qapi: Improve specificity of type/member descriptions
[qemu/armbru.git] / target / xtensa / mmu_helper.c
blobfa66e8e8675141e51ca0f17e3f0a9c7fc1d23650
1 /*
2 * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "qemu/log.h"
30 #include "qemu/main-loop.h"
31 #include "qemu/qemu-print.h"
32 #include "qemu/units.h"
33 #include "cpu.h"
34 #include "exec/helper-proto.h"
35 #include "qemu/host-utils.h"
36 #include "exec/exec-all.h"
37 #include "exec/cpu_ldst.h"
39 #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
40 #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
41 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
42 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
43 #define XTENSA_MPU_MEM_TYPE_SHIFT 12
44 #define XTENSA_MPU_ATTR_MASK 0x001fff00
46 #define XTENSA_MPU_PROBE_B 0x40000000
47 #define XTENSA_MPU_PROBE_V 0x80000000
49 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
50 #define XTENSA_MPU_SYSTEM_TYPE_NC 0x0002
51 #define XTENSA_MPU_SYSTEM_TYPE_C 0x0003
52 #define XTENSA_MPU_SYSTEM_TYPE_MASK 0x0003
54 #define XTENSA_MPU_TYPE_SYS_C 0x0010
55 #define XTENSA_MPU_TYPE_SYS_W 0x0020
56 #define XTENSA_MPU_TYPE_SYS_R 0x0040
57 #define XTENSA_MPU_TYPE_CPU_C 0x0100
58 #define XTENSA_MPU_TYPE_CPU_W 0x0200
59 #define XTENSA_MPU_TYPE_CPU_R 0x0400
60 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
61 #define XTENSA_MPU_TYPE_B 0x1000
62 #define XTENSA_MPU_TYPE_INT 0x2000
64 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
67 * Probe the memory; we don't care about the result but
68 * only the side-effects (ie any MMU or other exception)
70 probe_access(env, vaddr, 1, MMU_INST_FETCH,
71 cpu_mmu_index(env, true), GETPC());
74 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
76 v = (v & 0xffffff00) | 0x1;
77 if (v != env->sregs[RASID]) {
78 env->sregs[RASID] = v;
79 tlb_flush(env_cpu(env));
83 static uint32_t get_page_size(const CPUXtensaState *env,
84 bool dtlb, uint32_t way)
86 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
88 switch (way) {
89 case 4:
90 return (tlbcfg >> 16) & 0x3;
92 case 5:
93 return (tlbcfg >> 20) & 0x1;
95 case 6:
96 return (tlbcfg >> 24) & 0x1;
98 default:
99 return 0;
104 * Get bit mask for the virtual address bits translated by the TLB way
106 static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
107 bool dtlb, uint32_t way)
109 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
110 bool varway56 = dtlb ?
111 env->config->dtlb.varway56 :
112 env->config->itlb.varway56;
114 switch (way) {
115 case 4:
116 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
118 case 5:
119 if (varway56) {
120 return 0xf8000000 << get_page_size(env, dtlb, way);
121 } else {
122 return 0xf8000000;
125 case 6:
126 if (varway56) {
127 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
128 } else {
129 return 0xf0000000;
132 default:
133 return 0xfffff000;
135 } else {
136 return REGION_PAGE_MASK;
141 * Get bit mask for the 'VPN without index' field.
142 * See ISA, 4.6.5.6, data format for RxTLB0
144 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
146 if (way < 4) {
147 bool is32 = (dtlb ?
148 env->config->dtlb.nrefillentries :
149 env->config->itlb.nrefillentries) == 32;
150 return is32 ? 0xffff8000 : 0xffffc000;
151 } else if (way == 4) {
152 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
153 } else if (way <= 6) {
154 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
155 bool varway56 = dtlb ?
156 env->config->dtlb.varway56 :
157 env->config->itlb.varway56;
159 if (varway56) {
160 return mask << (way == 5 ? 2 : 3);
161 } else {
162 return mask << 1;
164 } else {
165 return 0xfffff000;
170 * Split virtual address into VPN (with index) and entry index
171 * for the given TLB way
173 static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
174 bool dtlb, uint32_t *vpn,
175 uint32_t wi, uint32_t *ei)
177 bool varway56 = dtlb ?
