sd/milkymist-memcard: Fix format string
[qemu/armbru.git] / hw / arm / armsse.c
blobdcbff9bd8f4ed8cdd67418f4d43871df967ed5eb
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27 IoTKitFormat,
28 SSE200Format,
29 } SysConfigFormat;
31 struct ARMSSEInfo {
32 const char *name;
33 int sram_banks;
34 int num_cpus;
35 uint32_t sys_version;
36 uint32_t cpuwait_rst;
37 SysConfigFormat sys_config_format;
38 bool has_mhus;
39 bool has_ppus;
40 bool has_cachectrl;
41 bool has_cpusecctrl;
42 bool has_cpuid;
43 Property *props;
46 static Property iotkit_properties[] = {
47 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48 MemoryRegion *),
49 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55 DEFINE_PROP_END_OF_LIST()
58 static Property armsse_properties[] = {
59 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60 MemoryRegion *),
61 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69 DEFINE_PROP_END_OF_LIST()
72 static const ARMSSEInfo armsse_variants[] = {
74 .name = TYPE_IOTKIT,
75 .sram_banks = 1,
76 .num_cpus = 1,
77 .sys_version = 0x41743,
78 .cpuwait_rst = 0,
79 .sys_config_format = IoTKitFormat,
80 .has_mhus = false,
81 .has_ppus = false,
82 .has_cachectrl = false,
83 .has_cpusecctrl = false,
84 .has_cpuid = false,
85 .props = iotkit_properties,
88 .name = TYPE_SSE200,
89 .sram_banks = 4,
90 .num_cpus = 2,
91 .sys_version = 0x22041743,
92 .cpuwait_rst = 2,
93 .sys_config_format = SSE200Format,
94 .has_mhus = true,
95 .has_ppus = true,
96 .has_cachectrl = true,
97 .has_cpusecctrl = true,
98 .has_cpuid = true,
99 .props = armsse_properties,
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
105 /* Return the SYS_CONFIG value for this SSE */
106 uint32_t sys_config;
108 switch (info->sys_config_format) {
109 case IoTKitFormat:
110 sys_config = 0;
111 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113 break;
114 case SSE200Format:
115 sys_config = 0;
116 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118 sys_config = deposit32(sys_config, 24, 4, 2);
119 if (info->num_cpus > 1) {
120 sys_config = deposit32(sys_config, 10, 1, 1);
121 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122 sys_config = deposit32(sys_config, 28, 4, 2);
124 break;
125 default:
126 g_assert_not_reached();
128 return sys_config;
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136 [0 ... 5] = true,
137 /* 6, 7: per-CPU MHU interrupts */
138 [8 ... 12] = true,
139 /* 13: per-CPU icache interrupt */
140 /* 14: reserved */
141 [15 ... 20] = true,
142 /* 21: reserved */
143 [22 ... 26] = true,
144 /* 27: reserved */
145 /* 28, 29: per-CPU CTI interrupts */
146 /* 30, 31: reserved */
150 * Create an alias region in @container of @size bytes starting at @base
151 * which mirrors the memory starting at @orig.
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154 const char *name, hwaddr base, hwaddr size, hwaddr orig)
156 memory_region_init_alias(mr, NULL, name, container, orig, size);
157 /* The alias is even lower priority than unimplemented_device regions */
158 memory_region_add_subregion_overlap(container, base, mr, -1500);
161 static void irq_status_forwarder(void *opaque, int n, int level)
163 qemu_irq destirq = opaque;
165 qemu_set_irq(destirq, level);
168 static void nsccfg_handler(void *opaque, int n, int level)
170 ARMSSE *s = ARMSSE(opaque);
172 s->nsccfg = level;
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
177 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178 * system using the ARMSSE has a collection of control lines which
179 * are provided by the security controller and which we want to
180 * expose as control lines on the ARMSSE device itself, so the
181 * code using the ARMSSE can wire them up to the PPCs.
