2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qemu/units.h"
17 #include "qapi/error.h"
19 #include "hw/sysbus.h"
20 #include "migration/vmstate.h"
21 #include "hw/registerfields.h"
22 #include "hw/arm/armsse.h"
23 #include "hw/arm/armsse-version.h"
24 #include "hw/arm/boot.h"
26 #include "hw/qdev-clock.h"
29 * The SSE-300 puts some devices in different places to the
30 * SSE-200 (and original IoTKit). We use an array of these structs
31 * to define how each variant lays out these devices. (Parts of the
32 * SoC that are the same for all variants aren't handled via these
39 * Special values for ARMSSEDeviceInfo::irq to indicate that this
40 * device uses one of the inputs to the OR gate that feeds into the
46 typedef struct ARMSSEDeviceInfo
{
47 const char *name
; /* name to use for the QOM object; NULL terminates list */
48 const char *type
; /* QOM type name */
49 unsigned int index
; /* Which of the N devices of this type is this ? */
51 hwaddr size
; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
52 int ppc
; /* Index of APB PPC this device is wired up to, or NO_PPC */
53 int ppc_port
; /* Port number of this device on the PPC */
54 int irq
; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
55 bool slowclk
; /* true if device uses the slow 32KHz clock */
63 uint32_t sram_bank_base
;
76 const ARMSSEDeviceInfo
*devinfo
;
77 const bool *irq_is_common
;
80 static Property iotkit_properties
[] = {
81 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
83 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
84 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
85 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
86 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], true),
87 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], true),
88 DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE
, cpu_mpu_ns
[0], 8),
89 DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE
, cpu_mpu_s
[0], 8),
90 DEFINE_PROP_END_OF_LIST()
93 static Property sse200_properties
[] = {
94 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
96 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
97 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
98 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
99 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], false),
100 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], false),
101 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE
, cpu_fpu
[1], true),
102 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE
, cpu_dsp
[1], true),
103 DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE
, cpu_mpu_ns
[0], 8),
104 DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE
, cpu_mpu_s
[0], 8),
105 DEFINE_PROP_UINT32("CPU1_MPU_NS", ARMSSE
, cpu_mpu_ns
[1], 8),
106 DEFINE_PROP_UINT32("CPU1_MPU_S", ARMSSE
, cpu_mpu_s
[1], 8),
107 DEFINE_PROP_END_OF_LIST()
110 static Property sse300_properties
[] = {
111 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
113 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
114 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 18),
115 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
116 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], true),
117 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], true),
118 DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE
, cpu_mpu_ns
[0], 8),
119 DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE
, cpu_mpu_s
[0], 8),
120 DEFINE_PROP_END_OF_LIST()
123 static const ARMSSEDeviceInfo iotkit_devices
[] = {
126 .type
= TYPE_CMSDK_APB_TIMER
,
135 .type
= TYPE_CMSDK_APB_TIMER
,
144 .type
= TYPE_CMSDK_APB_TIMER
,
154 .type
= TYPE_CMSDK_APB_DUALTIMER
,
162 .name
= "s32kwatchdog",
163 .type
= TYPE_CMSDK_APB_WATCHDOG
,
171 .name
= "nswatchdog",
172 .type
= TYPE_CMSDK_APB_WATCHDOG
,
180 .type
= TYPE_CMSDK_APB_WATCHDOG
,
187 .name
= "armsse-sysinfo",
188 .type
= TYPE_IOTKIT_SYSINFO
,
195 .name
= "armsse-sysctl",
196 .type
= TYPE_IOTKIT_SYSCTL
,
207 static const ARMSSEDeviceInfo sse200_devices
[] = {
210 .type
= TYPE_CMSDK_APB_TIMER
,
219 .type
= TYPE_CMSDK_APB_TIMER
,
228 .type
= TYPE_CMSDK_APB_TIMER
,
238 .type
= TYPE_CMSDK_APB_DUALTIMER
,
246 .name
= "s32kwatchdog",
247 .type
= TYPE_CMSDK_APB_WATCHDOG
,
255 .name
= "nswatchdog",
256 .type
= TYPE_CMSDK_APB_WATCHDOG
,
264 .type
= TYPE_CMSDK_APB_WATCHDOG
,
271 .name
= "armsse-sysinfo",
272 .type
= TYPE_IOTKIT_SYSINFO
,
279 .name
= "armsse-sysctl",
280 .type
= TYPE_IOTKIT_SYSCTL
,
287 .name
= "CPU0CORE_PPU",
288 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
296 .name
= "CPU1CORE_PPU",
297 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
306 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
315 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
324 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
333 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
342 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
351 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
363 static const ARMSSEDeviceInfo sse300_devices
[] = {
366 .type
= TYPE_SSE_TIMER
,
375 .type
= TYPE_SSE_TIMER
,
384 .type
= TYPE_SSE_TIMER
,
393 .type
= TYPE_SSE_TIMER
,
402 .type
= TYPE_CMSDK_APB_TIMER
,
411 .name
= "s32kwatchdog",
412 .type
= TYPE_CMSDK_APB_WATCHDOG
,
421 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
429 .name
= "armsse-sysinfo",
430 .type
= TYPE_IOTKIT_SYSINFO
,
437 .name
= "armsse-sysctl",
438 .type
= TYPE_IOTKIT_SYSCTL
,
446 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
454 .name
= "CPU0CORE_PPU",
455 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
464 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
473 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
485 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
486 static const bool sse200_irq_is_common
[32] = {
488 /* 6, 7: per-CPU MHU interrupts */
490 /* 13: per-CPU icache interrupt */
496 /* 28, 29: per-CPU CTI interrupts */
497 /* 30, 31: reserved */
500 static const bool sse300_irq_is_common
[32] = {
