2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "qemu/module.h"
29 #include "hw/acpi/acpi_aml_interface.h"
30 #include "hw/intc/kvm_irqcount.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "qemu/timer.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/replay.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "sysemu/rtc.h"
40 #include "hw/rtc/mc146818rtc.h"
41 #include "hw/rtc/mc146818rtc_regs.h"
42 #include "migration/vmstate.h"
43 #include "qapi/error.h"
44 #include "qapi/qapi-events-misc.h"
45 #include "qapi/visitor.h"
48 //#define DEBUG_COALESCED
51 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
53 # define CMOS_DPRINTF(format, ...) do { } while (0)
56 #ifdef DEBUG_COALESCED
57 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
59 # define DPRINTF_C(format, ...) do { } while (0)
62 #define SEC_PER_MIN 60
63 #define MIN_PER_HOUR 60
64 #define SEC_PER_HOUR 3600
65 #define HOUR_PER_DAY 24
66 #define SEC_PER_DAY 86400
68 #define RTC_REINJECT_ON_ACK_COUNT 20
69 #define RTC_CLOCK_RATE 32768
70 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
72 #define RTC_ISA_BASE 0x70
74 static void rtc_set_time(MC146818RtcState
*s
);
75 static void rtc_update_time(MC146818RtcState
*s
);
76 static void rtc_set_cmos(MC146818RtcState
*s
, const struct tm
*tm
);
77 static inline int rtc_from_bcd(MC146818RtcState
*s
, int a
);
78 static uint64_t get_next_alarm(MC146818RtcState
*s
);
80 static inline bool rtc_running(MC146818RtcState
*s
)
82 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
83 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
86 static uint64_t get_guest_rtc_ns(MC146818RtcState
*s
)
88 uint64_t guest_clock
= qemu_clock_get_ns(rtc_clock
);
90 return s
->base_rtc
* NANOSECONDS_PER_SECOND
+
91 guest_clock
- s
->last_update
+ s
->offset
;
94 static void rtc_coalesced_timer_update(MC146818RtcState
*s
)
96 if (s
->irq_coalesced
== 0) {
97 timer_del(s
->coalesced_timer
);
99 /* divide each RTC interval to 2 - 8 smaller intervals */
100 int c
= MIN(s
->irq_coalesced
, 7) + 1;
101 int64_t next_clock
= qemu_clock_get_ns(rtc_clock
) +
102 periodic_clock_to_ns(s
->period
/ c
);
103 timer_mod(s
->coalesced_timer
, next_clock
);
107 static QLIST_HEAD(, MC146818RtcState
) rtc_devices
=
108 QLIST_HEAD_INITIALIZER(rtc_devices
);
110 void qmp_rtc_reset_reinjection(Error
**errp
)
114 QLIST_FOREACH(s
, &rtc_devices
, link
) {
115 s
->irq_coalesced
= 0;
119 static bool rtc_policy_slew_deliver_irq(MC146818RtcState
*s
)
121 kvm_reset_irq_delivered();
122 qemu_irq_raise(s
->irq
);
123 return kvm_get_irq_delivered();
126 static void rtc_coalesced_timer(void *opaque
)
128 MC146818RtcState
*s
= opaque
;
130 if (s
->irq_coalesced
!= 0) {
131 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
132 DPRINTF_C("cmos: injecting from timer\n");
133 if (rtc_policy_slew_deliver_irq(s
)) {
135 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
140 rtc_coalesced_timer_update(s
);
143 static uint32_t rtc_periodic_clock_ticks(MC146818RtcState
*s
)
147 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
151 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
153 return periodic_period_to_clock(period_code
);
157 * handle periodic timer. @old_period indicates the periodic timer update
158 * is just due to period adjustment.
160 static void periodic_timer_update(MC146818RtcState
*s
, int64_t current_time
,
161 uint32_t old_period
, bool period_change
)
164 int64_t cur_clock
, next_irq_clock
, lost_clock
= 0;
166 period
= rtc_periodic_clock_ticks(s
);
170 s
->irq_coalesced
= 0;
171 timer_del(s
->periodic_timer
);
175 /* compute 32 khz clock */
177 muldiv64(current_time
, RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
180 * if the periodic timer's update is due to period re-configuration,
181 * we should count the clock since last interrupt.
