2 * High Precision Event Timer emulation
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
7 * Authors: Beth Kon <bkon@us.ibm.com>
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * *****************************************************************
24 * This driver attempts to emulate an HPET device in software.
27 #include "qemu/osdep.h"
28 #include "hw/i386/pc.h"
30 #include "qapi/error.h"
31 #include "qemu/error-report.h"
32 #include "qemu/timer.h"
33 #include "hw/qdev-properties.h"
34 #include "hw/timer/hpet.h"
35 #include "hw/sysbus.h"
36 #include "hw/rtc/mc146818rtc.h"
37 #include "hw/rtc/mc146818rtc_regs.h"
38 #include "migration/vmstate.h"
39 #include "hw/timer/i8254.h"
40 #include "exec/address-spaces.h"
41 #include "qom/object.h"
45 #define DPRINTF printf
50 #define HPET_MSI_SUPPORT 0
52 OBJECT_DECLARE_SIMPLE_TYPE(HPETState
, HPET
)
55 typedef struct HPETTimer
{ /* timers */
56 uint8_t tn
; /*timer number*/
57 QEMUTimer
*qemu_timer
;
58 struct HPETState
*state
;
59 /* Memory-mapped, software visible timer registers */
60 uint64_t config
; /* configuration/cap */
61 uint64_t cmp
; /* comparator */
62 uint64_t fsb
; /* FSB route */
63 /* Hidden register state */
64 uint64_t period
; /* Last value written to comparator */
65 uint8_t wrap_flag
; /* timer pop will indicate wrap for one-shot 32-bit
66 * mode. Next pop will be actual timer expiration.
72 SysBusDevice parent_obj
;
77 bool hpet_offset_saved
;
78 qemu_irq irqs
[HPET_NUM_IRQ_ROUTES
];
80 uint8_t rtc_irq_level
;
84 HPETTimer timer
[HPET_MAX_TIMERS
];
86 /* Memory-mapped, software visible registers */
87 uint64_t capability
; /* capabilities */
88 uint64_t config
; /* configuration */
89 uint64_t isr
; /* interrupt status reg */
90 uint64_t hpet_counter
; /* main counter */
91 uint8_t hpet_id
; /* instance id */
94 static uint32_t hpet_in_legacy_mode(HPETState
*s
)
96 return s
->config
& HPET_CFG_LEGACY
;
99 static uint32_t timer_int_route(struct HPETTimer
*timer
)
101 return (timer
->config
& HPET_TN_INT_ROUTE_MASK
) >> HPET_TN_INT_ROUTE_SHIFT
;
104 static uint32_t timer_fsb_route(HPETTimer
*t
)
106 return t
->config
& HPET_TN_FSB_ENABLE
;
109 static uint32_t hpet_enabled(HPETState
*s
)
111 return s
->config
& HPET_CFG_ENABLE
;
114 static uint32_t timer_is_periodic(HPETTimer
*t
)
116 return t
->config
& HPET_TN_PERIODIC
;
119 static uint32_t timer_enabled(HPETTimer
*t
)
121 return t
->config
& HPET_TN_ENABLE
;
124 static uint32_t hpet_time_after(uint64_t a
, uint64_t b
)
126 return ((int32_t)(b
- a
) < 0);
129 static uint32_t hpet_time_after64(uint64_t a
, uint64_t b
)
131 return ((int64_t)(b
- a
) < 0);
134 static uint64_t ticks_to_ns(uint64_t value
)
136 return value
* HPET_CLK_PERIOD
;
139 static uint64_t ns_to_ticks(uint64_t value
)
141 return value
/ HPET_CLK_PERIOD
;
144 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old
, uint64_t mask
)
151 static int activating_bit(uint64_t old
, uint64_t new, uint64_t mask
)
153 return (!(old
& mask
) && (new & mask
));
156 static int deactivating_bit(uint64_t old
