2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu-common.h"
29 #include "hw/southbridge/piix.h"
30 #include "hw/isa/superio.h"
31 #include "hw/char/serial.h"
33 #include "hw/boards.h"
34 #include "hw/i2c/smbus_eeprom.h"
35 #include "hw/block/flash.h"
36 #include "hw/mips/mips.h"
37 #include "hw/mips/cpudevs.h"
38 #include "hw/pci/pci.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/arch_init.h"
42 #include "hw/mips/bios.h"
45 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "hw/sysbus.h" /* SysBusDevice */
49 #include "qemu/host-utils.h"
50 #include "sysemu/qtest.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/runstate.h"
53 #include "qapi/error.h"
54 #include "qemu/error-report.h"
55 #include "hw/misc/empty_slot.h"
56 #include "sysemu/kvm.h"
57 #include "hw/semihosting/semihost.h"
58 #include "hw/mips/cps.h"
60 #define ENVP_ADDR 0x80002000l
61 #define ENVP_NB_ENTRIES 16
62 #define ENVP_ENTRY_SIZE 256
64 /* Hardware addresses */
65 #define FLASH_ADDRESS 0x1e000000ULL
66 #define FPGA_ADDRESS 0x1f000000ULL
67 #define RESET_ADDRESS 0x1fc00000ULL
69 #define FLASH_SIZE 0x400000
75 MemoryRegion iomem_lo
; /* 0 - 0x900 */
76 MemoryRegion iomem_hi
; /* 0xa00 - 0x100000 */
90 #define TYPE_MIPS_MALTA "mips-malta"
91 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
94 SysBusDevice parent_obj
;
97 qemu_irq i8259
[ISA_NUM_IRQS
];
100 static struct _loaderparams
{
101 int ram_size
, ram_low_size
;
102 const char *kernel_filename
;
103 const char *kernel_cmdline
;
104 const char *initrd_filename
;
108 static void malta_fpga_update_display(void *opaque
)
112 MaltaFPGAState
*s
= opaque
;
114 for (i
= 7 ; i
>= 0 ; i
--) {
115 if (s
->leds
& (1 << i
)) {
123 qemu_chr_fe_printf(&s
->display
, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
125 qemu_chr_fe_printf(&s
->display
, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
130 * EEPROM 24C01 / 24C02 emulation.
132 * Emulation for serial EEPROMs:
133 * 24C01 - 1024 bit (128 x 8)
134 * 24C02 - 2048 bit (256 x 8)
136 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
140 # define logout(fmt, ...) \
141 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
143 # define logout(fmt, ...) ((void)0)
146 struct _eeprom24c0x_t
{
155 uint8_t contents
[256];
158 typedef struct _eeprom24c0x_t eeprom24c0x_t
;
160 static eeprom24c0x_t spd_eeprom
= {
163 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
165 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
167 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
169 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
171 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
173 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
175 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
177 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
179 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
181 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
183 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
185 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
187 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
189 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
193 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
197 static void generate_eeprom_spd(uint8_t *eeprom
, ram_addr_t ram_size
)
199 enum { SDR
= 0x4, DDR2
= 0x8 } type
;
200 uint8_t *spd
= spd_eeprom
.contents
;
202 uint16_t density
= 0;
205 /* work in terms of MB */
208 while ((ram_size
>= 4) && (nbanks
<= 2)) {
209 int sz_log2
= MIN(31 - clz32(ram_size
), 14);
211 density
|= 1 << (sz_log2
- 2);
212 ram_size
-= 1 << sz_log2
;
215 /* split to 2 banks if possible */
216 if ((nbanks
== 1) && (density
> 1)) {
221 if (density
& 0xff00) {
222 density
= (density
& 0xe0) | ((density
>> 8) & 0x1f);
224 } else if (!(density
& 0x1f)) {
231 warn_report("SPD cannot represent final " RAM_ADDR_FMT
"MB"
232 " of SDRAM", ram_size
);
235 /* fill in SPD memory information */
242 for (i
= 0; i
< 63; i
++) {
247 memcpy(eeprom
, spd
, sizeof(spd_eeprom
.contents
));
250 static void generate_eeprom_serial(uint8_t *eeprom
)
253 uint8_t mac
[6] = { 0x00 };
254 uint8_t sn
[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
257 eeprom
[pos
++] = 0x01;
260 eeprom
[pos
++] = 0x02;
263 eeprom
[pos
++] = 0x01; /* MAC */
264 eeprom
[pos
++] = 0x06; /* length */
265 memcpy(&eeprom
[pos
], mac
, sizeof(mac
));
269 eeprom
[pos
++] = 0x02; /* serial */
270 eeprom
[pos
++] = 0x05; /* length */
271 memcpy(&eeprom
[pos
], sn
, sizeof(sn
));
276 for (i
= 0; i