502 /* 6, 7: per-CPU MHU interrupts */
506 /* 17-25: reserved */
508 /* 28, 29: per-CPU CTI interrupts */
509 /* 30, 31: reserved */
512 static const ARMSSEInfo armsse_variants
[] = {
515 .sse_version
= ARMSSE_IOTKIT
,
516 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33"),
518 .sram_bank_base
= 0x20000000,
520 .sys_version
= 0x41743,
524 .has_cachectrl
= false,
525 .has_cpusecctrl
= false,
527 .has_cpu_pwrctrl
= false,
528 .has_sse_counter
= false,
530 .props
= iotkit_properties
,
531 .devinfo
= iotkit_devices
,
532 .irq_is_common
= sse200_irq_is_common
,
536 .sse_version
= ARMSSE_SSE200
,
537 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33"),
539 .sram_bank_base
= 0x20000000,
541 .sys_version
= 0x22041743,
545 .has_cachectrl
= true,
546 .has_cpusecctrl
= true,
548 .has_cpu_pwrctrl
= false,
549 .has_sse_counter
= false,
551 .props
= sse200_properties
,
552 .devinfo
= sse200_devices
,
553 .irq_is_common
= sse200_irq_is_common
,
557 .sse_version
= ARMSSE_SSE300
,
558 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m55"),
560 .sram_bank_base
= 0x21000000,
562 .sys_version
= 0x7e00043b,
566 .has_cachectrl
= false,
567 .has_cpusecctrl
= true,
569 .has_cpu_pwrctrl
= true,
570 .has_sse_counter
= true,
572 .props
= sse300_properties
,
573 .devinfo
= sse300_devices
,
574 .irq_is_common
= sse300_irq_is_common
,
578 static uint32_t armsse_sys_config_value(ARMSSE
*s
, const ARMSSEInfo
*info
)
580 /* Return the SYS_CONFIG value for this SSE */
583 switch (info
->sse_version
) {
586 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
587 sys_config
= deposit32(sys_config
, 4, 4, s
->sram_addr_width
- 12);
591 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
592 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
593 sys_config
= deposit32(sys_config
, 24, 4, 2);
594 if (info
->num_cpus
> 1) {
595 sys_config
= deposit32(sys_config
, 10, 1, 1);
596 sys_config
= deposit32(sys_config
, 20, 4, info
->sram_banks
- 1);
597 sys_config
= deposit32(sys_config
, 28, 4, 2);
602 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
603 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
604 sys_config
= deposit32(sys_config
, 16, 3, 3); /* CPU0 = Cortex-M55 */
607 g_assert_not_reached();
612 /* Clock frequency in HZ of the 32KHz "slow clock" */
613 #define S32KCLK (32 * 1000)
616 * Create an alias region in @container of @size bytes starting at @base
617 * which mirrors the memory starting at @orig.
619 static void make_alias(ARMSSE
*s
, MemoryRegion
*mr
, MemoryRegion
*container
,
620 const char *name
, hwaddr base
, hwaddr size
, hwaddr orig
)
622 memory_region_init_alias(mr
, NULL
, name
, container
, orig
, size
);
623 /* The alias is even lower priority than unimplemented_device regions */
624 memory_region_add_subregion_overlap(container
, base
, mr
, -1500);
627 static void irq_status_forwarder(void *opaque
, int n
, int level
)
629 qemu_irq destirq
= opaque
;
631 qemu_set_irq(destirq
, level
);
634 static void nsccfg_handler(void *opaque
, int n
, int level
)
636 ARMSSE
*s
= ARM_SSE(opaque
);
641 static void armsse_forward_ppc(ARMSSE
*s
, const char *ppcname
, int ppcnum
)
643 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
644 * system using the ARMSSE has a collection of control lines which
645 * are provided by the security controller and which we want to
646 * expose as control lines on the ARMSSE device itself, so the
647 * code using the ARMSSE can wire them up to the PPCs.
649 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[ppcnum
];
650 DeviceState
*armssedev
= DEVICE(s
);
651 DeviceState
*dev_secctl
= DEVICE(&s
->secctl
);
652 DeviceState
*dev_splitter
= DEVICE(splitter
);
655 name
= g_strdup_printf("%s_nonsec", ppcname
);
656 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
658 name
= g_strdup_printf("%s_ap", ppcname
);
659 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
661 name
= g_strdup_printf("%s_irq_enable", ppcname
);
662 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
664 name
= g_strdup_printf("%s_irq_clear", ppcname
);
665 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
668 /* irq_status is a little more tricky, because we need to
669 * split it so we can send it both to the security controller
670 * and to our OR gate for the NVIC interrupt line.
671 * Connect up the splitter's outputs, and create a GPIO input
672 * which will pass the line state to the input splitter.
674 name
= g_strdup_printf("%s_irq_status", ppcname
);
675 qdev_connect_gpio_out(dev_splitter
, 0,
676 qdev_get_gpio_in_named(dev_secctl
,
678 qdev_connect_gpio_out(dev_splitter
, 1,
679 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), ppcnum
));
680 s
->irq_status_in
[ppcnum
] = qdev_get_gpio_in(dev_splitter
, 0);
681 qdev_init_gpio_in_named_with_opaque(armssedev
, irq_status_forwarder
,
682 s
->irq_status_in
[ppcnum
], name
, 1);
686 static void armsse_forward_sec_resp_cfg(ARMSSE
*s
)
688 /* Forward the 3rd output from the splitter device as a
689 * named GPIO output of the armsse object.
691 DeviceState
*dev
= DEVICE(s
);
692 DeviceState
*dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
694 qdev_init_gpio_out_named(dev
, &s
->sec_resp_cfg
, "sec_resp_cfg", 1);
695 s
->sec_resp_cfg_in
= qemu_allocate_irq(irq_status_forwarder
,
697 qdev_connect_gpio_out(dev_splitter
, 2, s
->sec_resp_cfg_in
);
700 static void armsse_init(Object
*obj
)
702 ARMSSE
*s
= ARM_SSE(obj
);
703 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(obj
);
704 const ARMSSEInfo
*info
= asc
->info
;
705 const ARMSSEDeviceInfo
*devinfo
;
708 assert(info
->sram_banks
<= MAX_SRAM_BANKS
);
709 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
711 s
->mainclk
= qdev_init_clock_in(DEVICE(s
), "MAINCLK", NULL
, NULL
, 0);
712 s
->s32kclk
= qdev_init_clock_in(DEVICE(s
), "S32KCLK", NULL
, NULL
, 0);
714 memory_region_init(&s
->container
, obj
, "armsse-container", UINT64_MAX
);
716 for (i
= 0; i
< info
->num_cpus
; i
++) {
718 * We put each CPU in its own cluster as they are logically
719 * distinct and may be configured differently.