178 env->config->dtlb.varway56 :
179 env->config->itlb.varway56;
181 if (!dtlb) {
182 wi &= 7;
185 if (wi < 4) {
186 bool is32 = (dtlb ?
187 env->config->dtlb.nrefillentries :
188 env->config->itlb.nrefillentries) == 32;
189 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
190 } else {
191 switch (wi) {
192 case 4:
194 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
195 *ei = (v >> eibase) & 0x3;
197 break;
199 case 5:
200 if (varway56) {
201 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
202 *ei = (v >> eibase) & 0x3;
203 } else {
204 *ei = (v >> 27) & 0x1;
206 break;
208 case 6:
209 if (varway56) {
210 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
211 *ei = (v >> eibase) & 0x7;
212 } else {
213 *ei = (v >> 28) & 0x1;
215 break;
217 default:
218 *ei = 0;
219 break;
222 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
226 * Split TLB address into TLB way, entry index and VPN (with index).
227 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
229 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
230 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
232 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
233 *wi = v & (dtlb ? 0xf : 0x7);
234 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
235 } else {
236 *vpn = v & REGION_PAGE_MASK;
237 *wi = 0;
238 *ei = (v >> 29) & 0x7;
242 static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
243 unsigned wi, unsigned ei)
245 return dtlb ?
246 env->dtlb[wi] + ei :
247 env->itlb[wi] + ei;
250 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
251 uint32_t v, bool dtlb, uint32_t *pwi)
253 uint32_t vpn;
254 uint32_t wi;
255 uint32_t ei;
257 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
258 if (pwi) {
259 *pwi = wi;
261 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
264 static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
265 xtensa_tlb_entry *entry, bool dtlb,
266 unsigned wi, unsigned ei, uint32_t vpn,
267 uint32_t pte)
269 entry->vaddr = vpn;
270 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
271 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
272 entry->attr = pte & 0xf;
275 static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
276 unsigned wi, unsigned ei,
277 uint32_t vpn, uint32_t pte)
279 CPUState *cs = env_cpu(env);
280 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
282 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
283 if (entry->variable) {
284 if (entry->asid) {
285 tlb_flush_page(cs, entry->vaddr);
287 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
288 tlb_flush_page(cs, entry->vaddr);
289 } else {
290 qemu_log_mask(LOG_GUEST_ERROR,
291 "%s %d, %d, %d trying to set immutable entry\n",
292 __func__, dtlb, wi, ei);
294 } else {
295 tlb_flush_page(cs, entry->vaddr);
296 if (xtensa_option_enabled(env->config,
297 XTENSA_OPTION_REGION_TRANSLATION)) {
298 entry->paddr = pte & REGION_PAGE_MASK;
300 entry->attr = pte & 0xf;
304 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
306 XtensaCPU *cpu = XTENSA_CPU(cs);
307 uint32_t paddr;
308 uint32_t page_size;
309 unsigned access;
311 if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
312 &paddr, &page_size, &access) == 0) {
313 return paddr;
315 if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
316 &paddr, &page_size, &access) == 0) {
317 return paddr;
319 return ~0;
322 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
323 const xtensa_tlb *tlb,
324 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
326 unsigned wi, ei;
328 for (wi = 0; wi < tlb->nways; ++wi) {
329 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
330 entry[wi][ei].asid = 0;
331 entry[wi][ei].variable = true;
336 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
337 const xtensa_tlb *tlb,
338 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
340 if (!tlb->varway56) {
341 static const xtensa_tlb_entry way5[] = {
343 .vaddr = 0xd0000000,
344 .paddr = 0,
345 .asid = 1,
346 .attr = 7,
347 .variable = false,
348 }, {
349 .vaddr = 0xd8000000,
350 .paddr = 0,
351 .asid = 1,
352 .attr = 3,
353 .variable = false,
356 static const xtensa_tlb_entry way6[] = {
358 .vaddr = 0xe0000000,
359 .paddr = 0xf0000000,
360 .asid = 1,
361 .attr = 7,
362 .variable = false,
363 }, {
364 .vaddr = 0xf0000000,
365 .paddr = 0xf0000000,
366 .asid = 1,
367 .attr = 3,
368 .variable = false,
371 memcpy(entry[5], way5, sizeof(way5));