, uint64_t new, uint64_t mask
)
158 return ((old
& mask
) && !(new & mask
));
161 static uint64_t hpet_get_ticks(HPETState
*s
)
163 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + s
->hpet_offset
);
167 * calculate diff between comparator value and current ticks
169 static inline uint64_t hpet_calculate_diff(HPETTimer
*t
, uint64_t current
)
172 if (t
->config
& HPET_TN_32BIT
) {
175 cmp
= (uint32_t)t
->cmp
;
176 diff
= cmp
- (uint32_t)current
;
177 diff
= (int32_t)diff
> 0 ? diff
: (uint32_t)1;
178 return (uint64_t)diff
;
183 diff
= cmp
- current
;
184 diff
= (int64_t)diff
> 0 ? diff
: (uint64_t)1;
189 static void update_irq(struct HPETTimer
*timer
, int set
)
195 if (timer
->tn
<= 1 && hpet_in_legacy_mode(timer
->state
)) {
196 /* if LegacyReplacementRoute bit is set, HPET specification requires
197 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
198 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
200 route
= (timer
->tn
== 0) ? 0 : RTC_ISA_IRQ
;
202 route
= timer_int_route(timer
);
205 mask
= 1 << timer
->tn
;
206 if (!set
|| !timer_enabled(timer
) || !hpet_enabled(timer
->state
)) {
208 if (!timer_fsb_route(timer
)) {
209 qemu_irq_lower(s
->irqs
[route
]);
211 } else if (timer_fsb_route(timer
)) {
212 address_space_stl_le(&address_space_memory
, timer
->fsb
>> 32,
213 timer
->fsb
& 0xffffffff, MEMTXATTRS_UNSPECIFIED
,
215 } else if (timer
->config
& HPET_TN_TYPE_LEVEL
) {
217 qemu_irq_raise(s
->irqs
[route
]);
220 qemu_irq_pulse(s
->irqs
[route
]);
224 static int hpet_pre_save(void *opaque
)
226 HPETState
*s
= opaque
;
228 /* save current counter value */
229 if (hpet_enabled(s
)) {
230 s
->hpet_counter
= hpet_get_ticks(s
);
236 static int hpet_pre_load(void *opaque
)
238 HPETState
*s
= opaque
;
240 /* version 1 only supports 3, later versions will load the actual value */
241 s
->num_timers
= HPET_MIN_TIMERS
;
245 static bool hpet_validate_num_timers(void *opaque
, int version_id
)
247 HPETState
*s
= opaque
;
249 if (s
->num_timers
< HPET_MIN_TIMERS
) {
251 } else if (s
->num_timers
> HPET_MAX_TIMERS
) {
257 static int hpet_post_load(void *opaque
, int version_id
)
259 HPETState
*s
= opaque
;
261 /* Recalculate the offset between the main counter and guest time */
262 if (!s
->hpet_offset_saved
) {
263 s
->hpet_offset
= ticks_to_ns(s
->hpet_counter
)
264 - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
267 /* Push number of timers into capability returned via HPET_ID */
268 s
->capability
&= ~HPET_ID_NUM_TIM_MASK
;
269 s
->capability
|= (s
->num_timers
- 1) << HPET_ID_NUM_TIM_SHIFT
;
270 hpet_cfg
.hpet
[s
->hpet_id
].event_timer_block_id
= (uint32_t)s
->capability
;
272 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
273 s
->flags
&= ~(1 << HPET_MSI_SUPPORT
);
274 if (s
->timer
[0].config
& HPET_TN_FSB_CAP
) {
275 s
->flags
|= 1 << HPET_MSI_SUPPORT
;
280 static bool hpet_offset_needed(void *opaque
)
282 HPETState
*s
= opaque
;
284 return hpet_enabled(s
) && s
->hpet_offset_saved
;
287 static bool hpet_rtc_irq_level_needed(void *opaque