723 name
= g_strdup_printf("cluster%d", i
);
724 object_initialize_child(obj
, name
, &s
->cluster
[i
], TYPE_CPU_CLUSTER
);
725 qdev_prop_set_uint32(DEVICE(&s
->cluster
[i
]), "cluster-id", i
);
728 name
= g_strdup_printf("armv7m%d", i
);
729 object_initialize_child(OBJECT(&s
->cluster
[i
]), name
, &s
->armv7m
[i
],
731 qdev_prop_set_string(DEVICE(&s
->armv7m
[i
]), "cpu-type", info
->cpu_type
);
733 name
= g_strdup_printf("arm-sse-cpu-container%d", i
);
734 memory_region_init(&s
->cpu_container
[i
], obj
, name
, UINT64_MAX
);
737 name
= g_strdup_printf("arm-sse-container-alias%d", i
);
738 memory_region_init_alias(&s
->container_alias
[i
- 1], obj
,
739 name
, &s
->container
, 0, UINT64_MAX
);
744 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
745 assert(devinfo
->ppc
== NO_PPC
|| devinfo
->ppc
< ARRAY_SIZE(s
->apb_ppc
));
746 if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_TIMER
)) {
747 assert(devinfo
->index
< ARRAY_SIZE(s
->timer
));
748 object_initialize_child(obj
, devinfo
->name
,
749 &s
->timer
[devinfo
->index
],
750 TYPE_CMSDK_APB_TIMER
);
751 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_DUALTIMER
)) {
752 assert(devinfo
->index
== 0);
753 object_initialize_child(obj
, devinfo
->name
, &s
->dualtimer
,
754 TYPE_CMSDK_APB_DUALTIMER
);
755 } else if (!strcmp(devinfo
->type
, TYPE_SSE_TIMER
)) {
756 assert(devinfo
->index
< ARRAY_SIZE(s
->sse_timer
));
757 object_initialize_child(obj
, devinfo
->name
,
758 &s
->sse_timer
[devinfo
->index
],
760 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_WATCHDOG
)) {
761 assert(devinfo
->index
< ARRAY_SIZE(s
->cmsdk_watchdog
));
762 object_initialize_child(obj
, devinfo
->name
,
763 &s
->cmsdk_watchdog
[devinfo
->index
],
764 TYPE_CMSDK_APB_WATCHDOG
);
765 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSINFO
)) {
766 assert(devinfo
->index
== 0);
767 object_initialize_child(obj
, devinfo
->name
, &s
->sysinfo
,
768 TYPE_IOTKIT_SYSINFO
);
769 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSCTL
)) {
770 assert(devinfo
->index
== 0);
771 object_initialize_child(obj
, devinfo
->name
, &s
->sysctl
,
773 } else if (!strcmp(devinfo
->type
, TYPE_UNIMPLEMENTED_DEVICE
)) {
774 assert(devinfo
->index
< ARRAY_SIZE(s
->unimp
));
775 object_initialize_child(obj
, devinfo
->name
,
776 &s
->unimp
[devinfo
->index
],
777 TYPE_UNIMPLEMENTED_DEVICE
);
779 g_assert_not_reached();
783 object_initialize_child(obj
, "secctl", &s
->secctl
, TYPE_IOTKIT_SECCTL
);
785 for (i
= 0; i
< ARRAY_SIZE(s
->apb_ppc
); i
++) {
786 g_autofree
char *name
= g_strdup_printf("apb-ppc%d", i
);
787 object_initialize_child(obj
, name
, &s
->apb_ppc
[i
], TYPE_TZ_PPC
);
790 for (i
= 0; i
< info
->sram_banks
; i
++) {
791 char *name
= g_strdup_printf("mpc%d", i
);
792 object_initialize_child(obj
, name
, &s
->mpc
[i
], TYPE_TZ_MPC
);
795 object_initialize_child(obj
, "mpc-irq-orgate", &s
->mpc_irq_orgate
,
798 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
799 char *name
= g_strdup_printf("mpc-irq-splitter-%d", i
);
800 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
802 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
806 if (info
->has_mhus
) {
807 object_initialize_child(obj
, "mhu0", &s
->mhu
[0], TYPE_ARMSSE_MHU
);
808 object_initialize_child(obj
, "mhu1", &s
->mhu
[1], TYPE_ARMSSE_MHU
);
810 if (info
->has_cachectrl
) {
811 for (i
= 0; i
< info
->num_cpus
; i
++) {
812 char *name
= g_strdup_printf("cachectrl%d", i
);
814 object_initialize_child(obj
, name
, &s
->cachectrl
[i
],
815 TYPE_UNIMPLEMENTED_DEVICE
);
819 if (info
->has_cpusecctrl
) {
820 for (i
= 0; i
< info
->num_cpus
; i
++) {
821 char *name
= g_strdup_printf("cpusecctrl%d", i
);
823 object_initialize_child(obj
, name
, &s
->cpusecctrl
[i
],
824 TYPE_UNIMPLEMENTED_DEVICE
);
828 if (info
->has_cpuid
) {
829 for (i
= 0; i
< info
->num_cpus
; i
++) {
830 char *name
= g_strdup_printf("cpuid%d", i
);
832 object_initialize_child(obj
, name
, &s
->cpuid
[i
],
837 if (info
->has_cpu_pwrctrl
) {
838 for (i
= 0; i
< info
->num_cpus
; i
++) {
839 char *name
= g_strdup_printf("cpu_pwrctrl%d", i
);
841 object_initialize_child(obj
, name
, &s
->cpu_pwrctrl
[i
],
842 TYPE_ARMSSE_CPU_PWRCTRL
);
846 if (info
->has_sse_counter
) {
847 object_initialize_child(obj
, "sse-counter", &s
->sse_counter
,
851 object_initialize_child(obj
, "nmi-orgate", &s
->nmi_orgate
, TYPE_OR_IRQ
);
852 object_initialize_child(obj
, "ppc-irq-orgate", &s
->ppc_irq_orgate
,
854 object_initialize_child(obj
, "sec-resp-splitter", &s
->sec_resp_splitter
,
856 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
857 char *name
= g_strdup_printf("ppc-irq-splitter-%d", i
);
858 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[i
];
860 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
863 if (info
->num_cpus
> 1) {
864 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
865 if (info
->irq_is_common
[i
]) {
866 char *name
= g_strdup_printf("cpu-irq-splitter%d", i
);
867 SplitIRQ
*splitter
= &s
->cpu_irq_splitter
[i
];
869 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
876 static void armsse_exp_irq(void *opaque
, int n
, int level
)
878 qemu_irq
*irqarray
= opaque
;
880 qemu_set_irq(irqarray
[n
], level
);
883 static void armsse_mpcexp_status(void *opaque
, int n
, int level
)
885 ARMSSE
*s
= ARM_SSE(opaque
);
886 qemu_set_irq(s
->mpcexp_status_in
[n
], level
);
889 static qemu_irq
armsse_get_common_irq_in(ARMSSE
*s
, int irqno
)
892 * Return a qemu_irq which can be used to signal IRQ n to
893 * all CPUs in the SSE.