372 memcpy(entry[6], way6, sizeof(way6));
373 } else {
374 uint32_t ei;
375 for (ei = 0; ei < 8; ++ei) {
376 entry[6][ei].vaddr = ei << 29;
377 entry[6][ei].paddr = ei << 29;
378 entry[6][ei].asid = 1;
379 entry[6][ei].attr = 3;
384 static void reset_tlb_region_way0(CPUXtensaState *env,
385 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
387 unsigned ei;
389 for (ei = 0; ei < 8; ++ei) {
390 entry[0][ei].vaddr = ei << 29;
391 entry[0][ei].paddr = ei << 29;
392 entry[0][ei].asid = 1;
393 entry[0][ei].attr = 2;
394 entry[0][ei].variable = true;
398 void reset_mmu(CPUXtensaState *env)
400 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
401 env->sregs[RASID] = 0x04030201;
402 env->sregs[ITLBCFG] = 0;
403 env->sregs[DTLBCFG] = 0;
404 env->autorefill_idx = 0;
405 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
406 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
407 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
408 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
409 } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
410 unsigned i;
412 env->sregs[MPUENB] = 0;
413 env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
414 env->sregs[CACHEADRDIS] = 0;
415 assert(env->config->n_mpu_bg_segments > 0 &&
416 env->config->mpu_bg[0].vaddr == 0);
417 for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
418 assert(env->config->mpu_bg[i].vaddr >=
419 env->config->mpu_bg[i - 1].vaddr);
421 } else {
422 env->sregs[CACHEATTR] = 0x22222222;
423 reset_tlb_region_way0(env, env->itlb);
424 reset_tlb_region_way0(env, env->dtlb);
428 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
430 unsigned i;
431 for (i = 0; i < 4; ++i) {
432 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
433 return i;
436 return 0xff;
440 * Lookup xtensa TLB for the given virtual address.
441 * See ISA, 4.6.2.2
443 * \param pwi: [out] way index
444 * \param pei: [out] entry index
445 * \param pring: [out] access ring
446 * \return 0 if ok, exception cause code otherwise
448 static int xtensa_tlb_lookup(const CPUXtensaState *env,
449 uint32_t addr, bool dtlb,
450 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
452 const xtensa_tlb *tlb = dtlb ?
453 &env->config->dtlb : &env->config->itlb;
454 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
455 env->dtlb : env->itlb;
457 int nhits = 0;
458 unsigned wi;
460 for (wi = 0; wi < tlb->nways; ++wi) {
461 uint32_t vpn;
462 uint32_t ei;
463 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
464 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
465 unsigned ring = get_ring(env, entry[wi][ei].asid);
466 if (ring < 4) {
467 if (++nhits > 1) {
468 return dtlb ?
469 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
470 INST_TLB_MULTI_HIT_CAUSE;
472 *pwi = wi;
473 *pei = ei;
474 *pring = ring;
478 return nhits ? 0 :
479 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
482 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
484 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
485 uint32_t wi;
486 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
487 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
488 } else {
489 return v & REGION_PAGE_MASK;
493 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
495 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
496 return entry->paddr | entry->attr;
499 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
501 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
502 uint32_t wi;
503 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
504 if (entry->variable && entry->asid) {
505 tlb_flush_page(env_cpu(env), entry->vaddr);
506 entry->asid = 0;
511 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
513 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
514 uint32_t wi;
515 uint32_t ei;
516 uint8_t ring;
517 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
519 switch (res) {
520 case 0:
521 if (ring >= xtensa_get_ring(env)) {
522 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
524 break;
526 case INST_TLB_MULTI_HIT_CAUSE:
527 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
528 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
529 break;
531 return 0;
532 } else {
533 return (v & REGION_PAGE_MASK) | 0x1;
537 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
539 uint32_t vpn;
540 uint32_t wi;
541 uint32_t ei;
542 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