< pos
; i
++) {
277 eeprom
[pos
] += eeprom
[i
];
281 static uint8_t eeprom24c0x_read(eeprom24c0x_t
*eeprom
)
283 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
284 eeprom
->tick
, eeprom
->scl
, eeprom
->sda
, eeprom
->data
);
288 static void eeprom24c0x_write(eeprom24c0x_t
*eeprom
, int scl
, int sda
)
290 if (eeprom
->scl
&& scl
&& (eeprom
->sda
!= sda
)) {
291 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
292 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
,
293 sda
? "stop" : "start");
298 } else if (eeprom
->tick
== 0 && !eeprom
->ack
) {
299 /* Waiting for start. */
300 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
301 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
);
302 } else if (!eeprom
->scl
&& scl
) {
303 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
304 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
);
306 logout("\ti2c ack bit = 0\n");
309 } else if (eeprom
->sda
== sda
) {
310 uint8_t bit
= (sda
!= 0);
311 logout("\ti2c bit = %d\n", bit
);
312 if (eeprom
->tick
< 9) {
313 eeprom
->command
<<= 1;
314 eeprom
->command
+= bit
;
316 if (eeprom
->tick
== 9) {
317 logout("\tcommand 0x%04x, %s\n", eeprom
->command
,
318 bit
? "read" : "write");
321 } else if (eeprom
->tick
< 17) {
322 if (eeprom
->command
& 1) {
323 sda
= ((eeprom
->data
& 0x80) != 0);
325 eeprom
->address
<<= 1;
326 eeprom
->address
+= bit
;
329 if (eeprom
->tick
== 17) {
330 eeprom
->data
= eeprom
->contents
[eeprom
->address
];
331 logout("\taddress 0x%04x, data 0x%02x\n",
332 eeprom
->address
, eeprom
->data
);
336 } else if (eeprom
->tick
>= 17) {
340 logout("\tsda changed with raising scl\n");
343 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom
->tick
, eeprom
->scl
,
344 scl
, eeprom
->sda
, sda
);
350 static uint64_t malta_fpga_read(void *opaque
, hwaddr addr
,
353 MaltaFPGAState
*s
= opaque
;
357 saddr
= (addr
& 0xfffff);
361 /* SWITCH Register */
366 /* STATUS Register */
368 #ifdef TARGET_WORDS_BIGENDIAN
380 /* LEDBAR Register */
385 /* BRKRES Register */
390 /* UART Registers are handled directly by the serial device */
397 /* XXX: implement a real I2C controller */
401 /* IN = OUT until a real I2C control is implemented */
409 /* I2CINP Register */
411 val
= ((s
->i2cin
& ~1) | eeprom24c0x_read(&spd_eeprom
));
419 /* I2COUT Register */
424 /* I2CSEL Register */
430 qemu_log_mask(LOG_GUEST_ERROR
,
431 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX
"\n",
438 static void malta_fpga_write(void *opaque
, hwaddr addr
,
439 uint64_t val
, unsigned size
)
441 MaltaFPGAState
*s
= opaque
;
444 saddr
= (addr
& 0xfffff);
448 /* SWITCH Register */
456 /* LEDBAR Register */
458 s
->leds
= val
& 0xff;
459 malta_fpga_update_display(s
);
462 /* ASCIIWORD Register */
464 snprintf(s
->display_text
, 9, "%08X", (uint32_t)val
);
465 malta_fpga_update_display(s
);
468 /* ASCIIPOS0 to ASCIIPOS7 Registers */
477 s
->display_text
[(saddr
- 0x00418) >> 3] = (char) val
;
478 malta_fpga_update_display(s
);
481 /* SOFTRES Register */
484 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
488 /* BRKRES Register */
493 /* UART Registers are handled directly by the serial device */
497 s
->gpout
= val
& 0xff;
502 s
->i2coe
= val
& 0x03;
505 /* I2COUT Register */
507 eeprom24c0x_write(&spd_eeprom
, val
& 0x02, val
& 0x01);
511 /* I2CSEL Register */
513 s
->i2csel
= val
& 0x01;
517 qemu_log_mask(LOG_GUEST_ERROR
,
518 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX
"\n",
524 static const MemoryRegionOps malta_fpga_ops
= {
525 .read
= malta_fpga_read
,
526 .write
= malta_fpga_write
,
527 .endianness
= DEVICE_NATIVE_ENDIAN
,
530 static void malta_fpga_reset(void *opaque
)
532 MaltaFPGAState
*s
= opaque
;
542 s
->display_text
[8] = '\0';
543 snprintf(s
->display_text
, 9, " ");
546 static void malta_fgpa_display_event(void *opaque
, QEMUChrEvent event
)
548 MaltaFPGAState
*s
= opaque
;
550 if (event
== CHR_EVENT_OPENED
&& !s
->display_inited
) {
551 qemu_chr_fe_printf(&s
->display
, "\e[HMalta LEDBAR\r\n");
552 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
553 qemu_chr_fe_printf(&s
->display
, "+ +\r\n");
554 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
555 qemu_chr_fe_printf(&s
->display
, "\n");
556 qemu_chr_fe_printf(&s
->display
, "Malta ASCII\r\n");
557 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
558 qemu_chr_fe_printf(&s
->display
, "+ +\r\n");
559 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
560 s
->display_inited
= true;
564 static MaltaFPGAState
*malta_fpga_init(MemoryRegion