183 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184 DeviceState *armssedev = DEVICE(s);
185 DeviceState *dev_secctl = DEVICE(&s->secctl);
186 DeviceState *dev_splitter = DEVICE(splitter);
187 char *name;
189 name = g_strdup_printf("%s_nonsec", ppcname);
190 qdev_pass_gpios(dev_secctl, armssedev, name);
191 g_free(name);
192 name = g_strdup_printf("%s_ap", ppcname);
193 qdev_pass_gpios(dev_secctl, armssedev, name);
194 g_free(name);
195 name = g_strdup_printf("%s_irq_enable", ppcname);
196 qdev_pass_gpios(dev_secctl, armssedev, name);
197 g_free(name);
198 name = g_strdup_printf("%s_irq_clear", ppcname);
199 qdev_pass_gpios(dev_secctl, armssedev, name);
200 g_free(name);
202 /* irq_status is a little more tricky, because we need to
203 * split it so we can send it both to the security controller
204 * and to our OR gate for the NVIC interrupt line.
205 * Connect up the splitter's outputs, and create a GPIO input
206 * which will pass the line state to the input splitter.
208 name = g_strdup_printf("%s_irq_status", ppcname);
209 qdev_connect_gpio_out(dev_splitter, 0,
210 qdev_get_gpio_in_named(dev_secctl,
211 name, 0));
212 qdev_connect_gpio_out(dev_splitter, 1,
213 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216 s->irq_status_in[ppcnum], name, 1);
217 g_free(name);
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
222 /* Forward the 3rd output from the splitter device as a
223 * named GPIO output of the armsse object.
225 DeviceState *dev = DEVICE(s);
226 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
228 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230 s->sec_resp_cfg, 1);
231 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
234 static void armsse_init(Object *obj)
236 ARMSSE *s = ARMSSE(obj);
237 ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
238 const ARMSSEInfo *info = asc->info;
239 int i;
241 assert(info->sram_banks <= MAX_SRAM_BANKS);
242 assert(info->num_cpus <= SSE_MAX_CPUS);
244 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
246 for (i = 0; i < info->num_cpus; i++) {
248 * We put each CPU in its own cluster as they are logically
249 * distinct and may be configured differently.
251 char *name;
253 name = g_strdup_printf("cluster%d", i);
254 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
255 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
256 g_free(name);
258 name = g_strdup_printf("armv7m%d", i);
259 object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
260 TYPE_ARMV7M);
261 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
262 ARM_CPU_TYPE_NAME("cortex-m33"));
263 g_free(name);
264 name = g_strdup_printf("arm-sse-cpu-container%d", i);
265 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
266 g_free(name);
267 if (i > 0) {
268 name = g_strdup_printf("arm-sse-container-alias%d", i);
269 memory_region_init_alias(&s->container_alias[i - 1], obj,
270 name, &s->container, 0, UINT64_MAX);
271 g_free(name);
275 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
276 object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
277 object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
278 for (i = 0; i < info->sram_banks; i++) {
279 char *name = g_strdup_printf("mpc%d", i);
280 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
281 g_free(name);
283 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
284 TYPE_OR_IRQ);
286 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
287 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
288 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
290 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
291 g_free(name);
293 object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
294 object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
295 object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
296 TYPE_CMSDK_APB_TIMER);
297 object_initialize_child(obj, "dualtimer", &s->dualtimer,
298 TYPE_CMSDK_APB_DUALTIMER);
299 object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
300 TYPE_CMSDK_APB_WATCHDOG);
301 object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
302 TYPE_CMSDK_APB_WATCHDOG);
303 object_initialize_child(obj, "swatchdog", &s->swatchdog,
304 TYPE_CMSDK_APB_WATCHDOG);
305 object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
306 TYPE_IOTKIT_SYSCTL);
307 object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
308 TYPE_IOTKIT_SYSINFO);
309 if (info->has_mhus) {
310 object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
