Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / accel / tcg / cpu-exec.c
blob8163295f34bc2bbbf593e8cd56bb0d67af121c80
1 /*
2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #include "sysemu/cpus.h"
34 #include "exec/cpu-all.h"
35 #include "sysemu/cpu-timers.h"
36 #include "exec/replay-core.h"
37 #include "sysemu/tcg.h"
38 #include "exec/helper-proto-common.h"
39 #include "tb-jmp-cache.h"
40 #include "tb-hash.h"
41 #include "tb-context.h"
42 #include "internal-common.h"
43 #include "internal-target.h"
45 /* -icount align implementation. */
47 typedef struct SyncClocks {
48 int64_t diff_clk;
49 int64_t last_cpu_icount;
50 int64_t realtime_clock;
51 } SyncClocks;
53 #if !defined(CONFIG_USER_ONLY)
54 /* Allow the guest to have a max 3ms advance.
55 * The difference between the 2 clocks could therefore
56 * oscillate around 0.
58 #define VM_CLOCK_ADVANCE 3000000
59 #define THRESHOLD_REDUCE 1.5
60 #define MAX_DELAY_PRINT_RATE 2000000000LL
61 #define MAX_NB_PRINTS 100
63 int64_t max_delay;
64 int64_t max_advance;
66 static void align_clocks(SyncClocks *sc, CPUState *cpu)
68 int64_t cpu_icount;
70 if (!icount_align_option) {
71 return;
74 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
75 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
76 sc->last_cpu_icount = cpu_icount;
78 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
79 #ifndef _WIN32
80 struct timespec sleep_delay, rem_delay;
81 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
82 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
83 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
84 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
85 } else {
86 sc->diff_clk = 0;
88 #else
89 Sleep(sc->diff_clk / SCALE_MS);
90 sc->diff_clk = 0;
91 #endif
95 static void print_delay(const SyncClocks *sc)
97 static float threshold_delay;
98 static int64_t last_realtime_clock;
99 static int nb_prints;
101 if (icount_align_option &&
102 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
103 nb_prints < MAX_NB_PRINTS) {
104 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
105 (-sc->diff_clk / (float)1000000000LL <
106 (threshold_delay - THRESHOLD_REDUCE))) {
107 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
108 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
109 threshold_delay - 1,
110 threshold_delay);
111 nb_prints++;
112 last_realtime_clock = sc->realtime_clock;
117 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
119 if (!icount_align_option) {
120 return;
122 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
123 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
124 sc->last_cpu_icount
125 = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
126 if (sc->diff_clk < max_delay) {
127 max_delay = sc->diff_clk;
129 if (sc->diff_clk > max_advance) {
130 max_advance = sc->diff_clk;
133 /* Print every 2s max if the guest is late. We limit the number
134 of printed messages to NB_PRINT_MAX(currently 100) */
135 print_delay(sc);
137 #else
138 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
142 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
145 #endif /* CONFIG USER ONLY */
147 bool tcg_cflags_has(CPUState *cpu, uint32_t flags)
149 return cpu->tcg_cflags & flags;
152 void tcg_cflags_set(CPUState *cpu, uint32_t flags)
154 cpu->tcg_cflags |= flags;
157 uint32_t curr_cflags(CPUState *cpu)
159 uint32_t cflags = cpu->tcg_cflags;
162 * Record gdb single-step. We should be exiting the TB by raising
163 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
165 * For singlestep and -d nochain, suppress goto_tb so that
166 * we can log -d cpu,exec after every TB.
168 if (unlikely(cpu->singlestep_enabled)) {
169 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
170 } else if (qatomic_read(&one_insn_per_tb)) {
171 cflags |= CF_NO_GOTO_TB | 1;
172 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
173 cflags |= CF_NO_GOTO_TB;
176 return cflags;
179 struct tb_desc {
180 vaddr pc;
181 uint64_t cs_base;
182 CPUArchState *env;
183 tb_page_addr_t page_addr0;
184 uint32_t flags;
185 uint32_t cflags;
188 static bool tb_lookup_cmp(const void *p, const void *d)
190 const TranslationBlock *tb = p;
191 const struct tb_desc *desc = d;
193 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
194 tb_page_addr0(tb) == desc->page_addr0 &&
195 tb->cs_base == desc->cs_base &&
196 tb->flags == desc->flags &&
197 tb_cflags(tb) == desc->cflags) {
198 /* check next page if needed */
199 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
200 if (tb_phys_page1 == -1) {
201 return true;
202 } else {
203 tb_page_addr_t phys_page1;
204 vaddr virt_page1;
207 * We know that the first page matched, and an otherwise valid TB
208 * encountered an incomplete instruction at the end of that page,
209 * therefore we know that generating a new TB from the current PC
210 * must also require reading from the next page -- even if the
211 * second pages do not match, and therefore the resulting insn
212 * is different for the new TB. Therefore any exception raised
213 * here by the faulting lookup is not premature.