895 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(s
);
896 const ARMSSEInfo
*info
= asc
->info
;
898 assert(info
->irq_is_common
[irqno
]);
900 if (info
->num_cpus
== 1) {
901 /* Only one CPU -- just connect directly to it */
902 return qdev_get_gpio_in(DEVICE(&s
->armv7m
[0]), irqno
);
904 /* Connect to the splitter which feeds all CPUs */
905 return qdev_get_gpio_in(DEVICE(&s
->cpu_irq_splitter
[irqno
]), 0);
909 static void armsse_realize(DeviceState
*dev
, Error
**errp
)
912 ARMSSE
*s
= ARM_SSE(dev
);
913 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(dev
);
914 const ARMSSEInfo
*info
= asc
->info
;
915 const ARMSSEDeviceInfo
*devinfo
;
918 SysBusDevice
*sbd_apb_ppc0
;
919 SysBusDevice
*sbd_secctl
;
920 DeviceState
*dev_apb_ppc0
;
921 DeviceState
*dev_apb_ppc1
;
922 DeviceState
*dev_secctl
;
923 DeviceState
*dev_splitter
;
924 uint32_t addr_width_max
;
926 if (!s
->board_memory
) {
927 error_setg(errp
, "memory property was not set");
931 if (!clock_has_source(s
->mainclk
)) {
932 error_setg(errp
, "MAINCLK clock was not connected");
934 if (!clock_has_source(s
->s32kclk
)) {
935 error_setg(errp
, "S32KCLK clock was not connected");
938 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
940 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
941 assert(is_power_of_2(info
->sram_banks
));
942 addr_width_max
= 24 - ctz32(info
->sram_banks
);
943 if (s
->sram_addr_width
< 1 || s
->sram_addr_width
> addr_width_max
) {
944 error_setg(errp
, "SRAM_ADDR_WIDTH must be between 1 and %d",
949 /* Handling of which devices should be available only to secure
950 * code is usually done differently for M profile than for A profile.
951 * Instead of putting some devices only into the secure address space,
952 * devices exist in both address spaces but with hard-wired security
953 * permissions that will cause the CPU to fault for non-secure accesses.
955 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
956 * which specifies hard-wired security permissions for different
957 * areas of the physical address space. For the ARMSSE IDAU, the
958 * top 4 bits of the physical address are the IDAU region ID, and
959 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
960 * region, otherwise it is an S region.
962 * The various devices and RAMs are generally all mapped twice,
963 * once into a region that the IDAU defines as secure and once
964 * into a non-secure region. They sit behind either a Memory
965 * Protection Controller (for RAM) or a Peripheral Protection
966 * Controller (for devices), which allow a more fine grained
967 * configuration of whether non-secure accesses are permitted.
969 * (The other place that guest software can configure security
970 * permissions is in the architected SAU (Security Attribution
971 * Unit), which is entirely inside the CPU. The IDAU can upgrade
972 * the security attributes for a region to more restrictive than
973 * the SAU specifies, but cannot downgrade them.)
975 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
976 * 0x20000000..0x2007ffff 32KB FPGA block RAM
977 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
978 * 0x40000000..0x4000ffff base peripheral region 1
979 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
980 * 0x40020000..0x4002ffff system control element peripherals
981 * 0x40080000..0x400fffff base peripheral region 2
982 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
985 memory_region_add_subregion_overlap(&s
->container
, 0, s
->board_memory
, -2);
987 for (i
= 0; i
< info
->num_cpus
; i
++) {
988 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[i
]);
989 Object
*cpuobj
= OBJECT(&s
->armv7m
[i
]);
993 qdev_connect_clock_in(cpudev
, "cpuclk", s
->mainclk
);
994 /* The SSE subsystems do not wire up a systick refclk */
996 qdev_prop_set_uint32(cpudev
, "num-irq", s
->exp_numirq
+ NUM_SSE_IRQS
);
998 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
999 * registers in the IoT Kit System Control Register block. In QEMU
1000 * we set the initial value here, and also the reset value of the
1001 * sysctl register, from this object's QOM init-svtor property.
1002 * If the guest changes the INITSVTOR* registers at runtime then the
1003 * code in iotkit-sysctl.c will update the CPU init-svtor property
1004 * (which will then take effect on the next CPU warm-reset).
1006 * Note that typically a board using the SSE-200 will have a system
1007 * control processor whose boot firmware initializes the INITSVTOR*
1008 * registers before powering up the CPUs. QEMU doesn't emulate
1009 * the control processor, so instead we behave in the way that the
1010 * firmware does: the initial value should be set by the board code
1011 * (using the init-svtor property on the ARMSSE object) to match
1012 * whatever its firmware does.
1014 qdev_prop_set_uint32(cpudev
, "init-svtor", s
->init_svtor
);
1016 * CPUs start powered down if the corresponding bit in the CPUWAIT
1017 * register is 1. In real hardware the CPUWAIT register reset value is
1018 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1019 * CPUWAIT1_RST parameters), but since all the boards we care about
1020 * start CPU0 and leave CPU1 powered off, we hard-code that in
1021 * info->cpuwait_rst for now. We can add QOM properties for this
1022 * later if necessary.
1024 if (extract32(info
->cpuwait_rst
, i
, 1)) {
1025 object_property_set_bool(cpuobj
, "start-powered-off", true,
1028 if (!s
->cpu_fpu
[i
]) {
1029 if (!object_property_set_bool(cpuobj
, "vfp", false, errp
)) {
1033 if (!s
->cpu_dsp
[i
]) {
1034 if (!object_property_set_bool(cpuobj
, "dsp", false, errp
)) {
1038 if (!object_property_set_uint(cpuobj
, "mpu-ns-regions",
1039 s
->cpu_mpu_ns
[i
], errp
)) {
1042 if (!object_property_set_uint(cpuobj
, "mpu-s-regions",
1043 s
->cpu_mpu_s
[i
], errp
)) {
1048 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
1049 &s
->container_alias
[i
- 1], -1);
1051 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
1054 object_property_set_link(cpuobj
, "memory",
1055 OBJECT(&s
->cpu_container
[i
]), &error_abort
);
1056 object_property_set_link(cpuobj
, "idau", OBJECT(s
), &error_abort
);
1057 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj
), errp
)) {
1061 * The cluster must be realized after the armv7m container, as
1062 * the container's CPU object is only created on realize, and the
1063 * CPU must exist and have been parented into the cluster before
1064 * the cluster is realized.
