migration/rdma: Plug memory leaks in qemu_rdma_registration_stop()
[qemu/armbru.git] / util / bufferiszero.c
blob695bb4ce28b6ff9b85804e32cac023a350d48143
1 /*
2 * Simple C functions to supplement the C library
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "qemu/cutils.h"
26 #include "qemu/bswap.h"
28 static bool
29 buffer_zero_int(const void *buf, size_t len)
31 if (unlikely(len < 8)) {
32 /* For a very small buffer, simply accumulate all the bytes. */
33 const unsigned char *p = buf;
34 const unsigned char *e = buf + len;
35 unsigned char t = 0;
37 do {
38 t |= *p++;
39 } while (p < e);
41 return t == 0;
42 } else {
43 /* Otherwise, use the unaligned memory access functions to
44 handle the beginning and end of the buffer, with a couple
45 of loops handling the middle aligned section. */
46 uint64_t t = ldq_he_p(buf);
47 const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8);
48 const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8);
50 for (; p + 8 <= e; p += 8) {
51 __builtin_prefetch(p + 8);
52 if (t) {
53 return false;
55 t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
57 while (p < e) {
58 t |= *p++;
60 t |= ldq_he_p(buf + len - 8);
62 return t == 0;
66 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
67 /* Do not use push_options pragmas unnecessarily, because clang
68 * does not support them.
70 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
71 #pragma GCC push_options
72 #pragma GCC target("sse2")
73 #endif
74 #include <emmintrin.h>
76 /* Note that each of these vectorized functions require len >= 64. */
78 static bool
79 buffer_zero_sse2(const void *buf, size_t len)
81 __m128i t = _mm_loadu_si128(buf);
82 __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
83 __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
84 __m128i zero = _mm_setzero_si128();
86 /* Loop over 16-byte aligned blocks of 64. */
87 while (likely(p <= e)) {
88 __builtin_prefetch(p);
89 t = _mm_cmpeq_epi8(t, zero);
90 if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) {
91 return false;
93 t = p[-4] | p[-3] | p[-2] | p[-1];
94 p += 4;
97 /* Finish the aligned tail. */
98 t |= e[-3];
99 t |= e[-2];
100 t |= e[-1];
102 /* Finish the unaligned tail. */
103 t |= _mm_loadu_si128(buf + len - 16);
105 return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF;
107 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
108 #pragma GCC pop_options
109 #endif
111 #ifdef CONFIG_AVX2_OPT
112 /* Note that due to restrictions/bugs wrt __builtin functions in gcc <= 4.8,
113 * the includes have to be within the corresponding push_options region, and
114 * therefore the regions themselves have to be ordered with increasing ISA.
116 #pragma GCC push_options
117 #pragma GCC target("sse4")
118 #include <smmintrin.h>
120 static bool
121 buffer_zero_sse4(const void *buf, size_t len)
123 __m128i t = _mm_loadu_si128(buf);
124 __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
125 __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
127 /* Loop over 16-byte aligned blocks of 64. */
128 while (likely(p <= e)) {
129 __builtin_prefetch(p);
130 if (unlikely(!_mm_testz_si128(t, t))) {
131 return false;
133 t = p[-4] | p[-3] | p[-2] | p[-1];
134 p += 4;
137 /* Finish the aligned tail. */
138 t |= e[-3];
139 t |= e[-2];
140 t |= e[-1];
142 /* Finish the unaligned tail. */
143 t |= _mm_loadu_si128(buf + len - 16);
145 return _mm_testz_si128(t, t);
148 #pragma GCC pop_options
149 #pragma GCC push_options
150 #pragma GCC target("avx2")
151 #include <immintrin.h>
153 static bool
154 buffer_zero_avx2(const void *buf, size_t len)
156 /* Begin with an unaligned head of 32 bytes. */
157 __m256i t = _mm256_loadu_si256(buf);
158 __m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32);
159 __m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32);
161 /* Loop over 32-byte aligned blocks of 128. */
162 while (p <= e) {
163 __builtin_prefetch(p);
164 if (unlikely(!_mm256_testz_si256(t, t))) {
165 return false;
167 t = p[-4] | p[-3] | p[-2] | p[-1];
168 p += 4;
171 /* Finish the last block of 128 unaligned. */
172 t |= _mm256_loadu_si256(buf + len - 4 * 32);
173 t |= _mm256_loadu_si256(buf + len - 3 * 32);
174 t |= _mm256_loadu_si256(buf + len - 2 * 32);
175 t |= _mm256_loadu_si256(buf + len - 1 * 32);
177 return _mm256_testz_si256(t, t);
179 #pragma GCC pop_options
180 #endif /* CONFIG_AVX2_OPT */
182 #ifdef CONFIG_AVX512F_OPT
183 #pragma GCC push_options
184 #pragma GCC target("avx512f")
185 #include <immintrin.h>
187 static bool
188 buffer_zero_avx512(const void *buf, size_t len)
190 /* Begin with an unaligned head of 64 bytes. */
191 __m512i t = _mm512_loadu_si512(buf);
192 __m512i *p = (__m512i *)(((uintptr_t)buf + 5 * 64) & -64);
193 __m512i *e = (__m512i *)(((uintptr_t)buf + len) & -64);
195 /* Loop over 64-byte aligned blocks of 256. */
196 while (p <= e) {
197 __builtin_prefetch(p);
198 if (unlikely(_mm512_test_epi64_mask(t, t))) {
199 return false;
201 t = p[-4] | p[-3] | p[-2] | p[-1];
202 p += 4;
205 t |= _mm512_loadu_si512(buf + len - 4 * 64);
206 t |= _mm512_loadu_si512(buf + len - 3 * 64);
207 t |= _mm512_loadu_si512(buf + len - 2 * 64);
208 t |= _mm512_loadu_si512(buf + len - 1 * 64);
210 return !_mm512_test_epi64_mask(t, t);
213 #pragma GCC pop_options
214 #endif
217 /* Note that for test_buffer_is_zero_next_accel, the most preferred
218 * ISA must have the least significant bit.