*address_space
,
565 hwaddr base
, qemu_irq uart_irq
, Chardev
*uart_chr
)
570 s
= g_new0(MaltaFPGAState
, 1);
572 memory_region_init_io(&s
->iomem
, NULL
, &malta_fpga_ops
, s
,
573 "malta-fpga", 0x100000);
574 memory_region_init_alias(&s
->iomem_lo
, NULL
, "malta-fpga",
575 &s
->iomem
, 0, 0x900);
576 memory_region_init_alias(&s
->iomem_hi
, NULL
, "malta-fpga",
577 &s
->iomem
, 0xa00, 0x10000 - 0xa00);
579 memory_region_add_subregion(address_space
, base
, &s
->iomem_lo
);
580 memory_region_add_subregion(address_space
, base
+ 0xa00, &s
->iomem_hi
);
582 chr
= qemu_chr_new("fpga", "vc:320x200", NULL
);
583 qemu_chr_fe_init(&s
->display
, chr
, NULL
);
584 qemu_chr_fe_set_handlers(&s
->display
, NULL
, NULL
,
585 malta_fgpa_display_event
, NULL
, s
, NULL
, true);
587 s
->uart
= serial_mm_init(address_space
, base
+ 0x900, 3, uart_irq
,
588 230400, uart_chr
, DEVICE_NATIVE_ENDIAN
);
591 qemu_register_reset(malta_fpga_reset
, s
);
596 /* Network support */
597 static void network_init(PCIBus
*pci_bus
)
601 for (i
= 0; i
< nb_nics
; i
++) {
602 NICInfo
*nd
= &nd_table
[i
];
603 const char *default_devaddr
= NULL
;
605 if (i
== 0 && (!nd
->model
|| strcmp(nd
->model
, "pcnet") == 0))
606 /* The malta board has a PCNet card using PCI SLOT 11 */
607 default_devaddr
= "0b";
609 pci_nic_init_nofail(nd
, pci_bus
, "pcnet", default_devaddr
);
613 static void write_bootloader_nanomips(uint8_t *base
, int64_t run_addr
,
614 int64_t kernel_entry
)
618 /* Small bootloader */
619 p
= (uint16_t *)base
;
621 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
622 #define NM_HI2(VAL) \
623 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
624 #define NM_LO(VAL) ((VAL) & 0xfff)
626 stw_p(p
++, 0x2800); stw_p(p
++, 0x001c);
628 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
630 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
632 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
634 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
636 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
638 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
640 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
644 if (semihosting_get_argc()) {
645 /* Preserve a0 content as arguments have been passed */
646 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
649 stw_p(p
++, 0x0080); stw_p(p
++, 0x0002);
653 stw_p(p
++, 0xe3a0 | NM_HI1(ENVP_ADDR
- 64));
655 stw_p(p
++, NM_HI2(ENVP_ADDR
- 64));
656 /* lui sp,%hi(ENVP_ADDR - 64) */
658 stw_p(p
++, 0x83bd); stw_p(p
++, NM_LO(ENVP_ADDR
- 64));
659 /* ori sp,sp,%lo(ENVP_ADDR - 64) */
661 stw_p(p
++, 0xe0a0 | NM_HI1(ENVP_ADDR
));
663 stw_p(p
++, NM_HI2(ENVP_ADDR
));
664 /* lui a1,%hi(ENVP_ADDR) */
666 stw_p(p
++, 0x80a5); stw_p(p
++, NM_LO(ENVP_ADDR
));
667 /* ori a1,a1,%lo(ENVP_ADDR) */
669 stw_p(p
++, 0xe0c0 | NM_HI1(ENVP_ADDR
+ 8));
671 stw_p(p
++, NM_HI2(ENVP_ADDR
+ 8));
672 /* lui a2,%hi(ENVP_ADDR + 8) */
674 stw_p(p
++, 0x80c6); stw_p(p
++, NM_LO(ENVP_ADDR
+ 8));
675 /* ori a2,a2,%lo(ENVP_ADDR + 8) */
677 stw_p(p
++, 0xe0e0 | NM_HI1(loaderparams
.ram_low_size
));
679 stw_p(p
++, NM_HI2(loaderparams
.ram_low_size
));
680 /* lui a3,%hi(loaderparams.ram_low_size) */
682 stw_p(p
++, 0x80e7); stw_p(p
++, NM_LO(loaderparams
.ram_low_size
));
683 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
686 * Load BAR registers as done by YAMON:
688 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
689 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
690 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
693 stw_p(p
++, 0xe040); stw_p(p
++, 0x0681);
694 /* lui t1, %hi(0xb4000000) */
696 #ifdef TARGET_WORDS_BIGENDIAN
698 stw_p(p
++, 0xe020); stw_p(p
++, 0x0be1);
699 /* lui t0, %hi(0xdf000000) */
701 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
702 stw_p(p
++, 0x8422); stw_p(p
++, 0x9068);
703 /* sw t0, 0x68(t1) */
705 stw_p(p
++, 0xe040); stw_p(p
++, 0x077d);
706 /* lui t1, %hi(0xbbe00000) */
708 stw_p(p
++, 0xe020); stw_p(p
++, 0x0801);
709 /* lui t0, %hi(0xc0000000) */
711 /* 0x48 corresponds to GT_PCI0IOLD */
712 stw_p(p
++, 0x8422); stw_p(p
++, 0x9048);
713 /* sw t0, 0x48(t1) */
715 stw_p(p
++, 0xe020); stw_p(p
++, 0x0800);
716 /* lui t0, %hi(0x40000000) */
718 /* 0x50 corresponds to GT_PCI0IOHD */
719 stw_p(p
++, 0x8422); stw_p(p
++, 0x9050);
720 /* sw t0, 0x50(t1) */
722 stw_p(p
++, 0xe020); stw_p(p
++, 0x0001);
723 /* lui t0, %hi(0x80000000) */
725 /* 0x58 corresponds to GT_PCI0M0LD */
726 stw_p(p
++, 0x8422); stw_p(p
++, 0x9058);
727 /* sw t0, 0x58(t1) */
