4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "migration/vmstate.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/qtest.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/option.h"
34 #include "qemu/seqlock.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/runstate.h"
37 #include "hw/core/cpu.h"
38 #include "sysemu/cpu-timers.h"
39 #include "sysemu/cpu-throttle.h"
40 #include "sysemu/cpu-timers-internal.h"
43 * ICOUNT: Instruction Counter
45 * this module is split off from cpu-timers because the icount part
46 * is TCG-specific, and does not need to be built for other accels.
48 static bool icount_sleep
= true;
49 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
50 #define MAX_ICOUNT_SHIFT 10
52 /* Do not count executed instructions */
53 ICountMode use_icount
= ICOUNT_DISABLED
;
55 static void icount_enable_precise(void)
57 /* Fixed conversion of insn to ns via "shift" option */
58 use_icount
= ICOUNT_PRECISE
;
61 static void icount_enable_adaptive(void)
63 /* Runtime adaptive algorithm to compute shift */
64 use_icount
= ICOUNT_ADAPTATIVE
;
68 * The current number of executed instructions is based on what we
69 * originally budgeted minus the current state of the decrementing
70 * icount counters in extra/u16.low.
72 static int64_t icount_get_executed(CPUState
*cpu
)
74 return (cpu
->icount_budget
-
75 (cpu
->neg
.icount_decr
.u16
.low
+ cpu
->icount_extra
));
79 * Update the global shared timer_state.qemu_icount to take into
80 * account executed instructions. This is done by the TCG vCPU
81 * thread so the main-loop can see time has moved forward.
83 static void icount_update_locked(CPUState
*cpu
)
85 int64_t executed
= icount_get_executed(cpu
);
86 cpu
->icount_budget
-= executed
;
88 qatomic_set_i64(&timers_state
.qemu_icount
,
89 timers_state
.qemu_icount
+ executed
);
93 * Update the global shared timer_state.qemu_icount to take into
94 * account executed instructions. This is done by the TCG vCPU
95 * thread so the main-loop can see time has moved forward.
97 void icount_update(CPUState
*cpu
)
99 seqlock_write_lock(&timers_state
.vm_clock_seqlock
,
100 &timers_state
.vm_clock_lock
);
101 icount_update_locked(cpu
);
102 seqlock_write_unlock(&timers_state
.vm_clock_seqlock
,
103 &timers_state
.vm_clock_lock
);
106 static int64_t icount_get_raw_locked(void)
108 CPUState
*cpu
= current_cpu
;
110 if (cpu
&& cpu
->running
) {
111 if (!cpu
->neg
.can_do_io
) {
112 error_report("Bad icount read");
115 /* Take into account what has run */
116 icount_update_locked(cpu
);
118 /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
119 return qatomic_read_i64(&timers_state
.qemu_icount
);
122 static int64_t icount_get_locked(void)
124 int64_t icount
= icount_get_raw_locked();
125 return qatomic_read_i64(&timers_state
.qemu_icount_bias
) +
126 icount_to_ns(icount
);
129 int64_t icount_get_raw(void)
135 start
= seqlock_read_begin(&timers_state
.vm_clock_seqlock
);
136 icount
= icount_get_raw_locked();
137 } while (seqlock_read_retry(&timers_state
.vm_clock_seqlock
, start
));
142 /* Return the virtual CPU time, based on the instruction counter. */
143 int64_t icount_get(void)
149 start
= seqlock_read_begin(&timers_state
.vm_clock_seqlock
);
150 icount
= icount_get_locked();
151 } while (seqlock_read_retry(&timers_state
.vm_clock_seqlock
, start
));
156 int64_t icount_to_ns(int64_t icount
)
158 return icount
<< qatomic_read(&timers_state
.icount_time_shift
);
162 * Correlation between real and virtual time is always going to be
163 * fairly approximate, so ignore small variation.