1066 if (!qdev_realize(DEVICE(&s
->cluster
[i
]), NULL
, errp
)) {
1070 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1071 s
->exp_irqs
[i
] = g_new(qemu_irq
, s
->exp_numirq
);
1072 for (j
= 0; j
< s
->exp_numirq
; j
++) {
1073 s
->exp_irqs
[i
][j
] = qdev_get_gpio_in(cpudev
, j
+ NUM_SSE_IRQS
);
1076 gpioname
= g_strdup("EXP_IRQ");
1078 gpioname
= g_strdup_printf("EXP_CPU%d_IRQ", i
);
1080 qdev_init_gpio_in_named_with_opaque(dev
, armsse_exp_irq
,
1082 gpioname
, s
->exp_numirq
);
1086 /* Wire up the splitters that connect common IRQs to all CPUs */
1087 if (info
->num_cpus
> 1) {
1088 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
1089 if (info
->irq_is_common
[i
]) {
1090 Object
*splitter
= OBJECT(&s
->cpu_irq_splitter
[i
]);
1091 DeviceState
*devs
= DEVICE(splitter
);
1094 if (!object_property_set_int(splitter
, "num-lines",
1095 info
->num_cpus
, errp
)) {
1098 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1101 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
1102 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
1104 qdev_connect_gpio_out(devs
, cpunum
,
1105 qdev_get_gpio_in(cpudev
, i
));
1111 /* Set up the big aliases first */
1112 make_alias(s
, &s
->alias1
, &s
->container
, "alias 1",
1113 0x10000000, 0x10000000, 0x00000000);
1114 make_alias(s
, &s
->alias2
, &s
->container
,
1115 "alias 2", 0x30000000, 0x10000000, 0x20000000);
1116 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1117 * a few extra devices that only appear there (generally the
1118 * control interfaces for the protection controllers).
1119 * We implement this by mapping those devices over the top of this
1120 * alias MR at a higher priority. Some of the devices in this range
1121 * are per-CPU, so we must put this alias in the per-cpu containers.
1123 for (i
= 0; i
< info
->num_cpus
; i
++) {
1124 make_alias(s
, &s
->alias3
[i
], &s
->cpu_container
[i
],
1125 "alias 3", 0x50000000, 0x10000000, 0x40000000);
1128 /* Security controller */
1129 object_property_set_int(OBJECT(&s
->secctl
), "sse-version",
1130 info
->sse_version
, &error_abort
);
1131 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->secctl
), errp
)) {
1134 sbd_secctl
= SYS_BUS_DEVICE(&s
->secctl
);
1135 dev_secctl
= DEVICE(&s
->secctl
);
1136 sysbus_mmio_map(sbd_secctl
, 0, 0x50080000);
1137 sysbus_mmio_map(sbd_secctl
, 1, 0x40080000);
1139 s
->nsc_cfg_in
= qemu_allocate_irq(nsccfg_handler
, s
, 1);
1140 qdev_connect_gpio_out_named(dev_secctl
, "nsc_cfg", 0, s
->nsc_cfg_in
);
1142 /* The sec_resp_cfg output from the security controller must be split into
1143 * multiple lines, one for each of the PPCs within the ARMSSE and one
1144 * that will be an output from the ARMSSE to the system.
1146 if (!object_property_set_int(OBJECT(&s
->sec_resp_splitter
),
1147 "num-lines", 3, errp
)) {
1150 if (!qdev_realize(DEVICE(&s
->sec_resp_splitter
), NULL
, errp
)) {
1153 dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
1154 qdev_connect_gpio_out_named(dev_secctl
, "sec_resp_cfg", 0,
1155 qdev_get_gpio_in(dev_splitter
, 0));
1157 /* Each SRAM bank lives behind its own Memory Protection Controller */
1158 for (i
= 0; i
< info
->sram_banks
; i
++) {
1159 char *ramname
= g_strdup_printf("armsse.sram%d", i
);
1160 SysBusDevice
*sbd_mpc
;
1161 uint32_t sram_bank_size
= 1 << s
->sram_addr_width
;
1163 memory_region_init_ram(&s
->sram
[i
], NULL
, ramname
,
1164 sram_bank_size
, errp
);
1169 object_property_set_link(OBJECT(&s
->mpc
[i
]), "downstream",
1170 OBJECT(&s
->sram
[i
]), &error_abort
);
1171 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mpc
[i
]), errp
)) {
1174 /* Map the upstream end of the MPC into the right place... */
1175 sbd_mpc
= SYS_BUS_DEVICE(&s
->mpc
[i
]);
1176 memory_region_add_subregion(&s
->container
,
1177 info
->sram_bank_base
+ i
* sram_bank_size
,
1178 sysbus_mmio_get_region(sbd_mpc
, 1));
1179 /* ...and its register interface */
1180 memory_region_add_subregion(&s
->container
, 0x50083000 + i
* 0x1000,
1181 sysbus_mmio_get_region(sbd_mpc
, 0));
1184 /* We must OR together lines from the MPC splitters to go to the NVIC */
1185 if (!object_property_set_int(OBJECT(&s
->mpc_irq_orgate
), "num-lines",
1186 IOTS_NUM_EXP_MPC
+ info
->sram_banks
,
1190 if (!qdev_realize(DEVICE(&s
->mpc_irq_orgate
), NULL
, errp
)) {
1193 qdev_connect_gpio_out(DEVICE(&s
->mpc_irq_orgate
), 0,
1194 armsse_get_common_irq_in(s
, 9));
1196 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1197 if (!object_property_set_int(OBJECT(&s
->nmi_orgate
), "num-lines", 2,
1201 if (!qdev_realize(DEVICE(&s
->nmi_orgate
), NULL
, errp
)) {
1204 qdev_connect_gpio_out(DEVICE(&s
->nmi_orgate
), 0,
1205 qdev_get_gpio_in_named(DEVICE(&s
->armv7m
), "NMI", 0));
1207 /* The SSE-300 has a System Counter / System Timestamp Generator */
1208 if (info
->has_sse_counter
) {
1209 SysBusDevice
*sbd
= SYS_BUS_DEVICE(&s
->sse_counter
);
1211 qdev_connect_clock_in(DEVICE(sbd
), "CLK", s
->mainclk
);
1212 if (!sysbus_realize(sbd
, errp
)) {
1216 * The control frame is only in the Secure region;
1217 * the status frame is in the NS region (and visible in the
1218 * S region via the alias mapping).
