monitor: Fix tracepoint crash on JSON syntax error
[qemu/armbru.git] / linux-user / elfload.c
blob942a1b661f494d09ccc0ad3dd3ef0002f1594b16
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 int info_is_fdpic(struct image_info *info)
83 return info->personality == PER_LINUX_FDPIC;
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA ELFDATA2MSB
98 #else
99 #define ELF_DATA ELFDATA2LSB
100 #endif
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong target_elf_greg_t;
104 #define tswapreg(ptr) tswap64(ptr)
105 #else
106 typedef abi_ulong target_elf_greg_t;
107 #define tswapreg(ptr) tswapal(ptr)
108 #endif
110 #ifdef USE_UID16
111 typedef abi_ushort target_uid_t;
112 typedef abi_ushort target_gid_t;
113 #else
114 typedef abi_uint target_uid_t;
115 typedef abi_uint target_gid_t;
116 #endif
117 typedef abi_int target_pid_t;
119 #ifdef TARGET_I386
121 #define ELF_PLATFORM get_elf_platform()
123 static const char *get_elf_platform(void)
125 static char elf_platform[] = "i386";
126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
134 #define ELF_HWCAP get_elf_hwcap()
136 static uint32_t get_elf_hwcap(void)
138 X86CPU *cpu = X86_CPU(thread_cpu);
140 return cpu->env.features[FEAT_1_EDX];
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
146 #define ELF_CLASS ELFCLASS64
147 #define ELF_ARCH EM_X86_64
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
156 #define ELF_NREG 27
157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
164 * See linux kernel: arch/x86/include/asm/elf.h
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
197 #else
199 #define ELF_START_MMAP 0x80000000
202 * This is used to ensure we don't load something for the wrong architecture.
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207 * These are used to set parameters in the core dumps.
209 #define ELF_CLASS ELFCLASS32
210 #define ELF_ARCH EM_386
212 static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
228 #define ELF_NREG 17
229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
236 * See linux kernel: arch/x86/include/asm/elf.h
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
258 #endif
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE 4096
263 #endif
265 #ifdef TARGET_ARM
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
270 #define ELF_START_MMAP 0x80000000
272 #define ELF_ARCH EM_ARM
273 #define ELF_CLASS ELFCLASS32
275 static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
278 abi_long stack = infop->start_stack;
279 memset(regs, 0, sizeof(*regs));
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
287 /* FIXME - what to for failure of get_user()? */
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
290 /* XXX: it seems that r0 is zeroed after ! */
291 regs->uregs[0] = 0;
292 /* For uClinux PIC binaries. */
293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294 regs->uregs[10] = infop->start_data;
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
316 #define ELF_NREG 18
317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE 4096
345 enum
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
371 enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
379 /* The commpage only exists for 32 bit kernels */
381 /* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
389 static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
392 unsigned long real_start, test_page_addr;
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
407 if (test_page_addr >= guest_base
408 && test_page_addr < (guest_base + guest_size)) {
409 return -1;
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
442 return 1; /* All good */
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
448 static uint32_t get_elf_hwcap(void)
450 ARMCPU *cpu = ARM_CPU(thread_cpu);
451 uint32_t hwcaps = 0;
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
458 /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475 * to our VFP_FP16 feature bit.
477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
480 return hwcaps;
483 static uint32_t get_elf_hwcap2(void)
485 ARMCPU *cpu = ARM_CPU(thread_cpu);
486 uint32_t hwcaps = 0;
488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493 return hwcaps;
496 #undef GET_FEATURE
498 #else
499 /* 64 bit ARM definitions */
500 #define ELF_START_MMAP 0x80000000
502 #define ELF_ARCH EM_AARCH64
503 #define ELF_CLASS ELFCLASS64
504 #define ELF_PLATFORM "aarch64"
506 static inline void init_thread(struct target_pt_regs *regs,
507 struct image_info *infop)
509 abi_long stack = infop->start_stack;
510 memset(regs, 0, sizeof(*regs));
512 regs->pc = infop->entry & ~0x3ULL;
513 regs->sp = stack;
516 #define ELF_NREG 34
517 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
519 static void elf_core_copy_regs(target_elf_gregset_t *regs,
520 const CPUARMState *env)
522 int i;
524 for (i = 0; i < 32; i++) {
525 (*regs)[i] = tswapreg(env->xregs[i]);
527 (*regs)[32] = tswapreg(env->pc);
528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
531 #define USE_ELF_CORE_DUMP
532 #define ELF_EXEC_PAGESIZE 4096
534 enum {
535 ARM_HWCAP_A64_FP = 1 << 0,
536 ARM_HWCAP_A64_ASIMD = 1 << 1,
537 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
538 ARM_HWCAP_A64_AES = 1 << 3,
539 ARM_HWCAP_A64_PMULL = 1 << 4,
540 ARM_HWCAP_A64_SHA1 = 1 << 5,
541 ARM_HWCAP_A64_SHA2 = 1 << 6,
542 ARM_HWCAP_A64_CRC32 = 1 << 7,
543 ARM_HWCAP_A64_ATOMICS = 1 << 8,
544 ARM_HWCAP_A64_FPHP = 1 << 9,
545 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
546 ARM_HWCAP_A64_CPUID = 1 << 11,
547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
548 ARM_HWCAP_A64_JSCVT = 1 << 13,
549 ARM_HWCAP_A64_FCMA = 1 << 14,
550 ARM_HWCAP_A64_LRCPC = 1 << 15,
551 ARM_HWCAP_A64_DCPOP = 1 << 16,
552 ARM_HWCAP_A64_SHA3 = 1 << 17,
553 ARM_HWCAP_A64_SM3 = 1 << 18,
554 ARM_HWCAP_A64_SM4 = 1 << 19,
555 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
556 ARM_HWCAP_A64_SHA512 = 1 << 21,
557 ARM_HWCAP_A64_SVE = 1 << 22,
560 #define ELF_HWCAP get_elf_hwcap()
562 static uint32_t get_elf_hwcap(void)
564 ARMCPU *cpu = ARM_CPU(thread_cpu);
565 uint32_t hwcaps = 0;
567 hwcaps |= ARM_HWCAP_A64_FP;
568 hwcaps |= ARM_HWCAP_A64_ASIMD;
570 /* probe for the extra features */
571 #define GET_FEATURE(feat, hwcap) \
572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
582 GET_FEATURE(ARM_FEATURE_V8_FP16,
583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
584 GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
585 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
586 GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP);
587 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
588 GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
589 #undef GET_FEATURE
591 return hwcaps;
594 #endif /* not TARGET_AARCH64 */
595 #endif /* TARGET_ARM */
597 #ifdef TARGET_SPARC
598 #ifdef TARGET_SPARC64
600 #define ELF_START_MMAP 0x80000000
601 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
602 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
603 #ifndef TARGET_ABI32
604 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
605 #else
606 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
607 #endif
609 #define ELF_CLASS ELFCLASS64
610 #define ELF_ARCH EM_SPARCV9
612 #define STACK_BIAS 2047
614 static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
617 #ifndef TARGET_ABI32
618 regs->tstate = 0;
619 #endif
620 regs->pc = infop->entry;
621 regs->npc = regs->pc + 4;
622 regs->y = 0;
623 #ifdef TARGET_ABI32
624 regs->u_regs[14] = infop->start_stack - 16 * 4;
625 #else
626 if (personality(infop->personality) == PER_LINUX32)
627 regs->u_regs[14] = infop->start_stack - 16 * 4;
628 else
629 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
630 #endif
633 #else
634 #define ELF_START_MMAP 0x80000000
635 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
636 | HWCAP_SPARC_MULDIV)
638 #define ELF_CLASS ELFCLASS32
639 #define ELF_ARCH EM_SPARC
641 static inline void init_thread(struct target_pt_regs *regs,
642 struct image_info *infop)
644 regs->psr = 0;
645 regs->pc = infop->entry;
646 regs->npc = regs->pc + 4;
647 regs->y = 0;
648 regs->u_regs[14] = infop->start_stack - 16 * 4;
651 #endif
652 #endif
654 #ifdef TARGET_PPC
656 #define ELF_MACHINE PPC_ELF_MACHINE
657 #define ELF_START_MMAP 0x80000000
659 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
661 #define elf_check_arch(x) ( (x) == EM_PPC64 )
663 #define ELF_CLASS ELFCLASS64
665 #else
667 #define ELF_CLASS ELFCLASS32
669 #endif
671 #define ELF_ARCH EM_PPC
673 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
674 See arch/powerpc/include/asm/cputable.h. */
675 enum {
676 QEMU_PPC_FEATURE_32 = 0x80000000,
677 QEMU_PPC_FEATURE_64 = 0x40000000,
678 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
679 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
680 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
681 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
682 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
683 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
684 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
685 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
686 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
687 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
688 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
689 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
690 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
691 QEMU_PPC_FEATURE_CELL = 0x00010000,
692 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
693 QEMU_PPC_FEATURE_SMT = 0x00004000,
694 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
695 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
696 QEMU_PPC_FEATURE_PA6T = 0x00000800,
697 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
698 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
699 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
700 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
701 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
703 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
704 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
706 /* Feature definitions in AT_HWCAP2. */
707 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
708 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
709 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
710 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
711 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
712 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
715 #define ELF_HWCAP get_elf_hwcap()
717 static uint32_t get_elf_hwcap(void)
719 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
720 uint32_t features = 0;
722 /* We don't have to be terribly complete here; the high points are
723 Altivec/FP/SPE support. Anything else is just a bonus. */
724 #define GET_FEATURE(flag, feature) \
725 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
726 #define GET_FEATURE2(flags, feature) \
727 do { \
728 if ((cpu->env.insns_flags2 & flags) == flags) { \
729 features |= feature; \
731 } while (0)
732 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
733 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
734 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
735 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
736 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
737 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
738 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
739 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
740 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
741 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
742 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
743 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
744 QEMU_PPC_FEATURE_ARCH_2_06);
745 #undef GET_FEATURE
746 #undef GET_FEATURE2
748 return features;
751 #define ELF_HWCAP2 get_elf_hwcap2()
753 static uint32_t get_elf_hwcap2(void)
755 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
756 uint32_t features = 0;
758 #define GET_FEATURE(flag, feature) \
759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature) \
761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
763 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
764 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
765 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
766 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
768 #undef GET_FEATURE
769 #undef GET_FEATURE2
771 return features;
775 * The requirements here are:
776 * - keep the final alignment of sp (sp & 0xf)
777 * - make sure the 32-bit value at the first 16 byte aligned position of
778 * AUXV is greater than 16 for glibc compatibility.
779 * AT_IGNOREPPC is used for that.