311 object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
313 if (info->has_ppus) {
314 for (i = 0; i < info->num_cpus; i++) {
315 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
316 int ppuidx = CPU0CORE_PPU + i;
318 object_initialize_child(obj, name, &s->ppu[ppuidx],
319 TYPE_UNIMPLEMENTED_DEVICE);
320 g_free(name);
322 object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
323 TYPE_UNIMPLEMENTED_DEVICE);
324 for (i = 0; i < info->sram_banks; i++) {
325 char *name = g_strdup_printf("RAM%d_PPU", i);
326 int ppuidx = RAM0_PPU + i;
328 object_initialize_child(obj, name, &s->ppu[ppuidx],
329 TYPE_UNIMPLEMENTED_DEVICE);
330 g_free(name);
333 if (info->has_cachectrl) {
334 for (i = 0; i < info->num_cpus; i++) {
335 char *name = g_strdup_printf("cachectrl%d", i);
337 object_initialize_child(obj, name, &s->cachectrl[i],
338 TYPE_UNIMPLEMENTED_DEVICE);
339 g_free(name);
342 if (info->has_cpusecctrl) {
343 for (i = 0; i < info->num_cpus; i++) {
344 char *name = g_strdup_printf("cpusecctrl%d", i);
346 object_initialize_child(obj, name, &s->cpusecctrl[i],
347 TYPE_UNIMPLEMENTED_DEVICE);
348 g_free(name);
351 if (info->has_cpuid) {
352 for (i = 0; i < info->num_cpus; i++) {
353 char *name = g_strdup_printf("cpuid%d", i);
355 object_initialize_child(obj, name, &s->cpuid[i],
356 TYPE_ARMSSE_CPUID);
357 g_free(name);
360 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
361 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
362 TYPE_OR_IRQ);
363 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
364 TYPE_SPLIT_IRQ);
365 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
366 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
367 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
369 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
370 g_free(name);
372 if (info->num_cpus > 1) {
373 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
374 if (irq_is_common[i]) {
375 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
376 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
378 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
379 g_free(name);
385 static void armsse_exp_irq(void *opaque, int n, int level)
387 qemu_irq *irqarray = opaque;
389 qemu_set_irq(irqarray[n], level);
392 static void armsse_mpcexp_status(void *opaque, int n, int level)
394 ARMSSE *s = ARMSSE(opaque);
395 qemu_set_irq(s->mpcexp_status_in[n], level);
398 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
401 * Return a qemu_irq which can be used to signal IRQ n to
402 * all CPUs in the SSE.
404 ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
405 const ARMSSEInfo *info = asc->info;
407 assert(irq_is_common[irqno]);
409 if (info->num_cpus == 1) {
410 /* Only one CPU -- just connect directly to it */
411 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
412 } else {
413 /* Connect to the splitter which feeds all CPUs */
414 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
418 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
420 /* Map a PPU unimplemented device stub */
421 DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
423 qdev_prop_set_string(dev, "name", name);
424 qdev_prop_set_uint64(dev, "size", 0x1000);
425 sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
426 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
429 static void armsse_realize(DeviceState *dev, Error **errp)
431 ARMSSE *s = ARMSSE(dev);
432 ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
433 const ARMSSEInfo *info = asc->info;
434 int i;
435 MemoryRegion *mr;
436 Error *err = NULL;
437 SysBusDevice *sbd_apb_ppc0;
438 SysBusDevice *sbd_secctl;
439 DeviceState *dev_apb_ppc0;
440 DeviceState *dev_apb_ppc1;
441 DeviceState *dev_secctl;
442 DeviceState *dev_splitter;
443 uint32_t addr_width_max;
445 if (!s->board_memory) {
446 error_setg(errp, "memory property was not set");
447 return;
450 if (!s->mainclk_frq) {
451 error_setg(errp, "MAINCLK property was not set");
452 return;
455 assert(info->num_cpus <= SSE_MAX_CPUS);
457 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
458 assert(is_power_of_2(info->sram_banks));
459 addr_width_max = 24 - ctz32(info->sram_banks);
460 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
461 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
462 addr_width_max);
463 return;
466 /* Handling of which devices should be available only to secure
467 * code is usually done differently for M profile than for A profile.