1220 memory_region_add_subregion(&s
->container
, 0x58100000,
1221 sysbus_mmio_get_region(sbd
, 0));
1222 memory_region_add_subregion(&s
->container
, 0x48101000,
1223 sysbus_mmio_get_region(sbd
, 1));
1226 if (info
->has_tcms
) {
1227 /* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */
1228 memory_region_init_ram(&s
->itcm
, NULL
, "sse300-itcm", 512 * KiB
, errp
);
1232 memory_region_init_ram(&s
->dtcm
, NULL
, "sse300-dtcm", 512 * KiB
, errp
);
1236 memory_region_add_subregion(&s
->container
, 0x00000000, &s
->itcm
);
1237 memory_region_add_subregion(&s
->container
, 0x20000000, &s
->dtcm
);
1240 /* Devices behind APB PPC0:
1241 * 0x40000000: timer0
1242 * 0x40001000: timer1
1243 * 0x40002000: dual timer
1244 * 0x40003000: MHU0 (SSE-200 only)
1245 * 0x40004000: MHU1 (SSE-200 only)
1246 * We must configure and realize each downstream device and connect
1247 * it to the appropriate PPC port; then we can realize the PPC and
1248 * map its upstream ends to the right place in the container.
1250 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
1254 if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_TIMER
)) {
1255 sbd
= SYS_BUS_DEVICE(&s
->timer
[devinfo
->index
]);
1257 qdev_connect_clock_in(DEVICE(sbd
), "pclk",
1258 devinfo
->slowclk
? s
->s32kclk
: s
->mainclk
);
1259 if (!sysbus_realize(sbd
, errp
)) {
1262 mr
= sysbus_mmio_get_region(sbd
, 0);
1263 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_DUALTIMER
)) {
1264 sbd
= SYS_BUS_DEVICE(&s
->dualtimer
);
1266 qdev_connect_clock_in(DEVICE(sbd
), "TIMCLK", s
->mainclk
);
1267 if (!sysbus_realize(sbd
, errp
)) {
1270 mr
= sysbus_mmio_get_region(sbd
, 0);
1271 } else if (!strcmp(devinfo
->type
, TYPE_SSE_TIMER
)) {
1272 sbd
= SYS_BUS_DEVICE(&s
->sse_timer
[devinfo
->index
]);
1274 assert(info
->has_sse_counter
);
1275 object_property_set_link(OBJECT(sbd
), "counter",
1276 OBJECT(&s
->sse_counter
), &error_abort
);
1277 if (!sysbus_realize(sbd
, errp
)) {
1280 mr
= sysbus_mmio_get_region(sbd
, 0);
1281 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_WATCHDOG
)) {
1282 sbd
= SYS_BUS_DEVICE(&s
->cmsdk_watchdog
[devinfo
->index
]);
1284 qdev_connect_clock_in(DEVICE(sbd
), "WDOGCLK",
1285 devinfo
->slowclk
? s
->s32kclk
: s
->mainclk
);
1286 if (!sysbus_realize(sbd
, errp
)) {
1289 mr
= sysbus_mmio_get_region(sbd
, 0);
1290 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSINFO
)) {
1291 sbd
= SYS_BUS_DEVICE(&s
->sysinfo
);
1293 object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_VERSION",
1294 info
->sys_version
, &error_abort
);
1295 object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_CONFIG",
1296 armsse_sys_config_value(s
, info
),
1298 object_property_set_int(OBJECT(&s
->sysinfo
), "sse-version",
1299 info
->sse_version
, &error_abort
);
1300 object_property_set_int(OBJECT(&s
->sysinfo
), "IIDR",
1301 info
->iidr
, &error_abort
);
1302 if (!sysbus_realize(sbd
, errp
)) {
1305 mr
= sysbus_mmio_get_region(sbd
, 0);
1306 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSCTL
)) {
1307 /* System control registers */
1308 sbd
= SYS_BUS_DEVICE(&s
->sysctl
);
1310 object_property_set_int(OBJECT(&s
->sysctl
), "sse-version",
1311 info
->sse_version
, &error_abort
);
1312 object_property_set_int(OBJECT(&s
->sysctl
), "CPUWAIT_RST",
1313 info
->cpuwait_rst
, &error_abort
);
1314 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR0_RST",
1315 s
->init_svtor
, &error_abort
);
1316 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR1_RST",
1317 s
->init_svtor
, &error_abort
);
1318 if (!sysbus_realize(sbd
, errp
)) {
1321 mr
= sysbus_mmio_get_region(sbd
, 0);
1322 } else if (!strcmp(devinfo
->type
, TYPE_UNIMPLEMENTED_DEVICE
)) {
1323 sbd
= SYS_BUS_DEVICE(&s
->unimp
[devinfo
->index
]);
1325 qdev_prop_set_string(DEVICE(sbd
), "name", devinfo
->name
);
1326 qdev_prop_set_uint64(DEVICE(sbd
), "size", devinfo
->size
);
1327 if (!sysbus_realize(sbd
, errp
)) {
1330 mr
= sysbus_mmio_get_region(sbd
, 0);
1332 g_assert_not_reached();
1335 switch (devinfo
->irq
) {
1339 case 0 ... NUM_SSE_IRQS
- 1:
1340 irq
= armsse_get_common_irq_in(s
, devinfo
->irq
);
1344 irq
= qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
),
1345 devinfo
->irq
- NMI_0
);
1348 g_assert_not_reached();
1352 sysbus_connect_irq(sbd
, 0, irq
);
1356 * Devices connected to a PPC are connected to the port here;
1357 * we will map the upstream end of that port to the right address
1358 * in the container later after the PPC has been realized.
1359 * Devices not connected to a PPC can be mapped immediately.
1361 if (devinfo
->ppc
!= NO_PPC
) {
1362 TZPPC
*ppc
= &s
->apb_ppc
[devinfo
->ppc
];
1363 g_autofree
char *portname
= g_strdup_printf("port[%d]",
1365 object_property_set_link(OBJECT(ppc
), portname
, OBJECT(mr
),
1368 memory_region_add_subregion(&s
->container
, devinfo
->addr
, mr
);
1372 if (info
->has_mhus
) {
1374 * An SSE-200 with only one CPU should have only one MHU created,
1375 * with the region where the second MHU usually is being RAZ/WI.