183 if (old_period
&& period_change
) {
184 int64_t last_periodic_clock
, next_periodic_clock
;
186 next_periodic_clock
= muldiv64(s
->next_periodic_time
,
187 RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
188 last_periodic_clock
= next_periodic_clock
- old_period
;
189 lost_clock
= cur_clock
- last_periodic_clock
;
190 assert(lost_clock
>= 0);
194 * s->irq_coalesced can change for two reasons:
196 * a) if one or more periodic timer interrupts have been lost,
197 * lost_clock will be more that a period.
199 * b) when the period may be reconfigured, we expect the OS to
200 * treat delayed tick as the new period. So, when switching
201 * from a shorter to a longer period, scale down the missing,
202 * because the OS will treat past delayed ticks as longer
203 * (leftovers are put back into lost_clock). When switching
204 * to a shorter period, scale up the missing ticks since the
205 * OS handler will treat past delayed ticks as shorter.
207 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
208 uint32_t old_irq_coalesced
= s
->irq_coalesced
;
210 lost_clock
+= old_irq_coalesced
* old_period
;
211 s
->irq_coalesced
= lost_clock
/ s
->period
;
212 lost_clock
%= s
->period
;
213 if (old_irq_coalesced
!= s
->irq_coalesced
||
214 old_period
!= s
->period
) {
215 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
216 "period scaled from %d to %d\n", old_irq_coalesced
,
217 s
->irq_coalesced
, old_period
, s
->period
);
218 rtc_coalesced_timer_update(s
);
222 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
223 * is not used, we should make the time progress anyway.
225 lost_clock
= MIN(lost_clock
, period
);
228 assert(lost_clock
>= 0 && lost_clock
<= period
);
230 next_irq_clock
= cur_clock
+ period
- lost_clock
;
231 s
->next_periodic_time
= periodic_clock_to_ns(next_irq_clock
) + 1;
232 timer_mod(s
->periodic_timer
, s
->next_periodic_time
);
235 static void rtc_periodic_timer(void *opaque
)
237 MC146818RtcState
*s
= opaque
;
239 periodic_timer_update(s
, s
->next_periodic_time
, s
->period
, false);
240 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
241 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
242 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
243 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
244 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
245 s
->irq_reinject_on_ack_count
= 0;
246 if (!rtc_policy_slew_deliver_irq(s
)) {
248 rtc_coalesced_timer_update(s
);
249 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
253 qemu_irq_raise(s
->irq
);
257 /* handle update-ended timer */
258 static void check_update_timer(MC146818RtcState
*s
)
260 uint64_t next_update_time
;
264 /* From the data sheet: "Holding the dividers in reset prevents
265 * interrupts from operating, while setting the SET bit allows"
268 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
269 assert((s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
) == 0);
270 timer_del(s
->update_timer
);
274 guest_nsec
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
275 next_update_time
= qemu_clock_get_ns(rtc_clock
)
276 + NANOSECONDS_PER_SECOND
- guest_nsec
;
278 /* Compute time of next alarm. One second is already accounted
279 * for in next_update_time.
281 next_alarm_sec
= get_next_alarm(s
);
282 s
->next_alarm_time
= next_update_time
+
283 (next_alarm_sec
- 1) * NANOSECONDS_PER_SECOND
;
285 /* If update_in_progress latched the UIP bit, we must keep the timer
286 * programmed to the next second, so that UIP is cleared. Otherwise,
287 * if UF is already set, we might be able to optimize.
289 if (!(s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
) &&
290 (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
)) {
291 /* If AF cannot change (i.e. either it is set already, or
292 * SET=1 and then the time is not updated), nothing to do.