543 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
547 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
548 * See ISA, 4.6.5.10
550 static unsigned mmu_attr_to_access(uint32_t attr)
552 unsigned access = 0;
554 if (attr < 12) {
555 access |= PAGE_READ;
556 if (attr & 0x1) {
557 access |= PAGE_EXEC;
559 if (attr & 0x2) {
560 access |= PAGE_WRITE;
563 switch (attr & 0xc) {
564 case 0:
565 access |= PAGE_CACHE_BYPASS;
566 break;
568 case 4:
569 access |= PAGE_CACHE_WB;
570 break;
572 case 8:
573 access |= PAGE_CACHE_WT;
574 break;
576 } else if (attr == 13) {
577 access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
579 return access;
583 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
584 * See ISA, 4.6.3.3
586 static unsigned region_attr_to_access(uint32_t attr)
588 static const unsigned access[16] = {
589 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
590 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
591 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
592 [3] = PAGE_EXEC | PAGE_CACHE_WB,
593 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
594 [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
595 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
598 return access[attr & 0xf];
602 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
603 * See ISA, A.2.14 The Cache Attribute Register
605 static unsigned cacheattr_attr_to_access(uint32_t attr)
607 static const unsigned access[16] = {
608 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
609 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
610 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
611 [3] = PAGE_EXEC | PAGE_CACHE_WB,
612 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
613 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
616 return access[attr & 0xf];
619 struct attr_pattern {
620 uint32_t mask;
621 uint32_t value;
624 static int attr_pattern_match(uint32_t attr,
625 const struct attr_pattern *pattern,
626 size_t n)
628 size_t i;
630 for (i = 0; i < n; ++i) {
631 if ((attr & pattern[i].mask) == pattern[i].value) {
632 return 1;
635 return 0;
638 static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
640 static const struct attr_pattern cpu_c[] = {
641 { .mask = 0x18f, .value = 0x089 },
642 { .mask = 0x188, .value = 0x080 },
643 { .mask = 0x180, .value = 0x180 },
646 unsigned type = 0;
648 if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
649 type |= XTENSA_MPU_TYPE_CPU_CACHE;
650 if (attr & 0x10) {
651 type |= XTENSA_MPU_TYPE_CPU_C;
653 if (attr & 0x20) {
654 type |= XTENSA_MPU_TYPE_CPU_W;
656 if (attr & 0x40) {
657 type |= XTENSA_MPU_TYPE_CPU_R;
660 return type;
663 static unsigned mpu_attr_to_type(uint32_t attr)
665 static const struct attr_pattern device_type[] = {
666 { .mask = 0x1f6, .value = 0x000 },
667 { .mask = 0x1f6, .value = 0x006 },
669 static const struct attr_pattern sys_nc_type[] = {
670 { .mask = 0x1fe, .value = 0x018 },
671 { .mask = 0x1fe, .value = 0x01e },
672 { .mask = 0x18f, .value = 0x089 },
674 static const struct attr_pattern sys_c_type[] = {
675 { .mask = 0x1f8, .value = 0x010 },
676 { .mask = 0x188, .value = 0x080 },
677 { .mask = 0x1f0, .value = 0x030 },
678 { .mask = 0x180, .value = 0x180 },
680 static const struct attr_pattern b[] = {
681 { .mask = 0x1f7, .value = 0x001 },
682 { .mask = 0x1f7, .value = 0x007 },
683 { .mask = 0x1ff, .value = 0x019 },
684 { .mask = 0x1ff, .value = 0x01f },
687 unsigned type = 0;
689 attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
690 if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
691 type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
692 if (attr & 0x80) {
693 type |= XTENSA_MPU_TYPE_INT;
696 if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
697 type |= XTENSA_MPU_SYSTEM_TYPE_NC;
699 if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
700 type |= XTENSA_MPU_SYSTEM_TYPE_C;
701 if (attr & 0x1) {
702 type |= XTENSA_MPU_TYPE_SYS_C;
704 if (attr & 0x2) {
705 type |= XTENSA_MPU_TYPE_SYS_W;
707 if (attr & 0x4) {
708 type |= XTENSA_MPU_TYPE_SYS_R;
711 if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
712 type |= XTENSA_MPU_TYPE_B;
714 type |= mpu_attr_to_cpu_cache(attr);
716 return type;
719 static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
721 static const unsigned access[2][16] = {
722 [0] = {
723 [4] = PAGE_READ,
724 [5] = PAGE_READ | PAGE_EXEC,