1376 * We don't implement that SSE-200 config; if we want to support
1377 * it then this code needs to be enhanced to handle creating the
1378 * RAZ/WI region instead of the second MHU.
1380 assert(info
->num_cpus
== ARRAY_SIZE(s
->mhu
));
1382 for (i
= 0; i
< ARRAY_SIZE(s
->mhu
); i
++) {
1385 SysBusDevice
*mhu_sbd
= SYS_BUS_DEVICE(&s
->mhu
[i
]);
1387 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mhu
[i
]), errp
)) {
1390 port
= g_strdup_printf("port[%d]", i
+ 3);
1391 mr
= sysbus_mmio_get_region(mhu_sbd
, 0);
1392 object_property_set_link(OBJECT(&s
->apb_ppc
[0]), port
, OBJECT(mr
),
1397 * Each MHU has an irq line for each CPU:
1398 * MHU 0 irq line 0 -> CPU 0 IRQ 6
1399 * MHU 0 irq line 1 -> CPU 1 IRQ 6
1400 * MHU 1 irq line 0 -> CPU 0 IRQ 7
1401 * MHU 1 irq line 1 -> CPU 1 IRQ 7
1403 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
1404 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
1406 sysbus_connect_irq(mhu_sbd
, cpunum
,
1407 qdev_get_gpio_in(cpudev
, 6 + i
));
1412 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc
[0]), errp
)) {
1416 sbd_apb_ppc0
= SYS_BUS_DEVICE(&s
->apb_ppc
[0]);
1417 dev_apb_ppc0
= DEVICE(&s
->apb_ppc
[0]);
1419 if (info
->has_mhus
) {
1420 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 3);
1421 memory_region_add_subregion(&s
->container
, 0x40003000, mr
);
1422 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 4);
1423 memory_region_add_subregion(&s
->container
, 0x40004000, mr
);
1425 for (i
= 0; i
< IOTS_APB_PPC0_NUM_PORTS
; i
++) {
1426 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_nonsec", i
,
1427 qdev_get_gpio_in_named(dev_apb_ppc0
,
1429 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_ap", i
,
1430 qdev_get_gpio_in_named(dev_apb_ppc0
,
1433 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_enable", 0,
1434 qdev_get_gpio_in_named(dev_apb_ppc0
,
1436 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_clear", 0,
1437 qdev_get_gpio_in_named(dev_apb_ppc0
,
1439 qdev_connect_gpio_out(dev_splitter
, 0,
1440 qdev_get_gpio_in_named(dev_apb_ppc0
,
1441 "cfg_sec_resp", 0));
1443 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1444 * ones) are sent individually to the security controller, and also
1445 * ORed together to give a single combined PPC interrupt to the NVIC.
1447 if (!object_property_set_int(OBJECT(&s
->ppc_irq_orgate
),
1448 "num-lines", NUM_PPCS
, errp
)) {
1451 if (!qdev_realize(DEVICE(&s
->ppc_irq_orgate
), NULL
, errp
)) {
1454 qdev_connect_gpio_out(DEVICE(&s
->ppc_irq_orgate
), 0,
1455 armsse_get_common_irq_in(s
, 10));
1458 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1459 * private per-CPU region (all these devices are SSE-200 only):
1460 * 0x50010000: L1 icache control registers
1461 * 0x50011000: CPUSECCTRL (CPU local security control registers)
1462 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1463 * The SSE-300 has an extra:
1464 * 0x40012000 and 0x50012000: CPU_PWRCTRL register block
1466 if (info
->has_cachectrl
) {
1467 for (i
= 0; i
< info
->num_cpus
; i
++) {
1468 char *name
= g_strdup_printf("cachectrl%d", i
);
1470 qdev_prop_set_string(DEVICE(&s
->cachectrl
[i
]), "name", name
);
1472 qdev_prop_set_uint64(DEVICE(&s
->cachectrl
[i
]), "size", 0x1000);
1473 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), errp
)) {
1477 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), 0);
1478 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50010000, mr
);
1481 if (info
->has_cpusecctrl
) {
1482 for (i
= 0; i
< info
->num_cpus
; i
++) {
1483 char *name
= g_strdup_printf("CPUSECCTRL%d", i
);
1485 qdev_prop_set_string(DEVICE(&s
->cpusecctrl
[i
]), "name", name
);
1487 qdev_prop_set_uint64(DEVICE(&s
->cpusecctrl
[i
]), "size", 0x1000);
1488 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), errp
)) {
1492 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), 0);
1493 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50011000, mr
);
1496 if (info
->has_cpuid
) {
1497 for (i
= 0; i
< info
->num_cpus
; i
++) {
1499 qdev_prop_set_uint32(DEVICE(&s
->cpuid
[i
]), "CPUID", i
);
1500 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpuid
[i
]), errp
)) {
1504 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpuid
[i
]), 0);
1505 memory_region_add_subregion(&s
->cpu_container
[i
], 0x4001F000, mr
);
1508 if (info
->has_cpu_pwrctrl
) {
1509 for (i
= 0; i
< info
->num_cpus
; i
++) {
1511 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpu_pwrctrl
[i
]), errp
)) {
1515 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpu_pwrctrl
[i
]), 0);
1516 memory_region_add_subregion(&s
->cpu_container
[i
], 0x40012000, mr
);
1520 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc
[1]), errp
)) {
1524 dev_apb_ppc1
= DEVICE(&s
->apb_ppc
[1]);
1525 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_nonsec", 0,
1526 qdev_get_gpio_in_named(dev_apb_ppc1
,
1528 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_ap", 0,
1529 qdev_get_gpio_in_named(dev_apb_ppc1
,
1531 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_enable", 0,
1532 qdev_get_gpio_in_named(dev_apb_ppc1
,
1534 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_clear", 0,
1535 qdev_get_gpio_in_named(dev_apb_ppc1
,
1537 qdev_connect_gpio_out(dev_splitter
, 1,
1538 qdev_get_gpio_in_named(dev_apb_ppc1
,
1539 "cfg_sec_resp", 0));
1542 * Now both PPCs are realized we can map the upstream ends of
1543 * ports which correspond to entries in the devinfo array.
1544 * The ports which are connected to non-devinfo devices have
1545 * already been mapped.