780 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
781 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
783 #define DLINFO_ARCH_ITEMS 5
784 #define ARCH_DLINFO \
785 do { \
786 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
787 /* \
788 * Handle glibc compatibility: these magic entries must \
789 * be at the lowest addresses in the final auxv. \
790 */ \
791 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
792 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
793 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
794 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
795 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
796 } while (0)
798 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
800 _regs->gpr[1] = infop->start_stack;
801 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
802 if (get_ppc64_abi(infop) < 2) {
803 uint64_t val;
804 get_user_u64(val, infop->entry + 8);
805 _regs->gpr[2] = val + infop->load_bias;
806 get_user_u64(val, infop->entry);
807 infop->entry = val + infop->load_bias;
808 } else {
809 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
811 #endif
812 _regs->nip = infop->entry;
815 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
816 #define ELF_NREG 48
817 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
819 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
821 int i;
822 target_ulong ccr = 0;
824 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
825 (*regs)[i] = tswapreg(env->gpr[i]);
828 (*regs)[32] = tswapreg(env->nip);
829 (*regs)[33] = tswapreg(env->msr);
830 (*regs)[35] = tswapreg(env->ctr);
831 (*regs)[36] = tswapreg(env->lr);
832 (*regs)[37] = tswapreg(env->xer);
834 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
835 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
837 (*regs)[38] = tswapreg(ccr);
840 #define USE_ELF_CORE_DUMP
841 #define ELF_EXEC_PAGESIZE 4096
843 #endif
845 #ifdef TARGET_MIPS
847 #define ELF_START_MMAP 0x80000000
849 #ifdef TARGET_MIPS64
850 #define ELF_CLASS ELFCLASS64
851 #else
852 #define ELF_CLASS ELFCLASS32
853 #endif
854 #define ELF_ARCH EM_MIPS
856 static inline void init_thread(struct target_pt_regs *regs,
857 struct image_info *infop)
859 regs->cp0_status = 2 << CP0St_KSU;
860 regs->cp0_epc = infop->entry;
861 regs->regs[29] = infop->start_stack;
864 /* See linux kernel: arch/mips/include/asm/elf.h. */
865 #define ELF_NREG 45
866 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
868 /* See linux kernel: arch/mips/include/asm/reg.h. */
869 enum {
870 #ifdef TARGET_MIPS64
871 TARGET_EF_R0 = 0,
872 #else
873 TARGET_EF_R0 = 6,
874 #endif
875 TARGET_EF_R26 = TARGET_EF_R0 + 26,
876 TARGET_EF_R27 = TARGET_EF_R0 + 27,
877 TARGET_EF_LO = TARGET_EF_R0 + 32,
878 TARGET_EF_HI = TARGET_EF_R0 + 33,
879 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
880 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
881 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
882 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
885 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
886 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
888 int i;
890 for (i = 0; i < TARGET_EF_R0; i++) {
891 (*regs)[i] = 0;
893 (*regs)[TARGET_EF_R0] = 0;
895 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
896 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
899 (*regs)[TARGET_EF_R26] = 0;
900 (*regs)[TARGET_EF_R27] = 0;
901 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
902 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
903 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
904 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
905 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
906 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
909 #define USE_ELF_CORE_DUMP
910 #define ELF_EXEC_PAGESIZE 4096
912 /* See arch/mips/include/uapi/asm/hwcap.h. */
913 enum {
914 HWCAP_MIPS_R6 = (1 << 0),
915 HWCAP_MIPS_MSA = (1 << 1),
918 #define ELF_HWCAP get_elf_hwcap()
920 static uint32_t get_elf_hwcap(void)
922 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
923 uint32_t hwcaps = 0;
925 #define GET_FEATURE(flag, hwcap) \
926 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
928 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
929 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
931 #undef GET_FEATURE
933 return hwcaps;
936 #endif /* TARGET_MIPS */
938 #ifdef TARGET_MICROBLAZE
940 #define ELF_START_MMAP 0x80000000
942 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
944 #define ELF_CLASS ELFCLASS32
945 #define ELF_ARCH EM_MICROBLAZE
947 static inline void init_thread(struct target_pt_regs *regs,
948 struct image_info *infop)
950 regs->pc = infop->entry;
951 regs->r1 = infop->start_stack;
955 #define ELF_EXEC_PAGESIZE 4096
957 #define USE_ELF_CORE_DUMP
958 #define ELF_NREG 38
959 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
961 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
962 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
964 int i, pos = 0;
966 for (i = 0; i < 32; i++) {
967 (*regs)[pos++] = tswapreg(env->regs[i]);
970 for (i = 0; i < 6; i++) {
971 (*regs)[pos++] = tswapreg(env->sregs[i]);
975 #endif /* TARGET_MICROBLAZE */
977 #ifdef TARGET_NIOS2
979 #define ELF_START_MMAP 0x80000000
981 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
983 #define ELF_CLASS ELFCLASS32
984 #define ELF_ARCH EM_ALTERA_NIOS2
986 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
988 regs->ea = infop->entry;
989 regs->sp = infop->start_stack;
990 regs->estatus = 0x3;
993 #define ELF_EXEC_PAGESIZE 4096
995 #define USE_ELF_CORE_DUMP
996 #define ELF_NREG 49
997 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
999 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1000 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1001 const CPUNios2State *env)
1003 int i;
1005 (*regs)[0] = -1;
1006 for (i = 1; i < 8; i++) /* r0-r7 */
1007 (*regs)[i] = tswapreg(env->regs[i + 7]);
1009 for (i = 8; i < 16; i++) /* r8-r15 */
1010 (*regs)[i] = tswapreg(env->regs[i - 8]);
1012 for (i = 16; i < 24; i++) /* r16-r23 */
1013 (*regs)[i] = tswapreg(env->regs[i + 7]);
1014 (*regs)[24] = -1; /* R_ET */
1015 (*regs)[25] = -1; /* R_BT */
1016 (*regs)[26] = tswapreg(env->regs[R_GP]);
1017 (*regs)[27] = tswapreg(env->regs[R_SP]);
1018 (*regs)[28] = tswapreg(env->regs[R_FP]);
1019 (*regs)[29] = tswapreg(env->regs[R_EA]);
1020 (*regs)[30] = -1; /* R_SSTATUS */
1021 (*regs)[31] = tswapreg(env->regs[R_RA]);
1023 (*regs)[32] = tswapreg(env->regs[R_PC]);
1025 (*regs)[33] = -1; /* R_STATUS */
1026 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1028 for (i = 35; i < 49; i++) /* ... */
1029 (*regs)[i] = -1;
1032 #endif /* TARGET_NIOS2 */
1034 #ifdef TARGET_OPENRISC
1036 #define ELF_START_MMAP 0x08000000
1038 #define ELF_ARCH EM_OPENRISC
1039 #define ELF_CLASS ELFCLASS32
1040 #define ELF_DATA ELFDATA2MSB
1042 static inline void init_thread(struct target_pt_regs *regs,
1043 struct image_info *infop)
1045 regs->pc = infop->entry;
1046 regs->gpr[1] = infop->start_stack;
1049 #define USE_ELF_CORE_DUMP
1050 #define ELF_EXEC_PAGESIZE 8192
1052 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1053 #define ELF_NREG 34 /* gprs and pc, sr */
1054 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1056 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1057 const CPUOpenRISCState *env)
1059 int i;
1061 for (i = 0; i < 32; i++) {
1062 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1064 (*regs)[32] = tswapreg(env->pc);
1065 (*regs)[33] = tswapreg(cpu_get_sr(env));
1067 #define ELF_HWCAP 0
1068 #define ELF_PLATFORM NULL
1070 #endif /* TARGET_OPENRISC */
1072 #ifdef TARGET_SH4
1074 #define ELF_START_MMAP 0x80000000
1076 #define ELF_CLASS ELFCLASS32
1077 #define ELF_ARCH EM_SH
1079 static inline void init_thread(struct target_pt_regs *regs,
1080 struct image_info *infop)
1082 /* Check other registers XXXXX */
1083 regs->pc = infop->entry;
1084 regs->regs[15] = infop->start_stack;
1087 /* See linux kernel: arch/sh/include/asm/elf.h. */
1088 #define ELF_NREG 23
1089 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1091 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1092 enum {
1093 TARGET_REG_PC = 16,
1094 TARGET_REG_PR = 17,
1095 TARGET_REG_SR = 18,
1096 TARGET_REG_GBR = 19,
1097 TARGET_REG_MACH = 20,
1098 TARGET_REG_MACL = 21,
1099 TARGET_REG_SYSCALL = 22
1102 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1103 const CPUSH4State *env)
1105 int i;
1107 for (i = 0; i < 16; i++) {
1108 (*regs)[i] = tswapreg(env->gregs[i]);
1111 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1112 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1113 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1114 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1115 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1116 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1117 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1120 #define USE_ELF_CORE_DUMP
1121 #define ELF_EXEC_PAGESIZE 4096
1123 enum {
1124 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1125 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1126 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1127 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1128 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1129 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1130 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1131 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1132 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1133 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1136 #define ELF_HWCAP get_elf_hwcap()
1138 static uint32_t get_elf_hwcap(void)
1140 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1141 uint32_t hwcap = 0;
1143 hwcap |= SH_CPU_HAS_FPU;
1145 if (cpu->env.features & SH_FEATURE_SH4A) {
1146 hwcap |= SH_CPU_HAS_LLSC;
1149 return hwcap;
1152 #endif
1154 #ifdef TARGET_CRIS
1156 #define ELF_START_MMAP 0x80000000
1158 #define ELF_CLASS ELFCLASS32
1159 #define ELF_ARCH EM_CRIS
1161 static inline void init_thread(struct target_pt_regs *regs,
1162 struct image_info *infop)
1164 regs->erp = infop->entry;
1167 #define ELF_EXEC_PAGESIZE 8192
1169 #endif
1171 #ifdef TARGET_M68K
1173 #define ELF_START_MMAP 0x80000000
1175 #define ELF_CLASS ELFCLASS32
1176 #define ELF_ARCH EM_68K
1178 /* ??? Does this need to do anything?