468 * Instead of putting some devices only into the secure address space,
469 * devices exist in both address spaces but with hard-wired security
470 * permissions that will cause the CPU to fault for non-secure accesses.
472 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
473 * which specifies hard-wired security permissions for different
474 * areas of the physical address space. For the ARMSSE IDAU, the
475 * top 4 bits of the physical address are the IDAU region ID, and
476 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
477 * region, otherwise it is an S region.
479 * The various devices and RAMs are generally all mapped twice,
480 * once into a region that the IDAU defines as secure and once
481 * into a non-secure region. They sit behind either a Memory
482 * Protection Controller (for RAM) or a Peripheral Protection
483 * Controller (for devices), which allow a more fine grained
484 * configuration of whether non-secure accesses are permitted.
486 * (The other place that guest software can configure security
487 * permissions is in the architected SAU (Security Attribution
488 * Unit), which is entirely inside the CPU. The IDAU can upgrade
489 * the security attributes for a region to more restrictive than
490 * the SAU specifies, but cannot downgrade them.)
492 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
493 * 0x20000000..0x2007ffff 32KB FPGA block RAM
494 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
495 * 0x40000000..0x4000ffff base peripheral region 1
496 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
497 * 0x40020000..0x4002ffff system control element peripherals
498 * 0x40080000..0x400fffff base peripheral region 2
499 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
502 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
504 for (i = 0; i < info->num_cpus; i++) {
505 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
506 Object *cpuobj = OBJECT(&s->armv7m[i]);
507 int j;
508 char *gpioname;
510 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
512 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
513 * registers in the IoT Kit System Control Register block. In QEMU
514 * we set the initial value here, and also the reset value of the
515 * sysctl register, from this object's QOM init-svtor property.
516 * If the guest changes the INITSVTOR* registers at runtime then the
517 * code in iotkit-sysctl.c will update the CPU init-svtor property
518 * (which will then take effect on the next CPU warm-reset).
520 * Note that typically a board using the SSE-200 will have a system
521 * control processor whose boot firmware initializes the INITSVTOR*
522 * registers before powering up the CPUs. QEMU doesn't emulate
523 * the control processor, so instead we behave in the way that the
524 * firmware does: the initial value should be set by the board code
525 * (using the init-svtor property on the ARMSSE object) to match
526 * whatever its firmware does.
528 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
530 * CPUs start powered down if the corresponding bit in the CPUWAIT
531 * register is 1. In real hardware the CPUWAIT register reset value is
532 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
533 * CPUWAIT1_RST parameters), but since all the boards we care about
534 * start CPU0 and leave CPU1 powered off, we hard-code that in
535 * info->cpuwait_rst for now. We can add QOM properties for this
536 * later if necessary.
538 if (extract32(info->cpuwait_rst, i, 1)) {
539 if (!object_property_set_bool(cpuobj, "start-powered-off", true,
540 errp)) {
541 return;
544 if (!s->cpu_fpu[i]) {
545 if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
546 return;
549 if (!s->cpu_dsp[i]) {
550 if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
551 return;
555 if (i > 0) {
556 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
557 &s->container_alias[i - 1], -1);
558 } else {
559 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
560 &s->container, -1);
562 object_property_set_link(cpuobj, "memory",
563 OBJECT(&s->cpu_container[i]), &error_abort);
564 object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
565 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
566 return;
569 * The cluster must be realized after the armv7m container, as
570 * the container's CPU object is only created on realize, and the
571 * CPU must exist and have been parented into the cluster before
572 * the cluster is realized.
