4 * Copyright Fujitsu, Corp. 2011, 2012
7 * Wen Congyang <wency@cn.fujitsu.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qemu/cutils.h"
17 #include "qemu/bswap.h"
18 #include "exec/target_page.h"
19 #include "monitor/monitor.h"
20 #include "sysemu/dump.h"
21 #include "sysemu/runstate.h"
22 #include "sysemu/cpus.h"
23 #include "qapi/error.h"
24 #include "qapi/qapi-commands-dump.h"
25 #include "qapi/qapi-events-dump.h"
26 #include "qapi/qmp/qerror.h"
27 #include "qemu/error-report.h"
28 #include "qemu/main-loop.h"
29 #include "hw/misc/vmcoreinfo.h"
30 #include "migration/blocker.h"
31 #include "hw/core/cpu.h"
33 #include "qemu/range.h"
37 #include <lzo/lzo1x.h>
42 #ifndef ELF_MACHINE_UNAME
43 #define ELF_MACHINE_UNAME "Unknown"
46 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */
48 static Error
*dump_migration_blocker
;
50 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \
51 ((DIV_ROUND_UP((hdr_size), 4) + \
52 DIV_ROUND_UP((name_size), 4) + \
53 DIV_ROUND_UP((desc_size), 4)) * 4)
55 static inline bool dump_is_64bit(DumpState
*s
)
57 return s
->dump_info
.d_class
== ELFCLASS64
;
60 static inline bool dump_has_filter(DumpState
*s
)
62 return s
->filter_area_length
> 0;
65 uint16_t cpu_to_dump16(DumpState
*s
, uint16_t val
)
67 if (s
->dump_info
.d_endian
== ELFDATA2LSB
) {
68 val
= cpu_to_le16(val
);
70 val
= cpu_to_be16(val
);
76 uint32_t cpu_to_dump32(DumpState
*s
, uint32_t val
)
78 if (s
->dump_info
.d_endian
== ELFDATA2LSB
) {
79 val
= cpu_to_le32(val
);
81 val
= cpu_to_be32(val
);
87 uint64_t cpu_to_dump64(DumpState
*s
, uint64_t val
)
89 if (s
->dump_info
.d_endian
== ELFDATA2LSB
) {
90 val
= cpu_to_le64(val
);
92 val
= cpu_to_be64(val
);
98 static int dump_cleanup(DumpState
*s
)
100 if (s
->dump_info
.arch_cleanup_fn
) {
101 s
->dump_info
.arch_cleanup_fn(s
);
104 guest_phys_blocks_free(&s
->guest_phys_blocks
);
105 memory_mapping_list_free(&s
->list
);
107 g_free(s
->guest_note
);
108 g_clear_pointer(&s
->string_table_buf
, g_array_unref
);
109 s
->guest_note
= NULL
;
119 migrate_del_blocker(&dump_migration_blocker
);
124 static int fd_write_vmcore(const void *buf
, size_t size
, void *opaque
)
126 DumpState
*s
= opaque
;
129 written_size
= qemu_write_full(s
->fd
, buf
, size
);
130 if (written_size
!= size
) {
137 static void prepare_elf64_header(DumpState
*s
, Elf64_Ehdr
*elf_header
)
140 * phnum in the elf header is 16 bit, if we have more segments we
141 * set phnum to PN_XNUM and write the real number of segments to a
144 uint16_t phnum
= MIN(s
->phdr_num
, PN_XNUM
);
146 memset(elf_header
, 0, sizeof(Elf64_Ehdr
));
147 memcpy(elf_header
, ELFMAG
, SELFMAG
);
148 elf_header
->e_ident
[EI_CLASS
] = ELFCLASS64
;
149 elf_header
->e_ident
[EI_DATA
] = s
->dump_info
.d_endian
;
150 elf_header
->e_ident
[EI_VERSION
] = EV_CURRENT
;
151 elf_header
->e_type
= cpu_to_dump16(s
, ET_CORE
);
152 elf_header
->e_machine
= cpu_to_dump16(s
, s
->dump_info
.d_machine
);
153 elf_header
->e_version
= cpu_to_dump32(s
, EV_CURRENT
);
154 elf_header
->e_ehsize
= cpu_to_dump16(s
, sizeof(elf_header
));
155 elf_header
->e_phoff
= cpu_to_dump64(s
, s
->phdr_offset
);
156 elf_header
->e_phentsize
= cpu_to_dump16(s
, sizeof(Elf64_Phdr
));
157 elf_header
->e_phnum
= cpu_to_dump16(s
, phnum
);
158 elf_header
->e_shoff
= cpu_to_dump64(s
, s
->shdr_offset
);
159 elf_header
->e_shentsize
= cpu_to_dump16(s
, sizeof(Elf64_Shdr
));
160 elf_header
->e_shnum
= cpu_to_dump16(s
, s
->shdr_num
);
161 elf_header
->e_shstrndx
= cpu_to_dump16(s
, s
->shdr_num
- 1);
164 static void prepare_elf32_header(DumpState
*s
, Elf32_Ehdr
*elf_header
)
167 * phnum in the elf header is 16 bit, if we have more segments we
168 * set phnum to PN_XNUM and write the real number of segments to a
171 uint16_t phnum
= MIN(s
->phdr_num
, PN_XNUM
);
173 memset(elf_header
, 0, sizeof(Elf32_Ehdr
));
174 memcpy(elf_header
, ELFMAG
, SELFMAG
);
175 elf_header
->e_ident
[EI_CLASS
] = ELFCLASS32
;
176 elf_header
->e_ident
[EI_DATA
] = s
->dump_info
.d_endian
;
177 elf_header
->e_ident
[EI_VERSION
] = EV_CURRENT
;
178 elf_header
->e_type
= cpu_to_dump16(s
, ET_CORE
);
179 elf_header
->e_machine
= cpu_to_dump16(s
, s
->dump_info
.d_machine
);
180 elf_header
->e_version
= cpu_to_dump32(s
, EV_CURRENT
);
181 elf_header
->e_ehsize
= cpu_to_dump16(s
, sizeof(elf_header
));
182 elf_header
->e_phoff
= cpu_to_dump32(s
, s
->phdr_offset
);
183 elf_header
->e_phentsize
= cpu_to_dump16(s
, sizeof(Elf32_Phdr
));
184 elf_header
->e_phnum
= cpu_to_dump16(s
, phnum
);
185 elf_header
->e_shoff
= cpu_to_dump32(s
, s
->shdr_offset
);
186 elf_header
->e_shentsize
= cpu_to_dump16(s
, sizeof(Elf32_Shdr
));
187 elf_header
->e_shnum
= cpu_to_dump16(s
, s
->shdr_num
);
188 elf_header
->e_shstrndx
= cpu_to_dump16(s
, s
->shdr_num
- 1);
191 static void write_elf_header(DumpState
*s
, Error
**errp
)
193 Elf32_Ehdr elf32_header
;
194 Elf64_Ehdr elf64_header
;
199 /* The NULL header and the shstrtab are always defined */
200 assert(s
->shdr_num
>= 2);
201 if (dump_is_64bit(s
)) {
202 prepare_elf64_header(s
, &elf64_header
);
203 header_size
= sizeof(elf64_header
);
204 header_ptr
= &elf64_header
;
206 prepare_elf32_header(s
, &elf32_header
);
207 header_size
= sizeof(elf32_header
);
208 header_ptr
= &elf32_header
;
211 ret
= fd_write_vmcore(header_ptr
, header_size
, s
);
213 error_setg_errno(errp
, -ret
, "dump: failed to write elf header");
217 static void write_elf64_load(DumpState
*s
, MemoryMapping
*memory_mapping
,
218 int phdr_index
, hwaddr offset
,
219 hwaddr filesz
, Error
**errp
)
224 memset(&phdr
, 0, sizeof(Elf64_Phdr
));
225 phdr
.p_type
= cpu_to_dump32(s
, PT_LOAD
);
226 phdr
.p_offset
= cpu_to_dump64(s
, offset
);
227 phdr
.p_paddr
= cpu_to_dump64(s
, memory_mapping
->phys_addr
);
228 phdr
.p_filesz
= cpu_to_dump64(s
, filesz
);
229 phdr
.p_memsz
= cpu_to_dump64(s
, memory_mapping
->length
);
230 phdr
.p_vaddr
= cpu_to_dump64(s
, memory_mapping
->virt_addr
) ?: phdr
.p_paddr
;
232 assert(memory_mapping
->length
>= filesz
);
234 ret
= fd_write_vmcore(&phdr
, sizeof(Elf64_Phdr
), s
);
236 error_setg_errno(errp
, -ret
,
237 "dump: failed to write program header table");
241 static void write_elf32_load(DumpState
*s
, MemoryMapping
*memory_mapping
,
242 int phdr_index
, hwaddr offset
,
243 hwaddr filesz
, Error
**errp
)
248 memset(&phdr
, 0, sizeof(Elf32_Phdr
));
249 phdr
.p_type
= cpu_to_dump32(s
, PT_LOAD
);
250 phdr
.p_offset
= cpu_to_dump32(s
, offset
);
251 phdr
.p_paddr
= cpu_to_dump32(s
, memory_mapping
->phys_addr
);
252 phdr
.p_filesz
= cpu_to_dump32(s
, filesz
);
253 phdr
.p_memsz
= cpu_to_dump32(s
, memory_mapping
->length
);
255 cpu_to_dump32(s
, memory_mapping
->virt_addr
) ?: phdr
.p_paddr
;
257 assert(memory_mapping
->length
>= filesz
);
259 ret
= fd_write_vmcore(&phdr
, sizeof(Elf32_Phdr
), s
);
261 error_setg_errno(errp
, -ret
,
262 "dump: failed to write program header table");
266 static void prepare_elf64_phdr_note(DumpState
*s
, Elf64_Phdr
*phdr
)
268 memset(phdr
, 0, sizeof(*phdr
));
269 phdr
->p_type
= cpu_to_dump32(s
, PT_NOTE
);
270 phdr
->p_offset
= cpu_to_dump64(s
, s
->note_offset
);
272 phdr
->p_filesz
= cpu_to_dump64(s
, s
->note_size
);
273 phdr
->p_memsz
= cpu_to_dump64(s
, s
->note_size
);
277 static inline int cpu_index(CPUState
*cpu
)