1179 #define ELF_PLAT_INIT(_r) */
1181 static inline void init_thread(struct target_pt_regs *regs,
1182 struct image_info *infop)
1184 regs->usp = infop->start_stack;
1185 regs->sr = 0;
1186 regs->pc = infop->entry;
1189 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1190 #define ELF_NREG 20
1191 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1193 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1195 (*regs)[0] = tswapreg(env->dregs[1]);
1196 (*regs)[1] = tswapreg(env->dregs[2]);
1197 (*regs)[2] = tswapreg(env->dregs[3]);
1198 (*regs)[3] = tswapreg(env->dregs[4]);
1199 (*regs)[4] = tswapreg(env->dregs[5]);
1200 (*regs)[5] = tswapreg(env->dregs[6]);
1201 (*regs)[6] = tswapreg(env->dregs[7]);
1202 (*regs)[7] = tswapreg(env->aregs[0]);
1203 (*regs)[8] = tswapreg(env->aregs[1]);
1204 (*regs)[9] = tswapreg(env->aregs[2]);
1205 (*regs)[10] = tswapreg(env->aregs[3]);
1206 (*regs)[11] = tswapreg(env->aregs[4]);
1207 (*regs)[12] = tswapreg(env->aregs[5]);
1208 (*regs)[13] = tswapreg(env->aregs[6]);
1209 (*regs)[14] = tswapreg(env->dregs[0]);
1210 (*regs)[15] = tswapreg(env->aregs[7]);
1211 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1212 (*regs)[17] = tswapreg(env->sr);
1213 (*regs)[18] = tswapreg(env->pc);
1214 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1217 #define USE_ELF_CORE_DUMP
1218 #define ELF_EXEC_PAGESIZE 8192
1220 #endif
1222 #ifdef TARGET_ALPHA
1224 #define ELF_START_MMAP (0x30000000000ULL)
1226 #define ELF_CLASS ELFCLASS64
1227 #define ELF_ARCH EM_ALPHA
1229 static inline void init_thread(struct target_pt_regs *regs,
1230 struct image_info *infop)
1232 regs->pc = infop->entry;
1233 regs->ps = 8;
1234 regs->usp = infop->start_stack;
1237 #define ELF_EXEC_PAGESIZE 8192
1239 #endif /* TARGET_ALPHA */
1241 #ifdef TARGET_S390X
1243 #define ELF_START_MMAP (0x20000000000ULL)
1245 #define ELF_CLASS ELFCLASS64
1246 #define ELF_DATA ELFDATA2MSB
1247 #define ELF_ARCH EM_S390
1249 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1251 regs->psw.addr = infop->entry;
1252 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1253 regs->gprs[15] = infop->start_stack;
1256 #endif /* TARGET_S390X */
1258 #ifdef TARGET_TILEGX
1260 /* 42 bits real used address, a half for user mode */
1261 #define ELF_START_MMAP (0x00000020000000000ULL)
1263 #define elf_check_arch(x) ((x) == EM_TILEGX)
1265 #define ELF_CLASS ELFCLASS64
1266 #define ELF_DATA ELFDATA2LSB
1267 #define ELF_ARCH EM_TILEGX
1269 static inline void init_thread(struct target_pt_regs *regs,
1270 struct image_info *infop)
1272 regs->pc = infop->entry;
1273 regs->sp = infop->start_stack;
1277 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1279 #endif /* TARGET_TILEGX */
1281 #ifdef TARGET_RISCV
1283 #define ELF_START_MMAP 0x80000000
1284 #define ELF_ARCH EM_RISCV
1286 #ifdef TARGET_RISCV32
1287 #define ELF_CLASS ELFCLASS32
1288 #else
1289 #define ELF_CLASS ELFCLASS64
1290 #endif
1292 static inline void init_thread(struct target_pt_regs *regs,
1293 struct image_info *infop)
1295 regs->sepc = infop->entry;
1296 regs->sp = infop->start_stack;
1299 #define ELF_EXEC_PAGESIZE 4096
1301 #endif /* TARGET_RISCV */
1303 #ifdef TARGET_HPPA
1305 #define ELF_START_MMAP 0x80000000
1306 #define ELF_CLASS ELFCLASS32
1307 #define ELF_ARCH EM_PARISC
1308 #define ELF_PLATFORM "PARISC"
1309 #define STACK_GROWS_DOWN 0
1310 #define STACK_ALIGNMENT 64
1312 static inline void init_thread(struct target_pt_regs *regs,
1313 struct image_info *infop)
1315 regs->iaoq[0] = infop->entry;
1316 regs->iaoq[1] = infop->entry + 4;
1317 regs->gr[23] = 0;
1318 regs->gr[24] = infop->arg_start;
1319 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1320 /* The top-of-stack contains a linkage buffer. */
1321 regs->gr[30] = infop->start_stack + 64;
1322 regs->gr[31] = infop->entry;
1325 #endif /* TARGET_HPPA */
1327 #ifdef TARGET_XTENSA
1329 #define ELF_START_MMAP 0x20000000
1331 #define ELF_CLASS ELFCLASS32
1332 #define ELF_ARCH EM_XTENSA
1334 static inline void init_thread(struct target_pt_regs *regs,
1335 struct image_info *infop)
1337 regs->windowbase = 0;
1338 regs->windowstart = 1;
1339 regs->areg[1] = infop->start_stack;
1340 regs->pc = infop->entry;
1343 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1344 #define ELF_NREG 128
1345 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1347 enum {
1348 TARGET_REG_PC,
1349 TARGET_REG_PS,
1350 TARGET_REG_LBEG,
1351 TARGET_REG_LEND,
1352 TARGET_REG_LCOUNT,
1353 TARGET_REG_SAR,
1354 TARGET_REG_WINDOWSTART,
1355 TARGET_REG_WINDOWBASE,
1356 TARGET_REG_THREADPTR,
1357 TARGET_REG_AR0 = 64,
1360 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1361 const CPUXtensaState *env)
1363 unsigned i;
1365 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1366 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1367 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1368 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1369 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1370 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1371 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1372 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1373 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1374 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1375 for (i = 0; i < env->config->nareg; ++i) {
1376 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1380 #define USE_ELF_CORE_DUMP
1381 #define ELF_EXEC_PAGESIZE 4096
1383 #endif /* TARGET_XTENSA */
1385 #ifndef ELF_PLATFORM
1386 #define ELF_PLATFORM (NULL)
1387 #endif
1389 #ifndef ELF_MACHINE
1390 #define ELF_MACHINE ELF_ARCH
1391 #endif
1393 #ifndef elf_check_arch
1394 #define elf_check_arch(x) ((x) == ELF_ARCH)
1395 #endif
1397 #ifndef ELF_HWCAP
1398 #define ELF_HWCAP 0
1399 #endif
1401 #ifndef STACK_GROWS_DOWN
1402 #define STACK_GROWS_DOWN 1
1403 #endif
1405 #ifndef STACK_ALIGNMENT
1406 #define STACK_ALIGNMENT 16
1407 #endif
1409 #ifdef TARGET_ABI32
1410 #undef ELF_CLASS
1411 #define ELF_CLASS ELFCLASS32
1412 #undef bswaptls
1413 #define bswaptls(ptr) bswap32s(ptr)
1414 #endif
1416 #include "elf.h"
1418 struct exec
1420 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1421 unsigned int a_text; /* length of text, in bytes */
1422 unsigned int a_data; /* length of data, in bytes */
1423 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1424 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1425 unsigned int a_entry; /* start address */
1426 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1427 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1431 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1432 #define OMAGIC 0407
1433 #define NMAGIC 0410
1434 #define ZMAGIC 0413
1435 #define QMAGIC 0314
1437 /* Necessary parameters */
1438 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1439 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1440 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1441 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1443 #define DLINFO_ITEMS 15
1445 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1447 memcpy(to, from, n);
1450 #ifdef BSWAP_NEEDED
1451 static void bswap_ehdr(struct elfhdr *ehdr)
1453 bswap16s(&ehdr->e_type); /* Object file type */
1454 bswap16s(&ehdr->e_machine); /* Architecture */
1455 bswap32s(&ehdr->e_version); /* Object file version */
1456 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1457 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1458 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1459 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1460 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1461 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1462 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1463 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1464 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1465 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1468 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1470 int i;
1471 for (i = 0; i < phnum; ++i, ++phdr) {
1472 bswap32s(&phdr->p_type); /* Segment type */
1473 bswap32s(&phdr->p_flags); /* Segment flags */
1474 bswaptls(&phdr->p_offset); /* Segment file offset */
1475 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1476 bswaptls(&phdr->p_paddr); /* Segment physical address */
1477 bswaptls(&phdr->p_filesz); /* Segment size in file */
1478 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1479 bswaptls(&phdr->p_align); /* Segment alignment */
1483 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1485 int i;
1486 for (i = 0; i < shnum; ++i, ++shdr) {
1487 bswap32s(&shdr->sh_name);
1488 bswap32s(&shdr->sh_type);
1489 bswaptls(&shdr->sh_flags);
1490 bswaptls(&shdr->sh_addr);
1491 bswaptls(&shdr->sh_offset);
1492 bswaptls(&shdr->sh_size);
1493 bswap32s(&shdr->sh_link);
1494 bswap32s(&shdr->sh_info);
1495 bswaptls(&shdr->sh_addralign);
1496 bswaptls(&shdr->sh_entsize);
1500 static void bswap_sym(struct elf_sym *sym)
1502 bswap32s(&sym->st_name);
1503 bswaptls(&sym->st_value);
1504 bswaptls(&sym->st_size);
1505 bswap16s(&sym->st_shndx);
1507 #else
1508 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1509 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1510 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1511 static inline void bswap_sym(struct elf_sym *sym) { }
1512 #endif
1514 #ifdef USE_ELF_CORE_DUMP
1515 static int elf_core_dump(int, const CPUArchState *);
1516 #endif /* USE_ELF_CORE_DUMP */
1517 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1519 /* Verify the portions of EHDR within E_IDENT for the target.
1520 This can be performed before bswapping the entire header. */
1521 static bool elf_check_ident(struct elfhdr *ehdr)
1523 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1524 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1525 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1526 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1527 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1528 && ehdr->e_ident[EI_DATA] == ELF_DATA
1529 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1532 /* Verify the portions of EHDR outside of E_IDENT for the target.
1533 This has to wait until after bswapping the header. */
1534 static bool elf_check_ehdr(struct elfhdr *ehdr)
1536 return (elf_check_arch(ehdr->e_machine)
1537 && ehdr->e_ehsize == sizeof(struct elfhdr)
1538 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1539 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1543 * 'copy_elf_strings()' copies argument/envelope strings from user
1544 * memory to free pages in kernel mem. These are in a format ready
1545 * to be put directly into the top of new user memory.