729 stw_p(p
++, 0xe020); stw_p(p
++, 0x07e0);
730 /* lui t0, %hi(0x3f000000) */
732 /* 0x60 corresponds to GT_PCI0M0HD */
733 stw_p(p
++, 0x8422); stw_p(p
++, 0x9060);
734 /* sw t0, 0x60(t1) */
736 stw_p(p
++, 0xe020); stw_p(p
++, 0x0821);
737 /* lui t0, %hi(0xc1000000) */
739 /* 0x80 corresponds to GT_PCI0M1LD */
740 stw_p(p
++, 0x8422); stw_p(p
++, 0x9080);
741 /* sw t0, 0x80(t1) */
743 stw_p(p
++, 0xe020); stw_p(p
++, 0x0bc0);
744 /* lui t0, %hi(0x5e000000) */
748 stw_p(p
++, 0x0020); stw_p(p
++, 0x00df);
749 /* addiu[32] t0, $0, 0xdf */
751 /* 0x68 corresponds to GT_ISD */
752 stw_p(p
++, 0x8422); stw_p(p
++, 0x9068);
753 /* sw t0, 0x68(t1) */
755 /* Use kseg2 remapped address 0x1be00000 */
756 stw_p(p
++, 0xe040); stw_p(p
++, 0x077d);
757 /* lui t1, %hi(0xbbe00000) */
759 stw_p(p
++, 0x0020); stw_p(p
++, 0x00c0);
760 /* addiu[32] t0, $0, 0xc0 */
762 /* 0x48 corresponds to GT_PCI0IOLD */
763 stw_p(p
++, 0x8422); stw_p(p
++, 0x9048);
764 /* sw t0, 0x48(t1) */
766 stw_p(p
++, 0x0020); stw_p(p
++, 0x0040);
767 /* addiu[32] t0, $0, 0x40 */
769 /* 0x50 corresponds to GT_PCI0IOHD */
770 stw_p(p
++, 0x8422); stw_p(p
++, 0x9050);
771 /* sw t0, 0x50(t1) */
773 stw_p(p
++, 0x0020); stw_p(p
++, 0x0080);
774 /* addiu[32] t0, $0, 0x80 */
776 /* 0x58 corresponds to GT_PCI0M0LD */
777 stw_p(p
++, 0x8422); stw_p(p
++, 0x9058);
778 /* sw t0, 0x58(t1) */
780 stw_p(p
++, 0x0020); stw_p(p
++, 0x003f);
781 /* addiu[32] t0, $0, 0x3f */
783 /* 0x60 corresponds to GT_PCI0M0HD */
784 stw_p(p
++, 0x8422); stw_p(p
++, 0x9060);
785 /* sw t0, 0x60(t1) */
787 stw_p(p
++, 0x0020); stw_p(p
++, 0x00c1);
788 /* addiu[32] t0, $0, 0xc1 */
790 /* 0x80 corresponds to GT_PCI0M1LD */
791 stw_p(p
++, 0x8422); stw_p(p
++, 0x9080);
792 /* sw t0, 0x80(t1) */
794 stw_p(p
++, 0x0020); stw_p(p
++, 0x005e);
795 /* addiu[32] t0, $0, 0x5e */
799 /* 0x88 corresponds to GT_PCI0M1HD */
800 stw_p(p
++, 0x8422); stw_p(p
++, 0x9088);
801 /* sw t0, 0x88(t1) */
803 stw_p(p
++, 0xe320 | NM_HI1(kernel_entry
));
805 stw_p(p
++, NM_HI2(kernel_entry
));
806 /* lui t9,%hi(kernel_entry) */
808 stw_p(p
++, 0x8339); stw_p(p
++, NM_LO(kernel_entry
));
809 /* ori t9,t9,%lo(kernel_entry) */
811 stw_p(p
++, 0x4bf9); stw_p(p
++, 0x0000);
816 * ROM and pseudo bootloader
818 * The following code implements a very very simple bootloader. It first
819 * loads the registers a0 to a3 to the values expected by the OS, and
820 * then jump at the kernel address.
822 * The bootloader should pass the locations of the kernel arguments and
823 * environment variables tables. Those tables contain the 32-bit address
824 * of NULL terminated strings. The environment variables table should be
825 * terminated by a NULL address.
827 * For a simpler implementation, the number of kernel arguments is fixed
828 * to two (the name of the kernel and the command line), and the two
829 * tables are actually the same one.
831 * The registers a0 to a3 should contain the following values:
832 * a0 - number of kernel arguments
833 * a1 - 32-bit address of the kernel arguments table
834 * a2 - 32-bit address of the environment variables table
835 * a3 - RAM size in bytes
837 static void write_bootloader(uint8_t *base
, int64_t run_addr
,
838 int64_t kernel_entry
)
842 /* Small bootloader */
843 p
= (uint32_t *)base
;
845 stl_p(p
++, 0x08000000 | /* j 0x1fc00580 */
846 ((run_addr
+ 0x580) & 0x0fffffff) >> 2);
847 stl_p(p
++, 0x00000000); /* nop */
849 /* YAMON service vector */
850 stl_p(base
+ 0x500, run_addr
+ 0x0580); /* start: */
851 stl_p(base
+ 0x504, run_addr
+ 0x083c); /* print_count: */
852 stl_p(base
+ 0x520, run_addr
+ 0x0580); /* start: */
853 stl_p(base
+ 0x52c, run_addr
+ 0x0800); /* flush_cache: */
854 stl_p(base
+ 0x534, run_addr
+ 0x0808); /* print: */
855 stl_p(base
+ 0x538, run_addr
+ 0x0800); /* reg_cpu_isr: */
856 stl_p(base
+ 0x53c, run_addr
+ 0x0800); /* unred_cpu_isr: */
857 stl_p(base
+ 0x540, run_addr
+ 0x0800); /* reg_ic_isr: */
858 stl_p(base
+ 0x544, run_addr
+ 0x0800); /* unred_ic_isr: */
859 stl_p(base
+ 0x548, run_addr
+ 0x0800); /* reg_esr: */
860 stl_p(base
+ 0x54c, run_addr
+ 0x0800); /* unreg_esr: */
861 stl_p(base
+ 0x550, run_addr
+ 0x0800); /* getchar: */
862 stl_p(base
+ 0x554, run_addr
+ 0x0800); /* syscon_read: */
865 /* Second part of the bootloader */
866 p
= (uint32_t *) (base
+ 0x580);
868 if (semihosting_get_argc()) {
869 /* Preserve a0 content as arguments have been passed */
870 stl_p(p
++, 0x00000000); /* nop */
872 stl_p(p
++, 0x24040002); /* addiu a0, zero, 2 */
