize
;
8504 pc
->config_write
= nvme_pci_write_config
;
8505 pc
->exit
= nvme_exit
;
8506 pc
->class_id
= PCI_CLASS_STORAGE_EXPRESS
;
8509 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
8510 dc
->desc
= "Non-Volatile Memory Express";
8511 device_class_set_props(dc
, nvme_props
);
8512 dc
->vmsd
= &nvme_vmstate
;
8513 dc
->reset
= nvme_pci_reset
;
8516 static void nvme_instance_init(Object
*obj
)
8518 NvmeCtrl
*n
= NVME(obj
);
8520 device_add_bootindex_property(obj
, &n
->namespace.blkconf
.bootindex
,
8521 "bootindex", "/namespace@1,0",
8524 object_property_add(obj
, "smart_critical_warning", "uint8",
8525 nvme_get_smart_warning
,
8526 nvme_set_smart_warning
, NULL
, NULL
);
8529 static const TypeInfo nvme_info
= {
8531 .parent
= TYPE_PCI_DEVICE
,
8532 .instance_size
= sizeof(NvmeCtrl
),
8533 .instance_init
= nvme_instance_init
,
8534 .class_init
= nvme_class_init
,
8535 .interfaces
= (InterfaceInfo
[]) {
8536 { INTERFACE_PCIE_DEVICE
},
8541 static const TypeInfo nvme_bus_info
= {
8542 .name
= TYPE_NVME_BUS
,
8544 .instance_size
= sizeof(NvmeBus
),
8547 static void nvme_register_types(void)
8549 type_register_static(&nvme_info
);
8550 type_register_static(&nvme_bus_info
);
8553 type_init(nvme_register_types
)