1548 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1549 abi_ulong p, abi_ulong stack_limit)
1551 char *tmp;
1552 int len, i;
1553 abi_ulong top = p;
1555 if (!p) {
1556 return 0; /* bullet-proofing */
1559 if (STACK_GROWS_DOWN) {
1560 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1561 for (i = argc - 1; i >= 0; --i) {
1562 tmp = argv[i];
1563 if (!tmp) {
1564 fprintf(stderr, "VFS: argc is wrong");
1565 exit(-1);
1567 len = strlen(tmp) + 1;
1568 tmp += len;
1570 if (len > (p - stack_limit)) {
1571 return 0;
1573 while (len) {
1574 int bytes_to_copy = (len > offset) ? offset : len;
1575 tmp -= bytes_to_copy;
1576 p -= bytes_to_copy;
1577 offset -= bytes_to_copy;
1578 len -= bytes_to_copy;
1580 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1582 if (offset == 0) {
1583 memcpy_to_target(p, scratch, top - p);
1584 top = p;
1585 offset = TARGET_PAGE_SIZE;
1589 if (p != top) {
1590 memcpy_to_target(p, scratch + offset, top - p);
1592 } else {
1593 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1594 for (i = 0; i < argc; ++i) {
1595 tmp = argv[i];
1596 if (!tmp) {
1597 fprintf(stderr, "VFS: argc is wrong");
1598 exit(-1);
1600 len = strlen(tmp) + 1;
1601 if (len > (stack_limit - p)) {
1602 return 0;
1604 while (len) {
1605 int bytes_to_copy = (len > remaining) ? remaining : len;
1607 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1609 tmp += bytes_to_copy;
1610 remaining -= bytes_to_copy;
1611 p += bytes_to_copy;
1612 len -= bytes_to_copy;
1614 if (remaining == 0) {
1615 memcpy_to_target(top, scratch, p - top);
1616 top = p;
1617 remaining = TARGET_PAGE_SIZE;
1621 if (p != top) {
1622 memcpy_to_target(top, scratch, p - top);
1626 return p;
1629 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1630 * argument/environment space. Newer kernels (>2.6.33) allow more,
1631 * dependent on stack size, but guarantee at least 32 pages for
1632 * backwards compatibility.
1634 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1636 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1637 struct image_info *info)
1639 abi_ulong size, error, guard;
1641 size = guest_stack_size;
1642 if (size < STACK_LOWER_LIMIT) {
1643 size = STACK_LOWER_LIMIT;
1645 guard = TARGET_PAGE_SIZE;
1646 if (guard < qemu_real_host_page_size) {
1647 guard = qemu_real_host_page_size;
1650 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1651 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1652 if (error == -1) {
1653 perror("mmap stack");
1654 exit(-1);
1657 /* We reserve one extra page at the top of the stack as guard. */
1658 if (STACK_GROWS_DOWN) {
1659 target_mprotect(error, guard, PROT_NONE);
1660 info->stack_limit = error + guard;
1661 return info->stack_limit + size - sizeof(void *);
1662 } else {
1663 target_mprotect(error + size, guard, PROT_NONE);
1664 info->stack_limit = error + size;
1665 return error;
1669 /* Map and zero the bss. We need to explicitly zero any fractional pages
1670 after the data section (i.e. bss). */
1671 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1673 uintptr_t host_start, host_map_start, host_end;
1675 last_bss = TARGET_PAGE_ALIGN(last_bss);
1677 /* ??? There is confusion between qemu_real_host_page_size and
1678 qemu_host_page_size here and elsewhere in target_mmap, which
1679 may lead to the end of the data section mapping from the file
1680 not being mapped. At least there was an explicit test and
1681 comment for that here, suggesting that "the file size must
1682 be known". The comment probably pre-dates the introduction
1683 of the fstat system call in target_mmap which does in fact
1684 find out the size. What isn't clear is if the workaround
1685 here is still actually needed. For now, continue with it,
1686 but merge it with the "normal" mmap that would allocate the bss. */
1688 host_start = (uintptr_t) g2h(elf_bss);
1689 host_end = (uintptr_t) g2h(last_bss);
1690 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1692 if (host_map_start < host_end) {
1693 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1694 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1695 if (p == MAP_FAILED) {
1696 perror("cannot mmap brk");
1697 exit(-1);
1701 /* Ensure that the bss page(s) are valid */
1702 if ((page_get_flags(last_bss-1) & prot) != prot) {
1703 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1706 if (host_start < host_map_start) {
1707 memset((void *)host_start, 0, host_map_start - host_start);
1711 #ifdef TARGET_ARM
1712 static int elf_is_fdpic(struct elfhdr *exec)
1714 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1716 #else
1717 /* Default implementation, always false. */
1718 static int elf_is_fdpic(struct elfhdr *exec)
1720 return 0;
1722 #endif
1724 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1726 uint16_t n;
1727 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1729 /* elf32_fdpic_loadseg */
1730 n = info->nsegs;
1731 while (n--) {
1732 sp -= 12;
1733 put_user_u32(loadsegs[n].addr, sp+0);
1734 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1735 put_user_u32(loadsegs[n].p_memsz, sp+8);
1738 /* elf32_fdpic_loadmap */
1739 sp -= 4;
1740 put_user_u16(0, sp+0); /* version */
1741 put_user_u16(info->nsegs, sp+2); /* nsegs */
1743 info->personality = PER_LINUX_FDPIC;
1744 info->loadmap_addr = sp;
1746 return sp;
1749 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1750 struct elfhdr *exec,
1751 struct image_info *info,
1752 struct image_info *interp_info)
1754 abi_ulong sp;
1755 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1756 int size;
1757 int i;
1758 abi_ulong u_rand_bytes;
1759 uint8_t k_rand_bytes[16];
1760 abi_ulong u_platform;
1761 const char *k_platform;
1762 const int n = sizeof(elf_addr_t);
1764 sp = p;
1766 /* Needs to be before we load the env/argc/... */
1767 if (elf_is_fdpic(exec)) {
1768 /* Need 4 byte alignment for these structs */
1769 sp &= ~3;
1770 sp = loader_build_fdpic_loadmap(info, sp);
1771 info->other_info = interp_info;
1772 if (interp_info) {
1773 interp_info->other_info = info;
1774 sp = loader_build_fdpic_loadmap(interp_info, sp);
1775 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1776 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1777 } else {
1778 info->interpreter_loadmap_addr = 0;
1779 info->interpreter_pt_dynamic_addr = 0;
1783 u_platform = 0;
1784 k_platform = ELF_PLATFORM;
1785 if (k_platform) {
1786 size_t len = strlen(k_platform) + 1;
1787 if (STACK_GROWS_DOWN) {
1788 sp -= (len + n - 1) & ~(n - 1);
1789 u_platform = sp;
1790 /* FIXME - check return value of memcpy_to_target() for failure */
1791 memcpy_to_target(sp, k_platform, len);
1792 } else {
1793 memcpy_to_target(sp, k_platform, len);
1794 u_platform = sp;
1795 sp += len + 1;
1799 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1800 * the argv and envp pointers.
1802 if (STACK_GROWS_DOWN) {
1803 sp = QEMU_ALIGN_DOWN(sp, 16);
1804 } else {
1805 sp = QEMU_ALIGN_UP(sp, 16);
1809 * Generate 16 random bytes for userspace PRNG seeding (not
1810 * cryptically secure but it's not the aim of QEMU).
1812 for (i = 0; i < 16; i++) {
1813 k_rand_bytes[i] = rand();
1815 if (STACK_GROWS_DOWN) {
1816 sp -= 16;
1817 u_rand_bytes = sp;
1818 /* FIXME - check return value of memcpy_to_target() for failure */
1819 memcpy_to_target(sp, k_rand_bytes, 16);
1820 } else {
1821 memcpy_to_target(sp, k_rand_bytes, 16);
1822 u_rand_bytes = sp;
1823 sp += 16;
1826 size = (DLINFO_ITEMS + 1) * 2;
1827 if (k_platform)
1828 size += 2;
1829 #ifdef DLINFO_ARCH_ITEMS
1830 size += DLINFO_ARCH_ITEMS * 2;
1831 #endif
1832 #ifdef ELF_HWCAP2
1833 size += 2;
1834 #endif
1835 info->auxv_len = size * n;
1837 size += envc + argc + 2;
1838 size += 1; /* argc itself */
1839 size *= n;
1841 /* Allocate space and finalize stack alignment for entry now. */
1842 if (STACK_GROWS_DOWN) {
1843 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1844 sp = u_argc;
1845 } else {
1846 u_argc = sp;
1847 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1850 u_argv = u_argc + n;
1851 u_envp = u_argv + (argc + 1) * n;
1852 u_auxv = u_envp + (envc + 1) * n;
1853 info->saved_auxv = u_auxv;
1854 info->arg_start = u_argv;
1855 info->arg_end = u_argv + argc * n;
1857 /* This is correct because Linux defines
1858 * elf_addr_t as Elf32_Off / Elf64_Off
1860 #define NEW_AUX_ENT(id, val) do { \
1861 put_user_ual(id, u_auxv); u_auxv += n; \
1862 put_user_ual(val, u_auxv); u_auxv += n; \
1863 } while(0)
1865 #ifdef ARCH_DLINFO
1867 * ARCH_DLINFO must come first so platform specific code can enforce
1868 * special alignment requirements on the AUXV if necessary (eg. PPC).
1870 ARCH_DLINFO;
1871 #endif
1872 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1873 * on info->auxv_len will trigger.
1875 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1876 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1877 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1878 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1879 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1880 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1881 NEW_AUX_ENT(AT_ENTRY, info->entry);
1882 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1883 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1884 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1885 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1886 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1887 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1888 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1889 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1891 #ifdef ELF_HWCAP2
1892 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1893 #endif
1895 if (u_platform) {
1896 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1898 NEW_AUX_ENT (AT_NULL, 0);
1899 #undef NEW_AUX_ENT
1901 /* Check that our initial calculation of the auxv length matches how much
1902 * we actually put into it.
1904 assert(info->auxv_len == u_auxv - info->saved_auxv);
1906 put_user_ual(argc, u_argc);
1908 p = info->arg_strings;
1909 for (i = 0; i < argc; ++i) {
1910 put_user_ual(p, u_argv);
1911 u_argv += n;
1912 p += target_strlen(p) + 1;
1914 put_user_ual(0, u_argv);
1916 p = info->env_strings;
1917 for (i = 0; i < envc; ++i) {
1918 put_user_ual(p, u_envp);
1919 u_envp += n;
1920 p += target_strlen(p) + 1;
1922 put_user_ual(0, u_envp);
1924 return sp;
1927 unsigned long init_guest_space(unsigned long host_start,
1928 unsigned long host_size,
1929 unsigned long guest_start,
1930 bool fixed)
1932 unsigned long current_start, aligned_start;
1933 int flags;
1935 assert(host_start || host_size);
1937 /* If just a starting address is given, then just verify that
1938 * address. */
1939 if (host_start && !host_size) {
1940 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1941 if (init_guest_commpage(host_start, host_size) != 1) {
1942 return (unsigned long)-1;
1944 #endif
1945 return host_start;
1948 /* Setup the initial flags and start address. */
1949 current_start = host_start & qemu_host_page_mask;
1950 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1951 if (fixed) {
1952 flags |= MAP_FIXED;
1955 /* Otherwise, a non-zero size region of memory needs to be mapped
1956 * and validated. */
1958 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1959 /* On 32-bit ARM, we need to map not just the usable memory, but
1960 * also the commpage. Try to find a suitable place by allocating
1961 * a big chunk for all of it. If host_start, then the naive
1962 * strategy probably does good enough.