875 /* lui sp, high(ENVP_ADDR) */
876 stl_p(p
++, 0x3c1d0000 | (((ENVP_ADDR
- 64) >> 16) & 0xffff));
877 /* ori sp, sp, low(ENVP_ADDR) */
878 stl_p(p
++, 0x37bd0000 | ((ENVP_ADDR
- 64) & 0xffff));
879 /* lui a1, high(ENVP_ADDR) */
880 stl_p(p
++, 0x3c050000 | ((ENVP_ADDR
>> 16) & 0xffff));
881 /* ori a1, a1, low(ENVP_ADDR) */
882 stl_p(p
++, 0x34a50000 | (ENVP_ADDR
& 0xffff));
883 /* lui a2, high(ENVP_ADDR + 8) */
884 stl_p(p
++, 0x3c060000 | (((ENVP_ADDR
+ 8) >> 16) & 0xffff));
885 /* ori a2, a2, low(ENVP_ADDR + 8) */
886 stl_p(p
++, 0x34c60000 | ((ENVP_ADDR
+ 8) & 0xffff));
887 /* lui a3, high(ram_low_size) */
888 stl_p(p
++, 0x3c070000 | (loaderparams
.ram_low_size
>> 16));
889 /* ori a3, a3, low(ram_low_size) */
890 stl_p(p
++, 0x34e70000 | (loaderparams
.ram_low_size
& 0xffff));
892 /* Load BAR registers as done by YAMON */
893 stl_p(p
++, 0x3c09b400); /* lui t1, 0xb400 */
895 #ifdef TARGET_WORDS_BIGENDIAN
896 stl_p(p
++, 0x3c08df00); /* lui t0, 0xdf00 */
898 stl_p(p
++, 0x340800df); /* ori t0, r0, 0x00df */
900 stl_p(p
++, 0xad280068); /* sw t0, 0x0068(t1) */
902 stl_p(p
++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
904 #ifdef TARGET_WORDS_BIGENDIAN
905 stl_p(p
++, 0x3c08c000); /* lui t0, 0xc000 */
907 stl_p(p
++, 0x340800c0); /* ori t0, r0, 0x00c0 */
909 stl_p(p
++, 0xad280048); /* sw t0, 0x0048(t1) */
910 #ifdef TARGET_WORDS_BIGENDIAN
911 stl_p(p
++, 0x3c084000); /* lui t0, 0x4000 */
913 stl_p(p
++, 0x34080040); /* ori t0, r0, 0x0040 */
915 stl_p(p
++, 0xad280050); /* sw t0, 0x0050(t1) */
917 #ifdef TARGET_WORDS_BIGENDIAN
918 stl_p(p
++, 0x3c088000); /* lui t0, 0x8000 */
920 stl_p(p
++, 0x34080080); /* ori t0, r0, 0x0080 */
922 stl_p(p
++, 0xad280058); /* sw t0, 0x0058(t1) */
923 #ifdef TARGET_WORDS_BIGENDIAN
924 stl_p(p
++, 0x3c083f00); /* lui t0, 0x3f00 */
926 stl_p(p
++, 0x3408003f); /* ori t0, r0, 0x003f */
928 stl_p(p
++, 0xad280060); /* sw t0, 0x0060(t1) */
930 #ifdef TARGET_WORDS_BIGENDIAN
931 stl_p(p
++, 0x3c08c100); /* lui t0, 0xc100 */
933 stl_p(p
++, 0x340800c1); /* ori t0, r0, 0x00c1 */
935 stl_p(p
++, 0xad280080); /* sw t0, 0x0080(t1) */
936 #ifdef TARGET_WORDS_BIGENDIAN
937 stl_p(p
++, 0x3c085e00); /* lui t0, 0x5e00 */
939 stl_p(p
++, 0x3408005e); /* ori t0, r0, 0x005e */
941 stl_p(p
++, 0xad280088); /* sw t0, 0x0088(t1) */
943 /* Jump to kernel code */
944 stl_p(p
++, 0x3c1f0000 |
945 ((kernel_entry
>> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
946 stl_p(p
++, 0x37ff0000 |
947 (kernel_entry
& 0xffff)); /* ori ra, ra, low(kernel_entry) */
948 stl_p(p
++, 0x03e00009); /* jalr ra */
949 stl_p(p
++, 0x00000000); /* nop */
951 /* YAMON subroutines */
952 p
= (uint32_t *) (base
+ 0x800);
953 stl_p(p
++, 0x03e00009); /* jalr ra */
954 stl_p(p
++, 0x24020000); /* li v0,0 */
955 /* 808 YAMON print */
956 stl_p(p
++, 0x03e06821); /* move t5,ra */
957 stl_p(p
++, 0x00805821); /* move t3,a0 */
958 stl_p(p
++, 0x00a05021); /* move t2,a1 */
959 stl_p(p
++, 0x91440000); /* lbu a0,0(t2) */
960 stl_p(p
++, 0x254a0001); /* addiu t2,t2,1 */
961 stl_p(p
++, 0x10800005); /* beqz a0,834 */
962 stl_p(p
++, 0x00000000); /* nop */
963 stl_p(p
++, 0x0ff0021c); /* jal 870 */
964 stl_p(p
++, 0x00000000); /* nop */
965 stl_p(p
++, 0x1000fff9); /* b 814 */
966 stl_p(p
++, 0x00000000); /* nop */
967 stl_p(p
++, 0x01a00009); /* jalr t5 */
968 stl_p(p
++, 0x01602021); /* move a0,t3 */
969 /* 0x83c YAMON print_count */
970 stl_p(p
++, 0x03e06821); /* move t5,ra */
971 stl_p(p
++, 0x00805821); /* move t3,a0 */
972 stl_p(p
++, 0x00a05021); /* move t2,a1 */
973 stl_p(p
++, 0x00c06021); /* move t4,a2 */
974 stl_p(p
++, 0x91440000); /* lbu a0,0(t2) */
975 stl_p(p
++, 0x0ff0021c); /* jal 870 */
976 stl_p(p
++, 0x00000000); /* nop */
977 stl_p(p
++, 0x254a0001); /* addiu t2,t2,1 */
978 stl_p(p
++, 0x258cffff); /* addiu t4,t4,-1 */
979 stl_p(p
++, 0x1580fffa); /* bnez t4,84c */
980 stl_p(p
++, 0x00000000); /* nop */
981 stl_p(p
++, 0x01a00009); /* jalr t5 */
982 stl_p(p
++, 0x01602021); /* move a0,t3 */
984 stl_p(p
++, 0x3c08b800); /* lui t0,0xb400 */
985 stl_p(p
++, 0x350803f8); /* ori t0,t0,0x3f8 */
986 stl_p(p
++, 0x91090005); /* lbu t1,5(t0) */
987 stl_p(p
++, 0x00000000); /* nop */
988 stl_p(p
++, 0x31290040); /* andi t1,t1,0x40 */
989 stl_p(p
++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
990 stl_p(p
++, 0x00000000); /* nop */
991 stl_p(p
++, 0x03e00009); /* jalr ra */
992 stl_p(p
++, 0xa1040000); /* sb a0,0(t0) */
996 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf
, int index
,
997 const char *string
, ...)