574 if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
575 return;
578 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
579 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
580 for (j = 0; j < s->exp_numirq; j++) {
581 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
583 if (i == 0) {
584 gpioname = g_strdup("EXP_IRQ");
585 } else {
586 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
588 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
589 s->exp_irqs[i],
590 gpioname, s->exp_numirq);
591 g_free(gpioname);
594 /* Wire up the splitters that connect common IRQs to all CPUs */
595 if (info->num_cpus > 1) {
596 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
597 if (irq_is_common[i]) {
598 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
599 DeviceState *devs = DEVICE(splitter);
600 int cpunum;
602 if (!object_property_set_int(splitter, "num-lines",
603 info->num_cpus, errp)) {
604 return;
606 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
607 return;
609 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
610 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
612 qdev_connect_gpio_out(devs, cpunum,
613 qdev_get_gpio_in(cpudev, i));
619 /* Set up the big aliases first */
620 make_alias(s, &s->alias1, &s->container, "alias 1",
621 0x10000000, 0x10000000, 0x00000000);
622 make_alias(s, &s->alias2, &s->container,
623 "alias 2", 0x30000000, 0x10000000, 0x20000000);
624 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
625 * a few extra devices that only appear there (generally the
626 * control interfaces for the protection controllers).
627 * We implement this by mapping those devices over the top of this
628 * alias MR at a higher priority. Some of the devices in this range
629 * are per-CPU, so we must put this alias in the per-cpu containers.
631 for (i = 0; i < info->num_cpus; i++) {
632 make_alias(s, &s->alias3[i], &s->cpu_container[i],
633 "alias 3", 0x50000000, 0x10000000, 0x40000000);
636 /* Security controller */
637 if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
638 return;
640 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
641 dev_secctl = DEVICE(&s->secctl);
642 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
643 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
645 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
646 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
648 /* The sec_resp_cfg output from the security controller must be split into
649 * multiple lines, one for each of the PPCs within the ARMSSE and one
650 * that will be an output from the ARMSSE to the system.
652 if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
653 "num-lines", 3, errp)) {
654 return;
656 if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
657 return;
659 dev_splitter = DEVICE(&s->sec_resp_splitter);
660 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
661 qdev_get_gpio_in(dev_splitter, 0));
663 /* Each SRAM bank lives behind its own Memory Protection Controller */
664 for (i = 0; i < info->sram_banks; i++) {
665 char *ramname = g_strdup_printf("armsse.sram%d", i);
666 SysBusDevice *sbd_mpc;
667 uint32_t sram_bank_size = 1 << s->sram_addr_width;
669 memory_region_init_ram(&s->sram[i], NULL, ramname,
670 sram_bank_size, &err);
671 g_free(ramname);
672 if (err) {
673 error_propagate(errp, err);
674 return;
676 object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
677 OBJECT(&s->sram[i]), &error_abort);
678 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
679 return;
681 /* Map the upstream end of the MPC into the right place... */
682 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
683 memory_region_add_subregion(&s->container,
684 0x20000000 + i * sram_bank_size,
685 sysbus_mmio_get_region(sbd_mpc, 1));
686 /* ...and its register interface */
687 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
688 sysbus_mmio_get_region(sbd_mpc, 0));
691 /* We must OR together lines from the MPC splitters to go to the NVIC */
692 if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
693 IOTS_NUM_EXP_MPC + info->sram_banks,
694 errp)) {
695 return;
697 if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
698 return;
700 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
701 armsse_get_common_irq_in(s, 9));
703 /* Devices behind APB PPC0:
704 * 0x40000000: timer0
705 * 0x40001000: timer1
706 * 0x40002000: dual timer
707 * 0x40003000: MHU0 (SSE-200 only)
708 * 0x40004000: MHU1 (SSE-200 only)
709 * We must configure and realize each downstream device and connect
710 * it to the appropriate PPC port; then we can realize the PPC and
711 * map its upstream ends to the right place in the container.