1964 if (!host_start) {
1965 unsigned long guest_full_size, host_full_size, real_start;
1967 guest_full_size =
1968 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1969 host_full_size = guest_full_size - guest_start;
1970 real_start = (unsigned long)
1971 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1972 if (real_start == (unsigned long)-1) {
1973 if (host_size < host_full_size - qemu_host_page_size) {
1974 /* We failed to map a continous segment, but we're
1975 * allowed to have a gap between the usable memory and
1976 * the commpage where other things can be mapped.
1977 * This sparseness gives us more flexibility to find
1978 * an address range.
1980 goto naive;
1982 return (unsigned long)-1;
1984 munmap((void *)real_start, host_full_size);
1985 if (real_start & ~qemu_host_page_mask) {
1986 /* The same thing again, but with an extra qemu_host_page_size
1987 * so that we can shift around alignment.
1989 unsigned long real_size = host_full_size + qemu_host_page_size;
1990 real_start = (unsigned long)
1991 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
1992 if (real_start == (unsigned long)-1) {
1993 if (host_size < host_full_size - qemu_host_page_size) {
1994 goto naive;
1996 return (unsigned long)-1;
1998 munmap((void *)real_start, real_size);
1999 real_start = HOST_PAGE_ALIGN(real_start);
2001 current_start = real_start;
2003 naive:
2004 #endif
2006 while (1) {
2007 unsigned long real_start, real_size, aligned_size;
2008 aligned_size = real_size = host_size;
2010 /* Do not use mmap_find_vma here because that is limited to the
2011 * guest address space. We are going to make the
2012 * guest address space fit whatever we're given.
2014 real_start = (unsigned long)
2015 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2016 if (real_start == (unsigned long)-1) {
2017 return (unsigned long)-1;
2020 /* Check to see if the address is valid. */
2021 if (host_start && real_start != current_start) {
2022 goto try_again;
2025 /* Ensure the address is properly aligned. */
2026 if (real_start & ~qemu_host_page_mask) {
2027 /* Ideally, we adjust like
2029 * pages: [ ][ ][ ][ ][ ]
2030 * old: [ real ]
2031 * [ aligned ]
2032 * new: [ real ]
2033 * [ aligned ]
2035 * But if there is something else mapped right after it,
2036 * then obviously it won't have room to grow, and the
2037 * kernel will put the new larger real someplace else with
2038 * unknown alignment (if we made it to here, then
2039 * fixed=false). Which is why we grow real by a full page
2040 * size, instead of by part of one; so that even if we get
2041 * moved, we can still guarantee alignment. But this does
2042 * mean that there is a padding of < 1 page both before
2043 * and after the aligned range; the "after" could could
2044 * cause problems for ARM emulation where it could butt in
2045 * to where we need to put the commpage.
2047 munmap((void *)real_start, host_size);
2048 real_size = aligned_size + qemu_host_page_size;
2049 real_start = (unsigned long)
2050 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2051 if (real_start == (unsigned long)-1) {
2052 return (unsigned long)-1;
2054 aligned_start = HOST_PAGE_ALIGN(real_start);
2055 } else {
2056 aligned_start = real_start;
2059 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2060 /* On 32-bit ARM, we need to also be able to map the commpage. */
2061 int valid = init_guest_commpage(aligned_start - guest_start,
2062 aligned_size + guest_start);
2063 if (valid == -1) {
2064 munmap((void *)real_start, real_size);
2065 return (unsigned long)-1;
2066 } else if (valid == 0) {
2067 goto try_again;
2069 #endif
2071 /* If nothing has said `return -1` or `goto try_again` yet,
2072 * then the address we have is good.
2074 break;
2076 try_again:
2077 /* That address didn't work. Unmap and try a different one.
2078 * The address the host picked because is typically right at
2079 * the top of the host address space and leaves the guest with
2080 * no usable address space. Resort to a linear search. We
2081 * already compensated for mmap_min_addr, so this should not
2082 * happen often. Probably means we got unlucky and host
2083 * address space randomization put a shared library somewhere
2084 * inconvenient.
2086 * This is probably a good strategy if host_start, but is
2087 * probably a bad strategy if not, which means we got here
2088 * because of trouble with ARM commpage setup.
2090 munmap((void *)real_start, real_size);
2091 current_start += qemu_host_page_size;
2092 if (host_start == current_start) {
2093 /* Theoretically possible if host doesn't have any suitably
2094 * aligned areas. Normally the first mmap will fail.
2096 return (unsigned long)-1;
2100 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2102 return aligned_start;
2105 static void probe_guest_base(const char *image_name,
2106 abi_ulong loaddr, abi_ulong hiaddr)
2108 /* Probe for a suitable guest base address, if the user has not set
2109 * it explicitly, and set guest_base appropriately.
2110 * In case of error we will print a suitable message and exit.
2112 const char *errmsg;
2113 if (!have_guest_base && !reserved_va) {
2114 unsigned long host_start, real_start, host_size;
2116 /* Round addresses to page boundaries. */
2117 loaddr &= qemu_host_page_mask;
2118 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2120 if (loaddr < mmap_min_addr) {
2121 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2122 } else {
2123 host_start = loaddr;
2124 if (host_start != loaddr) {
2125 errmsg = "Address overflow loading ELF binary";
2126 goto exit_errmsg;
2129 host_size = hiaddr - loaddr;
2131 /* Setup the initial guest memory space with ranges gleaned from
2132 * the ELF image that is being loaded.
2134 real_start = init_guest_space(host_start, host_size, loaddr, false);
2135 if (real_start == (unsigned long)-1) {
2136 errmsg = "Unable to find space for application";
2137 goto exit_errmsg;
2139 guest_base = real_start - loaddr;
2141 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2142 TARGET_ABI_FMT_lx " to 0x%lx\n",
2143 loaddr, real_start);
2145 return;
2147 exit_errmsg:
2148 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2149 exit(-1);
2153 /* Load an ELF image into the address space.
2155 IMAGE_NAME is the filename of the image, to use in error messages.
2156 IMAGE_FD is the open file descriptor for the image.
2158 BPRM_BUF is a copy of the beginning of the file; this of course
2159 contains the elf file header at offset 0. It is assumed that this
2160 buffer is sufficiently aligned to present no problems to the host
2161 in accessing data at aligned offsets within the buffer.
2163 On return: INFO values will be filled in, as necessary or available. */
2165 static void load_elf_image(const char *image_name, int image_fd,
2166 struct image_info *info, char **pinterp_name,
2167 char bprm_buf[BPRM_BUF_SIZE])
2169 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2170 struct elf_phdr *phdr;
2171 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2172 int i, retval;
2173 const char *errmsg;
2175 /* First of all, some simple consistency checks */
2176 errmsg = "Invalid ELF image for this architecture";
2177 if (!elf_check_ident(ehdr)) {
2178 goto exit_errmsg;
2180 bswap_ehdr(ehdr);
2181 if (!elf_check_ehdr(ehdr)) {
2182 goto exit_errmsg;
2185 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2186 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2187 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2188 } else {
2189 phdr = (struct elf_phdr *) alloca(i);
2190 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2191 if (retval != i) {
2192 goto exit_read;
2195 bswap_phdr(phdr, ehdr->e_phnum);
2197 info->nsegs = 0;
2198 info->pt_dynamic_addr = 0;
2200 mmap_lock();
2202 /* Find the maximum size of the image and allocate an appropriate
2203 amount of memory to handle that. */
2204 loaddr = -1, hiaddr = 0;
2205 for (i = 0; i < ehdr->e_phnum; ++i) {
2206 if (phdr[i].p_type == PT_LOAD) {
2207 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2208 if (a < loaddr) {
2209 loaddr = a;
2211 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2212 if (a > hiaddr) {
2213 hiaddr = a;
2215 ++info->nsegs;
2219 load_addr = loaddr;
2220 if (ehdr->e_type == ET_DYN) {
2221 /* The image indicates that it can be loaded anywhere. Find a
2222 location that can hold the memory space required. If the
2223 image is pre-linked, LOADDR will be non-zero. Since we do
2224 not supply MAP_FIXED here we'll use that address if and
2225 only if it remains available. */
2226 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2227 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2228 -1, 0);
2229 if (load_addr == -1) {
2230 goto exit_perror;
2232 } else if (pinterp_name != NULL) {
2233 /* This is the main executable. Make sure that the low
2234 address does not conflict with MMAP_MIN_ADDR or the
2235 QEMU application itself. */
2236 probe_guest_base(image_name, loaddr, hiaddr);
2238 load_bias = load_addr - loaddr;
2240 if (elf_is_fdpic(ehdr)) {
2241 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2242 g_malloc(sizeof(*loadsegs) * info->nsegs);
2244 for (i = 0; i < ehdr->e_phnum; ++i) {
2245 switch (phdr[i].p_type) {
2246 case PT_DYNAMIC:
2247 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2248 break;
2249 case PT_LOAD:
2250 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2251 loadsegs->p_vaddr = phdr[i].p_vaddr;
2252 loadsegs->p_memsz = phdr[i].p_memsz;
2253 ++loadsegs;
2254 break;
2259 info->load_bias = load_bias;
2260 info->load_addr = load_addr;
2261 info->entry = ehdr->e_entry + load_bias;
2262 info->start_code = -1;
2263 info->end_code = 0;
2264 info->start_data = -1;
2265 info->end_data = 0;
2266 info->brk = 0;
2267 info->elf_flags = ehdr->e_flags;
2269 for (i = 0; i < ehdr->e_phnum; i++) {
2270 struct elf_phdr *eppnt = phdr + i;
2271 if (eppnt->p_type == PT_LOAD) {
2272 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2273 int elf_prot = 0;
2275 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2276 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2277 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2279 vaddr = load_bias + eppnt->p_vaddr;
2280 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2281 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2283 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2284 elf_prot, MAP_PRIVATE | MAP_FIXED,
2285 image_fd, eppnt->p_offset - vaddr_po);
2286 if (error == -1) {
2287 goto exit_perror;
2290 vaddr_ef = vaddr + eppnt->p_filesz;
2291 vaddr_em = vaddr + eppnt->p_memsz;
2293 /* If the load segment requests extra zeros (e.g. bss), map it. */
2294 if (vaddr_ef < vaddr_em) {
2295 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2298 /* Find the full program boundaries. */
2299 if (elf_prot & PROT_EXEC) {
2300 if (vaddr < info->start_code) {
2301 info->start_code = vaddr;
2303 if (vaddr_ef > info->end_code) {
2304 info->end_code = vaddr_ef;
2307 if (elf_prot & PROT_WRITE) {
2308 if (vaddr < info->start_data) {