1002 if (index
>= ENVP_NB_ENTRIES
) {
1006 if (string
== NULL
) {
1007 prom_buf
[index
] = 0;
1011 table_addr
= sizeof(int32_t) * ENVP_NB_ENTRIES
+ index
* ENVP_ENTRY_SIZE
;
1012 prom_buf
[index
] = tswap32(ENVP_ADDR
+ table_addr
);
1014 va_start(ap
, string
);
1015 vsnprintf((char *)prom_buf
+ table_addr
, ENVP_ENTRY_SIZE
, string
, ap
);
1020 static int64_t load_kernel(void)
1022 int64_t kernel_entry
, kernel_high
, initrd_size
;
1024 ram_addr_t initrd_offset
;
1029 uint64_t (*xlate_to_kseg0
) (void *opaque
, uint64_t addr
);
1031 #ifdef TARGET_WORDS_BIGENDIAN
1037 kernel_size
= load_elf(loaderparams
.kernel_filename
, NULL
,
1038 cpu_mips_kseg0_to_phys
, NULL
,
1039 (uint64_t *)&kernel_entry
, NULL
,
1040 (uint64_t *)&kernel_high
, NULL
, big_endian
, EM_MIPS
,
1042 if (kernel_size
< 0) {
1043 error_report("could not load kernel '%s': %s",
1044 loaderparams
.kernel_filename
,
1045 load_elf_strerror(kernel_size
));
1049 /* Check where the kernel has been linked */
1050 if (kernel_entry
& 0x80000000ll
) {
1051 if (kvm_enabled()) {
1052 error_report("KVM guest kernels must be linked in useg. "
1053 "Did you forget to enable CONFIG_KVM_GUEST?");
1057 xlate_to_kseg0
= cpu_mips_phys_to_kseg0
;
1059 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1060 mips_um_ksegs_enable();
1062 xlate_to_kseg0
= cpu_mips_kvm_um_phys_to_kseg0
;
1068 if (loaderparams
.initrd_filename
) {
1069 initrd_size
= get_image_size(loaderparams
.initrd_filename
);
1070 if (initrd_size
> 0) {
1072 * The kernel allocates the bootmap memory in the low memory after
1073 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1076 initrd_offset
= (loaderparams
.ram_low_size
- initrd_size
1078 - ~INITRD_PAGE_MASK
) & INITRD_PAGE_MASK
;
1079 if (kernel_high
>= initrd_offset
) {
1080 error_report("memory too small for initial ram disk '%s'",
1081 loaderparams
.initrd_filename
);
1084 initrd_size
= load_image_targphys(loaderparams
.initrd_filename
,
1086 ram_size
- initrd_offset
);
1088 if (initrd_size
== (target_ulong
) -1) {
1089 error_report("could not load initial ram disk '%s'",
1090 loaderparams
.initrd_filename
);
1095 /* Setup prom parameters. */
1096 prom_size
= ENVP_NB_ENTRIES
* (sizeof(int32_t) + ENVP_ENTRY_SIZE
);
1097 prom_buf
= g_malloc(prom_size
);
1099 prom_set(prom_buf
, prom_index
++, "%s", loaderparams
.kernel_filename
);
1100 if (initrd_size
> 0) {
1101 prom_set(prom_buf
, prom_index
++,
1102 "rd_start=0x%" PRIx64
" rd_size=%" PRId64
" %s",
1103 xlate_to_kseg0(NULL
, initrd_offset
),
1104 initrd_size
, loaderparams
.kernel_cmdline
);
1106 prom_set(prom_buf
, prom_index
++, "%s", loaderparams
.kernel_cmdline
);
1109 prom_set(prom_buf
, prom_index
++, "memsize");
1110 prom_set(prom_buf
, prom_index
++, "%u", loaderparams
.ram_low_size
);
1112 prom_set(prom_buf
, prom_index
++, "ememsize");
1113 prom_set(prom_buf
, prom_index
++, "%u", loaderparams
.ram_size
);
1115 prom_set(prom_buf
, prom_index
++, "modetty0");
1116 prom_set(prom_buf
, prom_index
++, "38400n8r");
1117 prom_set(prom_buf
, prom_index
++, NULL
);
1119 rom_add_blob_fixed("prom", prom_buf
, prom_size
,
1120 cpu_mips_kseg0_to_phys(NULL
, ENVP_ADDR
));
1123 return kernel_entry
;
1126 static void malta_mips_config(MIPSCPU
*cpu
)
1128 MachineState
*ms
= MACHINE(qdev_get_machine());
1129 unsigned int smp_cpus
= ms
->smp
.cpus
;
1130 CPUMIPSState
*env
= &cpu
->env
;
1131 CPUState
*cs
= CPU(cpu
);
1133 env
->mvp
->CP0_MVPConf0
|= ((smp_cpus
- 1) << CP0MVPC0_PVPE
) |
1134 ((smp_cpus
* cs
->nr_threads
- 1) << CP0MVPC0_PTC
);
1137 static void main_cpu_reset(void *opaque
)
1139 MIPSCPU
*cpu
= opaque
;
1140 CPUMIPSState
*env
= &cpu
->env
;
1142 cpu_reset(CPU(cpu
));
1145 * The bootloader does not need to be rewritten as it is located in a
1146 * read only location. The kernel location and the arguments table
1147 * location does not change.