)
289 HPETState
*s
= opaque
;
291 return s
->rtc_irq_level
!= 0;
294 static const VMStateDescription vmstate_hpet_rtc_irq_level
= {
295 .name
= "hpet/rtc_irq_level",
297 .minimum_version_id
= 1,
298 .needed
= hpet_rtc_irq_level_needed
,
299 .fields
= (VMStateField
[]) {
300 VMSTATE_UINT8(rtc_irq_level
, HPETState
),
301 VMSTATE_END_OF_LIST()
305 static const VMStateDescription vmstate_hpet_offset
= {
306 .name
= "hpet/offset",
308 .minimum_version_id
= 1,
309 .needed
= hpet_offset_needed
,
310 .fields
= (VMStateField
[]) {
311 VMSTATE_UINT64(hpet_offset
, HPETState
),
312 VMSTATE_END_OF_LIST()
316 static const VMStateDescription vmstate_hpet_timer
= {
317 .name
= "hpet_timer",
319 .minimum_version_id
= 1,
320 .fields
= (VMStateField
[]) {
321 VMSTATE_UINT8(tn
, HPETTimer
),
322 VMSTATE_UINT64(config
, HPETTimer
),
323 VMSTATE_UINT64(cmp
, HPETTimer
),
324 VMSTATE_UINT64(fsb
, HPETTimer
),
325 VMSTATE_UINT64(period
, HPETTimer
),
326 VMSTATE_UINT8(wrap_flag
, HPETTimer
),
327 VMSTATE_TIMER_PTR(qemu_timer
, HPETTimer
),
328 VMSTATE_END_OF_LIST()
332 static const VMStateDescription vmstate_hpet
= {
335 .minimum_version_id
= 1,
336 .pre_save
= hpet_pre_save
,
337 .pre_load
= hpet_pre_load
,
338 .post_load
= hpet_post_load
,
339 .fields
= (VMStateField
[]) {
340 VMSTATE_UINT64(config
, HPETState
),
341 VMSTATE_UINT64(isr
, HPETState
),
342 VMSTATE_UINT64(hpet_counter
, HPETState
),
343 VMSTATE_UINT8_V(num_timers
, HPETState
, 2),
344 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers
),
345 VMSTATE_STRUCT_VARRAY_UINT8(timer
, HPETState
, num_timers
, 0,
346 vmstate_hpet_timer
, HPETTimer
),
347 VMSTATE_END_OF_LIST()
349 .subsections
= (const VMStateDescription
*[]) {
350 &vmstate_hpet_rtc_irq_level
,
351 &vmstate_hpet_offset
,
356 static void hpet_arm(HPETTimer
*t
, uint64_t ticks
)
358 if (ticks
< ns_to_ticks(INT64_MAX
/ 2)) {
359 timer_mod(t
->qemu_timer
,
360 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + ticks_to_ns(ticks
));
362 timer_del(t
->qemu_timer
);
367 * timer expiration callback
369 static void hpet_timer(void *opaque
)
371 HPETTimer
*t
= opaque
;
374 uint64_t period
= t
->period
;
375 uint64_t cur_tick
= hpet_get_ticks(t
->state
);
377 if (timer_is_periodic(t
) && period
!= 0) {
378 if (t
->config
& HPET_TN_32BIT
) {
379 while (hpet_time_after(cur_tick
, t
->cmp
)) {
380 t
->cmp
= (uint32_t)(t
->cmp
+ t
->period
);
383 while (hpet_time_after64(cur_tick
, t
->cmp
)) {
387 diff
= hpet_calculate_diff(t
, cur_tick
);
389 } else if (t
->config
& HPET_TN_32BIT
&& !timer_is_periodic(t
)) {
391 diff
= hpet_calculate_diff(t
, cur_tick
);
399 static void hpet_set_timer(HPETTimer
*t
)
402 uint32_t wrap_diff
; /* how many ticks until we wrap? */
403 uint64_t cur_tick
= hpet_get_ticks(t
->state
);
405 /* whenever new timer is being set up, make sure wrap_flag is 0 */
407 diff
= hpet_calculate_diff(t
, cur_tick
);
409 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
410 * counter wraps in addition to an interrupt with comparator match.