215 virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
216 phys_page1 = get_page_addr_code(desc->env, virt_page1);
217 if (tb_phys_page1 == phys_page1) {
218 return true;
222 return false;
225 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc,
226 uint64_t cs_base, uint32_t flags,
227 uint32_t cflags)
229 tb_page_addr_t phys_pc;
230 struct tb_desc desc;
231 uint32_t h;
233 desc.env = cpu_env(cpu);
234 desc.cs_base = cs_base;
235 desc.flags = flags;
236 desc.cflags = cflags;
237 desc.pc = pc;
238 phys_pc = get_page_addr_code(desc.env, pc);
239 if (phys_pc == -1) {
240 return NULL;
242 desc.page_addr0 = phys_pc;
243 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
244 flags, cs_base, cflags);
245 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
248 /* Might cause an exception, so have a longjmp destination ready */
249 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc,
250 uint64_t cs_base, uint32_t flags,
251 uint32_t cflags)
253 TranslationBlock *tb;
254 CPUJumpCache *jc;
255 uint32_t hash;
257 /* we should never be trying to look up an INVALID tb */
258 tcg_debug_assert(!(cflags & CF_INVALID));
260 hash = tb_jmp_cache_hash_func(pc);
261 jc = cpu->tb_jmp_cache;
263 tb = qatomic_read(&jc->array[hash].tb);
264 if (likely(tb &&
265 jc->array[hash].pc == pc &&
266 tb->cs_base == cs_base &&
267 tb->flags == flags &&
268 tb_cflags(tb) == cflags)) {
269 goto hit;
272 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
273 if (tb == NULL) {
274 return NULL;
277 jc->array[hash].pc = pc;
278 qatomic_set(&jc->array[hash].tb, tb);
280 hit:
282 * As long as tb is not NULL, the contents are consistent. Therefore,
283 * the virtual PC has to match for non-CF_PCREL translations.
285 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc);
286 return tb;
289 static void log_cpu_exec(vaddr pc, CPUState *cpu,
290 const TranslationBlock *tb)
292 if (qemu_log_in_addr_range(pc)) {
293 qemu_log_mask(CPU_LOG_EXEC,
294 "Trace %d: %p [%08" PRIx64
295 "/%016" VADDR_PRIx "/%08x/%08x] %s\n",
296 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
297 tb->flags, tb->cflags, lookup_symbol(pc));
299 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
300 FILE *logfile = qemu_log_trylock();
301 if (logfile) {
302 int flags = 0;
304 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
305 flags |= CPU_DUMP_FPU;
307 #if defined(TARGET_I386)
308 flags |= CPU_DUMP_CCOP;
309 #endif
310 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
311 flags |= CPU_DUMP_VPU;
313 cpu_dump_state(cpu, logfile, flags);
314 qemu_log_unlock(logfile);
320 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
321 uint32_t *cflags)
323 CPUBreakpoint *bp;
324 bool match_page = false;
327 * Singlestep overrides breakpoints.
328 * This requirement is visible in the record-replay tests, where
329 * we would fail to make forward progress in reverse-continue.
331 * TODO: gdb singlestep should only override gdb breakpoints,
332 * so that one could (gdb) singlestep into the guest kernel's
333 * architectural breakpoint handler.
335 if (cpu->singlestep_enabled) {
336 return false;
339 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
341 * If we have an exact pc match, trigger the breakpoint.
342 * Otherwise, note matches within the page.