294 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) ||
295 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
296 timer_del(s
->update_timer
);
300 /* UF is set, but AF is clear. Program the timer to target
302 next_update_time
= s
->next_alarm_time
;
304 if (next_update_time
!= timer_expire_time_ns(s
->update_timer
)) {
305 timer_mod(s
->update_timer
, next_update_time
);
309 static inline uint8_t convert_hour(MC146818RtcState
*s
, uint8_t hour
)
311 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
313 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
320 static uint64_t get_next_alarm(MC146818RtcState
*s
)
322 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
323 int32_t hour
, min
, sec
;
327 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
328 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
329 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
330 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
332 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
333 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
334 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
335 cur_hour
= convert_hour(s
, cur_hour
);
337 if (alarm_hour
== -1) {
338 alarm_hour
= cur_hour
;
339 if (alarm_min
== -1) {
341 if (alarm_sec
== -1) {
342 alarm_sec
= cur_sec
+ 1;
343 } else if (cur_sec
> alarm_sec
) {
346 } else if (cur_min
== alarm_min
) {
347 if (alarm_sec
== -1) {
348 alarm_sec
= cur_sec
+ 1;
350 if (cur_sec
> alarm_sec
) {
354 if (alarm_sec
== SEC_PER_MIN
) {
355 /* wrap to next hour, minutes is not in don't care mode */
359 } else if (cur_min
> alarm_min
) {
362 } else if (cur_hour
== alarm_hour
) {
363 if (alarm_min
== -1) {
365 if (alarm_sec
== -1) {
366 alarm_sec
= cur_sec
+ 1;
367 } else if (cur_sec
> alarm_sec
) {
371 if (alarm_sec
== SEC_PER_MIN
) {
375 /* wrap to next day, hour is not in don't care mode */
376 alarm_min
%= MIN_PER_HOUR
;
377 } else if (cur_min
== alarm_min
) {
378 if (alarm_sec
== -1) {
379 alarm_sec
= cur_sec
+ 1;
381 /* wrap to next day, hours+minutes not in don't care mode */
382 alarm_sec
%= SEC_PER_MIN
;
386 /* values that are still don't care fire at the next min/sec */
387 if (alarm_min
== -1) {
390 if (alarm_sec
== -1) {
394 /* keep values in range */
395 if (alarm_sec
== SEC_PER_MIN
) {
399 if (alarm_min
== MIN_PER_HOUR
) {
403 alarm_hour
%= HOUR_PER_DAY
;
405 hour
= alarm_hour
- cur_hour
;
406 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
407 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
408 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
411 static void rtc_update_timer(void *opaque
)
413 MC146818RtcState
*s
= opaque
;
414 int32_t irqs
= REG_C_UF
;
417 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
419 /* UIP might have been latched, update time and clear it. */
421 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
423 if (qemu_clock_get_ns(rtc_clock
) >= s
->next_alarm_time
) {
425 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
426 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
, NULL
);
430 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
431 s
->cmos_data
[RTC_REG_C
] |= irqs
;
432 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
433 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
434 qemu_irq_raise(s
->irq
);
436 check_update_timer(s
);
439 static void cmos_ioport_write(void *opaque
, hwaddr addr
,
440 uint64_t data
, unsigned size
)
442 MC146818RtcState
*s
= opaque
;
444 bool update_periodic_timer
;
446 if ((addr
& 1) == 0) {
447 s
->cmos_index
= data
& 0x7f;
449 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64
"\n",
450 s
->cmos_index
, data
);
451 switch(s
->cmos_index
) {
452 case RTC_SECONDS_ALARM
:
453 case RTC_MINUTES_ALARM
:
454 case RTC_HOURS_ALARM
:
455 s
->cmos_data
[s
->cmos_index
] = data
;