279 return cpu
->cpu_index
+ 1;
282 static void write_guest_note(WriteCoreDumpFunction f
, DumpState
*s
,
288 ret
= f(s
->guest_note
, s
->guest_note_size
, s
);
290 error_setg(errp
, "dump: failed to write guest note");
295 static void write_elf64_notes(WriteCoreDumpFunction f
, DumpState
*s
,
304 ret
= cpu_write_elf64_note(f
, cpu
, id
, s
);
306 error_setg(errp
, "dump: failed to write elf notes");
312 ret
= cpu_write_elf64_qemunote(f
, cpu
, s
);
314 error_setg(errp
, "dump: failed to write CPU status");
319 write_guest_note(f
, s
, errp
);
322 static void prepare_elf32_phdr_note(DumpState
*s
, Elf32_Phdr
*phdr
)
324 memset(phdr
, 0, sizeof(*phdr
));
325 phdr
->p_type
= cpu_to_dump32(s
, PT_NOTE
);
326 phdr
->p_offset
= cpu_to_dump32(s
, s
->note_offset
);
328 phdr
->p_filesz
= cpu_to_dump32(s
, s
->note_size
);
329 phdr
->p_memsz
= cpu_to_dump32(s
, s
->note_size
);
333 static void write_elf32_notes(WriteCoreDumpFunction f
, DumpState
*s
,
342 ret
= cpu_write_elf32_note(f
, cpu
, id
, s
);
344 error_setg(errp
, "dump: failed to write elf notes");
350 ret
= cpu_write_elf32_qemunote(f
, cpu
, s
);
352 error_setg(errp
, "dump: failed to write CPU status");
357 write_guest_note(f
, s
, errp
);
360 static void write_elf_phdr_note(DumpState
*s
, Error
**errp
)
368 if (dump_is_64bit(s
)) {
369 prepare_elf64_phdr_note(s
, &phdr64
);
370 size
= sizeof(phdr64
);
373 prepare_elf32_phdr_note(s
, &phdr32
);
374 size
= sizeof(phdr32
);
378 ret
= fd_write_vmcore(phdr
, size
, s
);
380 error_setg_errno(errp
, -ret
,
381 "dump: failed to write program header table");
385 static void prepare_elf_section_hdr_zero(DumpState
*s
)
387 if (dump_is_64bit(s
)) {
388 Elf64_Shdr
*shdr64
= s
->elf_section_hdrs
;
390 shdr64
->sh_info
= cpu_to_dump32(s
, s
->phdr_num
);
392 Elf32_Shdr
*shdr32
= s
->elf_section_hdrs
;
394 shdr32
->sh_info
= cpu_to_dump32(s
, s
->phdr_num
);
398 static void prepare_elf_section_hdr_string(DumpState
*s
, void *buff
)
400 uint64_t index
= s
->string_table_buf
->len
;
401 const char strtab
[] = ".shstrtab";
402 Elf32_Shdr shdr32
= {};
403 Elf64_Shdr shdr64
= {};
407 g_array_append_vals(s
->string_table_buf
, strtab
, sizeof(strtab
));
408 if (dump_is_64bit(s
)) {
409 shdr_size
= sizeof(Elf64_Shdr
);
410 shdr64
.sh_type
= SHT_STRTAB
;
411 shdr64
.sh_offset
= s
->section_offset
+ s
->elf_section_data_size
;
412 shdr64
.sh_name
= index
;
413 shdr64
.sh_size
= s
->string_table_buf
->len
;
416 shdr_size
= sizeof(Elf32_Shdr
);
417 shdr32
.sh_type
= SHT_STRTAB
;
418 shdr32
.sh_offset
= s
->section_offset
+ s
->elf_section_data_size
;
419 shdr32
.sh_name
= index
;
420 shdr32
.sh_size
= s
->string_table_buf
->len
;
423 memcpy(buff
, shdr
, shdr_size
);
426 static bool prepare_elf_section_hdrs(DumpState
*s
, Error
**errp
)
428 size_t len
, sizeof_shdr
;
434 * - Arch section hdrs
437 sizeof_shdr
= dump_is_64bit(s
) ? sizeof(Elf64_Shdr
) : sizeof(Elf32_Shdr
);
438 len
= sizeof_shdr
* s
->shdr_num
;
439 s
->elf_section_hdrs
= g_malloc0(len
);
440 buff_hdr
= s
->elf_section_hdrs
;
443 * The first section header is ALWAYS a special initial section
446 * The header should be 0 with one exception being that if
447 * phdr_num is PN_XNUM then the sh_info field contains the real
448 * number of segment entries.
450 * As we zero allocate the buffer we will only need to modify
451 * sh_info for the PN_XNUM case.
453 if (s
->phdr_num
>= PN_XNUM
) {
454 prepare_elf_section_hdr_zero(s
);
456 buff_hdr
+= sizeof_shdr
;
458 /* Add architecture defined section headers */
459 if (s
->dump_info
.arch_sections_write_hdr_fn
460 && s
->shdr_num
> 2) {
461 buff_hdr
+= s
->dump_info
.arch_sections_write_hdr_fn(s
, buff_hdr
);
463 if (s
->shdr_num
>= SHN_LORESERVE
) {
464 error_setg_errno(errp
, EINVAL
,
465 "dump: too many architecture defined sections");
471 * String table is the last section since strings are added via
472 * arch_sections_write_hdr().
474 prepare_elf_section_hdr_string(s
, buff_hdr
);
478 static void write_elf_section_headers(DumpState
*s
, Error
**errp
)
480 size_t sizeof_shdr
= dump_is_64bit(s
) ? sizeof(Elf64_Shdr
) : sizeof(Elf32_Shdr
);
483 if (!prepare_elf_section_hdrs(s
, errp
)) {
487 ret
= fd_write_vmcore(s
->elf_section_hdrs
, s
->shdr_num
* sizeof_shdr
, s
);
489 error_setg_errno(errp
, -ret
, "dump: failed to write section headers");
492 g_free(s
->elf_section_hdrs
);
495 static void write_elf_sections(DumpState
*s
, Error
**errp
)
499 if (s
->elf_section_data_size
) {
500 /* Write architecture section data */
501 ret
= fd_write_vmcore(s
->elf_section_data
,
502 s
->elf_section_data_size
, s
);
504 error_setg_errno(errp
, -ret
,
505 "dump: failed to write architecture section data");
510 /* Write string table */
511 ret
= fd_write_vmcore(s
->string_table_buf
->data
,
512 s
->string_table_buf
->len
, s
);
514 error_setg_errno(errp
, -ret
, "dump: failed to write string table data");
518 static void write_data(DumpState
*s
, void *buf
, int length
, Error
**errp
)
522 ret
= fd_write_vmcore(buf
, length
, s
);
524 error_setg_errno(errp
, -ret
, "dump: failed to save memory");
526 s
->written_size
+= length
;
530 /* write the memory to vmcore. 1 page per I/O. */
531 static void write_memory(DumpState
*s
, GuestPhysBlock
*block
, ram_addr_t start
,
532 int64_t size
, Error
**errp
)
537 for (i
= 0; i
< size
/ s
->dump_info
.page_size
; i
++) {
538 write_data(s
, block
->host_addr
+ start
+ i
* s
->dump_info
.page_size
,
539 s
->dump_info
.page_size
, errp
);
545 if ((size
% s
->dump_info
.page_size
) != 0) {
546 write_data(s
, block
->host_addr
+ start
+ i
* s
->dump_info
.page_size
,
547 size
% s
->dump_info
.page_size
, errp
);
554 /* get the memory's offset and size in the vmcore */
555 static void get_offset_range(hwaddr phys_addr
,
556 ram_addr_t mapping_length
,
561 GuestPhysBlock
*block
;
562 hwaddr offset
= s
->memory_offset
;
563 int64_t size_in_block
, start
;
565 /* When the memory is not stored into vmcore, offset will be -1 */
569 if (dump_has_filter(s
)) {
570 if (phys_addr
< s
->filter_area_begin
||
571 phys_addr
>= s
->filter_area_begin
+ s
->filter_area_length
) {
576 QTAILQ_FOREACH(block
, &s
->guest_phys_blocks
.head
, next
) {
577 if (dump_has_filter(s
)) {
578 if (!ranges_overlap(block
->target_start
,
579 block
->target_end
- block
->target_start
,
580 s
->filter_area_begin
,
581 s
->filter_area_length
)) {
582 /* This block is out of the range */
586 if (s
->filter_area_begin
<= block
->target_start
) {
587 start
= block
->target_start
;
589 start
= s
->filter_area_begin
;
592 size_in_block
= block
->target_end
- start
;
593 if (s
->filter_area_begin
+ s
->filter_area_length
< block
->target_end
) {
594 size_in_block
-= block
->target_end
- (s
->filter_area_begin
+ s
->filter_area_length
);
597 start
= block
->target_start
;
598 size_in_block
= block
->target_end
- block
->target_start
;
601 if (phys_addr
>= start
&& phys_addr
< start
+ size_in_block
) {
602 *p_offset
= phys_addr
- start
+ offset
;
604 /* The offset range mapped from the vmcore file must not spill over
605 * the GuestPhysBlock, clamp it. The rest of the mapping will be
606 * zero-filled in memory at load time; see
607 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
609 *p_filesz
= phys_addr
+ mapping_length
<= start
+ size_in_block
?
