Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / accel / hvf / hvf-accel-ops.c
blobd60874d3e6bba753cec7049ec812874bc450f626
1 /*
2 * Copyright 2008 IBM Corporation
3 * 2008 Red Hat, Inc.
4 * Copyright 2011 Intel Corporation
5 * Copyright 2016 Veertu, Inc.
6 * Copyright 2017 The Android Open Source Project
8 * QEMU Hypervisor.framework support
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of version 2 of the GNU General Public
12 * License as published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, see <http://www.gnu.org/licenses/>.
22 * This file contain code under public domain from the hvdos project:
23 * https://github.com/mist64/hvdos
25 * Parts Copyright (c) 2011 NetApp, Inc.
26 * All rights reserved.
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
30 * are met:
31 * 1. Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * 2. Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in the
35 * documentation and/or other materials provided with the distribution.
37 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47 * SUCH DAMAGE.
50 #include "qemu/osdep.h"
51 #include "qemu/error-report.h"
52 #include "qemu/main-loop.h"
53 #include "exec/address-spaces.h"
54 #include "exec/exec-all.h"
55 #include "gdbstub/enums.h"
56 #include "hw/boards.h"
57 #include "sysemu/cpus.h"
58 #include "sysemu/hvf.h"
59 #include "sysemu/hvf_int.h"
60 #include "sysemu/runstate.h"
61 #include "qemu/guest-random.h"
63 HVFState *hvf_state;
65 /* Memory slots */
67 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
69 hvf_slot *slot;
70 int x;
71 for (x = 0; x < hvf_state->num_slots; ++x) {
72 slot = &hvf_state->slots[x];
73 if (slot->size && start < (slot->start + slot->size) &&
74 (start + size) > slot->start) {
75 return slot;
78 return NULL;
81 struct mac_slot {
82 int present;
83 uint64_t size;
84 uint64_t gpa_start;
85 uint64_t gva;
88 struct mac_slot mac_slots[32];
90 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
92 struct mac_slot *macslot;
93 hv_return_t ret;
95 macslot = &mac_slots[slot->slot_id];
97 if (macslot->present) {
98 if (macslot->size != slot->size) {
99 macslot->present = 0;
100 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
101 assert_hvf_ok(ret);
105 if (!slot->size) {
106 return 0;
109 macslot->present = 1;
110 macslot->gpa_start = slot->start;
111 macslot->size = slot->size;
112 ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
113 assert_hvf_ok(ret);
114 return 0;
117 static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
119 hvf_slot *mem;
120 MemoryRegion *area = section->mr;
121 bool writable = !area->readonly && !area->rom_device;
122 hv_memory_flags_t flags;
123 uint64_t page_size = qemu_real_host_page_size();
125 if (!memory_region_is_ram(area)) {
126 if (writable) {
127 return;
128 } else if (!memory_region_is_romd(area)) {
130 * If the memory device is not in romd_mode, then we actually want
131 * to remove the hvf memory slot so all accesses will trap.
133 add = false;
137 if (!QEMU_IS_ALIGNED(int128_get64(section->size), page_size) ||
138 !QEMU_IS_ALIGNED(section->offset_within_address_space, page_size)) {
139 /* Not page aligned, so we can not map as RAM */
140 add = false;
143 mem = hvf_find_overlap_slot(
144 section->offset_within_address_space,
145 int128_get64(section->size));
147 if (mem && add) {
148 if (mem->size == int128_get64(section->size) &&
149 mem->start == section->offset_within_address_space &&
150 mem->mem == (memory_region_get_ram_ptr(area) +
151 section->offset_within_region)) {
152 return; /* Same region was attempted to register, go away. */
156 /* Region needs to be reset. set the size to 0 and remap it. */
157 if (mem) {
158 mem->size = 0;
159 if (do_hvf_set_memory(mem, 0)) {
160 error_report("Failed to reset overlapping slot");
161 abort();
165 if (!add) {
166 return;
169 if (area->readonly ||
170 (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
171 flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
172 } else {
173 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
176 /* Now make a new slot. */
177 int x;
179 for (x = 0; x < hvf_state->num_slots; ++x) {
180 mem = &hvf_state->slots[x];
181 if (!mem->size) {
182 break;
186 if (x == hvf_state->num_slots) {
187 error_report("No free slots");
188 abort();
191 mem->size = int128_get64(section->size);
192 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
193 mem->start = section->offset_within_address_space;
194 mem->region = area;
196 if (do_hvf_set_memory(mem, flags)) {
197 error_report("Error registering new memory slot");
198 abort();
202 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
204 if (!cpu->accel->dirty) {
205 hvf_get_registers(cpu);
206 cpu->accel->dirty = true;
210 static void hvf_cpu_synchronize_state(CPUState *cpu)
212 if (!cpu->accel->dirty) {
213 run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
217 static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
218 run_on_cpu_data arg)
220 /* QEMU state is the reference, push it to HVF now and on next entry */
221 cpu->accel->dirty = true;
224 static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
226 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
229 static void hvf_cpu_synchronize_post_init(CPUState *cpu)
231 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
234 static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
236 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
239 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
241 hvf_slot *slot;
243 slot = hvf_find_overlap_slot(
244 section->offset_within_address_space,
245 int128_get64(section->size));
247 /* protect region against writes; begin tracking it */
248 if (on) {
249 slot->flags |= HVF_SLOT_LOG;
250 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
251 HV_MEMORY_READ | HV_MEMORY_EXEC);
252 /* stop tracking region*/
253 } else {
254 slot->flags &= ~HVF_SLOT_LOG;
255 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
256 HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
260 static void hvf_log_start(MemoryListener *listener,
261 MemoryRegionSection *section, int old, int new)
263 if (old != 0) {
264 return;
267 hvf_set_dirty_tracking(section, 1);
270 static void hvf_log_stop(MemoryListener *listener,
271 MemoryRegionSection *section, int old, int new)
273 if (new != 0) {
274 return;
277 hvf_set_dirty_tracking(section, 0);
280 static void hvf_log_sync(MemoryListener *listener,
281 MemoryRegionSection *section)
284 * sync of dirty pages is handled elsewhere; just make sure we keep
285 * tracking the region.