220 #define CACHE_AVX512F 1
221 #define CACHE_AVX2 2
222 #define CACHE_SSE4 4
223 #define CACHE_SSE2 8
225 /* Make sure that these variables are appropriately initialized when
226 * SSE2 is enabled on the compiler command-line, but the compiler is
227 * too old to support CONFIG_AVX2_OPT.
229 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
230 # define INIT_CACHE 0
231 # define INIT_ACCEL buffer_zero_int
232 #else
233 # ifndef __SSE2__
234 # error "ISA selection confusion"
235 # endif
236 # define INIT_CACHE CACHE_SSE2
237 # define INIT_ACCEL buffer_zero_sse2
238 #endif
240 static unsigned cpuid_cache = INIT_CACHE;
241 static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL;
242 static int length_to_accel = 64;
244 static void init_accel(unsigned cache)
246 bool (*fn)(const void *, size_t) = buffer_zero_int;
247 if (cache & CACHE_SSE2) {
248 fn = buffer_zero_sse2;
249 length_to_accel = 64;
251 #ifdef CONFIG_AVX2_OPT
252 if (cache & CACHE_SSE4) {
253 fn = buffer_zero_sse4;
254 length_to_accel = 64;
256 if (cache & CACHE_AVX2) {
257 fn = buffer_zero_avx2;
258 length_to_accel = 128;
260 #endif
261 #ifdef CONFIG_AVX512F_OPT
262 if (cache & CACHE_AVX512F) {
263 fn = buffer_zero_avx512;
264 length_to_accel = 256;
266 #endif
267 buffer_accel = fn;
270 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
271 #include "qemu/cpuid.h"
273 static void __attribute__((constructor)) init_cpuid_cache(void)
275 int max = __get_cpuid_max(0, NULL);
276 int a, b, c, d;
277 unsigned cache = 0;
279 if (max >= 1) {
280 __cpuid(1, a, b, c, d);
281 if (d & bit_SSE2) {
282 cache |= CACHE_SSE2;
284 if (c & bit_SSE4_1) {
285 cache |= CACHE_SSE4;
288 /* We must check that AVX is not just available, but usable. */
289 if ((c & bit_OSXSAVE) && (c & bit_AVX) && max >= 7) {
290 int bv;
291 __asm("xgetbv" : "=a"(bv), "=d"(d) : "c"(0));
292 __cpuid_count(7, 0, a, b, c, d);
293 if ((bv & 0x6) == 0x6 && (b & bit_AVX2)) {
294 cache |= CACHE_AVX2;
296 /* 0xe6:
297 * XCR0[7:5] = 111b (OPMASK state, upper 256-bit of ZMM0-ZMM15
298 * and ZMM16-ZMM31 state are enabled by OS)
299 * XCR0[2:1] = 11b (XMM state and YMM state are enabled by OS)
301 if ((bv & 0xe6) == 0xe6 && (b & bit_AVX512F)) {
302 cache |= CACHE_AVX512F;
306 cpuid_cache = cache;
307 init_accel(cache);
309 #endif /* CONFIG_AVX2_OPT */
311 bool test_buffer_is_zero_next_accel(void)
313 /* If no bits set, we just tested buffer_zero_int, and there
314 are no more acceleration options to test. */
315 if (cpuid_cache == 0) {
316 return false;
318 /* Disable the accelerator we used before and select a new one. */
319 cpuid_cache &= cpuid_cache - 1;
320 init_accel(cpuid_cache);
321 return true;
324 static bool select_accel_fn(const void *buf, size_t len)
326 if (likely(len >= length_to_accel)) {
327 return buffer_accel(buf, len);
329 return buffer_zero_int(buf, len);
332 #else
333 #define select_accel_fn buffer_zero_int
334 bool test_buffer_is_zero_next_accel(void)
336 return false;
338 #endif
341 * Checks if a buffer is all zeroes
343 bool buffer_is_zero(const void *buf, size_t len)
345 if (unlikely(len == 0)) {
346 return true;
349 /* Fetch the beginning of the buffer while we select the accelerator. */
350 __builtin_prefetch(buf);
352 /* Use an optimized zero check if possible. Note that this also
353 includes a check for an unrolled loop over 64-bit integers. */
354 return select_accel_fn(buf, len);