611 size_in_block
- (phys_addr
- start
);
615 offset
+= size_in_block
;
619 static void write_elf_phdr_loads(DumpState
*s
, Error
**errp
)
622 hwaddr offset
, filesz
;
623 MemoryMapping
*memory_mapping
;
624 uint32_t phdr_index
= 1;
626 QTAILQ_FOREACH(memory_mapping
, &s
->list
.head
, next
) {
627 get_offset_range(memory_mapping
->phys_addr
,
628 memory_mapping
->length
,
629 s
, &offset
, &filesz
);
630 if (dump_is_64bit(s
)) {
631 write_elf64_load(s
, memory_mapping
, phdr_index
++, offset
,
634 write_elf32_load(s
, memory_mapping
, phdr_index
++, offset
,
642 if (phdr_index
>= s
->phdr_num
) {
648 static void write_elf_notes(DumpState
*s
, Error
**errp
)
650 if (dump_is_64bit(s
)) {
651 write_elf64_notes(fd_write_vmcore
, s
, errp
);
653 write_elf32_notes(fd_write_vmcore
, s
, errp
);
657 /* write elf header, PT_NOTE and elf note to vmcore. */
658 static void dump_begin(DumpState
*s
, Error
**errp
)
663 * the vmcore's format is:
682 * we only know where the memory is saved after we write elf note into
686 /* write elf header to vmcore */
687 write_elf_header(s
, errp
);
692 /* write section headers to vmcore */
693 write_elf_section_headers(s
, errp
);
698 /* write PT_NOTE to vmcore */
699 write_elf_phdr_note(s
, errp
);
704 /* write all PT_LOADs to vmcore */
705 write_elf_phdr_loads(s
, errp
);
710 /* write notes to vmcore */
711 write_elf_notes(s
, errp
);
714 int64_t dump_filtered_memblock_size(GuestPhysBlock
*block
,
715 int64_t filter_area_start
,
716 int64_t filter_area_length
)
718 int64_t size
, left
, right
;
720 /* No filter, return full size */
721 if (!filter_area_length
) {
722 return block
->target_end
- block
->target_start
;
725 /* calculate the overlapped region. */
726 left
= MAX(filter_area_start
, block
->target_start
);
727 right
= MIN(filter_area_start
+ filter_area_length
, block
->target_end
);
729 size
= size
> 0 ? size
: 0;
734 int64_t dump_filtered_memblock_start(GuestPhysBlock
*block
,
735 int64_t filter_area_start
,
736 int64_t filter_area_length
)
738 if (filter_area_length
) {
739 /* return -1 if the block is not within filter area */
740 if (!ranges_overlap(block
->target_start
,
741 block
->target_end
- block
->target_start
,
742 filter_area_start
, filter_area_length
)) {
746 if (filter_area_start
> block
->target_start
) {
747 return filter_area_start
- block
->target_start
;
754 /* write all memory to vmcore */
755 static void dump_iterate(DumpState
*s
, Error
**errp
)
758 GuestPhysBlock
*block
;
759 int64_t memblock_size
, memblock_start
;
761 QTAILQ_FOREACH(block
, &s
->guest_phys_blocks
.head
, next
) {
762 memblock_start
= dump_filtered_memblock_start(block
, s
->filter_area_begin
, s
->filter_area_length
);
763 if (memblock_start
== -1) {
767 memblock_size
= dump_filtered_memblock_size(block
, s
->filter_area_begin
, s
->filter_area_length
);
769 /* Write the memory to file */
770 write_memory(s
, block
, memblock_start
, memblock_size
, errp
);
777 static void dump_end(DumpState
*s
, Error
**errp
)
781 if (s
->elf_section_data_size
) {
782 s
->elf_section_data
= g_malloc0(s
->elf_section_data_size
);
785 /* Adds the architecture defined section data to s->elf_section_data */
786 if (s
->dump_info
.arch_sections_write_fn
&&
787 s
->elf_section_data_size
) {
788 rc
= s
->dump_info
.arch_sections_write_fn(s
, s
->elf_section_data
);
790 error_setg_errno(errp
, rc
,
791 "dump: failed to get arch section data");
792 g_free(s
->elf_section_data
);
797 /* write sections to vmcore */
798 write_elf_sections(s
, errp
);
801 static void create_vmcore(DumpState
*s
, Error
**errp
)
810 /* Iterate over memory and dump it to file */
811 dump_iterate(s
, errp
);
816 /* Write the section data */
820 static int write_start_flat_header(DumpState
*s
)
822 MakedumpfileHeader
*mh
;
829 QEMU_BUILD_BUG_ON(sizeof *mh
> MAX_SIZE_MDF_HEADER
);
830 mh
= g_malloc0(MAX_SIZE_MDF_HEADER
);
832 memcpy(mh
->signature
, MAKEDUMPFILE_SIGNATURE
,
833 MIN(sizeof mh
->signature
, sizeof MAKEDUMPFILE_SIGNATURE
));
835 mh
->type
= cpu_to_be64(TYPE_FLAT_HEADER
);
836 mh
->version
= cpu_to_be64(VERSION_FLAT_HEADER
);
839 written_size
= qemu_write_full(s
->fd
, mh
, MAX_SIZE_MDF_HEADER
);
840 if (written_size
!= MAX_SIZE_MDF_HEADER
) {
848 static int write_end_flat_header(DumpState
*s
)
850 MakedumpfileDataHeader mdh
;
856 mdh
.offset
= END_FLAG_FLAT_HEADER
;
857 mdh
.buf_size
= END_FLAG_FLAT_HEADER
;
860 written_size
= qemu_write_full(s
->fd
, &mdh
, sizeof(mdh
));
861 if (written_size
!= sizeof(mdh
)) {
868 static int write_buffer(DumpState
*s
, off_t offset
, const void *buf
, size_t size
)
871 MakedumpfileDataHeader mdh
;
875 seek_loc
= lseek(s
->fd
, offset
, SEEK_SET
);
876 if (seek_loc
== (off_t
) -1) {
880 mdh
.offset
= cpu_to_be64(offset
);
881 mdh
.buf_size
= cpu_to_be64(size
);
883 written_size
= qemu_write_full(s
->fd
, &mdh
, sizeof(mdh
));
884 if (written_size
!= sizeof(mdh
)) {
889 written_size
= qemu_write_full(s
->fd
, buf
, size
);
890 if (written_size
!= size
) {
897 static int buf_write_note(const void *buf
, size_t size
, void *opaque
)
899 DumpState
*s
= opaque
;
901 /* note_buf is not enough */
902 if (s
->note_buf_offset
+ size
> s
->note_size
) {
906 memcpy(s
->note_buf
+ s
->note_buf_offset
, buf
, size
);
908 s
->note_buf_offset
+= size
;
914 * This function retrieves various sizes from an elf header.
916 * @note has to be a valid ELF note. The return sizes are unmodified
917 * (not padded or rounded up to be multiple of 4).