412 if (t
->config
& HPET_TN_32BIT
&& !timer_is_periodic(t
)) {
413 wrap_diff
= 0xffffffff - (uint32_t)cur_tick
;
414 if (wrap_diff
< (uint32_t)diff
) {
422 static void hpet_del_timer(HPETTimer
*t
)
424 timer_del(t
->qemu_timer
);
428 static uint64_t hpet_ram_read(void *opaque
, hwaddr addr
,
431 HPETState
*s
= opaque
;
432 uint64_t cur_tick
, index
;
434 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64
"\n", addr
);
436 /*address range of all TN regs*/
437 if (index
>= 0x100 && index
<= 0x3ff) {
438 uint8_t timer_id
= (addr
- 0x100) / 0x20;
439 HPETTimer
*timer
= &s
->timer
[timer_id
];
441 if (timer_id
> s
->num_timers
) {
442 DPRINTF("qemu: timer id out of range\n");
446 switch ((addr
- 0x100) % 0x20) {
448 return timer
->config
;
449 case HPET_TN_CFG
+ 4: // Interrupt capabilities
450 return timer
->config
>> 32;
451 case HPET_TN_CMP
: // comparator register
453 case HPET_TN_CMP
+ 4:
454 return timer
->cmp
>> 32;
457 case HPET_TN_ROUTE
+ 4:
458 return timer
->fsb
>> 32;
460 DPRINTF("qemu: invalid hpet_ram_readl\n");
466 return s
->capability
;
468 return s
->capability
>> 32;
472 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
475 if (hpet_enabled(s
)) {
476 cur_tick
= hpet_get_ticks(s
);
478 cur_tick
= s
->hpet_counter
;
480 DPRINTF("qemu: reading counter = %" PRIx64
"\n", cur_tick
);
482 case HPET_COUNTER
+ 4:
483 if (hpet_enabled(s
)) {
484 cur_tick
= hpet_get_ticks(s
);
486 cur_tick
= s
->hpet_counter
;
488 DPRINTF("qemu: reading counter + 4 = %" PRIx64
"\n", cur_tick
);
489 return cur_tick
>> 32;
493 DPRINTF("qemu: invalid hpet_ram_readl\n");
500 static void hpet_ram_write(void *opaque
, hwaddr addr
,
501 uint64_t value
, unsigned size
)
504 HPETState
*s
= opaque
;
505 uint64_t old_val
, new_val
, val
, index
;
507 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64
" = 0x%" PRIx64
"\n",
510 old_val
= hpet_ram_read(opaque
, addr
, 4);
513 /*address range of all TN regs*/
514 if (index
>= 0x100 && index
<= 0x3ff) {
515 uint8_t timer_id
= (addr
- 0x100) / 0x20;
516 HPETTimer
*timer
= &s
->timer
[timer_id
];
518 DPRINTF("qemu: hpet_ram_writel timer_id = 0x%x\n", timer_id
);
519 if (timer_id
> s
->num_timers
) {
520 DPRINTF("qemu: timer id out of range\n");
523 switch ((addr
- 0x100) % 0x20) {
525 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
526 if (activating_bit(old_val
, new_val
, HPET_TN_FSB_ENABLE
)) {
527 update_irq(timer
, 0);
529 val
= hpet_fixup_reg(new_val
, old_val
, HPET_TN_CFG_WRITE_MASK
);
530 timer
->config
= (timer
->config
& 0xffffffff00000000ULL
) | val
;
531 if (new_val
& HPET_TN_32BIT
) {
532 timer
->cmp
= (uint32_t)timer
->cmp
;
533 timer
->period
= (uint32_t)timer
->period
;
535 if (activating_bit(old_val
, new_val
, HPET_TN_ENABLE
) &&
537 hpet_set_timer(timer
);
538 } else if (deactivating_bit(old_val
, new_val
, HPET_TN_ENABLE
)) {
539 hpet_del_timer(timer
);
542 case HPET_TN_CFG
+ 4: // Interrupt capabilities
543 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
545 case HPET_TN_CMP
: // comparator register
546 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
547 if (timer
->config
& HPET_TN_32BIT
) {
548 new_val
= (uint32_t)new_val
;
550 if (!timer_is_periodic(timer
)
551 || (timer
->config
& HPET_TN_SETVAL
)) {
552 timer
->cmp
= (timer
->cmp
& 0xffffffff00000000ULL
) | new_val
;
554 if (timer_is_periodic(timer
)) {
556 * FIXME: Clamp period to reasonable min value?
557 * Clamp period to reasonable max value
559 new_val
&= (timer
->config
& HPET_TN_32BIT
? ~0u : ~0ull) >> 1;
561 (timer
->period
& 0xffffffff00000000ULL
) | new_val
;
563 timer
->config
&= ~HPET_TN_SETVAL
;
564 if (hpet_enabled(s
)) {
565 hpet_set_timer(timer
);
568 case HPET_TN_CMP
+ 4: // comparator register high order
569 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
570 if (!timer_is_periodic(timer
)
571 || (timer
->config
& HPET_TN_SETVAL
)) {
572 timer
->cmp
= (timer
->cmp
& 0xffffffffULL
) | new_val
<< 32;
575 * FIXME: Clamp period to reasonable min value?