713 qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
714 if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer0), errp)) {
715 return;
717 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
718 armsse_get_common_irq_in(s, 3));
719 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
720 object_property_set_link(OBJECT(&s->apb_ppc0), "port[0]", OBJECT(mr),
721 &error_abort);
723 qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
724 if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer1), errp)) {
725 return;
727 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
728 armsse_get_common_irq_in(s, 4));
729 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
730 object_property_set_link(OBJECT(&s->apb_ppc0), "port[1]", OBJECT(mr),
731 &error_abort);
733 qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
734 if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), errp)) {
735 return;
737 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
738 armsse_get_common_irq_in(s, 5));
739 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
740 object_property_set_link(OBJECT(&s->apb_ppc0), "port[2]", OBJECT(mr),
741 &error_abort);
743 if (info->has_mhus) {
745 * An SSE-200 with only one CPU should have only one MHU created,
746 * with the region where the second MHU usually is being RAZ/WI.
747 * We don't implement that SSE-200 config; if we want to support
748 * it then this code needs to be enhanced to handle creating the
749 * RAZ/WI region instead of the second MHU.
751 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
753 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
754 char *port;
755 int cpunum;
756 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
758 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
759 return;
761 port = g_strdup_printf("port[%d]", i + 3);
762 mr = sysbus_mmio_get_region(mhu_sbd, 0);
763 object_property_set_link(OBJECT(&s->apb_ppc0), port, OBJECT(mr),
764 &error_abort);
765 g_free(port);
768 * Each MHU has an irq line for each CPU:
769 * MHU 0 irq line 0 -> CPU 0 IRQ 6
770 * MHU 0 irq line 1 -> CPU 1 IRQ 6
771 * MHU 1 irq line 0 -> CPU 0 IRQ 7
772 * MHU 1 irq line 1 -> CPU 1 IRQ 7
774 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
775 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
777 sysbus_connect_irq(mhu_sbd, cpunum,
778 qdev_get_gpio_in(cpudev, 6 + i));
783 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), errp)) {
784 return;
787 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
788 dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
790 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
791 memory_region_add_subregion(&s->container, 0x40000000, mr);
792 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
793 memory_region_add_subregion(&s->container, 0x40001000, mr);
794 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
795 memory_region_add_subregion(&s->container, 0x40002000, mr);
796 if (info->has_mhus) {
797 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
798 memory_region_add_subregion(&s->container, 0x40003000, mr);
799 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
800 memory_region_add_subregion(&s->container, 0x40004000, mr);
802 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
803 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
804 qdev_get_gpio_in_named(dev_apb_ppc0,
805 "cfg_nonsec", i));
806 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
807 qdev_get_gpio_in_named(dev_apb_ppc0,
808 "cfg_ap", i));
810 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
811 qdev_get_gpio_in_named(dev_apb_ppc0,
812 "irq_enable", 0));
813 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
814 qdev_get_gpio_in_named(dev_apb_ppc0,
815 "irq_clear", 0));
816 qdev_connect_gpio_out(dev_splitter, 0,
817 qdev_get_gpio_in_named(dev_apb_ppc0,
818 "cfg_sec_resp", 0));
820 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
821 * ones) are sent individually to the security controller, and also
822 * ORed together to give a single combined PPC interrupt to the NVIC.