287 hvf_set_dirty_tracking(section, 1);
290 static void hvf_region_add(MemoryListener *listener,
291 MemoryRegionSection *section)
293 hvf_set_phys_mem(section, true);
296 static void hvf_region_del(MemoryListener *listener,
297 MemoryRegionSection *section)
299 hvf_set_phys_mem(section, false);
302 static MemoryListener hvf_memory_listener = {
303 .name = "hvf",
304 .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
305 .region_add = hvf_region_add,
306 .region_del = hvf_region_del,
307 .log_start = hvf_log_start,
308 .log_stop = hvf_log_stop,
309 .log_sync = hvf_log_sync,
312 static void dummy_signal(int sig)
316 bool hvf_allowed;
318 static int hvf_accel_init(MachineState *ms)
320 int x;
321 hv_return_t ret;
322 HVFState *s;
323 int pa_range = 36;
324 MachineClass *mc = MACHINE_GET_CLASS(ms);
326 if (mc->hvf_get_physical_address_range) {
327 pa_range = mc->hvf_get_physical_address_range(ms);
328 if (pa_range < 0) {
329 return -EINVAL;
333 ret = hvf_arch_vm_create(ms, (uint32_t)pa_range);
334 assert_hvf_ok(ret);
336 s = g_new0(HVFState, 1);
338 s->num_slots = ARRAY_SIZE(s->slots);
339 for (x = 0; x < s->num_slots; ++x) {
340 s->slots[x].size = 0;
341 s->slots[x].slot_id = x;
344 QTAILQ_INIT(&s->hvf_sw_breakpoints);
346 hvf_state = s;
347 memory_listener_register(&hvf_memory_listener, &address_space_memory);
349 return hvf_arch_init();
352 static inline int hvf_gdbstub_sstep_flags(void)
354 return SSTEP_ENABLE | SSTEP_NOIRQ;
357 static void hvf_accel_class_init(ObjectClass *oc, void *data)
359 AccelClass *ac = ACCEL_CLASS(oc);
360 ac->name = "HVF";
361 ac->init_machine = hvf_accel_init;
362 ac->allowed = &hvf_allowed;
363 ac->gdbstub_supported_sstep_flags = hvf_gdbstub_sstep_flags;
366 static const TypeInfo hvf_accel_type = {
367 .name = TYPE_HVF_ACCEL,
368 .parent = TYPE_ACCEL,
369 .class_init = hvf_accel_class_init,
372 static void hvf_type_init(void)
374 type_register_static(&hvf_accel_type);
377 type_init(hvf_type_init);
379 static void hvf_vcpu_destroy(CPUState *cpu)
381 hv_return_t ret = hv_vcpu_destroy(cpu->accel->fd);
382 assert_hvf_ok(ret);
384 hvf_arch_vcpu_destroy(cpu);
385 g_free(cpu->accel);
386 cpu->accel = NULL;
389 static int hvf_init_vcpu(CPUState *cpu)
391 int r;
393 cpu->accel = g_new0(AccelCPUState, 1);
395 /* init cpu signals */
396 struct sigaction sigact;
398 memset(&sigact, 0, sizeof(sigact));
399 sigact.sa_handler = dummy_signal;
400 sigaction(SIG_IPI, &sigact, NULL);
402 pthread_sigmask(SIG_BLOCK, NULL, &cpu->accel->unblock_ipi_mask);
403 sigdelset(&cpu->accel->unblock_ipi_mask, SIG_IPI);
405 #ifdef __aarch64__
406 r = hv_vcpu_create(&cpu->accel->fd,
407 (hv_vcpu_exit_t **)&cpu->accel->exit, NULL);
408 #else
409 r = hv_vcpu_create(&cpu->accel->fd, HV_VCPU_DEFAULT);
410 #endif
411 cpu->accel->dirty = true;
412 assert_hvf_ok(r);
414 cpu->accel->guest_debug_enabled = false;
416 return hvf_arch_init_vcpu(cpu);
420 * The HVF-specific vCPU thread function. This one should only run when the host
421 * CPU supports the VMX "unrestricted guest" feature.