456 check_update_timer(s
);
458 case RTC_IBM_PS2_CENTURY_BYTE
:
459 s
->cmos_index
= RTC_CENTURY
;
465 case RTC_DAY_OF_WEEK
:
466 case RTC_DAY_OF_MONTH
:
469 s
->cmos_data
[s
->cmos_index
] = data
;
470 /* if in set mode, do not update the time */
471 if (rtc_running(s
)) {
473 check_update_timer(s
);
477 update_periodic_timer
= (s
->cmos_data
[RTC_REG_A
] ^ data
) & 0x0f;
478 old_period
= rtc_periodic_clock_ticks(s
);
480 if ((data
& 0x60) == 0x60) {
481 if (rtc_running(s
)) {
484 /* What happens to UIP when divider reset is enabled is
485 * unclear from the datasheet. Shouldn't matter much
488 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
489 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
490 (data
& 0x70) <= 0x20) {
491 /* when the divider reset is removed, the first update cycle
492 * begins one-half second later*/
493 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
494 s
->offset
= 500000000;
497 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
499 /* UIP bit is read only */
500 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
501 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
503 if (update_periodic_timer
) {
504 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
),
508 check_update_timer(s
);
511 update_periodic_timer
= (s
->cmos_data
[RTC_REG_B
] ^ data
)
513 old_period
= rtc_periodic_clock_ticks(s
);
515 if (data
& REG_B_SET
) {
516 /* update cmos to when the rtc was stopping */
517 if (rtc_running(s
)) {
520 /* set mode: reset UIP mode */
521 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
524 /* if disabling set mode, update the time */
525 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
526 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
527 s
->offset
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
531 /* if an interrupt flag is already set when the interrupt
532 * becomes enabled, raise an interrupt immediately. */
533 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
534 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
535 qemu_irq_raise(s
->irq
);
537 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
538 qemu_irq_lower(s
->irq
);
540 s
->cmos_data
[RTC_REG_B
] = data
;
542 if (update_periodic_timer
) {
543 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
),
547 check_update_timer(s
);
551 /* cannot write to them */
554 s
->cmos_data
[s
->cmos_index
] = data
;
560 static inline int rtc_to_bcd(MC146818RtcState
*s
, int a
)
562 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
565 return ((a
/ 10) << 4) | (a
% 10);
569 static inline int rtc_from_bcd(MC146818RtcState
*s
, int a
)
571 if ((a
& 0xc0) == 0xc0) {
574 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
577 return ((a
>> 4) * 10) + (a
& 0x0f);
581 static void rtc_get_time(MC146818RtcState
*s
, struct tm
*tm
)
583 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
584 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
585 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
586 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
588 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
592 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
593 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
594 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
596 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
597 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
600 static void rtc_set_time(MC146818RtcState
*s
)
603 g_autofree
const char *qom_path
= object_get_canonical_path(OBJECT(s
));
605 rtc_get_time(s
, &tm
);
606 s
->base_rtc
= mktimegm(&tm
);
607 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
609 qapi_event_send_rtc_change(qemu_timedate_diff(&tm
), qom_path
);
612 static void rtc_set_cmos(MC146818RtcState
*s
, const struct tm
*tm
)
616 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