824 if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
825 "num-lines", NUM_PPCS, errp)) {
826 return;
828 if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
829 return;
831 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
832 armsse_get_common_irq_in(s, 10));
835 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
836 * private per-CPU region (all these devices are SSE-200 only):
837 * 0x50010000: L1 icache control registers
838 * 0x50011000: CPUSECCTRL (CPU local security control registers)
839 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
841 if (info->has_cachectrl) {
842 for (i = 0; i < info->num_cpus; i++) {
843 char *name = g_strdup_printf("cachectrl%d", i);
844 MemoryRegion *mr;
846 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
847 g_free(name);
848 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
849 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
850 return;
853 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
854 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
857 if (info->has_cpusecctrl) {
858 for (i = 0; i < info->num_cpus; i++) {
859 char *name = g_strdup_printf("CPUSECCTRL%d", i);
860 MemoryRegion *mr;
862 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
863 g_free(name);
864 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
865 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
866 return;
869 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
870 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
873 if (info->has_cpuid) {
874 for (i = 0; i < info->num_cpus; i++) {
875 MemoryRegion *mr;
877 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
878 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
879 return;
882 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
883 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
887 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
888 /* Devices behind APB PPC1:
889 * 0x4002f000: S32K timer
891 qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
892 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), errp)) {
893 return;
895 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
896 armsse_get_common_irq_in(s, 2));
897 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
898 object_property_set_link(OBJECT(&s->apb_ppc1), "port[0]", OBJECT(mr),
899 &error_abort);
901 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), errp)) {
902 return;
904 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
905 memory_region_add_subregion(&s->container, 0x4002f000, mr);
907 dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
908 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
909 qdev_get_gpio_in_named(dev_apb_ppc1,
910 "cfg_nonsec", 0));
911 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
912 qdev_get_gpio_in_named(dev_apb_ppc1,
913 "cfg_ap", 0));
914 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
915 qdev_get_gpio_in_named(dev_apb_ppc1,
916 "irq_enable", 0));
917 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
918 qdev_get_gpio_in_named(dev_apb_ppc1,
919 "irq_clear", 0));
920 qdev_connect_gpio_out(dev_splitter, 1,
921 qdev_get_gpio_in_named(dev_apb_ppc1,
922 "cfg_sec_resp", 0));
924 if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
925 info->sys_version, errp)) {
926 return;
928 if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
929 armsse_sys_config_value(s, info), errp)) {
930 return;
932 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), errp)) {
933 return;
935 /* System information registers */
936 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
937 /* System control registers */
938 object_property_set_int(OBJECT(&s->sysctl), "SYS_VERSION",
939 info->sys_version, &error_abort);
940 object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
941 info->cpuwait_rst, &error_abort);
942 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
943 s->init_svtor, &error_abort);
944 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
945 s->init_svtor, &error_abort);
946 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), errp)) {
947 return;
949 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
951 if (info->has_ppus) {
952 /* CPUnCORE_PPU for each CPU */
953 for (i = 0; i < info->num_cpus; i++) {
954 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
956 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
958 * We don't support CPU debug so don't create the
959 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
961 g_free(name);
963 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
965 for (i = 0; i < info->sram_banks; i++) {
966 char *name = g_strdup_printf("RAM%d_PPU", i);
968 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
969 g_free(name);
973 /* This OR gate wires together outputs from the secure watchdogs to NMI */
974 if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
975 errp)) {
976 return;
978 if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
979 return;
981 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
982 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
984 qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
985 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), errp)) {
986 return;
988 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
989 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
990 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
992 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
994 qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
995 if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), errp)) {
996 return;
998 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
999 armsse_get_common_irq_in(s, 1));
1000 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1002 qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1003 if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), errp)) {
1004 return;
1006 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1007 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1008 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1010 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1011 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1013 if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1014 return;
1016 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1017 return;
1021 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1022 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1024 armsse_forward_ppc(s, ppcname, i);
1025 g_free(ppcname);
1028 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1029 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1031 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1032 g_free(ppcname);
1035 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1036 /* Wire up IRQ splitter for internal PPCs */
1037 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1038 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1039 i - NUM_EXTERNAL_PPCS);
1040 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1042 qdev_connect_gpio_out(devs, 0,
1043 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1044 qdev_connect_gpio_out(devs, 1,
1045 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1046 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1047 qdev_get_gpio_in(devs, 0));
1048 g_free(gpioname);
1051 /* Wire up the splitters for the MPC IRQs */
1052 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1053 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1054 DeviceState *dev_splitter = DEVICE(splitter);
1056 if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1057 errp)) {
1058 return;
1060 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1061 return;
1064 if (i < IOTS_NUM_EXP_MPC) {
1065 /* Splitter input is from GPIO input line */
1066 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1067 qdev_connect_gpio_out(dev_splitter, 0,
1068 qdev_get_gpio_in_named(dev_secctl,
1069 "mpcexp_status", i));
1070 } else {
1071 /* Splitter input is from our own MPC */
1072 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1073 "irq", 0,
1074 qdev_get_gpio_in(dev_splitter, 0));
1075 qdev_connect_gpio_out(dev_splitter, 0,
1076 qdev_get_gpio_in_named(dev_secctl,
1077 "mpc_status", 0));
1080 qdev_connect_gpio_out(dev_splitter, 1,
1081 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1083 /* Create GPIO inputs which will pass the line state for our
1084 * mpcexp_irq inputs to the correct splitter devices.