344 if (pc == bp->pc) {
345 bool match_bp = false;
347 if (bp->flags & BP_GDB) {
348 match_bp = true;
349 } else if (bp->flags & BP_CPU) {
350 #ifdef CONFIG_USER_ONLY
351 g_assert_not_reached();
352 #else
353 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
354 assert(tcg_ops->debug_check_breakpoint);
355 match_bp = tcg_ops->debug_check_breakpoint(cpu);
356 #endif
359 if (match_bp) {
360 cpu->exception_index = EXCP_DEBUG;
361 return true;
363 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
364 match_page = true;
369 * Within the same page as a breakpoint, single-step,
370 * returning to helper_lookup_tb_ptr after each insn looking
371 * for the actual breakpoint.
373 * TODO: Perhaps better to record all of the TBs associated
374 * with a given virtual page that contains a breakpoint, and
375 * then invalidate them when a new overlapping breakpoint is
376 * set on the page. Non-overlapping TBs would not be
377 * invalidated, nor would any TB need to be invalidated as
378 * breakpoints are removed.
380 if (match_page) {
381 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1;
383 return false;
386 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
387 uint32_t *cflags)
389 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
390 check_for_breakpoints_slow(cpu, pc, cflags);
394 * helper_lookup_tb_ptr: quick check for next tb
395 * @env: current cpu state
397 * Look for an existing TB matching the current cpu state.
398 * If found, return the code pointer. If not found, return
399 * the tcg epilogue so that we return into cpu_tb_exec.
401 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
403 CPUState *cpu = env_cpu(env);
404 TranslationBlock *tb;
405 vaddr pc;
406 uint64_t cs_base;
407 uint32_t flags, cflags;
410 * By definition we've just finished a TB, so I/O is OK.
411 * Avoid the possibility of calling cpu_io_recompile() if
412 * a page table walk triggered by tb_lookup() calling
413 * probe_access_internal() happens to touch an MMIO device.
414 * The next TB, if we chain to it, will clear the flag again.
416 cpu->neg.can_do_io = true;
417 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
419 cflags = curr_cflags(cpu);
420 if (check_for_breakpoints(cpu, pc, &cflags)) {
421 cpu_loop_exit(cpu);
424 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
425 if (tb == NULL) {
426 return tcg_code_gen_epilogue;
429 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
430 log_cpu_exec(pc, cpu, tb);
433 return tb->tc.ptr;
436 /* Execute a TB, and fix up the CPU state afterwards if necessary */
438 * Disable CFI checks.
439 * TCG creates binary blobs at runtime, with the transformed code.
440 * A TB is a blob of binary code, created at runtime and called with an
441 * indirect function call. Since such function did not exist at compile time,
442 * the CFI runtime has no way to verify its signature and would fail.
443 * TCG is not considered a security-sensitive part of QEMU so this does not
444 * affect the impact of CFI in environment with high security requirements
446 static inline TranslationBlock * QEMU_DISABLE_CFI
447 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
449 uintptr_t ret;
450 TranslationBlock *last_tb;
451 const void *tb_ptr = itb->tc.ptr;
453 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
454 log_cpu_exec(log_pc(cpu, itb), cpu, itb);
457 qemu_thread_jit_execute();
458 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr);
459 cpu->neg.can_do_io = true;
460 qemu_plugin_disable_mem_helpers(cpu);
462 * TODO: Delay swapping back to the read-write region of the TB
463 * until we actually need to modify the TB. The read-only copy,
464 * coming from the rx region, shares the same host TLB entry as
465 * the code that executed the exit_tb opcode that arrived here.
466 * If we insist on touching both the RX and the RW pages, we
467 * double the host TLB pressure.
469 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
470 *tb_exit = ret & TB_EXIT_MASK;
472 trace_exec_tb_exit(last_tb, *tb_exit);
474 if (*tb_exit > TB_EXIT_IDX1) {
475 /* We didn't start executing this TB (eg because the instruction
476 * counter hit zero); we must restore the guest PC to the address
477 * of the start of the TB.