2309 info->start_data = vaddr;
2311 if (vaddr_ef > info->end_data) {
2312 info->end_data = vaddr_ef;
2314 if (vaddr_em > info->brk) {
2315 info->brk = vaddr_em;
2318 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2319 char *interp_name;
2321 if (*pinterp_name) {
2322 errmsg = "Multiple PT_INTERP entries";
2323 goto exit_errmsg;
2325 interp_name = malloc(eppnt->p_filesz);
2326 if (!interp_name) {
2327 goto exit_perror;
2330 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2331 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2332 eppnt->p_filesz);
2333 } else {
2334 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2335 eppnt->p_offset);
2336 if (retval != eppnt->p_filesz) {
2337 goto exit_perror;
2340 if (interp_name[eppnt->p_filesz - 1] != 0) {
2341 errmsg = "Invalid PT_INTERP entry";
2342 goto exit_errmsg;
2344 *pinterp_name = interp_name;
2348 if (info->end_data == 0) {
2349 info->start_data = info->end_code;
2350 info->end_data = info->end_code;
2351 info->brk = info->end_code;
2354 if (qemu_log_enabled()) {
2355 load_symbols(ehdr, image_fd, load_bias);
2358 mmap_unlock();
2360 close(image_fd);
2361 return;
2363 exit_read:
2364 if (retval >= 0) {
2365 errmsg = "Incomplete read of file header";
2366 goto exit_errmsg;
2368 exit_perror:
2369 errmsg = strerror(errno);
2370 exit_errmsg:
2371 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2372 exit(-1);
2375 static void load_elf_interp(const char *filename, struct image_info *info,
2376 char bprm_buf[BPRM_BUF_SIZE])
2378 int fd, retval;
2380 fd = open(path(filename), O_RDONLY);
2381 if (fd < 0) {
2382 goto exit_perror;
2385 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2386 if (retval < 0) {
2387 goto exit_perror;
2389 if (retval < BPRM_BUF_SIZE) {
2390 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2393 load_elf_image(filename, fd, info, NULL, bprm_buf);
2394 return;
2396 exit_perror:
2397 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2398 exit(-1);
2401 static int symfind(const void *s0, const void *s1)
2403 target_ulong addr = *(target_ulong *)s0;
2404 struct elf_sym *sym = (struct elf_sym *)s1;
2405 int result = 0;
2406 if (addr < sym->st_value) {
2407 result = -1;
2408 } else if (addr >= sym->st_value + sym->st_size) {
2409 result = 1;
2411 return result;
2414 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2416 #if ELF_CLASS == ELFCLASS32
2417 struct elf_sym *syms = s->disas_symtab.elf32;
2418 #else
2419 struct elf_sym *syms = s->disas_symtab.elf64;
2420 #endif
2422 // binary search
2423 struct elf_sym *sym;
2425 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2426 if (sym != NULL) {
2427 return s->disas_strtab + sym->st_name;
2430 return "";
2433 /* FIXME: This should use elf_ops.h */
2434 static int symcmp(const void *s0, const void *s1)
2436 struct elf_sym *sym0 = (struct elf_sym *)s0;
2437 struct elf_sym *sym1 = (struct elf_sym *)s1;
2438 return (sym0->st_value < sym1->st_value)
2439 ? -1
2440 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2443 /* Best attempt to load symbols from this ELF object. */
2444 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2446 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2447 uint64_t segsz;
2448 struct elf_shdr *shdr;
2449 char *strings = NULL;
2450 struct syminfo *s = NULL;
2451 struct elf_sym *new_syms, *syms = NULL;
2453 shnum = hdr->e_shnum;
2454 i = shnum * sizeof(struct elf_shdr);
2455 shdr = (struct elf_shdr *)alloca(i);
2456 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2457 return;
2460 bswap_shdr(shdr, shnum);
2461 for (i = 0; i < shnum; ++i) {
2462 if (shdr[i].sh_type == SHT_SYMTAB) {
2463 sym_idx = i;
2464 str_idx = shdr[i].sh_link;
2465 goto found;
2469 /* There will be no symbol table if the file was stripped. */
2470 return;
2472 found:
2473 /* Now know where the strtab and symtab are. Snarf them. */
2474 s = g_try_new(struct syminfo, 1);
2475 if (!s) {
2476 goto give_up;
2479 segsz = shdr[str_idx].sh_size;
2480 s->disas_strtab = strings = g_try_malloc(segsz);
2481 if (!strings ||
2482 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2483 goto give_up;
2486 segsz = shdr[sym_idx].sh_size;
2487 syms = g_try_malloc(segsz);
2488 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2489 goto give_up;
2492 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2493 /* Implausibly large symbol table: give up rather than ploughing
2494 * on with the number of symbols calculation overflowing
2496 goto give_up;
2498 nsyms = segsz / sizeof(struct elf_sym);
2499 for (i = 0; i < nsyms; ) {
2500 bswap_sym(syms + i);
2501 /* Throw away entries which we do not need. */
2502 if (syms[i].st_shndx == SHN_UNDEF
2503 || syms[i].st_shndx >= SHN_LORESERVE
2504 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2505 if (i < --nsyms) {
2506 syms[i] = syms[nsyms];
2508 } else {
2509 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2510 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2511 syms[i].st_value &= ~(target_ulong)1;
2512 #endif
2513 syms[i].st_value += load_bias;
2514 i++;
2518 /* No "useful" symbol. */
2519 if (nsyms == 0) {
2520 goto give_up;
2523 /* Attempt to free the storage associated with the local symbols
2524 that we threw away. Whether or not this has any effect on the
2525 memory allocation depends on the malloc implementation and how
2526 many symbols we managed to discard. */
2527 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2528 if (new_syms == NULL) {
2529 goto give_up;
2531 syms = new_syms;
2533 qsort(syms, nsyms, sizeof(*syms), symcmp);
2535 s->disas_num_syms = nsyms;
2536 #if ELF_CLASS == ELFCLASS32
2537 s->disas_symtab.elf32 = syms;
2538 #else
2539 s->disas_symtab.elf64 = syms;
2540 #endif
2541 s->lookup_symbol = lookup_symbolxx;
2542 s->next = syminfos;
2543 syminfos = s;
2545 return;
2547 give_up:
2548 g_free(s);
2549 g_free(strings);
2550 g_free(syms);
2553 uint32_t get_elf_eflags(int fd)
2555 struct elfhdr ehdr;
2556 off_t offset;
2557 int ret;
2559 /* Read ELF header */
2560 offset = lseek(fd, 0, SEEK_SET);
2561 if (offset == (off_t) -1) {
2562 return 0;
2564 ret = read(fd, &ehdr, sizeof(ehdr));
2565 if (ret < sizeof(ehdr)) {
2566 return 0;
2568 offset = lseek(fd, offset, SEEK_SET);
2569 if (offset == (off_t) -1) {
2570 return 0;
2573 /* Check ELF signature */
2574 if (!elf_check_ident(&ehdr)) {
2575 return 0;
2578 /* check header */
2579 bswap_ehdr(&ehdr);
2580 if (!elf_check_ehdr(&ehdr)) {
2581 return 0;
2584 /* return architecture id */
2585 return ehdr.e_flags;
2588 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2590 struct image_info interp_info;
2591 struct elfhdr elf_ex;
2592 char *elf_interpreter = NULL;
2593 char *scratch;
2595 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2597 load_elf_image(bprm->filename, bprm->fd, info,
2598 &elf_interpreter, bprm->buf);
2600 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2601 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2602 when we load the interpreter. */
2603 elf_ex = *(struct elfhdr *)bprm->buf;
2605 /* Do this so that we can load the interpreter, if need be. We will
2606 change some of these later */
2607 bprm->p = setup_arg_pages(bprm, info);
2609 scratch = g_new0(char, TARGET_PAGE_SIZE);
2610 if (STACK_GROWS_DOWN) {
2611 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2612 bprm->p, info->stack_limit);
2613 info->file_string = bprm->p;
2614 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2615 bprm->p, info->stack_limit);
2616 info->env_strings = bprm->p;
2617 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2618 bprm->p, info->stack_limit);
2619 info->arg_strings = bprm->p;
2620 } else {
2621 info->arg_strings = bprm->p;
2622 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2623 bprm->p, info->stack_limit);
2624 info->env_strings = bprm->p;
2625 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2626 bprm->p, info->stack_limit);
2627 info->file_string = bprm->p;
2628 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2629 bprm->p, info->stack_limit);
2632 g_free(scratch);
2634 if (!bprm->p) {
2635 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2636 exit(-1);
2639 if (elf_interpreter) {
2640 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2642 /* If the program interpreter is one of these two, then assume
2643 an iBCS2 image. Otherwise assume a native linux image. */
2645 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2646 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2647 info->personality = PER_SVR4;
2649 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2650 and some applications "depend" upon this behavior. Since
2651 we do not have the power to recompile these, we emulate
2652 the SVr4 behavior. Sigh. */
2653 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2654 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2658 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2659 info, (elf_interpreter ? &interp_info : NULL));
2660 info->start_stack = bprm->p;
2662 /* If we have an interpreter, set that as the program's entry point.
2663 Copy the load_bias as well, to help PPC64 interpret the entry
2664 point as a function descriptor. Do this after creating elf tables
2665 so that we copy the original program entry point into the AUXV. */
2666 if (elf_interpreter) {
2667 info->load_bias = interp_info.load_bias;
2668 info->entry = interp_info.entry;
2669 free(elf_interpreter);
2672 #ifdef USE_ELF_CORE_DUMP
2673 bprm->core_dump = &elf_core_dump;
2674 #endif
2676 return 0;
2679 #ifdef USE_ELF_CORE_DUMP
2681 * Definitions to generate Intel SVR4-like core files.
2682 * These mostly have the same names as the SVR4 types with "target_elf_"
2683 * tacked on the front to prevent clashes with linux definitions,
2684 * and the typedef forms have been avoided. This is mostly like
2685 * the SVR4 structure, but more Linuxy, with things that Linux does
2686 * not support and which gdb doesn't really use excluded.
2688 * Fields we don't dump (their contents is zero) in linux-user qemu
2689 * are marked with XXX.
2691 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2693 * Porting ELF coredump for target is (quite) simple process. First you
2694 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2695 * the target resides):
2697 * #define USE_ELF_CORE_DUMP
2699 * Next you define type of register set used for dumping. ELF specification
2700 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2702 * typedef <target_regtype> target_elf_greg_t;
2703 * #define ELF_NREG <number of registers>
2704 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2706 * Last step is to implement target specific function that copies registers
2707 * from given cpu into just specified register set. Prototype is:
2709 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2710 * const CPUArchState *env);
2712 * Parameters:
2713 * regs - copy register values into here (allocated and zeroed by caller)
2714 * env - copy registers from here
2716 * Example for ARM target is provided in this file.