576 * Clamp period to reasonable max value
578 new_val
&= (timer
->config
& HPET_TN_32BIT
? ~0u : ~0ull) >> 1;
580 (timer
->period
& 0xffffffffULL
) | new_val
<< 32;
582 timer
->config
&= ~HPET_TN_SETVAL
;
583 if (hpet_enabled(s
)) {
584 hpet_set_timer(timer
);
588 timer
->fsb
= (timer
->fsb
& 0xffffffff00000000ULL
) | new_val
;
590 case HPET_TN_ROUTE
+ 4:
591 timer
->fsb
= (new_val
<< 32) | (timer
->fsb
& 0xffffffff);
594 DPRINTF("qemu: invalid hpet_ram_writel\n");
603 val
= hpet_fixup_reg(new_val
, old_val
, HPET_CFG_WRITE_MASK
);
604 s
->config
= (s
->config
& 0xffffffff00000000ULL
) | val
;
605 if (activating_bit(old_val
, new_val
, HPET_CFG_ENABLE
)) {
606 /* Enable main counter and interrupt generation. */
608 ticks_to_ns(s
->hpet_counter
) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
609 for (i
= 0; i
< s
->num_timers
; i
++) {
610 if ((&s
->timer
[i
])->cmp
!= ~0ULL) {
611 hpet_set_timer(&s
->timer
[i
]);
614 } else if (deactivating_bit(old_val
, new_val
, HPET_CFG_ENABLE
)) {
615 /* Halt main counter and disable interrupt generation. */
616 s
->hpet_counter
= hpet_get_ticks(s
);
617 for (i
= 0; i
< s
->num_timers
; i
++) {
618 hpet_del_timer(&s
->timer
[i
]);
621 /* i8254 and RTC output pins are disabled
622 * when HPET is in legacy mode */
623 if (activating_bit(old_val
, new_val
, HPET_CFG_LEGACY
)) {
624 qemu_set_irq(s
->pit_enabled
, 0);
625 qemu_irq_lower(s
->irqs
[0]);
626 qemu_irq_lower(s
->irqs
[RTC_ISA_IRQ
]);
627 } else if (deactivating_bit(old_val
, new_val
, HPET_CFG_LEGACY
)) {
628 qemu_irq_lower(s
->irqs
[0]);
629 qemu_set_irq(s
->pit_enabled
, 1);
630 qemu_set_irq(s
->irqs
[RTC_ISA_IRQ
], s
->rtc_irq_level
);
634 DPRINTF("qemu: invalid HPET_CFG+4 write\n");
637 val
= new_val
& s
->isr
;
638 for (i
= 0; i
< s
->num_timers
; i
++) {
639 if (val
& (1 << i
)) {
640 update_irq(&s
->timer
[i
], 0);
645 if (hpet_enabled(s
)) {
646 DPRINTF("qemu: Writing counter while HPET enabled!\n");
649 (s
->hpet_counter
& 0xffffffff00000000ULL
) | value
;
650 DPRINTF("qemu: HPET counter written. ctr = 0x%" PRIx64
" -> "
651 "%" PRIx64
"\n", value
, s
->hpet_counter
);
653 case HPET_COUNTER
+ 4:
654 if (hpet_enabled(s
)) {
655 DPRINTF("qemu: Writing counter while HPET enabled!\n");
658 (s
->hpet_counter
& 0xffffffffULL
) | (((uint64_t)value
) << 32);
659 DPRINTF("qemu: HPET counter + 4 written. ctr = 0x%" PRIx64
" -> "
660 "%" PRIx64
"\n", value
, s
->hpet_counter
);
663 DPRINTF("qemu: invalid hpet_ram_writel\n");
669 static const MemoryRegionOps hpet_ram_ops
= {
670 .read
= hpet_ram_read
,
671 .write
= hpet_ram_write
,
673 .min_access_size
= 4,
674 .max_access_size
= 4,
676 .endianness
= DEVICE_NATIVE_ENDIAN
,
679 static void hpet_reset(DeviceState
*d
)
681 HPETState
*s
= HPET(d
);
682 SysBusDevice
*sbd
= SYS_BUS_DEVICE(d
);
685 for (i
= 0; i
< s
->num_timers
; i
++) {
686 HPETTimer
*timer
= &s
->timer
[i
];
688 hpet_del_timer(timer
);
690 timer
->config
= HPET_TN_PERIODIC_CAP
| HPET_TN_SIZE_CAP
;
691 if (s
->flags
& (1 << HPET_MSI_SUPPORT
)) {
692 timer
->config
|= HPET_TN_FSB_CAP
;
694 /* advertise availability of ioapic int */
695 timer
->config
|= (uint64_t)s