1547 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
1548 SysBusDevice
*ppc_sbd
;
1550 if (devinfo
->ppc
== NO_PPC
) {
1553 ppc_sbd
= SYS_BUS_DEVICE(&s
->apb_ppc
[devinfo
->ppc
]);
1554 mr
= sysbus_mmio_get_region(ppc_sbd
, devinfo
->ppc_port
);
1555 memory_region_add_subregion(&s
->container
, devinfo
->addr
, mr
);
1558 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
1559 Object
*splitter
= OBJECT(&s
->ppc_irq_splitter
[i
]);
1561 if (!object_property_set_int(splitter
, "num-lines", 2, errp
)) {
1564 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1569 for (i
= 0; i
< IOTS_NUM_AHB_EXP_PPC
; i
++) {
1570 char *ppcname
= g_strdup_printf("ahb_ppcexp%d", i
);
1572 armsse_forward_ppc(s
, ppcname
, i
);
1576 for (i
= 0; i
< IOTS_NUM_APB_EXP_PPC
; i
++) {
1577 char *ppcname
= g_strdup_printf("apb_ppcexp%d", i
);
1579 armsse_forward_ppc(s
, ppcname
, i
+ IOTS_NUM_AHB_EXP_PPC
);
1583 for (i
= NUM_EXTERNAL_PPCS
; i
< NUM_PPCS
; i
++) {
1584 /* Wire up IRQ splitter for internal PPCs */
1585 DeviceState
*devs
= DEVICE(&s
->ppc_irq_splitter
[i
]);
1586 char *gpioname
= g_strdup_printf("apb_ppc%d_irq_status",
1587 i
- NUM_EXTERNAL_PPCS
);
1588 TZPPC
*ppc
= &s
->apb_ppc
[i
- NUM_EXTERNAL_PPCS
];
1590 qdev_connect_gpio_out(devs
, 0,
1591 qdev_get_gpio_in_named(dev_secctl
, gpioname
, 0));
1592 qdev_connect_gpio_out(devs
, 1,
1593 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), i
));
1594 qdev_connect_gpio_out_named(DEVICE(ppc
), "irq", 0,
1595 qdev_get_gpio_in(devs
, 0));
1599 /* Wire up the splitters for the MPC IRQs */
1600 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
1601 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
1602 DeviceState
*devs
= DEVICE(splitter
);
1604 if (!object_property_set_int(OBJECT(splitter
), "num-lines", 2,
1608 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1612 if (i
< IOTS_NUM_EXP_MPC
) {
1613 /* Splitter input is from GPIO input line */
1614 s
->mpcexp_status_in
[i
] = qdev_get_gpio_in(devs
, 0);
1615 qdev_connect_gpio_out(devs
, 0,
1616 qdev_get_gpio_in_named(dev_secctl
,
1617 "mpcexp_status", i
));
1619 /* Splitter input is from our own MPC */
1620 qdev_connect_gpio_out_named(DEVICE(&s
->mpc
[i
- IOTS_NUM_EXP_MPC
]),
1622 qdev_get_gpio_in(devs
, 0));
1623 qdev_connect_gpio_out(devs
, 0,
1624 qdev_get_gpio_in_named(dev_secctl
,
1626 i
- IOTS_NUM_EXP_MPC
));
1629 qdev_connect_gpio_out(devs
, 1,
1630 qdev_get_gpio_in(DEVICE(&s
->mpc_irq_orgate
), i
));
1632 /* Create GPIO inputs which will pass the line state for our
1633 * mpcexp_irq inputs to the correct splitter devices.
1635 qdev_init_gpio_in_named(dev
, armsse_mpcexp_status
, "mpcexp_status",
1638 armsse_forward_sec_resp_cfg(s
);
1640 /* Forward the MSC related signals */
1641 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_status");
1642 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_clear");
1643 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_ns");
1644 qdev_connect_gpio_out_named(dev_secctl
, "msc_irq", 0,
1645 armsse_get_common_irq_in(s
, 11));
1648 * Expose our container region to the board model; this corresponds
1649 * to the AHB Slave Expansion ports which allow bus master devices
1650 * (eg DMA controllers) in the board model to make transactions into
1651 * devices in the ARMSSE.
1653 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->container
);
1656 static void armsse_idau_check(IDAUInterface
*ii
, uint32_t address
,
1657 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1660 * For ARMSSE systems the IDAU responses are simple logical functions
1661 * of the address bits. The NSC attribute is guest-adjustable via the
1662 * NSCCFG register in the security controller.
1664 ARMSSE
*s
= ARM_SSE(ii
);
1665 int region
= extract32(address
, 28, 4);
1667 *ns
= !(region
& 1);
1668 *nsc
= (region
== 1 && (s
->nsccfg
& 1)) || (region
== 3 && (s
->nsccfg
& 2));
1669 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1670 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1674 static const VMStateDescription armsse_vmstate
= {
1677 .minimum_version_id
= 2,
1678 .fields
= (const VMStateField
[]) {
1679 VMSTATE_CLOCK(mainclk
, ARMSSE
),
1680 VMSTATE_CLOCK(s32kclk
, ARMSSE
),
1681 VMSTATE_UINT32(nsccfg
, ARMSSE
),
1682 VMSTATE_END_OF_LIST()
1686 static void armsse_reset(DeviceState
*dev
)
1688 ARMSSE
*s
= ARM_SSE(dev
);
1693 static void armsse_class_init(ObjectClass
*klass
, void *data
)
1695 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1696 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(klass
);
1697 ARMSSEClass
*asc
= ARM_SSE_CLASS(klass
);
1698 const ARMSSEInfo
*info
= data
;
1700 dc
->realize
= armsse_realize
;
1701 dc
->vmsd
= &armsse_vmstate
;
1702 device_class_set_props(dc
, info
->props
);
1703 device_class_set_legacy_reset(dc
, armsse_reset
);
1704 iic
->check
= armsse_idau_check
;
1708 static const TypeInfo armsse_info
= {
1709 .name
= TYPE_ARM_SSE
,
1710 .parent
= TYPE_SYS_BUS_DEVICE
,
1711 .instance_size
= sizeof(ARMSSE
),
1712 .class_size
= sizeof(ARMSSEClass
),
1713 .instance_init
= armsse_init
,
1715 .interfaces
= (InterfaceInfo
[]) {
1716 { TYPE_IDAU_INTERFACE
},
1721 static void armsse_register_types(void)
1725 type_register_static(&armsse_info
);
1727 for (i
= 0; i
< ARRAY_SIZE(armsse_variants
); i
++) {
1729 .name
= armsse_variants
[i
].name
,
1730 .parent
= TYPE_ARM_SSE
,
1731 .class_init
= armsse_class_init
,
1732 .class_data
= (void *)&armsse_variants
[i
],
1738 type_init(armsse_register_types
);