919 static void get_note_sizes(DumpState
*s
, const void *note
,
920 uint64_t *note_head_size
,
924 uint64_t note_head_sz
;
928 if (dump_is_64bit(s
)) {
929 const Elf64_Nhdr
*hdr
= note
;
930 note_head_sz
= sizeof(Elf64_Nhdr
);
931 name_sz
= cpu_to_dump64(s
, hdr
->n_namesz
);
932 desc_sz
= cpu_to_dump64(s
, hdr
->n_descsz
);
934 const Elf32_Nhdr
*hdr
= note
;
935 note_head_sz
= sizeof(Elf32_Nhdr
);
936 name_sz
= cpu_to_dump32(s
, hdr
->n_namesz
);
937 desc_sz
= cpu_to_dump32(s
, hdr
->n_descsz
);
940 if (note_head_size
) {
941 *note_head_size
= note_head_sz
;
944 *name_size
= name_sz
;
947 *desc_size
= desc_sz
;
951 static bool note_name_equal(DumpState
*s
,
952 const uint8_t *note
, const char *name
)
954 int len
= strlen(name
) + 1;
955 uint64_t head_size
, name_size
;
957 get_note_sizes(s
, note
, &head_size
, &name_size
, NULL
);
958 head_size
= ROUND_UP(head_size
, 4);
960 return name_size
== len
&& memcmp(note
+ head_size
, name
, len
) == 0;
963 /* write common header, sub header and elf note to vmcore */
964 static void create_header32(DumpState
*s
, Error
**errp
)
967 DiskDumpHeader32
*dh
= NULL
;
968 KdumpSubHeader32
*kh
= NULL
;
971 uint32_t sub_hdr_size
;
972 uint32_t bitmap_blocks
;
974 uint64_t offset_note
;
976 /* write common header, the version of kdump-compressed format is 6th */
977 size
= sizeof(DiskDumpHeader32
);
978 dh
= g_malloc0(size
);
980 memcpy(dh
->signature
, KDUMP_SIGNATURE
, SIG_LEN
);
981 dh
->header_version
= cpu_to_dump32(s
, 6);
982 block_size
= s
->dump_info
.page_size
;
983 dh
->block_size
= cpu_to_dump32(s
, block_size
);
984 sub_hdr_size
= sizeof(struct KdumpSubHeader32
) + s
->note_size
;
985 sub_hdr_size
= DIV_ROUND_UP(sub_hdr_size
, block_size
);
986 dh
->sub_hdr_size
= cpu_to_dump32(s
, sub_hdr_size
);
987 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
988 dh
->max_mapnr
= cpu_to_dump32(s
, MIN(s
->max_mapnr
, UINT_MAX
));
989 dh
->nr_cpus
= cpu_to_dump32(s
, s
->nr_cpus
);
990 bitmap_blocks
= DIV_ROUND_UP(s
->len_dump_bitmap
, block_size
) * 2;
991 dh
->bitmap_blocks
= cpu_to_dump32(s
, bitmap_blocks
);
992 strncpy(dh
->utsname
.machine
, ELF_MACHINE_UNAME
, sizeof(dh
->utsname
.machine
));
994 if (s
->flag_compress
& DUMP_DH_COMPRESSED_ZLIB
) {
995 status
|= DUMP_DH_COMPRESSED_ZLIB
;
998 if (s
->flag_compress
& DUMP_DH_COMPRESSED_LZO
) {
999 status
|= DUMP_DH_COMPRESSED_LZO
;
1002 #ifdef CONFIG_SNAPPY
1003 if (s
->flag_compress
& DUMP_DH_COMPRESSED_SNAPPY
) {
1004 status
|= DUMP_DH_COMPRESSED_SNAPPY
;
1007 dh
->status
= cpu_to_dump32(s
, status
);
1009 if (write_buffer(s
, 0, dh
, size
) < 0) {
1010 error_setg(errp
, "dump: failed to write disk dump header");
1014 /* write sub header */
1015 size
= sizeof(KdumpSubHeader32
);
1016 kh
= g_malloc0(size
);
1018 /* 64bit max_mapnr_64 */
1019 kh
->max_mapnr_64
= cpu_to_dump64(s
, s
->max_mapnr
);
1020 kh
->phys_base
= cpu_to_dump32(s
, s
->dump_info
.phys_base
);
1021 kh
->dump_level
= cpu_to_dump32(s
, DUMP_LEVEL
);
1023 offset_note
= DISKDUMP_HEADER_BLOCKS
* block_size
+ size
;
1024 if (s
->guest_note
&&
1025 note_name_equal(s
, s
->guest_note
, "VMCOREINFO")) {
1026 uint64_t hsize
, name_size
, size_vmcoreinfo_desc
, offset_vmcoreinfo
;
1028 get_note_sizes(s
, s
->guest_note
,
1029 &hsize
, &name_size
, &size_vmcoreinfo_desc
);
1030 offset_vmcoreinfo
= offset_note
+ s
->note_size
- s
->guest_note_size
+
1031 (DIV_ROUND_UP(hsize
, 4) + DIV_ROUND_UP(name_size
, 4)) * 4;
1032 kh
->offset_vmcoreinfo
= cpu_to_dump64(s
, offset_vmcoreinfo
);
1033 kh
->size_vmcoreinfo
= cpu_to_dump32(s
, size_vmcoreinfo_desc
);
1036 kh
->offset_note
= cpu_to_dump64(s
, offset_note
);
1037 kh
->note_size
= cpu_to_dump32(s
, s
->note_size
);
1039 if (write_buffer(s
, DISKDUMP_HEADER_BLOCKS
*
1040 block_size
, kh
, size
) < 0) {
1041 error_setg(errp
, "dump: failed to write kdump sub header");
1046 s
->note_buf
= g_malloc0(s
->note_size
);
1047 s
->note_buf_offset
= 0;
1049 /* use s->note_buf to store notes temporarily */
1050 write_elf32_notes(buf_write_note
, s
, errp
);
1054 if (write_buffer(s
, offset_note
, s
->note_buf
,
1055 s
->note_size
) < 0) {
1056 error_setg(errp
, "dump: failed to write notes");
1060 /* get offset of dump_bitmap */
1061 s
->offset_dump_bitmap
= (DISKDUMP_HEADER_BLOCKS
+ sub_hdr_size
) *
1064 /* get offset of page */
1065 s
->offset_page
= (DISKDUMP_HEADER_BLOCKS
+ sub_hdr_size
+ bitmap_blocks
) *
1071 g_free(s
->note_buf
);
1074 /* write common header, sub header and elf note to vmcore */
1075 static void create_header64(DumpState
*s
, Error
**errp
)
1078 DiskDumpHeader64
*dh
= NULL
;
1079 KdumpSubHeader64
*kh
= NULL
;
1081 uint32_t block_size
;
1082 uint32_t sub_hdr_size
;
1083 uint32_t bitmap_blocks
;
1084 uint32_t status
= 0;
1085 uint64_t offset_note
;
1087 /* write common header, the version of kdump-compressed format is 6th */
1088 size
= sizeof(DiskDumpHeader64
);
1089 dh
= g_malloc0(size
);
1091 memcpy(dh
->signature
, KDUMP_SIGNATURE
, SIG_LEN
);
1092 dh
->header_version
= cpu_to_dump32(s
, 6);
1093 block_size
= s
->dump_info
.page_size
;
1094 dh
->block_size
= cpu_to_dump32(s
, block_size
);
1095 sub_hdr_size
= sizeof(struct KdumpSubHeader64
) + s
->note_size
;
1096 sub_hdr_size
= DIV_ROUND_UP(sub_hdr_size
, block_size
);
1097 dh
->sub_hdr_size
= cpu_to_dump32(s
, sub_hdr_size
);
1098 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
1099 dh
->max_mapnr
= cpu_to_dump32(s
, MIN(s
->max_mapnr
, UINT_MAX
));
1100 dh
->nr_cpus
= cpu_to_dump32(s
, s
->nr_cpus
);
1101 bitmap_blocks
= DIV_ROUND_UP(s
->len_dump_bitmap
, block_size
) * 2;
1102 dh
->bitmap_blocks
= cpu_to_dump32(s
, bitmap_blocks
);
1103 strncpy(dh
->utsname
.machine
, ELF_MACHINE_UNAME
, sizeof(dh
->utsname
.machine
));
1105 if (s
->flag_compress
& DUMP_DH_COMPRESSED_ZLIB
) {
1106 status
|= DUMP_DH_COMPRESSED_ZLIB
;
1109 if (s
->flag_compress
& DUMP_DH_COMPRESSED_LZO
) {
1110 status
|= DUMP_DH_COMPRESSED_LZO
;
1113 #ifdef CONFIG_SNAPPY
1114 if (s
->flag_compress
& DUMP_DH_COMPRESSED_SNAPPY
) {
1115 status
|= DUMP_DH_COMPRESSED_SNAPPY
;
1118 dh
->status
= cpu_to_dump32(s
, status
);
1120 if (write_buffer(s
, 0, dh
, size
) < 0) {
1121 error_setg(errp
, "dump: failed to write disk dump header");
1125 /* write sub header */
1126 size
= sizeof(KdumpSubHeader64
);
1127 kh
= g_malloc0(size
);
1129 /* 64bit max_mapnr_64 */
1130 kh
->max_mapnr_64
= cpu_to_dump64(s
, s
->max_mapnr
);
1131 kh
->phys_base
= cpu_to_dump64(s
, s
->dump_info
.phys_base
);
1132 kh