1149 if (loaderparams
.kernel_filename
) {
1150 env
->CP0_Status
&= ~(1 << CP0St_ERL
);
1153 malta_mips_config(cpu
);
1155 if (kvm_enabled()) {
1156 /* Start running from the bootloader we wrote to end of RAM */
1157 env
->active_tc
.PC
= 0x40000000 + loaderparams
.ram_low_size
;
1161 static void create_cpu_without_cps(MachineState
*ms
,
1162 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1168 for (i
= 0; i
< ms
->smp
.cpus
; i
++) {
1169 cpu
= MIPS_CPU(cpu_create(ms
->cpu_type
));
1171 /* Init internal devices */
1172 cpu_mips_irq_init_cpu(cpu
);
1173 cpu_mips_clock_init(cpu
);
1174 qemu_register_reset(main_cpu_reset
, cpu
);
1177 cpu
= MIPS_CPU(first_cpu
);
1179 *i8259_irq
= env
->irq
[2];
1180 *cbus_irq
= env
->irq
[4];
1183 static void create_cps(MachineState
*ms
, MaltaState
*s
,
1184 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1186 object_initialize_child(OBJECT(s
), "cps", &s
->cps
, TYPE_MIPS_CPS
);
1187 object_property_set_str(OBJECT(&s
->cps
), "cpu-type", ms
->cpu_type
,
1189 object_property_set_int(OBJECT(&s
->cps
), "num-vp", ms
->smp
.cpus
,
1191 sysbus_realize(SYS_BUS_DEVICE(&s
->cps
), &error_fatal
);
1193 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s
->cps
), 0, 0, 1);
1195 *i8259_irq
= get_cps_irq(&s
->cps
, 3);
1199 static void mips_create_cpu(MachineState
*ms
, MaltaState
*s
,
1200 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1202 if ((ms
->smp
.cpus
> 1) && cpu_supports_cps_smp(ms
->cpu_type
)) {
1203 create_cps(ms
, s
, cbus_irq
, i8259_irq
);
1205 create_cpu_without_cps(ms
, cbus_irq
, i8259_irq
);
1210 void mips_malta_init(MachineState
*machine
)
1212 ram_addr_t ram_size
= machine
->ram_size
;
1213 ram_addr_t ram_low_size
;
1214 const char *kernel_filename
= machine
->kernel_filename
;
1215 const char *kernel_cmdline
= machine
->kernel_cmdline
;
1216 const char *initrd_filename
= machine
->initrd_filename
;
1219 MemoryRegion
*system_memory
= get_system_memory();
1220 MemoryRegion
*ram_low_preio
= g_new(MemoryRegion
, 1);
1221 MemoryRegion
*ram_low_postio
;
1222 MemoryRegion
*bios
, *bios_copy
= g_new(MemoryRegion
, 1);
1223 const size_t smbus_eeprom_size
= 8 * 256;
1224 uint8_t *smbus_eeprom_buf
= g_malloc0(smbus_eeprom_size
);
1225 int64_t kernel_entry
, bootloader_run_addr
;
1228 qemu_irq cbus_irq
, i8259_irq
;
1234 DeviceState
*dev
= qdev_new(TYPE_MIPS_MALTA
);
1235 MaltaState
*s
= MIPS_MALTA(dev
);
1238 * The whole address space decoded by the GT-64120A doesn't generate
1239 * exception when accessing invalid memory. Create an empty slot to
1240 * emulate this feature.
1242 empty_slot_init("GT64120", 0, 0x20000000);
1244 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1247 mips_create_cpu(machine
, s
, &cbus_irq
, &i8259_irq
);
1250 if (ram_size
> 2 * GiB
) {
1251 error_report("Too much memory for this machine: %" PRId64
"MB,"
1252 " maximum 2048MB", ram_size
/ MiB
);
1256 /* register RAM at high address where it is undisturbed by IO */
1257 memory_region_add_subregion(system_memory
, 0x80000000, machine
->ram
);
1259 /* alias for pre IO hole access */
1260 memory_region_init_alias(ram_low_preio
, NULL
, "mips_malta_low_preio.ram",
1261 machine
->ram
, 0, MIN(ram_size
, 256 * MiB
));
1262 memory_region_add_subregion(system_memory
, 0, ram_low_preio
);
1264 /* alias for post IO hole access, if there is enough RAM */
1265 if (ram_size
> 512 * MiB
) {
1266 ram_low_postio
= g_new(MemoryRegion
, 1);
1267 memory_region_init_alias(ram_low_postio
, NULL
,
1268 "mips_malta_low_postio.ram",
1269 machine
->ram
, 512 * MiB
,
1270 ram_size
- 512 * MiB
);
1271 memory_region_add_subregion(system_memory
, 512 * MiB
,
1275 #ifdef TARGET_WORDS_BIGENDIAN
1283 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1284 malta_fpga_init(system_memory
, FPGA_ADDRESS
, cbus_irq
, serial_hd(2));
1286 /* Load firmware in flash / BIOS. */
1287 dinfo
= drive_get(IF_PFLASH
, 0, fl_idx
);
1288 fl
= pflash_cfi01_register(FLASH_ADDRESS
, "mips_malta.bios",
1290 dinfo
? blk_by_legacy_dinfo(dinfo
) : NULL
,
1292 4, 0x0000, 0x0000, 0x0000, 0x0000, be
);
1293 bios
= pflash_cfi01_get_memory(fl
);
1295 if (kernel_filename
) {
1296 ram_low_size
= MIN(ram_size
, 256 * MiB
);
1297 /* For KVM we reserve 1MB of RAM for running bootloader */
1298 if (kvm_enabled()) {
1299 ram_low_size
-= 0x100000;