164 * When the guest is idle real and virtual time will be aligned in
167 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
169 static void icount_adjust(void)
175 /* If the VM is not running, then do nothing. */
176 if (!runstate_is_running()) {
180 seqlock_write_lock(&timers_state
.vm_clock_seqlock
,
181 &timers_state
.vm_clock_lock
);
182 cur_time
= REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT
,
183 cpu_get_clock_locked());
184 cur_icount
= icount_get_locked();
186 delta
= cur_icount
- cur_time
;
187 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
189 && timers_state
.last_delta
+ ICOUNT_WOBBLE
< delta
* 2
190 && timers_state
.icount_time_shift
> 0) {
191 /* The guest is getting too far ahead. Slow time down. */
192 qatomic_set(&timers_state
.icount_time_shift
,
193 timers_state
.icount_time_shift
- 1);
196 && timers_state
.last_delta
- ICOUNT_WOBBLE
> delta
* 2
197 && timers_state
.icount_time_shift
< MAX_ICOUNT_SHIFT
) {
198 /* The guest is getting too far behind. Speed time up. */
199 qatomic_set(&timers_state
.icount_time_shift
,
200 timers_state
.icount_time_shift
+ 1);
202 timers_state
.last_delta
= delta
;
203 qatomic_set_i64(&timers_state
.qemu_icount_bias
,
204 cur_icount
- (timers_state
.qemu_icount
205 << timers_state
.icount_time_shift
));
206 seqlock_write_unlock(&timers_state
.vm_clock_seqlock
,
207 &timers_state
.vm_clock_lock
);
210 static void icount_adjust_rt(void *opaque
)
212 timer_mod(timers_state
.icount_rt_timer
,
213 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT
) + 1000);
217 static void icount_adjust_vm(void *opaque
)
219 timer_mod(timers_state
.icount_vm_timer
,
220 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
221 NANOSECONDS_PER_SECOND
/ 10);
225 int64_t icount_round(int64_t count
)
227 int shift
= qatomic_read(&timers_state
.icount_time_shift
);
228 return (count
+ (1 << shift
) - 1) >> shift
;
231 static void icount_warp_rt(void)
237 * The icount_warp_timer is rescheduled soon after vm_clock_warp_start
238 * changes from -1 to another value, so the race here is okay.
241 seq
= seqlock_read_begin(&timers_state
.vm_clock_seqlock
);
242 warp_start
= timers_state
.vm_clock_warp_start
;
243 } while (seqlock_read_retry(&timers_state
.vm_clock_seqlock
, seq
));
245 if (warp_start
== -1) {
249 seqlock_write_lock(&timers_state
.vm_clock_seqlock
,
250 &timers_state
.vm_clock_lock
);
251 if (runstate_is_running()) {
252 int64_t clock
= REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT
,
253 cpu_get_clock_locked());
256 warp_delta
= clock
- timers_state
.vm_clock_warp_start
;
257 if (icount_enabled() == ICOUNT_ADAPTATIVE
) {
259 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too far
260 * ahead of real time (it might already be ahead so careful not
263 int64_t cur_icount
= icount_get_locked();
264 int64_t delta
= clock
- cur_icount
;
269 warp_delta
= MIN(warp_delta
, delta
);
271 qatomic_set_i64(&timers_state
.qemu_icount_bias
,
272 timers_state
.qemu_icount_bias
+ warp_delta
);
274 timers_state
.vm_clock_warp_start
= -1;
275 seqlock_write_unlock(&timers_state
.vm_clock_seqlock
,
276 &timers_state
.vm_clock_lock
);
278 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL
)) {
279 qemu_clock_notify(QEMU_CLOCK_VIRTUAL
);
283 static void icount_timer_cb(void *opaque
)
286 * No need for a checkpoint because the timer already synchronizes
287 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
292 void icount_start_warp_timer(void)
297 assert(icount_enabled());
300 * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
301 * do not fire, so computing the deadline does not make sense.
303 if (!runstate_is_running()) {
307 if (replay_mode
!= REPLAY_MODE_PLAY
) {
308 if (!all_cpu_threads_idle()) {
312 if (qtest_enabled()) {
313 /* When testing, qtest commands advance icount. */
317 replay_checkpoint(CHECKPOINT_CLOCK_WARP_START
);
319 /* warp clock deterministically in record/replay mode */
320 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START
)) {
322 * vCPU is sleeping and warp can't be started.
323 * It is probably a race condition: notification sent
324 * to vCPU was processed in advance and vCPU went to sleep.
325 * Therefore we have to wake it up for doing something.
327 if (replay_has_event()) {
328 qemu_clock_notify(QEMU_CLOCK_VIRTUAL
);
334 /* We want to use the earliest deadline from ALL vm_clocks */
335 clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT
);
336 deadline
= qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL
,
337 ~QEMU_TIMER_ATTR_EXTERNAL
);
340 warn_report_once("icount sleep disabled and no active timers");
347 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
348 * sleep. Otherwise, the CPU might be waiting for a future timer
349 * interrupt to wake it up, but the interrupt never comes because
350 * the vCPU isn't running any insns and thus doesn't advance the
351 * QEMU_CLOCK_VIRTUAL.