->dump_level
= cpu_to_dump32(s
, DUMP_LEVEL
);
1134 offset_note
= DISKDUMP_HEADER_BLOCKS
* block_size
+ size
;
1135 if (s
->guest_note
&&
1136 note_name_equal(s
, s
->guest_note
, "VMCOREINFO")) {
1137 uint64_t hsize
, name_size
, size_vmcoreinfo_desc
, offset_vmcoreinfo
;
1139 get_note_sizes(s
, s
->guest_note
,
1140 &hsize
, &name_size
, &size_vmcoreinfo_desc
);
1141 offset_vmcoreinfo
= offset_note
+ s
->note_size
- s
->guest_note_size
+
1142 (DIV_ROUND_UP(hsize
, 4) + DIV_ROUND_UP(name_size
, 4)) * 4;
1143 kh
->offset_vmcoreinfo
= cpu_to_dump64(s
, offset_vmcoreinfo
);
1144 kh
->size_vmcoreinfo
= cpu_to_dump64(s
, size_vmcoreinfo_desc
);
1147 kh
->offset_note
= cpu_to_dump64(s
, offset_note
);
1148 kh
->note_size
= cpu_to_dump64(s
, s
->note_size
);
1150 if (write_buffer(s
, DISKDUMP_HEADER_BLOCKS
*
1151 block_size
, kh
, size
) < 0) {
1152 error_setg(errp
, "dump: failed to write kdump sub header");
1157 s
->note_buf
= g_malloc0(s
->note_size
);
1158 s
->note_buf_offset
= 0;
1160 /* use s->note_buf to store notes temporarily */
1161 write_elf64_notes(buf_write_note
, s
, errp
);
1166 if (write_buffer(s
, offset_note
, s
->note_buf
,
1167 s
->note_size
) < 0) {
1168 error_setg(errp
, "dump: failed to write notes");
1172 /* get offset of dump_bitmap */
1173 s
->offset_dump_bitmap
= (DISKDUMP_HEADER_BLOCKS
+ sub_hdr_size
) *
1176 /* get offset of page */
1177 s
->offset_page
= (DISKDUMP_HEADER_BLOCKS
+ sub_hdr_size
+ bitmap_blocks
) *
1183 g_free(s
->note_buf
);
1186 static void write_dump_header(DumpState
*s
, Error
**errp
)
1188 if (dump_is_64bit(s
)) {
1189 create_header64(s
, errp
);
1191 create_header32(s
, errp
);
1195 static size_t dump_bitmap_get_bufsize(DumpState
*s
)
1197 return s
->dump_info
.page_size
;
1201 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1202 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1203 * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1204 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1205 * vmcore, ie. synchronizing un-sync bit into vmcore.
1207 static int set_dump_bitmap(uint64_t last_pfn
, uint64_t pfn
, bool value
,
1208 uint8_t *buf
, DumpState
*s
)
1210 off_t old_offset
, new_offset
;
1211 off_t offset_bitmap1
, offset_bitmap2
;
1213 size_t bitmap_bufsize
= dump_bitmap_get_bufsize(s
);
1214 size_t bits_per_buf
= bitmap_bufsize
* CHAR_BIT
;
1216 /* should not set the previous place */
1217 assert(last_pfn
<= pfn
);
1220 * if the bit needed to be set is not cached in buf, flush the data in buf
1221 * to vmcore firstly.
1222 * making new_offset be bigger than old_offset can also sync remained data
1225 old_offset
= bitmap_bufsize
* (last_pfn
/ bits_per_buf
);
1226 new_offset
= bitmap_bufsize
* (pfn
/ bits_per_buf
);
1228 while (old_offset
< new_offset
) {
1229 /* calculate the offset and write dump_bitmap */
1230 offset_bitmap1
= s
->offset_dump_bitmap
+ old_offset
;
1231 if (write_buffer(s
, offset_bitmap1
, buf
,
1232 bitmap_bufsize
) < 0) {
1236 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1237 offset_bitmap2
= s
->offset_dump_bitmap
+ s
->len_dump_bitmap
+
1239 if (write_buffer(s
, offset_bitmap2
, buf
,
1240 bitmap_bufsize
) < 0) {
1244 memset(buf
, 0, bitmap_bufsize
);
1245 old_offset
+= bitmap_bufsize
;
1248 /* get the exact place of the bit in the buf, and set it */
1249 byte
= (pfn
% bits_per_buf
) / CHAR_BIT
;
1250 bit
= (pfn
% bits_per_buf
) % CHAR_BIT
;
1252 buf
[byte
] |= 1u << bit
;
1254 buf
[byte
] &= ~(1u << bit
);
1260 static uint64_t dump_paddr_to_pfn(DumpState
*s
, uint64_t addr
)
1262 int target_page_shift
= ctz32(s
->dump_info
.page_size
);
1264 return (addr
>> target_page_shift
) - ARCH_PFN_OFFSET
;
1267 static uint64_t dump_pfn_to_paddr(DumpState
*s
, uint64_t pfn
)
1269 int target_page_shift
= ctz32(s
->dump_info
.page_size
);
1271 return (pfn
+ ARCH_PFN_OFFSET
) << target_page_shift
;
1275 * Return the page frame number and the page content in *bufptr. bufptr can be
1276 * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated
1277 * memory. This is not necessarily the memory returned.
1279 static bool get_next_page(GuestPhysBlock
**blockptr
, uint64_t *pfnptr
,
1280 uint8_t **bufptr
, DumpState
*s
)
1282 GuestPhysBlock
*block
= *blockptr
;
1283 uint32_t page_size
= s
->dump_info
.page_size
;
1284 uint8_t *buf
= NULL
, *hbuf
;
1287 /* block == NULL means the start of the iteration */
1289 block
= QTAILQ_FIRST(&s
->guest_phys_blocks
.head
);
1291 addr
= block
->target_start
;
1292 *pfnptr
= dump_paddr_to_pfn(s
, addr
);
1295 addr
= dump_pfn_to_paddr(s
, *pfnptr
);
1297 assert(block
!= NULL
);
1300 if (addr
>= block
->target_start
&& addr
< block
->target_end
) {
1301 size_t n
= MIN(block
->target_end
- addr
, page_size
- addr
% page_size
);
1302 hbuf
= block
->host_addr
+ (addr
- block
->target_start
);
1304 if (n
== page_size
) {
1305 /* this is a whole target page, go for it */
1306 assert(addr
% page_size
== 0);
1309 } else if (bufptr
) {
1312 memset(buf
, 0, page_size
);
1318 memcpy(buf
+ addr
% page_size
, hbuf
, n
);
1320 if (addr
% page_size
== 0 || addr
>= block
->target_end
) {
1321 /* we filled up the page or the current block is finished */
1325 /* the next page is in the next block */
1326 *blockptr
= block
= QTAILQ_NEXT(block
, next
);
1331 addr
= block
->target_start
;
1332 /* are we still in the same page? */
1333 if (dump_paddr_to_pfn(s
, addr
) != *pfnptr
) {
1335 /* no, but we already filled something earlier, return it */
1338 /* else continue from there */
1339 *pfnptr
= dump_paddr_to_pfn(s
, addr
);
1352 static void write_dump_bitmap(DumpState
*s
, Error
**errp
)
1355 uint64_t last_pfn
, pfn
;
1356 void *dump_bitmap_buf
;
1357 size_t num_dumpable
;
1358 GuestPhysBlock
*block_iter
= NULL
;
1359 size_t bitmap_bufsize
= dump_bitmap_get_bufsize(s
);
1360 size_t bits_per_buf
= bitmap_bufsize
* CHAR_BIT
;
1362 /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1363 dump_bitmap_buf
= g_malloc0(bitmap_bufsize
);
1369 * exam memory page by page, and set the bit in dump_bitmap corresponded
1370 * to the existing page.
1372 while (get_next_page(&block_iter
, &pfn
, NULL
, s
)) {
1373 ret
= set_dump_bitmap(last_pfn
, pfn
, true, dump_bitmap_buf
, s
);
1375 error_setg(errp
, "dump: failed to set dump_bitmap");
1384 * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1385 * set the remaining bits from last_pfn to the end of the bitmap buffer to
1386 * 0. With those set, the un-sync bit will be synchronized into the vmcore.