1300 bootloader_run_addr
= 0x40000000 + ram_low_size
;
1302 bootloader_run_addr
= 0xbfc00000;
1305 /* Write a small bootloader to the flash location. */
1306 loaderparams
.ram_size
= ram_size
;
1307 loaderparams
.ram_low_size
= ram_low_size
;
1308 loaderparams
.kernel_filename
= kernel_filename
;
1309 loaderparams
.kernel_cmdline
= kernel_cmdline
;
1310 loaderparams
.initrd_filename
= initrd_filename
;
1311 kernel_entry
= load_kernel();
1313 if (!cpu_supports_isa(machine
->cpu_type
, ISA_NANOMIPS32
)) {
1314 write_bootloader(memory_region_get_ram_ptr(bios
),
1315 bootloader_run_addr
, kernel_entry
);
1317 write_bootloader_nanomips(memory_region_get_ram_ptr(bios
),
1318 bootloader_run_addr
, kernel_entry
);
1320 if (kvm_enabled()) {
1321 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1322 write_bootloader(memory_region_get_ram_ptr(ram_low_preio
) +
1324 bootloader_run_addr
, kernel_entry
);
1327 target_long bios_size
= FLASH_SIZE
;
1328 /* The flash region isn't executable from a KVM guest */
1329 if (kvm_enabled()) {
1330 error_report("KVM enabled but no -kernel argument was specified. "
1331 "Booting from flash is not supported with KVM.");
1334 /* Load firmware from flash. */
1336 /* Load a BIOS image. */
1337 if (bios_name
== NULL
) {
1338 bios_name
= BIOS_FILENAME
;
1340 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1342 bios_size
= load_image_targphys(filename
, FLASH_ADDRESS
,
1348 if ((bios_size
< 0 || bios_size
> BIOS_SIZE
) &&
1349 !kernel_filename
&& !qtest_enabled()) {
1350 error_report("Could not load MIPS bios '%s', and no "
1351 "-kernel argument was specified", bios_name
);
1356 * In little endian mode the 32bit words in the bios are swapped,
1357 * a neat trick which allows bi-endian firmware.
1359 #ifndef TARGET_WORDS_BIGENDIAN
1361 uint32_t *end
, *addr
;
1362 const size_t swapsize
= MIN(bios_size
, 0x3e0000);
1363 addr
= rom_ptr(FLASH_ADDRESS
, swapsize
);
1365 addr
= memory_region_get_ram_ptr(bios
);
1367 end
= (void *)addr
+ swapsize
;
1368 while (addr
< end
) {
1377 * Map the BIOS at a 2nd physical location, as on the real board.
1378 * Copy it so that we can patch in the MIPS revision, which cannot be
1379 * handled by an overlapping region as the resulting ROM code subpage
1380 * regions are not executable.
1382 memory_region_init_ram(bios_copy
, NULL
, "bios.1fc", BIOS_SIZE
,
1384 if (!rom_copy(memory_region_get_ram_ptr(bios_copy
),
1385 FLASH_ADDRESS
, BIOS_SIZE
)) {
1386 memcpy(memory_region_get_ram_ptr(bios_copy
),
1387 memory_region_get_ram_ptr(bios
), BIOS_SIZE
);
1389 memory_region_set_readonly(bios_copy
, true);
1390 memory_region_add_subregion(system_memory
, RESET_ADDRESS
, bios_copy
);
1392 /* Board ID = 0x420 (Malta Board with CoreLV) */
1393 stl_p(memory_region_get_ram_ptr(bios_copy
) + 0x10, 0x00000420);
1396 pci_bus
= gt64120_register(s
->i8259
);
1399 dev
= piix4_create(pci_bus
, &isa_bus
, &smbus
);
1401 /* Interrupt controller */
1402 qdev_connect_gpio_out_named(dev
, "intr", 0, i8259_irq
);
1403 for (int i
= 0; i
< ISA_NUM_IRQS
; i
++) {
1404 s
->i8259
[i
] = qdev_get_gpio_in_named(dev
, "isa", i
);
1407 /* generate SPD EEPROM data */
1408 generate_eeprom_spd(&smbus_eeprom_buf
[0 * 256], ram_size
);
1409 generate_eeprom_serial(&smbus_eeprom_buf
[6 * 256]);
1410 smbus_eeprom_init(smbus
, 8, smbus_eeprom_buf
, smbus_eeprom_size
);
1411 g_free(smbus_eeprom_buf
);
1413 /* Super I/O: SMS FDC37M817 */
1414 isa_create_simple(isa_bus
, TYPE_FDC37M81X_SUPERIO
);
1417 network_init(pci_bus
);
1419 /* Optional PCI video card */
1420 pci_vga_init(pci_bus
);
1423 static const TypeInfo mips_malta_device
= {
1424 .name
= TYPE_MIPS_MALTA
,
1425 .parent
= TYPE_SYS_BUS_DEVICE
,
1426 .instance_size
= sizeof(MaltaState
),
1429 static void mips_malta_machine_init(MachineClass
*mc
)
1431 mc
->desc
= "MIPS Malta Core LV";
1432 mc
->init
= mips_malta_init
;
1433 mc
->block_default_type
= IF_IDE
;
1435 mc
->is_default
= true;
1436 #ifdef TARGET_MIPS64
1437 mc
->default_cpu_type
= MIPS_CPU_TYPE_NAME("20Kc");
1439 mc
->default_cpu_type
= MIPS_CPU_TYPE_NAME("24Kf");
1441 mc
->default_ram_id
= "mips_malta.ram";
1444 DEFINE_MACHINE("malta", mips_malta_machine_init
)
1446 static void mips_malta_register_types(void)
1448 type_register_static(&mips_malta_device
);
1451 type_init(mips_malta_register_types
)