2719 /* An ELF note in memory */
2720 struct memelfnote {
2721 const char *name;
2722 size_t namesz;
2723 size_t namesz_rounded;
2724 int type;
2725 size_t datasz;
2726 size_t datasz_rounded;
2727 void *data;
2728 size_t notesz;
2731 struct target_elf_siginfo {
2732 abi_int si_signo; /* signal number */
2733 abi_int si_code; /* extra code */
2734 abi_int si_errno; /* errno */
2737 struct target_elf_prstatus {
2738 struct target_elf_siginfo pr_info; /* Info associated with signal */
2739 abi_short pr_cursig; /* Current signal */
2740 abi_ulong pr_sigpend; /* XXX */
2741 abi_ulong pr_sighold; /* XXX */
2742 target_pid_t pr_pid;
2743 target_pid_t pr_ppid;
2744 target_pid_t pr_pgrp;
2745 target_pid_t pr_sid;
2746 struct target_timeval pr_utime; /* XXX User time */
2747 struct target_timeval pr_stime; /* XXX System time */
2748 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2749 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2750 target_elf_gregset_t pr_reg; /* GP registers */
2751 abi_int pr_fpvalid; /* XXX */
2754 #define ELF_PRARGSZ (80) /* Number of chars for args */
2756 struct target_elf_prpsinfo {
2757 char pr_state; /* numeric process state */
2758 char pr_sname; /* char for pr_state */
2759 char pr_zomb; /* zombie */
2760 char pr_nice; /* nice val */
2761 abi_ulong pr_flag; /* flags */
2762 target_uid_t pr_uid;
2763 target_gid_t pr_gid;
2764 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2765 /* Lots missing */
2766 char pr_fname[16]; /* filename of executable */
2767 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2770 /* Here is the structure in which status of each thread is captured. */
2771 struct elf_thread_status {
2772 QTAILQ_ENTRY(elf_thread_status) ets_link;
2773 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2774 #if 0
2775 elf_fpregset_t fpu; /* NT_PRFPREG */
2776 struct task_struct *thread;
2777 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2778 #endif
2779 struct memelfnote notes[1];
2780 int num_notes;
2783 struct elf_note_info {
2784 struct memelfnote *notes;
2785 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2786 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2788 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2789 #if 0
2791 * Current version of ELF coredump doesn't support
2792 * dumping fp regs etc.
2794 elf_fpregset_t *fpu;
2795 elf_fpxregset_t *xfpu;
2796 int thread_status_size;
2797 #endif
2798 int notes_size;
2799 int numnote;
2802 struct vm_area_struct {
2803 target_ulong vma_start; /* start vaddr of memory region */
2804 target_ulong vma_end; /* end vaddr of memory region */
2805 abi_ulong vma_flags; /* protection etc. flags for the region */
2806 QTAILQ_ENTRY(vm_area_struct) vma_link;
2809 struct mm_struct {
2810 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2811 int mm_count; /* number of mappings */
2814 static struct mm_struct *vma_init(void);
2815 static void vma_delete(struct mm_struct *);
2816 static int vma_add_mapping(struct mm_struct *, target_ulong,
2817 target_ulong, abi_ulong);
2818 static int vma_get_mapping_count(const struct mm_struct *);
2819 static struct vm_area_struct *vma_first(const struct mm_struct *);
2820 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2821 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2822 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2823 unsigned long flags);
2825 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2826 static void fill_note(struct memelfnote *, const char *, int,
2827 unsigned int, void *);
2828 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2829 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2830 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2831 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2832 static size_t note_size(const struct memelfnote *);
2833 static void free_note_info(struct elf_note_info *);
2834 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2835 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2836 static int core_dump_filename(const TaskState *, char *, size_t);
2838 static int dump_write(int, const void *, size_t);
2839 static int write_note(struct memelfnote *, int);
2840 static int write_note_info(struct elf_note_info *, int);
2842 #ifdef BSWAP_NEEDED
2843 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2845 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2846 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2847 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2848 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2849 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2850 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2851 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2852 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2853 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2854 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2855 /* cpu times are not filled, so we skip them */
2856 /* regs should be in correct format already */
2857 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2860 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2862 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2863 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2864 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2865 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2866 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2867 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2868 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2871 static void bswap_note(struct elf_note *en)
2873 bswap32s(&en->n_namesz);
2874 bswap32s(&en->n_descsz);
2875 bswap32s(&en->n_type);
2877 #else
2878 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2879 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2880 static inline void bswap_note(struct elf_note *en) { }
2881 #endif /* BSWAP_NEEDED */
2884 * Minimal support for linux memory regions. These are needed
2885 * when we are finding out what memory exactly belongs to
2886 * emulated process. No locks needed here, as long as
2887 * thread that received the signal is stopped.
2890 static struct mm_struct *vma_init(void)
2892 struct mm_struct *mm;
2894 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2895 return (NULL);
2897 mm->mm_count = 0;
2898 QTAILQ_INIT(&mm->mm_mmap);
2900 return (mm);
2903 static void vma_delete(struct mm_struct *mm)
2905 struct vm_area_struct *vma;
2907 while ((vma = vma_first(mm)) != NULL) {
2908 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2909 g_free(vma);
2911 g_free(mm);
2914 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2915 target_ulong end, abi_ulong flags)
2917 struct vm_area_struct *vma;
2919 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2920 return (-1);
2922 vma->vma_start = start;
2923 vma->vma_end = end;
2924 vma->vma_flags = flags;
2926 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2927 mm->mm_count++;
2929 return (0);
2932 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2934 return (QTAILQ_FIRST(&mm->mm_mmap));
2937 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2939 return (QTAILQ_NEXT(vma, vma_link));
2942 static int vma_get_mapping_count(const struct mm_struct *mm)
2944 return (mm->mm_count);
2948 * Calculate file (dump) size of given memory region.
2950 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2952 /* if we cannot even read the first page, skip it */
2953 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2954 return (0);
2957 * Usually we don't dump executable pages as they contain
2958 * non-writable code that debugger can read directly from
2959 * target library etc. However, thread stacks are marked
2960 * also executable so we read in first page of given region
2961 * and check whether it contains elf header. If there is
2962 * no elf header, we dump it.
2964 if (vma->vma_flags & PROT_EXEC) {
2965 char page[TARGET_PAGE_SIZE];
2967 copy_from_user(page, vma->vma_start, sizeof (page));
2968 if ((page[EI_MAG0] == ELFMAG0) &&
2969 (page[EI_MAG1] == ELFMAG1) &&
2970 (page[EI_MAG2] == ELFMAG2) &&
2971 (page[EI_MAG3] == ELFMAG3)) {
2973 * Mappings are possibly from ELF binary. Don't dump
2974 * them.
2976 return (0);
2980 return (vma->vma_end - vma->vma_start);
2983 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2984 unsigned long flags)
2986 struct mm_struct *mm = (struct mm_struct *)priv;
2988 vma_add_mapping(mm, start, end, flags);
2989 return (0);
2992 static void fill_note(struct memelfnote *note, const char *name, int type,
2993 unsigned int sz, void *data)
2995 unsigned int namesz;
2997 namesz = strlen(name) + 1;
2998 note->name = name;
2999 note->namesz = namesz;
3000 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3001 note->type = type;
3002 note->datasz = sz;
3003 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3005 note->data = data;
3008 * We calculate rounded up note size here as specified by
3009 * ELF document.
3011 note->notesz = sizeof (struct elf_note) +
3012 note->namesz_rounded + note->datasz_rounded;
3015 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3016 uint32_t flags)
3018 (void) memset(elf, 0, sizeof(*elf));
3020 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3021 elf->e_ident[EI_CLASS] = ELF_CLASS;
3022 elf->e_ident[EI_DATA] = ELF_DATA;
3023 elf->e_ident[EI_VERSION] = EV_CURRENT;
3024 elf->e_ident[EI_OSABI] = ELF_OSABI;
3026 elf->e_type = ET_CORE;
3027 elf->e_machine = machine;
3028 elf->e_version = EV_CURRENT;
3029 elf->e_phoff = sizeof(struct elfhdr);
3030 elf->e_flags = flags;
3031 elf->e_ehsize = sizeof(struct elfhdr);
3032 elf->e_phentsize = sizeof(struct elf_phdr);
3033 elf->e_phnum = segs;
3035 bswap_ehdr(elf);
3038 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3040 phdr->p_type = PT_NOTE;
3041 phdr->p_offset = offset;
3042 phdr->p_vaddr = 0;
3043 phdr->p_paddr = 0;
3044 phdr->p_filesz = sz;
3045 phdr->p_memsz = 0;
3046 phdr->p_flags = 0;
3047 phdr->p_align = 0;
3049 bswap_phdr(phdr, 1);
3052 static size_t note_size(const struct memelfnote *note)
3054 return (note->notesz);
3057 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3058 const TaskState *ts, int signr)
3060 (void) memset(prstatus, 0, sizeof (*prstatus));
3061 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3062 prstatus->pr_pid = ts->ts_tid;
3063 prstatus->pr_ppid = getppid();
3064 prstatus->pr_pgrp = getpgrp();
3065 prstatus->pr_sid = getsid(0);
3067 bswap_prstatus(prstatus);
3070 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3072 char *base_filename;
3073 unsigned int i, len;
3075 (void) memset(psinfo, 0, sizeof (*psinfo));
3077 len = ts->info->arg_end - ts->info->arg_start;
3078 if (len >= ELF_PRARGSZ)
3079 len = ELF_PRARGSZ - 1;
3080 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3081 return -EFAULT;
3082 for (i = 0; i < len; i++)
3083 if (psinfo->pr_psargs[i] == 0)
3084 psinfo->pr_psargs[i] = ' ';
3085 psinfo->pr_psargs[len] = 0;
3087 psinfo->pr_pid = getpid();
3088 psinfo->pr_ppid = getppid();
3089 psinfo->pr_pgrp = getpgrp();
3090 psinfo->pr_sid = getsid(0);
3091 psinfo->pr_uid = getuid();
3092 psinfo->pr_gid = getgid();
3094 base_filename = g_path_get_basename(ts->bprm->filename);
3096 * Using strncpy here is fine: at max-length,
3097 * this field is not NUL-terminated.
3099 (void) strncpy(psinfo->pr_fname, base_filename,
3100 sizeof(psinfo->pr_fname));
3102 g_free(base_filename);
3103 bswap_psinfo(psinfo);
3104 return (0);
3107 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3109 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3110 elf_addr_t orig_auxv = auxv;
3111 void *ptr;
3112 int len = ts->info->auxv_len;
3115 * Auxiliary vector is stored in target process stack. It contains
3116 * {type, value} pairs that we need to dump into note. This is not
3117 * strictly necessary but we do it here for sake of completeness.