423 static void *hvf_cpu_thread_fn(void *arg)
425 CPUState *cpu = arg;
427 int r;
429 assert(hvf_enabled());
431 rcu_register_thread();
433 bql_lock();
434 qemu_thread_get_self(cpu->thread);
436 cpu->thread_id = qemu_get_thread_id();
437 current_cpu = cpu;
439 hvf_init_vcpu(cpu);
441 /* signal CPU creation */
442 cpu_thread_signal_created(cpu);
443 qemu_guest_random_seed_thread_part2(cpu->random_seed);
445 do {
446 if (cpu_can_run(cpu)) {
447 r = hvf_vcpu_exec(cpu);
448 if (r == EXCP_DEBUG) {
449 cpu_handle_guest_debug(cpu);
452 qemu_wait_io_event(cpu);
453 } while (!cpu->unplug || cpu_can_run(cpu));
455 hvf_vcpu_destroy(cpu);
456 cpu_thread_signal_destroyed(cpu);
457 bql_unlock();
458 rcu_unregister_thread();
459 return NULL;
462 static void hvf_start_vcpu_thread(CPUState *cpu)
464 char thread_name[VCPU_THREAD_NAME_SIZE];
467 * HVF currently does not support TCG, and only runs in
468 * unrestricted-guest mode.
470 assert(hvf_enabled());
472 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
473 cpu->cpu_index);
474 qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
475 cpu, QEMU_THREAD_JOINABLE);
478 static int hvf_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
480 struct hvf_sw_breakpoint *bp;
481 int err;
483 if (type == GDB_BREAKPOINT_SW) {
484 bp = hvf_find_sw_breakpoint(cpu, addr);
485 if (bp) {
486 bp->use_count++;
487 return 0;
490 bp = g_new(struct hvf_sw_breakpoint, 1);
491 bp->pc = addr;
492 bp->use_count = 1;
493 err = hvf_arch_insert_sw_breakpoint(cpu, bp);
494 if (err) {
495 g_free(bp);
496 return err;
499 QTAILQ_INSERT_HEAD(&hvf_state->hvf_sw_breakpoints, bp, entry);
500 } else {
501 err = hvf_arch_insert_hw_breakpoint(addr, len, type);
502 if (err) {
503 return err;
507 CPU_FOREACH(cpu) {
508 err = hvf_update_guest_debug(cpu);
509 if (err) {
510 return err;
513 return 0;
516 static int hvf_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
518 struct hvf_sw_breakpoint *bp;
519 int err;
521 if (type == GDB_BREAKPOINT_SW) {
522 bp = hvf_find_sw_breakpoint(cpu, addr);
523 if (!bp) {
524 return -ENOENT;
527 if (bp->use_count > 1) {
528 bp->use_count--;
529 return 0;
532 err = hvf_arch_remove_sw_breakpoint(cpu, bp);
533 if (err) {
534 return err;
537 QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry);
538 g_free(bp);
539 } else {
540 err = hvf_arch_remove_hw_breakpoint(addr, len, type);
541 if (err) {
542 return err;
546 CPU_FOREACH(cpu) {
547 err = hvf_update_guest_debug(cpu);
548 if (err) {
549 return err;
552 return 0;
555 static void hvf_remove_all_breakpoints(CPUState *cpu)
557 struct hvf_sw_breakpoint *bp, *next;
558 CPUState *tmpcpu;
560 QTAILQ_FOREACH_SAFE(bp, &hvf_state->hvf_sw_breakpoints, entry, next) {
561 if (hvf_arch_remove_sw_breakpoint(cpu, bp) != 0) {
562 /* Try harder to find a CPU that currently sees the breakpoint. */
563 CPU_FOREACH(tmpcpu)
565 if (hvf_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
566 break;
570 QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry);
571 g_free(bp);
573 hvf_arch_remove_all_hw_breakpoints();
575 CPU_FOREACH(cpu) {
576 hvf_update_guest_debug(cpu);
580 static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
582 AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
584 ops->create_vcpu_thread = hvf_start_vcpu_thread;
585 ops->kick_vcpu_thread = hvf_kick_vcpu_thread;
587 ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
588 ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
589 ops->synchronize_state = hvf_cpu_synchronize_state;
590 ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
592 ops->insert_breakpoint = hvf_insert_breakpoint;
593 ops->remove_breakpoint = hvf_remove_breakpoint;
594 ops->remove_all_breakpoints = hvf_remove_all_breakpoints;
595 ops->update_guest_debug = hvf_update_guest_debug;
596 ops->supports_guest_debug = hvf_arch_supports_guest_debug;
598 static const TypeInfo hvf_accel_ops_type = {
599 .name = ACCEL_OPS_NAME("hvf"),
601 .parent = TYPE_ACCEL_OPS,
602 .class_init = hvf_accel_ops_class_init,
603 .abstract = true,
605 static void hvf_accel_ops_register_types(void)
607 type_register_static(&hvf_accel_ops_type);
609 type_init(hvf_accel_ops_register_types);