2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19 * "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20 * "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
22 * Links to the TRM for the board itself and to the various Application
23 * Notes which document the FPGA images can be found here:
24 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
27 * https://developer.arm.com/documentation/100112/latest/
28 * Application Note AN505:
29 * https://developer.arm.com/documentation/dai0505/latest/
30 * Application Note AN521:
31 * https://developer.arm.com/documentation/dai0521/latest/
32 * Application Note AN524:
33 * https://developer.arm.com/documentation/dai0524/latest/
34 * Application Note AN547:
35 * https://developer.arm.com/documentation/dai0547/latest/
37 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38 * (ARM ECM0601256) for the details of some of the device layout:
39 * https://developer.arm.com/documentation/ecm0601256/latest
40 * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41 * most of the device layout:
42 * https://developer.arm.com/documentation/101104/latest/
43 * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44 * https://developer.arm.com/documentation/101773/latest/
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qapi/qmp/qlist.h"
52 #include "qemu/error-report.h"
53 #include "hw/arm/boot.h"
54 #include "hw/arm/armv7m.h"
55 #include "hw/or-irq.h"
56 #include "hw/boards.h"
57 #include "exec/address-spaces.h"
58 #include "sysemu/sysemu.h"
59 #include "sysemu/reset.h"
60 #include "hw/misc/unimp.h"
61 #include "hw/char/cmsdk-apb-uart.h"
62 #include "hw/timer/cmsdk-apb-timer.h"
63 #include "hw/misc/mps2-scc.h"
64 #include "hw/misc/mps2-fpgaio.h"
65 #include "hw/misc/tz-mpc.h"
66 #include "hw/misc/tz-msc.h"
67 #include "hw/arm/armsse.h"
68 #include "hw/dma/pl080.h"
69 #include "hw/rtc/pl031.h"
70 #include "hw/ssi/pl022.h"
71 #include "hw/i2c/arm_sbcon_i2c.h"
72 #include "hw/net/lan9118.h"
74 #include "hw/core/split-irq.h"
75 #include "hw/qdev-clock.h"
76 #include "qom/object.h"
79 #define MPS2TZ_NUMIRQ_MAX 96
80 #define MPS2TZ_RAM_MAX 5
82 typedef enum MPS2TZFPGAType
{
90 * Define the layout of RAM in a board, including which parts are
92 * mrindex specifies the index into mms->ram[] to use for the backing RAM;
93 * -1 means "use the system RAM".
95 typedef struct RAMInfo
{
99 int mpc
; /* MPC number, -1 for "not behind an MPC" */
106 * IS_ALIAS: this RAM area is an alias to the upstream end of the
107 * MPC specified by its .mpc value
108 * IS_ROM: this RAM area is read-only
113 struct MPS2TZMachineClass
{
115 MPS2TZFPGAType fpga_type
;
117 uint32_t sysclk_frq
; /* Main SYSCLK frequency in Hz */
118 uint32_t apb_periph_frq
; /* APB peripheral frequency in Hz */
120 const uint32_t *oscclk
;
121 uint32_t fpgaio_num_leds
; /* Number of LEDs in FPGAIO LED0 register */
122 bool fpgaio_has_switches
; /* Does FPGAIO have SWITCH register? */
123 bool fpgaio_has_dbgctrl
; /* Does FPGAIO have DBGCTRL register? */
124 int numirq
; /* Number of external interrupts */
125 int uart_overflow_irq
; /* number of the combined UART overflow IRQ */
126 uint32_t init_svtor
; /* init-svtor setting for SSE */
127 uint32_t sram_addr_width
; /* SRAM_ADDR_WIDTH setting for SSE */
128 uint32_t cpu0_mpu_ns
; /* CPU0_MPU_NS setting for SSE */
129 uint32_t cpu0_mpu_s
; /* CPU0_MPU_S setting for SSE */
130 uint32_t cpu1_mpu_ns
; /* CPU1_MPU_NS setting for SSE */
131 uint32_t cpu1_mpu_s
; /* CPU1_MPU_S setting for SSE */
132 const RAMInfo
*raminfo
;
133 const char *armsse_type
;
134 uint32_t boot_ram_size
; /* size of ram at address 0; 0 == find in raminfo */
137 struct MPS2TZMachineState
{
141 MemoryRegion ram
[MPS2TZ_RAM_MAX
];
142 MemoryRegion eth_usb_container
;
149 ArmSbconI2CState i2c
[5];
150 UnimplementedDeviceState i2s_audio
;
151 UnimplementedDeviceState gpio
[4];
152 UnimplementedDeviceState gfx
;
153 UnimplementedDeviceState cldc
;
154 UnimplementedDeviceState usb
;
158 CMSDKAPBUART uart
[6];
159 SplitIRQ sec_resp_splitter
;
160 OrIRQState uart_irq_orgate
;
161 DeviceState
*lan9118
;
162 SplitIRQ cpu_irq_splitter
[MPS2TZ_NUMIRQ_MAX
];
170 #define TYPE_MPS2TZ_MACHINE "mps2tz"
171 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
172 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
173 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
174 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
176 OBJECT_DECLARE_TYPE(MPS2TZMachineState
, MPS2TZMachineClass
, MPS2TZ_MACHINE
)
178 /* Slow 32Khz S32KCLK frequency in Hz */
179 #define S32KCLK_FRQ (32 * 1000)
182 * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
183 * emulation of that much guest RAM, so artificially make it smaller.