479 CPUClass *cc = cpu->cc;
480 const TCGCPUOps *tcg_ops = cc->tcg_ops;
482 if (tcg_ops->synchronize_from_tb) {
483 tcg_ops->synchronize_from_tb(cpu, last_tb);
484 } else {
485 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
486 assert(cc->set_pc);
487 cc->set_pc(cpu, last_tb->pc);
489 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
490 vaddr pc = log_pc(cpu, last_tb);
491 if (qemu_log_in_addr_range(pc)) {
492 qemu_log("Stopped execution of TB chain before %p [%016"
493 VADDR_PRIx "] %s\n",
494 last_tb->tc.ptr, pc, lookup_symbol(pc));
500 * If gdb single-step, and we haven't raised another exception,
501 * raise a debug exception. Single-step with another exception
502 * is handled in cpu_handle_exception.
504 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
505 cpu->exception_index = EXCP_DEBUG;
506 cpu_loop_exit(cpu);
509 return last_tb;
513 static void cpu_exec_enter(CPUState *cpu)
515 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
517 if (tcg_ops->cpu_exec_enter) {
518 tcg_ops->cpu_exec_enter(cpu);
522 static void cpu_exec_exit(CPUState *cpu)
524 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
526 if (tcg_ops->cpu_exec_exit) {
527 tcg_ops->cpu_exec_exit(cpu);
531 static void cpu_exec_longjmp_cleanup(CPUState *cpu)
533 /* Non-buggy compilers preserve this; assert the correct value. */
534 g_assert(cpu == current_cpu);
536 #ifdef CONFIG_USER_ONLY
537 clear_helper_retaddr();
538 if (have_mmap_lock()) {
539 mmap_unlock();
541 #else
543 * For softmmu, a tlb_fill fault during translation will land here,
544 * and we need to release any page locks held. In system mode we
545 * have one tcg_ctx per thread, so we know it was this cpu doing
546 * the translation.
548 * Alternative 1: Install a cleanup to be called via an exception
549 * handling safe longjmp. It seems plausible that all our hosts
550 * support such a thing. We'd have to properly register unwind info
551 * for the JIT for EH, rather that just for GDB.
553 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to
554 * capture the cpu_loop_exit longjmp, perform the cleanup, and
555 * jump again to arrive here.
557 if (tcg_ctx->gen_tb) {
558 tb_unlock_pages(tcg_ctx->gen_tb);
559 tcg_ctx->gen_tb = NULL;
561 #endif
562 if (bql_locked()) {
563 bql_unlock();
565 assert_no_pages_locked();
568 void cpu_exec_step_atomic(CPUState *cpu)
570 CPUArchState *env = cpu_env(cpu);
571 TranslationBlock *tb;
572 vaddr pc;
573 uint64_t cs_base;
574 uint32_t flags, cflags;
575 int tb_exit;
577 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
578 start_exclusive();
579 g_assert(cpu == current_cpu);
580 g_assert(!cpu->running);
581 cpu->running = true;
583 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
585 cflags = curr_cflags(cpu);
586 /* Execute in a serial context. */
587 cflags &= ~CF_PARALLEL;
588 /* After 1 insn, return and release the exclusive lock. */
589 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
591 * No need to check_for_breakpoints here.
592 * We only arrive in cpu_exec_step_atomic after beginning execution
593 * of an insn that includes an atomic operation we can't handle.
594 * Any breakpoint for this insn will have been recognized earlier.
597 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
598 if (tb == NULL) {
599 mmap_lock();
600 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
601 mmap_unlock();
604 cpu_exec_enter(cpu);
605 /* execute the generated code */
606 trace_exec_tb(tb, pc);
607 cpu_tb_exec(cpu, tb, &tb_exit);
608 cpu_exec_exit(cpu);
609 } else {
610 cpu_exec_longjmp_cleanup(cpu);
614 * As we start the exclusive region before codegen we must still
615 * be in the region if we longjump out of either the codegen or
616 * the execution.
618 g_assert(cpu_in_exclusive_context(cpu));
619 cpu->running = false;
620 end_exclusive();
623 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
626 * Get the rx view of the structure, from which we find the
627 * executable code address, and tb_target_set_jmp_target can
628 * produce a pc-relative displacement to jmp_target_addr[n].