725 [6] = PAGE_READ | PAGE_WRITE,
726 [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
727 [8] = PAGE_WRITE,
728 [9] = PAGE_READ | PAGE_WRITE,
729 [10] = PAGE_READ | PAGE_WRITE,
730 [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
731 [12] = PAGE_READ,
732 [13] = PAGE_READ | PAGE_EXEC,
733 [14] = PAGE_READ | PAGE_WRITE,
734 [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
736 [1] = {
737 [8] = PAGE_WRITE,
738 [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
739 [10] = PAGE_READ,
740 [11] = PAGE_READ | PAGE_EXEC,
741 [12] = PAGE_READ,
742 [13] = PAGE_READ | PAGE_EXEC,
743 [14] = PAGE_READ | PAGE_WRITE,
744 [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
747 unsigned rv;
748 unsigned type;
750 type = mpu_attr_to_cpu_cache(attr);
751 rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
752 XTENSA_MPU_ACC_RIGHTS_SHIFT];
754 if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
755 rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
756 } else {
757 rv |= PAGE_CACHE_BYPASS;
759 return rv;
762 static bool is_access_granted(unsigned access, int is_write)
764 switch (is_write) {
765 case 0:
766 return access & PAGE_READ;
768 case 1:
769 return access & PAGE_WRITE;
771 case 2:
772 return access & PAGE_EXEC;
774 default:
775 return 0;
779 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
781 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
782 uint32_t vaddr, int is_write, int mmu_idx,
783 uint32_t *paddr, uint32_t *page_size,
784 unsigned *access, bool may_lookup_pt)
786 bool dtlb = is_write != 2;
787 uint32_t wi;
788 uint32_t ei;
789 uint8_t ring;
790 uint32_t vpn;
791 uint32_t pte;
792 const xtensa_tlb_entry *entry = NULL;
793 xtensa_tlb_entry tmp_entry;
794 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
796 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
797 may_lookup_pt && get_pte(env, vaddr, &pte)) {
798 ring = (pte >> 4) & 0x3;
799 wi = 0;
800 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
802 if (update_tlb) {
803 wi = ++env->autorefill_idx & 0x3;
804 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
805 env->sregs[EXCVADDR] = vaddr;
806 qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
807 __func__, vaddr, vpn, pte);
808 } else {
809 xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
810 entry = &tmp_entry;
812 ret = 0;
814 if (ret != 0) {
815 return ret;
818 if (entry == NULL) {
819 entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
822 if (ring < mmu_idx) {
823 return dtlb ?
824 LOAD_STORE_PRIVILEGE_CAUSE :
825 INST_FETCH_PRIVILEGE_CAUSE;
828 *access = mmu_attr_to_access(entry->attr) &
829 ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
830 if (!is_access_granted(*access, is_write)) {
831 return dtlb ?
832 (is_write ?
833 STORE_PROHIBITED_CAUSE :
834 LOAD_PROHIBITED_CAUSE) :
835 INST_FETCH_PROHIBITED_CAUSE;
838 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
839 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
841 return 0;
844 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
846 CPUState *cs = env_cpu(env);
847 uint32_t paddr;
848 uint32_t page_size;
849 unsigned access;
850 uint32_t pt_vaddr =
851 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
852 int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
853 &paddr, &page_size, &access, false);
855 if (ret == 0) {
856 qemu_log_mask(CPU_LOG_MMU,
857 "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
858 __func__, vaddr, pt_vaddr, paddr);
859 } else {
860 qemu_log_mask(CPU_LOG_MMU,
861 "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
862 __func__, vaddr, pt_vaddr, ret);
865 if (ret == 0) {
866 MemTxResult result;
868 *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
869 &result);
870 if (result != MEMTX_OK) {
871 qemu_log_mask(CPU_LOG_MMU,
872 "%s: couldn't load PTE: transaction failed (%u)\n",
873 __func__, (unsigned)result);
874 ret = 1;
877 return ret == 0;
880 static int get_physical_addr_region(CPUXtensaState *env,
881 uint32_t vaddr, int is_write, int mmu_idx,
882 uint32_t *paddr, uint32_t *page_size,
883 unsigned *access)
885 bool dtlb = is_write != 2;
886 uint32_t wi = 0;
887 uint32_t ei = (vaddr >> 29) & 0x7;
888 const xtensa_tlb_entry *entry =
889 xtensa_tlb_get_entry(env, dtlb, wi, ei);
891 *access = region_attr_to_access(entry->attr);
892 if (!is_access_granted(*access, is_write)) {
893 return dtlb ?