185 #if HOST_LONG_BITS == 32
186 #define MPS3_DDR_SIZE (1 * GiB)
188 #define MPS3_DDR_SIZE (2 * GiB)
191 /* For cpu{0,1}_mpu_{ns,s}, means "leave at SSE's default value" */
192 #define MPU_REGION_DEFAULT UINT32_MAX
194 static const uint32_t an505_oscclk
[] = {
200 static const uint32_t an524_oscclk
[] = {
209 static const RAMInfo an505_raminfo
[] = { {
228 .name
= "ssram-0-alias",
235 /* Use the largest bit of contiguous RAM as our "system memory" */
247 * Note that the addresses and MPC numbering here should match up
248 * with those used in remap_memory(), which can swap the BRAM and QSPI.
250 static const RAMInfo an524_raminfo
[] = { {
257 /* We don't model QSPI flash yet; for now expose it as simple ROM */
267 .size
= MPS3_DDR_SIZE
,
275 static const RAMInfo an547_raminfo
[] = { {
288 /* We don't model QSPI flash yet; for now expose it as simple ROM */
298 .size
= MPS3_DDR_SIZE
,
306 static const RAMInfo
*find_raminfo_for_mpc(MPS2TZMachineState
*mms
, int mpc
)
308 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
310 const RAMInfo
*found
= NULL
;
312 for (p
= mmc
->raminfo
; p
->name
; p
++) {
313 if (p
->mpc
== mpc
&& !(p
->flags
& IS_ALIAS
)) {
314 /* There should only be one entry in the array for this MPC */
319 /* if raminfo array doesn't have an entry for each MPC this is a bug */
324 static MemoryRegion
*mr_for_raminfo(MPS2TZMachineState
*mms
,
325 const RAMInfo
*raminfo
)
327 /* Return an initialized MemoryRegion for the RAMInfo. */
330 if (raminfo
->mrindex
< 0) {
331 /* Means this RAMInfo is for QEMU's "system memory" */
332 MachineState
*machine
= MACHINE(mms
);
333 assert(!(raminfo
->flags
& IS_ROM
));
337 assert(raminfo
->mrindex
< MPS2TZ_RAM_MAX
);
338 ram
= &mms
->ram
[raminfo
->mrindex
];
340 memory_region_init_ram(ram
, NULL
, raminfo
->name
,
341 raminfo
->size
, &error_fatal
);
342 if (raminfo
->flags
& IS_ROM
) {
343 memory_region_set_readonly(ram
, true);
348 /* Create an alias of an entire original MemoryRegion @orig
349 * located at @base in the memory map.
351 static void make_ram_alias(MemoryRegion
*mr
, const char *name
,
352 MemoryRegion
*orig
, hwaddr base
)
354 memory_region_init_alias(mr
, NULL
, name
, orig
, 0,
355 memory_region_size(orig
));
356 memory_region_add_subregion(get_system_memory(), base
, mr
);
359 static qemu_irq
get_sse_irq_in(MPS2TZMachineState
*mms
, int irqno
)
362 * Return a qemu_irq which will signal IRQ n to all CPUs in the
363 * SSE. The irqno should be as the CPU sees it, so the first
364 * external-to-the-SSE interrupt is 32.
366 MachineClass
*mc
= MACHINE_GET_CLASS(mms
);
367 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
369 assert(irqno
>= 32 && irqno
< (mmc
->numirq
+ 32));
372 * Convert from "CPU irq number" (as listed in the FPGA image
373 * documentation) to the SSE external-interrupt number.
377 if (mc
->max_cpus
> 1) {
378 return qdev_get_gpio_in(DEVICE(&mms
->cpu_irq_splitter
[irqno
]), 0);
380 return qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
), "EXP_IRQ", irqno
);
384 /* Union describing the device-specific extra data we pass to the devfn. */
385 typedef union PPCExtraData
{
389 /* Most of the devices in the AN505 FPGA image sit behind
390 * Peripheral Protection Controllers. These data structures
391 * define the layout of which devices sit behind which PPCs.