1388 if (num_dumpable
> 0) {
1389 ret
= set_dump_bitmap(last_pfn
, last_pfn
+ bits_per_buf
, false,
1390 dump_bitmap_buf
, s
);
1392 error_setg(errp
, "dump: failed to sync dump_bitmap");
1397 /* number of dumpable pages that will be dumped later */
1398 s
->num_dumpable
= num_dumpable
;
1401 g_free(dump_bitmap_buf
);
1404 static void prepare_data_cache(DataCache
*data_cache
, DumpState
*s
,
1407 data_cache
->state
= s
;
1408 data_cache
->data_size
= 0;
1409 data_cache
->buf_size
= 4 * dump_bitmap_get_bufsize(s
);
1410 data_cache
->buf
= g_malloc0(data_cache
->buf_size
);
1411 data_cache
->offset
= offset
;
1414 static int write_cache(DataCache
*dc
, const void *buf
, size_t size
,
1418 * dc->buf_size should not be less than size, otherwise dc will never be
1421 assert(size
<= dc
->buf_size
);
1424 * if flag_sync is set, synchronize data in dc->buf into vmcore.
1425 * otherwise check if the space is enough for caching data in buf, if not,
1426 * write the data in dc->buf to dc->state->fd and reset dc->buf
1428 if ((!flag_sync
&& dc
->data_size
+ size
> dc
->buf_size
) ||
1429 (flag_sync
&& dc
->data_size
> 0)) {
1430 if (write_buffer(dc
->state
, dc
->offset
, dc
->buf
, dc
->data_size
) < 0) {
1434 dc
->offset
+= dc
->data_size
;
1439 memcpy(dc
->buf
+ dc
->data_size
, buf
, size
);
1440 dc
->data_size
+= size
;
1446 static void free_data_cache(DataCache
*data_cache
)
1448 g_free(data_cache
->buf
);
1451 static size_t get_len_buf_out(size_t page_size
, uint32_t flag_compress
)
1453 switch (flag_compress
) {
1454 case DUMP_DH_COMPRESSED_ZLIB
:
1455 return compressBound(page_size
);
1457 case DUMP_DH_COMPRESSED_LZO
:
1459 * LZO will expand incompressible data by a little amount. Please check
1460 * the following URL to see the expansion calculation:
1461 * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1463 return page_size
+ page_size
/ 16 + 64 + 3;
1465 #ifdef CONFIG_SNAPPY
1466 case DUMP_DH_COMPRESSED_SNAPPY
:
1467 return snappy_max_compressed_length(page_size
);
1473 static void write_dump_pages(DumpState
*s
, Error
**errp
)
1476 DataCache page_desc
, page_data
;
1477 size_t len_buf_out
, size_out
;
1479 lzo_bytep wrkmem
= NULL
;
1481 uint8_t *buf_out
= NULL
;
1482 off_t offset_desc
, offset_data
;
1483 PageDescriptor pd
, pd_zero
;
1485 GuestPhysBlock
*block_iter
= NULL
;
1487 g_autofree
uint8_t *page
= NULL
;
1489 /* get offset of page_desc and page_data in dump file */
1490 offset_desc
= s
->offset_page
;
1491 offset_data
= offset_desc
+ sizeof(PageDescriptor
) * s
->num_dumpable
;
1493 prepare_data_cache(&page_desc
, s
, offset_desc
);
1494 prepare_data_cache(&page_data
, s
, offset_data
);
1496 /* prepare buffer to store compressed data */
1497 len_buf_out
= get_len_buf_out(s
->dump_info
.page_size
, s
->flag_compress
);
1498 assert(len_buf_out
!= 0);
1501 wrkmem
= g_malloc(LZO1X_1_MEM_COMPRESS
);
1504 buf_out
= g_malloc(len_buf_out
);
1507 * init zero page's page_desc and page_data, because every zero page
1508 * uses the same page_data
1510 pd_zero
.size
= cpu_to_dump32(s
, s
->dump_info
.page_size
);
1511 pd_zero
.flags
= cpu_to_dump32(s
, 0);
1512 pd_zero
.offset
= cpu_to_dump64(s
, offset_data
);
1513 pd_zero
.page_flags
= cpu_to_dump64(s
, 0);
1514 buf
= g_malloc0(s
->dump_info
.page_size
);
1515 ret
= write_cache(&page_data
, buf
, s
->dump_info
.page_size
, false);
1518 error_setg(errp
, "dump: failed to write page data (zero page)");
1522 offset_data
+= s
->dump_info
.page_size
;
1523 page
= g_malloc(s
->dump_info
.page_size
);
1526 * dump memory to vmcore page by page. zero page will all be resided in the
1527 * first page of page section
1529 for (buf
= page
; get_next_page(&block_iter
, &pfn_iter
, &buf
, s
); buf
= page
) {
1530 /* check zero page */
1531 if (buffer_is_zero(buf
, s
->dump_info
.page_size
)) {
1532 ret
= write_cache(&page_desc
, &pd_zero
, sizeof(PageDescriptor
),
1535 error_setg(errp
, "dump: failed to write page desc");
1540 * not zero page, then:
1541 * 1. compress the page
1542 * 2. write the compressed page into the cache of page_data
1543 * 3. get page desc of the compressed page and write it into the
1544 * cache of page_desc
1546 * only one compression format will be used here, for
1547 * s->flag_compress is set. But when compression fails to work,
1548 * we fall back to save in plaintext.
1550 size_out
= len_buf_out
;
1551 if ((s
->flag_compress
& DUMP_DH_COMPRESSED_ZLIB
) &&
1552 (compress2(buf_out
, (uLongf
*)&size_out
, buf
,
1553 s
->dump_info
.page_size
, Z_BEST_SPEED
) == Z_OK
) &&
1554 (size_out
< s
->dump_info
.page_size
)) {
1555 pd
.flags
= cpu_to_dump32(s
, DUMP_DH_COMPRESSED_ZLIB
);
1556 pd
.size
= cpu_to_dump32(s
, size_out
);
1558 ret
= write_cache(&page_data
, buf_out
, size_out
, false);
1560 error_setg(errp
, "dump: failed to write page data");
1564 } else if ((s
->flag_compress
& DUMP_DH_COMPRESSED_LZO
) &&
1565 (lzo1x_1_compress(buf
, s
->dump_info
.page_size
, buf_out
,
1566 (lzo_uint
*)&size_out
, wrkmem
) == LZO_E_OK
) &&
1567 (size_out
< s
->dump_info
.page_size
)) {
1568 pd
.flags
= cpu_to_dump32(s
, DUMP_DH_COMPRESSED_LZO
);
1569 pd
.size
= cpu_to_dump32(s
, size_out
);
1571 ret
= write_cache(&page_data
, buf_out
, size_out
, false);
1573 error_setg(errp
, "dump: failed to write page data");
1577 #ifdef CONFIG_SNAPPY
1578 } else if ((s
->flag_compress
& DUMP_DH_COMPRESSED_SNAPPY
) &&
1579 (snappy_compress((char *)buf
, s
->dump_info
.page_size
,
1580 (char *)buf_out
, &size_out
) == SNAPPY_OK
) &&
1581 (size_out
< s
->dump_info
.page_size
)) {
1582 pd
.flags
= cpu_to_dump32(s
, DUMP_DH_COMPRESSED_SNAPPY
);
1583 pd
.size
= cpu_to_dump32(s
, size_out
);
1585 ret
= write_cache(&page_data
, buf_out
, size_out
, false);
1587 error_setg(errp
, "dump: failed to write page data");
1593 * fall back to save in plaintext, size_out should be
1594 * assigned the target's page size
1596 pd
.flags
= cpu_to_dump32(s
, 0);
1597 size_out
= s
->dump_info
.page_size
;
1598 pd
.size
= cpu_to_dump32(s
, size_out
);
1600 ret
= write_cache(&page_data
, buf
,
1601 s
->dump_info
.page_size
, false);
1603 error_setg(errp
, "dump: failed to write page data");
1608 /* get and write page desc here */
1609 pd
.page_flags
= cpu_to_dump64(s
, 0);
1610 pd
.offset
= cpu_to_dump64(s
, offset_data
);
1611 offset_data
+= size_out
;
1613 ret
= write_cache(&page_desc
, &pd
, sizeof(PageDescriptor
), false);
1615 error_setg(errp
, "dump: failed to write page desc");
1619 s
->written_size
+= s
->dump_info
.page_size
;
1622 ret
= write_cache(&page_desc
, NULL
, 0, true);
1624 error_setg(errp
, "dump: failed to sync cache for page_desc");
1627 ret
= write_cache(&page_data
, NULL
, 0, true);
1629 error_setg(errp
, "dump: failed to sync cache for page_data");
1634 free_data_cache(&page_desc
);
1635 free_data_cache(&page_data
);
1644 static void create_kdump_vmcore(DumpState
*s
, Error
**errp
)
1650 * the kdump-compressed format is:
1652 * +------------------------------------------+ 0x0
1653 * | main header (struct disk_dump_header) |
1654 * |------------------------------------------+ block 1
1655 * | sub header (struct kdump_sub_header) |
1656 * |------------------------------------------+ block 2
1657 * | 1st-dump_bitmap |
1658 * |------------------------------------------+ block 2 + X blocks
1659 * | 2nd-dump_bitmap | (aligned by block)
1660 * |------------------------------------------+ block 2 + 2 * X blocks
1661 * | page desc for pfn 0 (struct page_desc) | (aligned by block)
1662 * | page desc for pfn 1 (struct page_desc) |
1664 * |------------------------------------------| (not aligned by block)
1665 * | page data (pfn 0) |
1666 * | page data (pfn 1) |
1668 * +------------------------------------------+
1671 ret
= write_start_flat_header(s
);