630 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
631 uintptr_t offset = tb->jmp_insn_offset[n];
632 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
633 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
635 tb->jmp_target_addr[n] = addr;
636 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
639 static inline void tb_add_jump(TranslationBlock *tb, int n,
640 TranslationBlock *tb_next)
642 uintptr_t old;
644 qemu_thread_jit_write();
645 assert(n < ARRAY_SIZE(tb->jmp_list_next));
646 qemu_spin_lock(&tb_next->jmp_lock);
648 /* make sure the destination TB is valid */
649 if (tb_next->cflags & CF_INVALID) {
650 goto out_unlock_next;
652 /* Atomically claim the jump destination slot only if it was NULL */
653 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
654 (uintptr_t)tb_next);
655 if (old) {
656 goto out_unlock_next;
659 /* patch the native jump address */
660 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
662 /* add in TB jmp list */
663 tb->jmp_list_next[n] = tb_next->jmp_list_head;
664 tb_next->jmp_list_head = (uintptr_t)tb | n;
666 qemu_spin_unlock(&tb_next->jmp_lock);
668 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
669 tb->tc.ptr, n, tb_next->tc.ptr);
670 return;
672 out_unlock_next:
673 qemu_spin_unlock(&tb_next->jmp_lock);
674 return;
677 static inline bool cpu_handle_halt(CPUState *cpu)
679 #ifndef CONFIG_USER_ONLY
680 if (cpu->halted) {
681 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
682 bool leave_halt = tcg_ops->cpu_exec_halt(cpu);
684 if (!leave_halt) {
685 return true;
688 cpu->halted = 0;
690 #endif /* !CONFIG_USER_ONLY */
692 return false;
695 static inline void cpu_handle_debug_exception(CPUState *cpu)
697 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
698 CPUWatchpoint *wp;
700 if (!cpu->watchpoint_hit) {
701 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
702 wp->flags &= ~BP_WATCHPOINT_HIT;
706 if (tcg_ops->debug_excp_handler) {
707 tcg_ops->debug_excp_handler(cpu);
711 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
713 if (cpu->exception_index < 0) {
714 #ifndef CONFIG_USER_ONLY
715 if (replay_has_exception()
716 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) {
717 /* Execute just one insn to trigger exception pending in the log */
718 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
719 | CF_NOIRQ | 1;
721 #endif
722 return false;
725 if (cpu->exception_index >= EXCP_INTERRUPT) {
726 /* exit request from the cpu execution loop */
727 *ret = cpu->exception_index;
728 if (*ret == EXCP_DEBUG) {
729 cpu_handle_debug_exception(cpu);
731 cpu->exception_index = -1;
732 return true;
735 #if defined(CONFIG_USER_ONLY)
737 * If user mode only, we simulate a fake exception which will be
738 * handled outside the cpu execution loop.
740 #if defined(TARGET_I386)
741 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
742 tcg_ops->fake_user_interrupt(cpu);
743 #endif /* TARGET_I386 */
744 *ret = cpu->exception_index;
745 cpu->exception_index = -1;
746 return true;
747 #else
748 if (replay_exception()) {
749 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
751 bql_lock();
752 tcg_ops->do_interrupt(cpu);
753 bql_unlock();
754 cpu->exception_index = -1;
756 if (unlikely(cpu->singlestep_enabled)) {
758 * After processing the exception, ensure an EXCP_DEBUG is
759 * raised when single-stepping so that GDB doesn't miss the
760 * next instruction.
762 *ret = EXCP_DEBUG;
763 cpu_handle_debug_exception(cpu);
764 return true;
766 } else if (!replay_has_interrupt()) {
767 /* give a chance to iothread in replay mode */
768 *ret = EXCP_INTERRUPT;
769 return true;
771 #endif
773 return false;
776 static inline bool icount_exit_request(CPUState *cpu)
778 if (!icount_enabled()) {
779 return false;
781 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) {
782 return false;
784 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0;
787 static inline bool cpu_handle_interrupt(CPUState *cpu,
788 TranslationBlock **last_tb)
791 * If we have requested custom cflags with CF_NOIRQ we should
792 * skip checking here. Any pending interrupts will get picked up
793 * by the next TB we execute under normal cflags.
795 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
796 return false;
799 /* Clear the interrupt flag now since we're processing
800 * cpu->interrupt_request and cpu->exit_request.