894 (is_write ?
895 STORE_PROHIBITED_CAUSE :
896 LOAD_PROHIBITED_CAUSE) :
897 INST_FETCH_PROHIBITED_CAUSE;
900 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
901 *page_size = ~REGION_PAGE_MASK + 1;
903 return 0;
906 static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
907 uint32_t vaddr, unsigned *segment)
909 unsigned nhits = 0;
910 unsigned i;
912 for (i = 0; i < n; ++i) {
913 if (vaddr >= entry[i].vaddr &&
914 (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
915 if (nhits++) {
916 break;
918 *segment = i;
921 return nhits;
924 void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
926 v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
928 if (v != env->sregs[MPUENB]) {
929 env->sregs[MPUENB] = v;
930 tlb_flush(env_cpu(env));
934 void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
936 unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
938 if (segment < env->config->n_mpu_fg_segments) {
939 env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
940 env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
941 env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
942 tlb_flush(env_cpu(env));
946 uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
948 unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
950 if (segment < env->config->n_mpu_fg_segments) {
951 return env->mpu_fg[segment].vaddr |
952 extract32(env->sregs[MPUENB], segment, 1);
953 } else {
954 return 0;
958 uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
960 unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
962 if (segment < env->config->n_mpu_fg_segments) {
963 return env->mpu_fg[segment].attr;
964 } else {
965 return 0;
969 uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
971 unsigned nhits;
972 unsigned segment = XTENSA_MPU_PROBE_B;
973 unsigned bg_segment;
975 nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
976 v, &segment);
977 if (nhits > 1) {
978 HELPER(exception_cause_vaddr)(env, env->pc,
979 LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
980 } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
981 return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
982 } else {
983 xtensa_mpu_lookup(env->config->mpu_bg,
984 env->config->n_mpu_bg_segments,
985 v, &bg_segment);
986 return env->config->mpu_bg[bg_segment].attr | segment;
990 static int get_physical_addr_mpu(CPUXtensaState *env,
991 uint32_t vaddr, int is_write, int mmu_idx,
992 uint32_t *paddr, uint32_t *page_size,
993 unsigned *access)
995 unsigned nhits;
996 unsigned segment;
997 uint32_t attr;
999 nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
1000 vaddr, &segment);
1001 if (nhits > 1) {
1002 return is_write < 2 ?
1003 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1004 INST_TLB_MULTI_HIT_CAUSE;
1005 } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1006 attr = env->mpu_fg[segment].attr;
1007 } else {
1008 xtensa_mpu_lookup(env->config->mpu_bg,
1009 env->config->n_mpu_bg_segments,
1010 vaddr, &segment);
1011 attr = env->config->mpu_bg[segment].attr;
1014 *access = mpu_attr_to_access(attr, mmu_idx);
1015 if (!is_access_granted(*access, is_write)) {
1016 return is_write < 2 ?
1017 (is_write ?
1018 STORE_PROHIBITED_CAUSE :
1019 LOAD_PROHIBITED_CAUSE) :
1020 INST_FETCH_PROHIBITED_CAUSE;
1022 *paddr = vaddr;
1023 *page_size = env->config->mpu_align;
1024 return 0;
1028 * Convert virtual address to physical addr.