1673 error_setg(errp
, "dump: failed to write start flat header");
1677 write_dump_header(s
, errp
);
1682 write_dump_bitmap(s
, errp
);
1687 write_dump_pages(s
, errp
);
1692 ret
= write_end_flat_header(s
);
1694 error_setg(errp
, "dump: failed to write end flat header");
1699 static void get_max_mapnr(DumpState
*s
)
1701 GuestPhysBlock
*last_block
;
1703 last_block
= QTAILQ_LAST(&s
->guest_phys_blocks
.head
);
1704 s
->max_mapnr
= dump_paddr_to_pfn(s
, last_block
->target_end
);
1707 static DumpState dump_state_global
= { .status
= DUMP_STATUS_NONE
};
1709 static void dump_state_prepare(DumpState
*s
)
1711 /* zero the struct, setting status to active */
1712 *s
= (DumpState
) { .status
= DUMP_STATUS_ACTIVE
};
1715 bool qemu_system_dump_in_progress(void)
1717 DumpState
*state
= &dump_state_global
;
1718 return (qatomic_read(&state
->status
) == DUMP_STATUS_ACTIVE
);
1722 * calculate total size of memory to be dumped (taking filter into
1725 static int64_t dump_calculate_size(DumpState
*s
)
1727 GuestPhysBlock
*block
;
1730 QTAILQ_FOREACH(block
, &s
->guest_phys_blocks
.head
, next
) {
1731 total
+= dump_filtered_memblock_size(block
,
1732 s
->filter_area_begin
,
1733 s
->filter_area_length
);
1739 static void vmcoreinfo_update_phys_base(DumpState
*s
)
1741 uint64_t size
, note_head_size
, name_size
, phys_base
;
1746 if (!note_name_equal(s
, s
->guest_note
, "VMCOREINFO")) {
1750 get_note_sizes(s
, s
->guest_note
, ¬e_head_size
, &name_size
, &size
);
1751 note_head_size
= ROUND_UP(note_head_size
, 4);
1753 vmci
= s
->guest_note
+ note_head_size
+ ROUND_UP(name_size
, 4);
1754 *(vmci
+ size
) = '\0';
1756 lines
= g_strsplit((char *)vmci
, "\n", -1);
1757 for (i
= 0; lines
[i
]; i
++) {
1758 const char *prefix
= NULL
;
1760 if (s
->dump_info
.d_machine
== EM_X86_64
) {
1761 prefix
= "NUMBER(phys_base)=";
1762 } else if (s
->dump_info
.d_machine
== EM_AARCH64
) {
1763 prefix
= "NUMBER(PHYS_OFFSET)=";
1766 if (prefix
&& g_str_has_prefix(lines
[i
], prefix
)) {
1767 if (qemu_strtou64(lines
[i
] + strlen(prefix
), NULL
, 16,
1769 warn_report("Failed to read %s", prefix
);
1771 s
->dump_info
.phys_base
= phys_base
;
1780 static void dump_init(DumpState
*s
, int fd
, bool has_format
,
1781 DumpGuestMemoryFormat format
, bool paging
, bool has_filter
,
1782 int64_t begin
, int64_t length
, bool kdump_raw
,
1786 VMCoreInfoState
*vmci
= vmcoreinfo_find();
1791 s
->has_format
= has_format
;
1793 s
->written_size
= 0;
1794 s
->kdump_raw
= kdump_raw
;
1796 /* kdump-compressed is conflict with paging and filter */
1797 if (has_format
&& format
!= DUMP_GUEST_MEMORY_FORMAT_ELF
) {
1798 assert(!paging
&& !has_filter
);
1801 if (runstate_is_running()) {
1802 vm_stop(RUN_STATE_SAVE_VM
);
1808 /* If we use KVM, we should synchronize the registers before we get dump
1809 * info or physmap info.
1811 cpu_synchronize_all_states();
1818 if (has_filter
&& !length
) {
1819 error_setg(errp
, "parameter 'length' expects a non-zero size");
1822 s
->filter_area_begin
= begin
;
1823 s
->filter_area_length
= length
;
1825 /* First index is 0, it's the special null name */
1826 s
->string_table_buf
= g_array_new(FALSE
, TRUE
, 1);
1828 * Allocate the null name, due to the clearing option set to true
1831 g_array_set_size(s
->string_table_buf
, 1);
1833 memory_mapping_list_init(&s
->list
);
1835 guest_phys_blocks_init(&s
->guest_phys_blocks
);
1836 guest_phys_blocks_append(&s
->guest_phys_blocks
);
1837 s
->total_size
= dump_calculate_size(s
);
1838 #ifdef DEBUG_DUMP_GUEST_MEMORY
1839 fprintf(stderr
, "DUMP: total memory to dump: %lu\n", s
->total_size
);
1842 /* it does not make sense to dump non-existent memory */
1843 if (!s
->total_size
) {
1844 error_setg(errp
, "dump: no guest memory to dump");
1848 /* get dump info: endian, class and architecture.
1849 * If the target architecture is not supported, cpu_get_dump_info() will
1852 ret
= cpu_get_dump_info(&s
->dump_info
, &s
->guest_phys_blocks
);
1855 "dumping guest memory is not supported on this target");
1859 if (!s
->dump_info
.page_size
) {
1860 s
->dump_info
.page_size
= qemu_target_page_size();
1863 s
->note_size
= cpu_get_note_size(s
->dump_info
.d_class
,
1864 s
->dump_info
.d_machine
, nr_cpus
);
1865 assert(s
->note_size
>= 0);
1868 * The goal of this block is to (a) update the previously guessed
1869 * phys_base, (b) copy the guest note out of the guest.
1870 * Failure to do so is not fatal for dumping.
1873 uint64_t addr
, note_head_size
, name_size
, desc_size
;
1875 uint16_t guest_format
;
1877 note_head_size
= dump_is_64bit(s
) ?
1878 sizeof(Elf64_Nhdr
) : sizeof(Elf32_Nhdr
);
1880 guest_format
= le16_to_cpu(vmci
->vmcoreinfo
.guest_format
);
1881 size
= le32_to_cpu(vmci
->vmcoreinfo
.size
);
1882 addr
= le64_to_cpu(vmci
->vmcoreinfo
.paddr
);
1883 if (!vmci
->has_vmcoreinfo
) {
1884 warn_report("guest note is not present");
1885 } else if (size
< note_head_size
|| size
> MAX_GUEST_NOTE_SIZE
) {
1886 warn_report("guest note size is invalid: %" PRIu32
, size
);
1887 } else if (guest_format
!= FW_CFG_VMCOREINFO_FORMAT_ELF
) {
1888 warn_report("guest note format is unsupported: %" PRIu16
, guest_format
);
1890 s
->guest_note
= g_malloc(size
+ 1); /* +1 for adding \0 */
1891 cpu_physical_memory_read(addr
, s
->guest_note
, size
);
1893 get_note_sizes(s
, s
->guest_note
, NULL
, &name_size
, &desc_size
);
1894 s
->guest_note_size
= ELF_NOTE_SIZE(note_head_size
, name_size
,
1896 if (name_size
> MAX_GUEST_NOTE_SIZE
||
1897 desc_size
> MAX_GUEST_NOTE_SIZE
||
1898 s
->guest_note_size
> size
) {
1899 warn_report("Invalid guest note header");
1900 g_free(s
->guest_note
);
1901 s
->guest_note
= NULL
;
1903 vmcoreinfo_update_phys_base(s
);
1904 s
->note_size
+= s
->guest_note_size
;
1909 /* get memory mapping */
1911 qemu_get_guest_memory_mapping(&s
->list
, &s
->guest_phys_blocks
, errp
);
1916 qemu_get_guest_simple_memory_mapping(&s
->list
, &s
->guest_phys_blocks
);
1919 s
->nr_cpus
= nr_cpus
;
1924 tmp
= DIV_ROUND_UP(DIV_ROUND_UP(s
->max_mapnr
, CHAR_BIT
),
1925 s
->dump_info
.page_size
);
1926 s
->len_dump_bitmap
= tmp
* s
->dump_info
.page_size
;
1928 /* init for kdump-compressed format */
1929 if (has_format
&& format
!= DUMP_GUEST_MEMORY_FORMAT_ELF
) {
1931 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB
:
1932 s
->flag_compress
= DUMP_DH_COMPRESSED_ZLIB
;
1935 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO
:
1937 if (lzo_init() != LZO_E_OK
) {
1938 error_setg(errp
, "failed to initialize the LZO library");
1942 s
->flag_compress
= DUMP_DH_COMPRESSED_LZO
;
1945 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY
:
1946 s
->flag_compress
= DUMP_DH_COMPRESSED_SNAPPY
;
1950 s
->flag_compress
= 0;
1956 if (dump_has_filter(s
)) {
1957 memory_mapping_filter(&s
->list
, s
->filter_area_begin
, s
->filter_area_length
);
1961 * The first section header is always a special one in which most
1962 * fields are 0. The section header string table is also always
1968 * Adds the number of architecture sections to shdr_num and sets
1969 * elf_section_data_size so we know the offsets and sizes of all
1972 if (s
->dump_info
.arch_sections_add_fn
) {
1973 s
->dump_info
.arch_sections_add_fn(s
);
1977 * calculate shdr_num so we know the offsets and sizes of all
1979 * Calculate phdr_num
1981 * The absolute maximum amount of phdrs is UINT32_MAX - 1 as
1982 * sh_info is 32 bit. There's special handling once we go over
1983 * UINT16_MAX - 1 but that is handled in the ehdr and section
1986 s
->phdr_num
= 1; /* Reserve PT_NOTE */
1987 if (s
->list
.num
<= UINT32_MAX
- 1) {
1988 s
->phdr_num
+= s
->list
.num
;
1990 s
->phdr_num
= UINT32_MAX
;
1994 * Now that the number of section and program headers is known we
1995 * can calculate the offsets of the headers and data.