->intcap
<< 32;
696 timer
->period
= 0ULL;
697 timer
->wrap_flag
= 0;
700 qemu_set_irq(s
->pit_enabled
, 1);
701 s
->hpet_counter
= 0ULL;
702 s
->hpet_offset
= 0ULL;
704 hpet_cfg
.hpet
[s
->hpet_id
].event_timer_block_id
= (uint32_t)s
->capability
;
705 hpet_cfg
.hpet
[s
->hpet_id
].address
= sbd
->mmio
[0].addr
;
707 /* to document that the RTC lowers its output on reset as well */
708 s
->rtc_irq_level
= 0;
711 static void hpet_handle_legacy_irq(void *opaque
, int n
, int level
)
713 HPETState
*s
= HPET(opaque
);
715 if (n
== HPET_LEGACY_PIT_INT
) {
716 if (!hpet_in_legacy_mode(s
)) {
717 qemu_set_irq(s
->irqs
[0], level
);
720 s
->rtc_irq_level
= level
;
721 if (!hpet_in_legacy_mode(s
)) {
722 qemu_set_irq(s
->irqs
[RTC_ISA_IRQ
], level
);
727 static void hpet_init(Object
*obj
)
729 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
730 HPETState
*s
= HPET(obj
);
733 memory_region_init_io(&s
->iomem
, obj
, &hpet_ram_ops
, s
, "hpet", HPET_LEN
);
734 sysbus_init_mmio(sbd
, &s
->iomem
);
737 static void hpet_realize(DeviceState
*dev
, Error
**errp
)
739 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
740 HPETState
*s
= HPET(dev
);
745 warn_report("Hpet's intcap not initialized");
747 if (hpet_cfg
.count
== UINT8_MAX
) {
752 if (hpet_cfg
.count
== 8) {
753 error_setg(errp
, "Only 8 instances of HPET is allowed");
757 s
->hpet_id
= hpet_cfg
.count
++;
759 for (i
= 0; i
< HPET_NUM_IRQ_ROUTES
; i
++) {
760 sysbus_init_irq(sbd
, &s
->irqs
[i
]);
763 if (s
->num_timers
< HPET_MIN_TIMERS
) {
764 s
->num_timers
= HPET_MIN_TIMERS
;
765 } else if (s
->num_timers
> HPET_MAX_TIMERS
) {
766 s
->num_timers
= HPET_MAX_TIMERS
;
768 for (i
= 0; i
< HPET_MAX_TIMERS
; i
++) {
769 timer
= &s
->timer
[i
];
770 timer
->qemu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, hpet_timer
, timer
);
775 /* 64-bit main counter; LegacyReplacementRoute. */
776 s
->capability
= 0x8086a001ULL
;
777 s
->capability
|= (s
->num_timers
- 1) << HPET_ID_NUM_TIM_SHIFT
;
778 s
->capability
|= ((uint64_t)(HPET_CLK_PERIOD
* FS_PER_NS
) << 32);
780 qdev_init_gpio_in(dev
, hpet_handle_legacy_irq
, 2);
781 qdev_init_gpio_out(dev
, &s
->pit_enabled
, 1);
784 static Property hpet_device_properties
[] = {
785 DEFINE_PROP_UINT8("timers", HPETState
, num_timers
, HPET_MIN_TIMERS
),
786 DEFINE_PROP_BIT("msi", HPETState
, flags
, HPET_MSI_SUPPORT
, false),
787 DEFINE_PROP_UINT32(HPET_INTCAP
, HPETState
, intcap
, 0),
788 DEFINE_PROP_BOOL("hpet-offset-saved", HPETState
, hpet_offset_saved
, true),
789 DEFINE_PROP_END_OF_LIST(),
792 static void hpet_device_class_init(ObjectClass
*klass
, void *data
)
794 DeviceClass
*dc
= DEVICE_CLASS(klass
);
796 dc
->realize
= hpet_realize
;
797 dc
->reset
= hpet_reset
;
798 dc
->vmsd
= &vmstate_hpet
;
799 device_class_set_props(dc
, hpet_device_properties
);
802 static const TypeInfo hpet_device_info
= {
804 .parent
= TYPE_SYS_BUS_DEVICE
,
805 .instance_size
= sizeof(HPETState
),
806 .instance_init
= hpet_init
,
807 .class_init
= hpet_device_class_init
,
810 static void hpet_register_types(void)
812 type_register_static(&hpet_device_info
);
815 type_init(hpet_register_types
)