617 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
618 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
620 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
623 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
624 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
625 if (tm
->tm_hour
>= 12)
626 s
->cmos_data
[RTC_HOURS
] |= 0x80;
628 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
629 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
630 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
631 year
= tm
->tm_year
+ 1900 - s
->base_year
;
632 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
633 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
636 static void rtc_update_time(MC146818RtcState
*s
)
642 guest_nsec
= get_guest_rtc_ns(s
);
643 guest_sec
= guest_nsec
/ NANOSECONDS_PER_SECOND
;
644 gmtime_r(&guest_sec
, &ret
);
646 /* Is SET flag of Register B disabled? */
647 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) == 0) {
648 rtc_set_cmos(s
, &ret
);
652 static int update_in_progress(MC146818RtcState
*s
)
656 if (!rtc_running(s
)) {
659 if (timer_pending(s
->update_timer
)) {
660 int64_t next_update_time
= timer_expire_time_ns(s
->update_timer
);
661 /* Latch UIP until the timer expires. */
662 if (qemu_clock_get_ns(rtc_clock
) >=
663 (next_update_time
- UIP_HOLD_LENGTH
)) {
664 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
669 guest_nsec
= get_guest_rtc_ns(s
);
670 /* UIP bit will be set at last 244us of every second. */
671 if ((guest_nsec
% NANOSECONDS_PER_SECOND
) >=
672 (NANOSECONDS_PER_SECOND
- UIP_HOLD_LENGTH
)) {
678 static uint64_t cmos_ioport_read(void *opaque
, hwaddr addr
,
681 MC146818RtcState
*s
= opaque
;
683 if ((addr
& 1) == 0) {
686 switch(s
->cmos_index
) {
687 case RTC_IBM_PS2_CENTURY_BYTE
:
688 s
->cmos_index
= RTC_CENTURY
;
694 case RTC_DAY_OF_WEEK
:
695 case RTC_DAY_OF_MONTH
:
698 /* if not in set mode, calibrate cmos before
700 if (rtc_running(s
)) {
703 ret
= s
->cmos_data
[s
->cmos_index
];
706 ret
= s
->cmos_data
[s
->cmos_index
];
707 if (update_in_progress(s
)) {
712 ret
= s
->cmos_data
[s
->cmos_index
];
713 qemu_irq_lower(s
->irq
);
714 s
->cmos_data
[RTC_REG_C
] = 0x00;
715 if (ret
& (REG_C_UF
| REG_C_AF
)) {
716 check_update_timer(s
);
719 if(s
->irq_coalesced
&&
720 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
721 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
722 s
->irq_reinject_on_ack_count
++;
723 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
724 DPRINTF_C("cmos: injecting on ack\n");
725 if (rtc_policy_slew_deliver_irq(s
)) {
727 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
733 ret
= s
->cmos_data
[s
->cmos_index
];
736 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
742 void mc146818rtc_set_cmos_data(MC146818RtcState
*s
, int addr
, int val
)
744 if (addr
>= 0 && addr
<= 127)
745 s
->cmos_data
[addr
] = val
;
748 int mc146818rtc_get_cmos_data(MC146818RtcState
*s
, int addr
)
750 assert(addr
>= 0 && addr
<= 127);
751 return s
->cmos_data
[addr
];
754 static void rtc_set_date_from_host(ISADevice
*dev
)
756 MC146818RtcState
*s
= MC146818_RTC(dev
);
759 qemu_get_timedate(&tm
, 0);
761 s
->base_rtc
= mktimegm(&tm
);
762 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
765 /* set the CMOS date */
766 rtc_set_cmos(s
, &tm
);
769 static int rtc_pre_save(void *opaque
)
771 MC146818RtcState
*s
= opaque
;
778 static int rtc_post_load(void *opaque
, int version_id
)
780 MC146818RtcState
*s
= opaque
;
782 if (version_id
<= 2 || rtc_clock
== QEMU_CLOCK_REALTIME
) {
785 check_update_timer(s
);
787 s
->period
= rtc_periodic_clock_ticks(s
);
789 /* The periodic timer is deterministic in record/replay mode,
790 * so there is no need to update it after loading the vmstate.
791 * Reading RTC here would misalign record and replay.