3120 /* read in whole auxv vector and copy it to memelfnote */
3121 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3122 if (ptr != NULL) {
3123 fill_note(note, "CORE", NT_AUXV, len, ptr);
3124 unlock_user(ptr, auxv, len);
3129 * Constructs name of coredump file. We have following convention
3130 * for the name:
3131 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3133 * Returns 0 in case of success, -1 otherwise (errno is set).
3135 static int core_dump_filename(const TaskState *ts, char *buf,
3136 size_t bufsize)
3138 char timestamp[64];
3139 char *base_filename = NULL;
3140 struct timeval tv;
3141 struct tm tm;
3143 assert(bufsize >= PATH_MAX);
3145 if (gettimeofday(&tv, NULL) < 0) {
3146 (void) fprintf(stderr, "unable to get current timestamp: %s",
3147 strerror(errno));
3148 return (-1);
3151 base_filename = g_path_get_basename(ts->bprm->filename);
3152 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3153 localtime_r(&tv.tv_sec, &tm));
3154 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3155 base_filename, timestamp, (int)getpid());
3156 g_free(base_filename);
3158 return (0);
3161 static int dump_write(int fd, const void *ptr, size_t size)
3163 const char *bufp = (const char *)ptr;
3164 ssize_t bytes_written, bytes_left;
3165 struct rlimit dumpsize;
3166 off_t pos;
3168 bytes_written = 0;
3169 getrlimit(RLIMIT_CORE, &dumpsize);
3170 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3171 if (errno == ESPIPE) { /* not a seekable stream */
3172 bytes_left = size;
3173 } else {
3174 return pos;
3176 } else {
3177 if (dumpsize.rlim_cur <= pos) {
3178 return -1;
3179 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3180 bytes_left = size;
3181 } else {
3182 size_t limit_left=dumpsize.rlim_cur - pos;
3183 bytes_left = limit_left >= size ? size : limit_left ;
3188 * In normal conditions, single write(2) should do but
3189 * in case of socket etc. this mechanism is more portable.
3191 do {
3192 bytes_written = write(fd, bufp, bytes_left);
3193 if (bytes_written < 0) {
3194 if (errno == EINTR)
3195 continue;
3196 return (-1);
3197 } else if (bytes_written == 0) { /* eof */
3198 return (-1);
3200 bufp += bytes_written;
3201 bytes_left -= bytes_written;
3202 } while (bytes_left > 0);
3204 return (0);
3207 static int write_note(struct memelfnote *men, int fd)
3209 struct elf_note en;
3211 en.n_namesz = men->namesz;
3212 en.n_type = men->type;
3213 en.n_descsz = men->datasz;
3215 bswap_note(&en);
3217 if (dump_write(fd, &en, sizeof(en)) != 0)
3218 return (-1);
3219 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3220 return (-1);
3221 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3222 return (-1);
3224 return (0);
3227 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3229 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3230 TaskState *ts = (TaskState *)cpu->opaque;
3231 struct elf_thread_status *ets;
3233 ets = g_malloc0(sizeof (*ets));
3234 ets->num_notes = 1; /* only prstatus is dumped */
3235 fill_prstatus(&ets->prstatus, ts, 0);
3236 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3237 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3238 &ets->prstatus);
3240 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3242 info->notes_size += note_size(&ets->notes[0]);
3245 static void init_note_info(struct elf_note_info *info)
3247 /* Initialize the elf_note_info structure so that it is at
3248 * least safe to call free_note_info() on it. Must be
3249 * called before calling fill_note_info().
3251 memset(info, 0, sizeof (*info));
3252 QTAILQ_INIT(&info->thread_list);
3255 static int fill_note_info(struct elf_note_info *info,
3256 long signr, const CPUArchState *env)
3258 #define NUMNOTES 3
3259 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3260 TaskState *ts = (TaskState *)cpu->opaque;
3261 int i;
3263 info->notes = g_new0(struct memelfnote, NUMNOTES);
3264 if (info->notes == NULL)
3265 return (-ENOMEM);
3266 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3267 if (info->prstatus == NULL)
3268 return (-ENOMEM);
3269 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3270 if (info->prstatus == NULL)
3271 return (-ENOMEM);
3274 * First fill in status (and registers) of current thread
3275 * including process info & aux vector.
3277 fill_prstatus(info->prstatus, ts, signr);
3278 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3279 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3280 sizeof (*info->prstatus), info->prstatus);
3281 fill_psinfo(info->psinfo, ts);
3282 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3283 sizeof (*info->psinfo), info->psinfo);
3284 fill_auxv_note(&info->notes[2], ts);
3285 info->numnote = 3;
3287 info->notes_size = 0;
3288 for (i = 0; i < info->numnote; i++)
3289 info->notes_size += note_size(&info->notes[i]);
3291 /* read and fill status of all threads */
3292 cpu_list_lock();
3293 CPU_FOREACH(cpu) {
3294 if (cpu == thread_cpu) {
3295 continue;
3297 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3299 cpu_list_unlock();
3301 return (0);
3304 static void free_note_info(struct elf_note_info *info)
3306 struct elf_thread_status *ets;
3308 while (!QTAILQ_EMPTY(&info->thread_list)) {
3309 ets = QTAILQ_FIRST(&info->thread_list);
3310 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3311 g_free(ets);
3314 g_free(info->prstatus);
3315 g_free(info->psinfo);
3316 g_free(info->notes);
3319 static int write_note_info(struct elf_note_info *info, int fd)
3321 struct elf_thread_status *ets;
3322 int i, error = 0;
3324 /* write prstatus, psinfo and auxv for current thread */
3325 for (i = 0; i < info->numnote; i++)
3326 if ((error = write_note(&info->notes[i], fd)) != 0)
3327 return (error);
3329 /* write prstatus for each thread */
3330 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3331 if ((error = write_note(&ets->notes[0], fd)) != 0)
3332 return (error);
3335 return (0);
3339 * Write out ELF coredump.
3341 * See documentation of ELF object file format in:
3342 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3344 * Coredump format in linux is following:
3346 * 0 +----------------------+ \
3347 * | ELF header | ET_CORE |
3348 * +----------------------+ |
3349 * | ELF program headers | |--- headers
3350 * | - NOTE section | |
3351 * | - PT_LOAD sections | |
3352 * +----------------------+ /
3353 * | NOTEs: |
3354 * | - NT_PRSTATUS |
3355 * | - NT_PRSINFO |
3356 * | - NT_AUXV |
3357 * +----------------------+ <-- aligned to target page
3358 * | Process memory dump |
3359 * : :
3360 * . .
3361 * : :
3362 * | |
3363 * +----------------------+
3365 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3366 * NT_PRSINFO -> struct elf_prpsinfo
3367 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3369 * Format follows System V format as close as possible. Current
3370 * version limitations are as follows:
3371 * - no floating point registers are dumped
3373 * Function returns 0 in case of success, negative errno otherwise.
3375 * TODO: make this work also during runtime: it should be
3376 * possible to force coredump from running process and then
3377 * continue processing. For example qemu could set up SIGUSR2
3378 * handler (provided that target process haven't registered
3379 * handler for that) that does the dump when signal is received.
3381 static int elf_core_dump(int signr, const CPUArchState *env)
3383 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3384 const TaskState *ts = (const TaskState *)cpu->opaque;
3385 struct vm_area_struct *vma = NULL;
3386 char corefile[PATH_MAX];
3387 struct elf_note_info info;
3388 struct elfhdr elf;
3389 struct elf_phdr phdr;
3390 struct rlimit dumpsize;
3391 struct mm_struct *mm = NULL;
3392 off_t offset = 0, data_offset = 0;
3393 int segs = 0;
3394 int fd = -1;
3396 init_note_info(&info);
3398 errno = 0;
3399 getrlimit(RLIMIT_CORE, &dumpsize);
3400 if (dumpsize.rlim_cur == 0)
3401 return 0;
3403 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3404 return (-errno);
3406 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3407 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3408 return (-errno);
3411 * Walk through target process memory mappings and
3412 * set up structure containing this information. After
3413 * this point vma_xxx functions can be used.
3415 if ((mm = vma_init()) == NULL)
3416 goto out;
3418 walk_memory_regions(mm, vma_walker);
3419 segs = vma_get_mapping_count(mm);
3422 * Construct valid coredump ELF header. We also
3423 * add one more segment for notes.
3425 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3426 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3427 goto out;
3429 /* fill in the in-memory version of notes */
3430 if (fill_note_info(&info, signr, env) < 0)
3431 goto out;
3433 offset += sizeof (elf); /* elf header */
3434 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3436 /* write out notes program header */
3437 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3439 offset += info.notes_size;
3440 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3441 goto out;
3444 * ELF specification wants data to start at page boundary so
3445 * we align it here.
3447 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3450 * Write program headers for memory regions mapped in
3451 * the target process.
3453 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3454 (void) memset(&phdr, 0, sizeof (phdr));
3456 phdr.p_type = PT_LOAD;
3457 phdr.p_offset = offset;
3458 phdr.p_vaddr = vma->vma_start;
3459 phdr.p_paddr = 0;
3460 phdr.p_filesz = vma_dump_size(vma);
3461 offset += phdr.p_filesz;
3462 phdr.p_memsz = vma->vma_end - vma->vma_start;
3463 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3464 if (vma->vma_flags & PROT_WRITE)
3465 phdr.p_flags |= PF_W;
3466 if (vma->vma_flags & PROT_EXEC)
3467 phdr.p_flags |= PF_X;
3468 phdr.p_align = ELF_EXEC_PAGESIZE;
3470 bswap_phdr(&phdr, 1);
3471 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3472 goto out;
3477 * Next we write notes just after program headers. No
3478 * alignment needed here.
3480 if (write_note_info(&info, fd) < 0)
3481 goto out;
3483 /* align data to page boundary */
3484 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3485 goto out;
3488 * Finally we can dump process memory into corefile as well.
3490 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3491 abi_ulong addr;
3492 abi_ulong end;
3494 end = vma->vma_start + vma_dump_size(vma);
3496 for (addr = vma->vma_start; addr < end;
3497 addr += TARGET_PAGE_SIZE) {
3498 char page[TARGET_PAGE_SIZE];
3499 int error;
3502 * Read in page from target process memory and
3503 * write it to coredump file.
3505 error = copy_from_user(page, addr, sizeof (page));
3506 if (error != 0) {
3507 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3508 addr);
3509 errno = -error;
3510 goto out;
3512 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3513 goto out;
3517 out:
3518 free_note_info(&info);
3519 if (mm != NULL)
3520 vma_delete(mm);
3521 (void) close(fd);
3523 if (errno != 0)
3524 return (-errno);
3525 return (0);
3527 #endif /* USE_ELF_CORE_DUMP */
3529 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3531 init_thread(regs, infop);