801 * Ensure zeroing happens before reading cpu->exit_request or
802 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
804 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0);
806 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
807 int interrupt_request;
808 bql_lock();
809 interrupt_request = cpu->interrupt_request;
810 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
811 /* Mask out external interrupts for this step. */
812 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
814 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
815 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
816 cpu->exception_index = EXCP_DEBUG;
817 bql_unlock();
818 return true;
820 #if !defined(CONFIG_USER_ONLY)
821 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
822 /* Do nothing */
823 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
824 replay_interrupt();
825 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
826 cpu->halted = 1;
827 cpu->exception_index = EXCP_HLT;
828 bql_unlock();
829 return true;
831 #if defined(TARGET_I386)
832 else if (interrupt_request & CPU_INTERRUPT_INIT) {
833 X86CPU *x86_cpu = X86_CPU(cpu);
834 CPUArchState *env = &x86_cpu->env;
835 replay_interrupt();
836 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
837 do_cpu_init(x86_cpu);
838 cpu->exception_index = EXCP_HALTED;
839 bql_unlock();
840 return true;
842 #else
843 else if (interrupt_request & CPU_INTERRUPT_RESET) {
844 replay_interrupt();
845 cpu_reset(cpu);
846 bql_unlock();
847 return true;
849 #endif /* !TARGET_I386 */
850 /* The target hook has 3 exit conditions:
851 False when the interrupt isn't processed,
852 True when it is, and we should restart on a new TB,
853 and via longjmp via cpu_loop_exit. */
854 else {
855 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
857 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
858 if (!tcg_ops->need_replay_interrupt ||
859 tcg_ops->need_replay_interrupt(interrupt_request)) {
860 replay_interrupt();
863 * After processing the interrupt, ensure an EXCP_DEBUG is
864 * raised when single-stepping so that GDB doesn't miss the
865 * next instruction.
867 if (unlikely(cpu->singlestep_enabled)) {
868 cpu->exception_index = EXCP_DEBUG;
869 bql_unlock();
870 return true;
872 cpu->exception_index = -1;
873 *last_tb = NULL;
875 /* The target hook may have updated the 'cpu->interrupt_request';
876 * reload the 'interrupt_request' value */
877 interrupt_request = cpu->interrupt_request;
879 #endif /* !CONFIG_USER_ONLY */
880 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
881 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
882 /* ensure that no TB jump will be modified as
883 the program flow was changed */
884 *last_tb = NULL;
887 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
888 bql_unlock();
891 /* Finally, check if we need to exit to the main loop. */
892 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) {
893 qatomic_set(&cpu->exit_request, 0);
894 if (cpu->exception_index == -1) {
895 cpu->exception_index = EXCP_INTERRUPT;
897 return true;
900 return false;
903 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
904 vaddr pc, TranslationBlock **last_tb,
905 int *tb_exit)
907 trace_exec_tb(tb, pc);
908 tb = cpu_tb_exec(cpu, tb, tb_exit);
909 if (*tb_exit != TB_EXIT_REQUESTED) {
910 *last_tb = tb;
911 return;
914 *last_tb = NULL;
915 if (cpu_loop_exit_requested(cpu)) {
916 /* Something asked us to stop executing chained TBs; just
917 * continue round the main loop. Whatever requested the exit
918 * will also have set something else (eg exit_request or
919 * interrupt_request) which will be handled by
920 * cpu_handle_interrupt. cpu_handle_interrupt will also
921 * clear cpu->icount_decr.u16.high.
923 return;
926 /* Instruction counter expired. */
927 assert(icount_enabled());
928 #ifndef CONFIG_USER_ONLY
929 /* Ensure global icount has gone forward */
930 icount_update(cpu);
931 /* Refill decrementer and continue execution. */
932 int32_t insns_left = MIN(0xffff, cpu->icount_budget);
933 cpu->neg.icount_decr.u16.low = insns_left;
934 cpu->icount_extra = cpu->icount_budget - insns_left;
937 * If the next tb has more instructions than we have left to
938 * execute we need to ensure we find/generate a TB with exactly
939 * insns_left instructions in it.