1997 if (dump_is_64bit(s
)) {
1998 s
->shdr_offset
= sizeof(Elf64_Ehdr
);
1999 s
->phdr_offset
= s
->shdr_offset
+ sizeof(Elf64_Shdr
) * s
->shdr_num
;
2000 s
->note_offset
= s
->phdr_offset
+ sizeof(Elf64_Phdr
) * s
->phdr_num
;
2002 s
->shdr_offset
= sizeof(Elf32_Ehdr
);
2003 s
->phdr_offset
= s
->shdr_offset
+ sizeof(Elf32_Shdr
) * s
->shdr_num
;
2004 s
->note_offset
= s
->phdr_offset
+ sizeof(Elf32_Phdr
) * s
->phdr_num
;
2006 s
->memory_offset
= s
->note_offset
+ s
->note_size
;
2007 s
->section_offset
= s
->memory_offset
+ s
->total_size
;
2015 /* this operation might be time consuming. */
2016 static void dump_process(DumpState
*s
, Error
**errp
)
2019 DumpQueryResult
*result
= NULL
;
2021 if (s
->has_format
&& s
->format
== DUMP_GUEST_MEMORY_FORMAT_WIN_DMP
) {
2022 create_win_dump(s
, errp
);
2023 } else if (s
->has_format
&& s
->format
!= DUMP_GUEST_MEMORY_FORMAT_ELF
) {
2024 create_kdump_vmcore(s
, errp
);
2026 create_vmcore(s
, errp
);
2029 /* make sure status is written after written_size updates */
2031 qatomic_set(&s
->status
,
2032 (*errp
? DUMP_STATUS_FAILED
: DUMP_STATUS_COMPLETED
));
2034 /* send DUMP_COMPLETED message (unconditionally) */
2035 result
= qmp_query_dump(NULL
);
2036 /* should never fail */
2038 qapi_event_send_dump_completed(result
,
2039 *errp
? error_get_pretty(*errp
) : NULL
);
2040 qapi_free_DumpQueryResult(result
);
2045 static void *dump_thread(void *data
)
2047 DumpState
*s
= (DumpState
*)data
;
2048 dump_process(s
, NULL
);
2052 DumpQueryResult
*qmp_query_dump(Error
**errp
)
2054 DumpQueryResult
*result
= g_new(DumpQueryResult
, 1);
2055 DumpState
*state
= &dump_state_global
;
2056 result
->status
= qatomic_read(&state
->status
);
2057 /* make sure we are reading status and written_size in order */
2059 result
->completed
= state
->written_size
;
2060 result
->total
= state
->total_size
;
2064 void qmp_dump_guest_memory(bool paging
, const char *protocol
,
2065 bool has_detach
, bool detach
,
2066 bool has_begin
, int64_t begin
,
2067 bool has_length
, int64_t length
,
2068 bool has_format
, DumpGuestMemoryFormat format
,
2075 bool detach_p
= false;
2076 bool kdump_raw
= false;
2078 if (runstate_check(RUN_STATE_INMIGRATE
)) {
2079 error_setg(errp
, "Dump not allowed during incoming migration.");
2083 /* if there is a dump in background, we should wait until the dump
2085 if (qemu_system_dump_in_progress()) {
2086 error_setg(errp
, "There is a dump in process, please wait.");
2091 * externally, we represent kdump-raw-* as separate formats, but internally
2092 * they are handled the same, except for the "raw" flag
2096 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB
:
2097 format
= DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB
;
2100 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO
:
2101 format
= DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO
;
2104 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY
:
2105 format
= DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY
;
2114 * kdump-compressed format need the whole memory dumped, so paging or
2115 * filter is not supported here.
2117 if ((has_format
&& format
!= DUMP_GUEST_MEMORY_FORMAT_ELF
) &&
2118 (paging
|| has_begin
|| has_length
)) {
2119 error_setg(errp
, "kdump-compressed format doesn't support paging or "
2123 if (has_begin
&& !has_length
) {
2124 error_setg(errp
, QERR_MISSING_PARAMETER
, "length");
2127 if (!has_begin
&& has_length
) {
2128 error_setg(errp
, QERR_MISSING_PARAMETER
, "begin");
2135 /* check whether lzo/snappy is supported */
2137 if (has_format
&& format
== DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO
) {
2138 error_setg(errp
, "kdump-lzo is not available now");
2143 #ifndef CONFIG_SNAPPY
2144 if (has_format
&& format
== DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY
) {
2145 error_setg(errp
, "kdump-snappy is not available now");
2150 if (has_format
&& format
== DUMP_GUEST_MEMORY_FORMAT_WIN_DMP
2151 && !win_dump_available(errp
)) {
2155 if (strstart(protocol
, "fd:", &p
)) {
2156 fd
= monitor_get_fd(monitor_cur(), p
, errp
);
2160 } else if (strstart(protocol
, "file:", &p
)) {
2161 fd
= qemu_create(p
, O_WRONLY
| O_TRUNC
| O_BINARY
, S_IRUSR
, errp
);
2167 "parameter 'protocol' must start with 'file:' or 'fd:'");
2170 if (kdump_raw
&& lseek(fd
, 0, SEEK_CUR
) == (off_t
) -1) {
2172 error_setg(errp
, "kdump-raw formats require a seekable file");
2176 if (!dump_migration_blocker
) {
2177 error_setg(&dump_migration_blocker
,
2178 "Live migration disabled: dump-guest-memory in progress");
2182 * Allows even for -only-migratable, but forbid migration during the
2183 * process of dump guest memory.
2185 if (migrate_add_blocker_internal(&dump_migration_blocker
, errp
)) {
2186 /* Remember to release the fd before passing it over to dump state */
2191 s
= &dump_state_global
;
2192 dump_state_prepare(s
);
2194 dump_init(s
, fd
, has_format
, format
, paging
, has_begin
,
2195 begin
, length
, kdump_raw
, errp
);
2197 qatomic_set(&s
->status
, DUMP_STATUS_FAILED
);
2204 qemu_thread_create(&s
->dump_thread
, "dump_thread", dump_thread
,
2205 s
, QEMU_THREAD_DETACHED
);
2208 dump_process(s
, errp
);
2212 DumpGuestMemoryCapability
*qmp_query_dump_guest_memory_capability(Error
**errp
)
2214 DumpGuestMemoryCapability
*cap
=
2215 g_new0(DumpGuestMemoryCapability
, 1);
2216 DumpGuestMemoryFormatList
**tail
= &cap
->formats
;
2218 /* elf is always available */
2219 QAPI_LIST_APPEND(tail
, DUMP_GUEST_MEMORY_FORMAT_ELF
);
2221 /* kdump-zlib is always available */
2222 QAPI_LIST_APPEND(tail
, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB
);
2223 QAPI_LIST_APPEND(tail
, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB
);
2225 /* add new item if kdump-lzo is available */
2227 QAPI_LIST_APPEND(tail
, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO
);
2228 QAPI_LIST_APPEND(tail
, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO
);
2231 /* add new item if kdump-snappy is available */
2232 #ifdef CONFIG_SNAPPY
2233 QAPI_LIST_APPEND(tail
, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY
);
2234 QAPI_LIST_APPEND(tail
, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY
);
2237 if (win_dump_available(NULL
)) {
2238 QAPI_LIST_APPEND(tail
, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP
);