1086 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1087 IOTS_NUM_EXP_MPC);
1089 armsse_forward_sec_resp_cfg(s);
1091 /* Forward the MSC related signals */
1092 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1093 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1094 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1095 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1096 armsse_get_common_irq_in(s, 11));
1099 * Expose our container region to the board model; this corresponds
1100 * to the AHB Slave Expansion ports which allow bus master devices
1101 * (eg DMA controllers) in the board model to make transactions into
1102 * devices in the ARMSSE.
1104 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1106 system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1109 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1110 int *iregion, bool *exempt, bool *ns, bool *nsc)
1113 * For ARMSSE systems the IDAU responses are simple logical functions
1114 * of the address bits. The NSC attribute is guest-adjustable via the
1115 * NSCCFG register in the security controller.
1117 ARMSSE *s = ARMSSE(ii);
1118 int region = extract32(address, 28, 4);
1120 *ns = !(region & 1);
1121 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1122 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1123 *exempt = (address & 0xeff00000) == 0xe0000000;
1124 *iregion = region;
1127 static const VMStateDescription armsse_vmstate = {
1128 .name = "iotkit",
1129 .version_id = 1,
1130 .minimum_version_id = 1,
1131 .fields = (VMStateField[]) {
1132 VMSTATE_UINT32(nsccfg, ARMSSE),
1133 VMSTATE_END_OF_LIST()
1137 static void armsse_reset(DeviceState *dev)
1139 ARMSSE *s = ARMSSE(dev);
1141 s->nsccfg = 0;
1144 static void armsse_class_init(ObjectClass *klass, void *data)
1146 DeviceClass *dc = DEVICE_CLASS(klass);
1147 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1148 ARMSSEClass *asc = ARMSSE_CLASS(klass);
1149 const ARMSSEInfo *info = data;
1151 dc->realize = armsse_realize;
1152 dc->vmsd = &armsse_vmstate;
1153 device_class_set_props(dc, info->props);
1154 dc->reset = armsse_reset;
1155 iic->check = armsse_idau_check;
1156 asc->info = info;
1159 static const TypeInfo armsse_info = {
1160 .name = TYPE_ARMSSE,
1161 .parent = TYPE_SYS_BUS_DEVICE,
1162 .instance_size = sizeof(ARMSSE),
1163 .instance_init = armsse_init,
1164 .abstract = true,
1165 .interfaces = (InterfaceInfo[]) {
1166 { TYPE_IDAU_INTERFACE },
1171 static void armsse_register_types(void)
1173 int i;
1175 type_register_static(&armsse_info);
1177 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1178 TypeInfo ti = {
1179 .name = armsse_variants[i].name,
1180 .parent = TYPE_ARMSSE,
1181 .class_init = armsse_class_init,
1182 .class_data = (void *)&armsse_variants[i],
1184 type_register(&ti);
1188 type_init(armsse_register_types);