941 if (insns_left > 0 && insns_left < tb->icount) {
942 assert(insns_left <= CF_COUNT_MASK);
943 assert(cpu->icount_extra == 0);
944 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
946 #endif
949 /* main execution loop */
951 static int __attribute__((noinline))
952 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
954 int ret;
956 /* if an exception is pending, we execute it here */
957 while (!cpu_handle_exception(cpu, &ret)) {
958 TranslationBlock *last_tb = NULL;
959 int tb_exit = 0;
961 while (!cpu_handle_interrupt(cpu, &last_tb)) {
962 TranslationBlock *tb;
963 vaddr pc;
964 uint64_t cs_base;
965 uint32_t flags, cflags;
967 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags);
970 * When requested, use an exact setting for cflags for the next
971 * execution. This is used for icount, precise smc, and stop-
972 * after-access watchpoints. Since this request should never
973 * have CF_INVALID set, -1 is a convenient invalid value that
974 * does not require tcg headers for cpu_common_reset.
976 cflags = cpu->cflags_next_tb;
977 if (cflags == -1) {
978 cflags = curr_cflags(cpu);
979 } else {
980 cpu->cflags_next_tb = -1;
983 if (check_for_breakpoints(cpu, pc, &cflags)) {
984 break;
987 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
988 if (tb == NULL) {
989 CPUJumpCache *jc;
990 uint32_t h;
992 mmap_lock();
993 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
994 mmap_unlock();
997 * We add the TB in the virtual pc hash table
998 * for the fast lookup
1000 h = tb_jmp_cache_hash_func(pc);
1001 jc = cpu->tb_jmp_cache;
1002 jc->array[h].pc = pc;
1003 qatomic_set(&jc->array[h].tb, tb);
1006 #ifndef CONFIG_USER_ONLY
1008 * We don't take care of direct jumps when address mapping
1009 * changes in system emulation. So it's not safe to make a
1010 * direct jump to a TB spanning two pages because the mapping
1011 * for the second page can change.
1013 if (tb_page_addr1(tb) != -1) {
1014 last_tb = NULL;
1016 #endif
1017 /* See if we can patch the calling TB. */
1018 if (last_tb) {
1019 tb_add_jump(last_tb, tb_exit, tb);
1022 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1024 /* Try to align the host and virtual clocks
1025 if the guest is in advance */
1026 align_clocks(sc, cpu);
1029 return ret;
1032 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1034 /* Prepare setjmp context for exception handling. */
1035 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1036 cpu_exec_longjmp_cleanup(cpu);
1039 return cpu_exec_loop(cpu, sc);
1042 int cpu_exec(CPUState *cpu)
1044 int ret;
1045 SyncClocks sc = { 0 };
1047 /* replay_interrupt may need current_cpu */
1048 current_cpu = cpu;
1050 if (cpu_handle_halt(cpu)) {
1051 return EXCP_HALTED;
1054 RCU_READ_LOCK_GUARD();
1055 cpu_exec_enter(cpu);
1058 * Calculate difference between guest clock and host clock.
1059 * This delay includes the delay of the last cycle, so
1060 * what we have to do is sleep until it is 0. As for the
1061 * advance/delay we gain here, we try to fix it next time.
1063 init_delay_params(&sc, cpu);
1065 ret = cpu_exec_setjmp(cpu, &sc);
1067 cpu_exec_exit(cpu);
1068 return ret;
1071 bool tcg_exec_realizefn(CPUState *cpu, Error **errp)
1073 static bool tcg_target_initialized;
1075 if (!tcg_target_initialized) {
1076 /* Check mandatory TCGCPUOps handlers */
1077 #ifndef CONFIG_USER_ONLY
1078 assert(cpu->cc->tcg_ops->cpu_exec_halt);
1079 assert(cpu->cc->tcg_ops->cpu_exec_interrupt);
1080 #endif /* !CONFIG_USER_ONLY */
1081 cpu->cc->tcg_ops->initialize();
1082 tcg_target_initialized = true;
1085 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1086 tlb_init(cpu);
1087 #ifndef CONFIG_USER_ONLY
1088 tcg_iommu_init_notifier_list(cpu);
1089 #endif /* !CONFIG_USER_ONLY */
1090 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1092 return true;
1095 /* undo the initializations in reverse order */
1096 void tcg_exec_unrealizefn(CPUState *cpu)
1098 #ifndef CONFIG_USER_ONLY
1099 tcg_iommu_free_notifier_list(cpu);
1100 #endif /* !CONFIG_USER_ONLY */
1102 tlb_destroy(cpu);
1103 g_free_rcu(cpu->tb_jmp_cache, rcu);