793 if (replay_mode
== REPLAY_MODE_NONE
) {
794 uint64_t now
= qemu_clock_get_ns(rtc_clock
);
795 if (now
< s
->next_periodic_time
||
796 now
> (s
->next_periodic_time
+ get_max_clock_jump())) {
797 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
), s
->period
, false);
801 if (version_id
>= 2) {
802 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
803 rtc_coalesced_timer_update(s
);
809 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque
)
811 MC146818RtcState
*s
= (MC146818RtcState
*)opaque
;
812 return s
->irq_reinject_on_ack_count
!= 0;
815 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count
= {
816 .name
= "mc146818rtc/irq_reinject_on_ack_count",
818 .minimum_version_id
= 1,
819 .needed
= rtc_irq_reinject_on_ack_count_needed
,
820 .fields
= (VMStateField
[]) {
821 VMSTATE_UINT16(irq_reinject_on_ack_count
, MC146818RtcState
),
822 VMSTATE_END_OF_LIST()
826 static const VMStateDescription vmstate_rtc
= {
827 .name
= "mc146818rtc",
829 .minimum_version_id
= 1,
830 .pre_save
= rtc_pre_save
,
831 .post_load
= rtc_post_load
,
832 .fields
= (VMStateField
[]) {
833 VMSTATE_BUFFER(cmos_data
, MC146818RtcState
),
834 VMSTATE_UINT8(cmos_index
, MC146818RtcState
),
836 VMSTATE_TIMER_PTR(periodic_timer
, MC146818RtcState
),
837 VMSTATE_INT64(next_periodic_time
, MC146818RtcState
),
839 VMSTATE_UINT32_V(irq_coalesced
, MC146818RtcState
, 2),
840 VMSTATE_UINT32_V(period
, MC146818RtcState
, 2),
841 VMSTATE_UINT64_V(base_rtc
, MC146818RtcState
, 3),
842 VMSTATE_UINT64_V(last_update
, MC146818RtcState
, 3),
843 VMSTATE_INT64_V(offset
, MC146818RtcState
, 3),
844 VMSTATE_TIMER_PTR_V(update_timer
, MC146818RtcState
, 3),
845 VMSTATE_UINT64_V(next_alarm_time
, MC146818RtcState
, 3),
846 VMSTATE_END_OF_LIST()
848 .subsections
= (const VMStateDescription
*[]) {
849 &vmstate_rtc_irq_reinject_on_ack_count
,
854 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
855 BIOS will read it and start S3 resume at POST Entry */
856 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
858 MC146818RtcState
*s
= container_of(notifier
, MC146818RtcState
,
860 mc146818rtc_set_cmos_data(s
, 0xF, 0xFE);
863 static const MemoryRegionOps cmos_ops
= {
864 .read
= cmos_ioport_read
,
865 .write
= cmos_ioport_write
,
867 .min_access_size
= 1,
868 .max_access_size
= 1,
870 .endianness
= DEVICE_LITTLE_ENDIAN
,
873 static void rtc_get_date(Object
*obj
, struct tm
*current_tm
, Error
**errp
)
875 MC146818RtcState
*s
= MC146818_RTC(obj
);
878 rtc_get_time(s
, current_tm
);
881 static void rtc_realizefn(DeviceState
*dev
, Error
**errp
)
883 ISADevice
*isadev
= ISA_DEVICE(dev
);
884 MC146818RtcState
*s
= MC146818_RTC(dev
);
886 s
->cmos_data
[RTC_REG_A
] = 0x26;
887 s
->cmos_data
[RTC_REG_B
] = 0x02;
888 s
->cmos_data
[RTC_REG_C
] = 0x00;
889 s
->cmos_data
[RTC_REG_D
] = 0x80;
891 /* This is for historical reasons. The default base year qdev property
892 * was set to 2000 for most machine types before the century byte was
895 * This if statement means that the century byte will be always 0
896 * (at least until 2079...) for base_year = 1980, but will be set
897 * correctly for base_year = 2000.
899 if (s
->base_year
== 2000) {
903 if (s
->isairq
>= ISA_NUM_IRQS
) {
904 error_setg(errp
, "Maximum value for \"irq\" is: %u", ISA_NUM_IRQS
- 1);
908 rtc_set_date_from_host(isadev
);
910 switch (s
->lost_tick_policy
) {
911 case LOST_TICK_POLICY_SLEW
:
913 timer_new_ns(rtc_clock
, rtc_coalesced_timer
, s
);
915 case LOST_TICK_POLICY_DISCARD
:
918 error_setg(errp
, "Invalid lost tick policy.");
922 s
->periodic_timer
= timer_new_ns(rtc_clock
, rtc_periodic_timer
, s
);
923 s
->update_timer
= timer_new_ns(rtc_clock
, rtc_update_timer
, s
);
924 check_update_timer(s
);
926 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
927 qemu_register_suspend_notifier(&s