1029 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1031 * \return 0 if ok, exception cause code otherwise
1033 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1034 uint32_t vaddr, int is_write, int mmu_idx,
1035 uint32_t *paddr, uint32_t *page_size,
1036 unsigned *access)
1038 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1039 return get_physical_addr_mmu(env, update_tlb,
1040 vaddr, is_write, mmu_idx, paddr,
1041 page_size, access, true);
1042 } else if (xtensa_option_bits_enabled(env->config,
1043 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1044 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1045 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1046 paddr, page_size, access);
1047 } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1048 return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1049 paddr, page_size, access);
1050 } else {
1051 *paddr = vaddr;
1052 *page_size = TARGET_PAGE_SIZE;
1053 *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1054 ((vaddr & 0xe0000000) >> 27));
1055 return 0;
1059 static void dump_tlb(CPUXtensaState *env, bool dtlb)
1061 unsigned wi, ei;
1062 const xtensa_tlb *conf =
1063 dtlb ? &env->config->dtlb : &env->config->itlb;
1064 unsigned (*attr_to_access)(uint32_t) =
1065 xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1066 mmu_attr_to_access : region_attr_to_access;
1068 for (wi = 0; wi < conf->nways; ++wi) {
1069 uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1070 const char *sz_text;
1071 bool print_header = true;
1073 if (sz >= 0x100000) {
1074 sz /= MiB;
1075 sz_text = "MB";
1076 } else {
1077 sz /= KiB;
1078 sz_text = "KB";
1081 for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1082 const xtensa_tlb_entry *entry =
1083 xtensa_tlb_get_entry(env, dtlb, wi, ei);
1085 if (entry->asid) {
1086 static const char * const cache_text[8] = {
1087 [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1088 [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1089 [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1090 [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1092 unsigned access = attr_to_access(entry->attr);
1093 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1094 PAGE_CACHE_SHIFT;
1096 if (print_header) {
1097 print_header = false;
1098 qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1099 qemu_printf("\tVaddr Paddr ASID Attr RWX Cache\n"
1100 "\t---------- ---------- ---- ---- --- -------\n");
1102 qemu_printf("\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %s\n",
1103 entry->vaddr,
1104 entry->paddr,
1105 entry->asid,
1106 entry->attr,
1107 (access & PAGE_READ) ? 'R' : '-',
1108 (access & PAGE_WRITE) ? 'W' : '-',
1109 (access & PAGE_EXEC) ? 'X' : '-',
1110 cache_text[cache_idx] ?
1111 cache_text[cache_idx] : "Invalid");
1117 static void dump_mpu(CPUXtensaState *env,
1118 const xtensa_mpu_entry *entry, unsigned n)
1120 unsigned i;
1122 qemu_printf("\t%s Vaddr Attr Ring0 Ring1 System Type CPU cache\n"
1123 "\t%s ---------- ---------- ----- ----- ------------- ---------\n",
1124 env ? "En" : " ",
1125 env ? "--" : " ");
1127 for (i = 0; i < n; ++i) {
1128 uint32_t attr = entry[i].attr;
1129 unsigned access0 = mpu_attr_to_access(attr, 0);
1130 unsigned access1 = mpu_attr_to_access(attr, 1);
1131 unsigned type = mpu_attr_to_type(attr);
1132 char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1134 qemu_printf("\t %c 0x%08x 0x%08x %c%c%c %c%c%c ",
1135 env ?
1136 ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1137 entry[i].vaddr, attr,
1138 (access0 & PAGE_READ) ? 'R' : '-',
1139 (access0 & PAGE_WRITE) ? 'W' : '-',
1140 (access0 & PAGE_EXEC) ? 'X' : '-',
1141 (access1 & PAGE_READ) ? 'R' : '-',
1142 (access1 & PAGE_WRITE) ? 'W' : '-',
1143 (access1 & PAGE_EXEC) ? 'X' : '-');
1145 switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1146 case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1147 qemu_printf("Device %cB %3s\n",
1148 (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1149 (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1150 break;
1151 case XTENSA_MPU_SYSTEM_TYPE_NC:
1152 qemu_printf("Sys NC %cB %c%c%c\n",
1153 (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1154 (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1155 (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1156 (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1157 break;
1158 case XTENSA_MPU_SYSTEM_TYPE_C:
1159 qemu_printf("Sys C %c%c%c %c%c%c\n",
1160 (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1161 (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1162 (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1163 (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1164 (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1165 (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1166 break;
1167 default:
1168 qemu_printf("Unknown\n");
1169 break;
1174 void dump_mmu(CPUXtensaState *env)
1176 if (xtensa_option_bits_enabled(env->config,
1177 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1178 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1179 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1181 qemu_printf("ITLB:\n");
1182 dump_tlb(env, false);
1183 qemu_printf("\nDTLB:\n");
1184 dump_tlb(env, true);
1185 } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1186 qemu_printf("Foreground map:\n");
1187 dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1188 qemu_printf("\nBackground map:\n");
1189 dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1190 } else {
1191 qemu_printf("No TLB for this CPU core\n");