355 * We never let VCPUs sleep in no sleep icount mode.
356 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
357 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
358 * It is useful when we want a deterministic execution time,
359 * isolated from host latencies.
361 seqlock_write_lock(&timers_state
.vm_clock_seqlock
,
362 &timers_state
.vm_clock_lock
);
363 qatomic_set_i64(&timers_state
.qemu_icount_bias
,
364 timers_state
.qemu_icount_bias
+ deadline
);
365 seqlock_write_unlock(&timers_state
.vm_clock_seqlock
,
366 &timers_state
.vm_clock_lock
);
367 qemu_clock_notify(QEMU_CLOCK_VIRTUAL
);
370 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
371 * "real" time, (related to the time left until the next event) has
372 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
373 * This avoids that the warps are visible externally; for example,
374 * you will not be sending network packets continuously instead of
377 seqlock_write_lock(&timers_state
.vm_clock_seqlock
,
378 &timers_state
.vm_clock_lock
);
379 if (timers_state
.vm_clock_warp_start
== -1
380 || timers_state
.vm_clock_warp_start
> clock
) {
381 timers_state
.vm_clock_warp_start
= clock
;
383 seqlock_write_unlock(&timers_state
.vm_clock_seqlock
,
384 &timers_state
.vm_clock_lock
);
385 timer_mod_anticipate(timers_state
.icount_warp_timer
,
388 } else if (deadline
== 0) {
389 qemu_clock_notify(QEMU_CLOCK_VIRTUAL
);
393 void icount_account_warp_timer(void)
400 * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
401 * do not fire, so computing the deadline does not make sense.
403 if (!runstate_is_running()) {
407 replay_async_events();
409 /* warp clock deterministically in record/replay mode */
410 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT
)) {
414 timer_del(timers_state
.icount_warp_timer
);
418 bool icount_configure(QemuOpts
*opts
, Error
**errp
)
420 const char *option
= qemu_opt_get(opts
, "shift");
421 bool sleep
= qemu_opt_get_bool(opts
, "sleep", true);
422 bool align
= qemu_opt_get_bool(opts
, "align", false);
423 long time_shift
= -1;
426 if (qemu_opt_get(opts
, "align") != NULL
) {
427 error_setg(errp
, "Please specify shift option when using align");
433 if (align
&& !sleep
) {
434 error_setg(errp
, "align=on and sleep=off are incompatible");
438 if (strcmp(option
, "auto") != 0) {
439 if (qemu_strtol(option
, NULL
, 0, &time_shift
) < 0
440 || time_shift
< 0 || time_shift
> MAX_ICOUNT_SHIFT
) {
441 error_setg(errp
, "icount: Invalid shift value");
444 } else if (icount_align_option
) {
445 error_setg(errp
, "shift=auto and align=on are incompatible");
447 } else if (!icount_sleep
) {
448 error_setg(errp
, "shift=auto and sleep=off are incompatible");
452 icount_sleep
= sleep
;
454 timers_state
.icount_warp_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL_RT
,
455 icount_timer_cb
, NULL
);
458 icount_align_option
= align
;
460 if (time_shift
>= 0) {
461 timers_state
.icount_time_shift
= time_shift
;
462 icount_enable_precise();
466 icount_enable_adaptive();
469 * 125MIPS seems a reasonable initial guess at the guest speed.
470 * It will be corrected fairly quickly anyway.
472 timers_state
.icount_time_shift
= 3;
475 * Have both realtime and virtual time triggers for speed adjustment.
476 * The realtime trigger catches emulated time passing too slowly,
477 * the virtual time trigger catches emulated time passing too fast.
478 * Realtime triggers occur even when idle, so use them less frequently
481 timers_state
.vm_clock_warp_start
= -1;
482 timers_state
.icount_rt_timer
= timer_new_ms(QEMU_CLOCK_VIRTUAL_RT
,
483 icount_adjust_rt
, NULL
);
484 timer_mod(timers_state
.icount_rt_timer
,
485 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT
) + 1000);
486 timers_state
.icount_vm_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
487 icount_adjust_vm
, NULL
);
488 timer_mod(timers_state
.icount_vm_timer
,
489 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
490 NANOSECONDS_PER_SECOND
/ 10);
494 void icount_notify_exit(void)
496 assert(icount_enabled());
499 qemu_cpu_kick(current_cpu
);
500 qemu_clock_notify(QEMU_CLOCK_VIRTUAL
);