->suspend_notifier
);
929 memory_region_init_io(&s
->io
, OBJECT(s
), &cmos_ops
, s
, "rtc", 2);
930 isa_register_ioport(isadev
, &s
->io
, s
->io_base
);
932 /* register rtc 0x70 port for coalesced_pio */
933 memory_region_set_flush_coalesced(&s
->io
);
934 memory_region_init_io(&s
->coalesced_io
, OBJECT(s
), &cmos_ops
,
936 memory_region_add_subregion(&s
->io
, 0, &s
->coalesced_io
);
937 memory_region_add_coalescing(&s
->coalesced_io
, 0, 1);
939 qdev_set_legacy_instance_id(dev
, s
->io_base
, 3);
941 object_property_add_tm(OBJECT(s
), "date", rtc_get_date
);
943 qdev_init_gpio_out(dev
, &s
->irq
, 1);
944 QLIST_INSERT_HEAD(&rtc_devices
, s
, link
);
947 MC146818RtcState
*mc146818_rtc_init(ISABus
*bus
, int base_year
,
948 qemu_irq intercept_irq
)
954 isadev
= isa_new(TYPE_MC146818_RTC
);
955 dev
= DEVICE(isadev
);
956 s
= MC146818_RTC(isadev
);
957 qdev_prop_set_int32(dev
, "base_year", base_year
);
958 isa_realize_and_unref(isadev
, bus
, &error_fatal
);
960 qdev_connect_gpio_out(dev
, 0, intercept_irq
);
962 isa_connect_gpio_out(isadev
, 0, s
->isairq
);
965 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev
),
971 static Property mc146818rtc_properties
[] = {
972 DEFINE_PROP_INT32("base_year", MC146818RtcState
, base_year
, 1980),
973 DEFINE_PROP_UINT16("iobase", MC146818RtcState
, io_base
, RTC_ISA_BASE
),
974 DEFINE_PROP_UINT8("irq", MC146818RtcState
, isairq
, RTC_ISA_IRQ
),
975 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", MC146818RtcState
,
976 lost_tick_policy
, LOST_TICK_POLICY_DISCARD
),
977 DEFINE_PROP_END_OF_LIST(),
980 static void rtc_reset_enter(Object
*obj
, ResetType type
)
982 MC146818RtcState
*s
= MC146818_RTC(obj
);
984 /* Reason: VM do suspend self will set 0xfe
985 * Reset any values other than 0xfe(Guest suspend case) */
986 if (s
->cmos_data
[0x0f] != 0xfe) {
987 s
->cmos_data
[0x0f] = 0x00;
990 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
991 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
992 check_update_timer(s
);
995 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
996 s
->irq_coalesced
= 0;
997 s
->irq_reinject_on_ack_count
= 0;
1001 static void rtc_reset_hold(Object
*obj
)
1003 MC146818RtcState
*s
= MC146818_RTC(obj
);
1005 qemu_irq_lower(s
->irq
);
1008 static void rtc_build_aml(AcpiDevAmlIf
*adev
, Aml
*scope
)
1010 MC146818RtcState
*s
= MC146818_RTC(adev
);
1015 * Reserving 8 io ports here, following what physical hardware
1016 * does, even though qemu only responds to the first two ports.
1018 crs
= aml_resource_template();
1019 aml_append(crs
, aml_io(AML_DECODE16
, s
->io_base
, s
->io_base
,
1021 aml_append(crs
, aml_irq_no_flags(s
->isairq
));
1023 dev
= aml_device("RTC");
1024 aml_append(dev
, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
1025 aml_append(dev
, aml_name_decl("_CRS", crs
));
1027 aml_append(scope
, dev
);
1030 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
1032 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1033 ResettableClass
*rc
= RESETTABLE_CLASS(klass
);
1034 AcpiDevAmlIfClass
*adevc
= ACPI_DEV_AML_IF_CLASS(klass
);
1036 dc
->realize
= rtc_realizefn
;
1037 dc
->vmsd
= &vmstate_rtc
;
1038 rc
->phases
.enter
= rtc_reset_enter
;
1039 rc
->phases
.hold
= rtc_reset_hold
;
1040 adevc
->build_dev_aml
= rtc_build_aml
;
1041 device_class_set_props(dc
, mc146818rtc_properties
);
1042 set_bit(DEVICE_CATEGORY_MISC
, dc
->categories
);
1045 static const TypeInfo mc146818rtc_info
= {
1046 .name
= TYPE_MC146818_RTC
,
1047 .parent
= TYPE_ISA_DEVICE
,
1048 .instance_size
= sizeof(MC146818RtcState
),
1049 .class_init
= rtc_class_initfn
,
1050 .interfaces
= (InterfaceInfo
[]) {
1051 { TYPE_ACPI_DEV_AML_IF
},
1056 static void mc146818rtc_register_types(void)
1058 type_register_static(&mc146818rtc_info
);
1061 type_init(mc146818rtc_register_types
)