392 * The devfn for each port is a function which creates, configures
393 * and initializes the device, returning the MemoryRegion which
394 * needs to be plugged into the downstream end of the PPC port.
396 typedef MemoryRegion
*MakeDevFn(MPS2TZMachineState
*mms
, void *opaque
,
397 const char *name
, hwaddr size
,
399 const PPCExtraData
*extradata
);
401 typedef struct PPCPortInfo
{
407 int irqs
[3]; /* currently no device needs more IRQ lines than this */
408 PPCExtraData extradata
; /* to pass device-specific info to the devfn */
411 typedef struct PPCInfo
{
413 PPCPortInfo ports
[TZ_NUM_PORTS
];
416 static MemoryRegion
*make_unimp_dev(MPS2TZMachineState
*mms
,
418 const char *name
, hwaddr size
,
420 const PPCExtraData
*extradata
)
422 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
423 * and return a pointer to its MemoryRegion.
425 UnimplementedDeviceState
*uds
= opaque
;
427 object_initialize_child(OBJECT(mms
), name
, uds
, TYPE_UNIMPLEMENTED_DEVICE
);
428 qdev_prop_set_string(DEVICE(uds
), "name", name
);
429 qdev_prop_set_uint64(DEVICE(uds
), "size", size
);
430 sysbus_realize(SYS_BUS_DEVICE(uds
), &error_fatal
);
431 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds
), 0);
434 static MemoryRegion
*make_uart(MPS2TZMachineState
*mms
, void *opaque
,
435 const char *name
, hwaddr size
,
436 const int *irqs
, const PPCExtraData
*extradata
)
438 /* The irq[] array is rx, tx, combined, in that order */
439 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
440 CMSDKAPBUART
*uart
= opaque
;
441 int i
= uart
- &mms
->uart
[0];
443 DeviceState
*orgate_dev
= DEVICE(&mms
->uart_irq_orgate
);
445 object_initialize_child(OBJECT(mms
), name
, uart
, TYPE_CMSDK_APB_UART
);
446 qdev_prop_set_chr(DEVICE(uart
), "chardev", serial_hd(i
));
447 qdev_prop_set_uint32(DEVICE(uart
), "pclk-frq", mmc
->apb_periph_frq
);
448 sysbus_realize(SYS_BUS_DEVICE(uart
), &error_fatal
);
449 s
= SYS_BUS_DEVICE(uart
);
450 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[1]));
451 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, irqs
[0]));
452 sysbus_connect_irq(s
, 2, qdev_get_gpio_in(orgate_dev
, i
* 2));
453 sysbus_connect_irq(s
, 3, qdev_get_gpio_in(orgate_dev
, i
* 2 + 1));
454 sysbus_connect_irq(s
, 4, get_sse_irq_in(mms
, irqs
[2]));
455 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart
), 0);
458 static MemoryRegion
*make_scc(MPS2TZMachineState
*mms
, void *opaque
,
459 const char *name
, hwaddr size
,
460 const int *irqs
, const PPCExtraData
*extradata
)
462 MPS2SCC
*scc
= opaque
;
464 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
468 object_initialize_child(OBJECT(mms
), "scc", scc
, TYPE_MPS2_SCC
);
469 sccdev
= DEVICE(scc
);
470 qdev_prop_set_uint32(sccdev
, "scc-cfg0", mms
->remap
? 1 : 0);
471 qdev_prop_set_uint32(sccdev
, "scc-cfg4", 0x2);
472 qdev_prop_set_uint32(sccdev
, "scc-aid", 0x00200008);
473 qdev_prop_set_uint32(sccdev
, "scc-id", mmc
->scc_id
);
475 oscclk
= qlist_new();
476 for (i
= 0; i
< mmc
->len_oscclk
; i
++) {
477 qlist_append_int(oscclk
, mmc
->oscclk
[i
]);
479 qdev_prop_set_array(sccdev
, "oscclk", oscclk
);
481 sysbus_realize(SYS_BUS_DEVICE(scc
), &error_fatal
);
482 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev
), 0);
485 static MemoryRegion
*make_fpgaio(MPS2TZMachineState
*mms
, void *opaque
,
486 const char *name
, hwaddr size
,
487 const int *irqs
, const PPCExtraData
*extradata
)
489 MPS2FPGAIO
*fpgaio
= opaque
;
490 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
492 object_initialize_child(OBJECT(mms
), "fpgaio", fpgaio
, TYPE_MPS2_FPGAIO
);
493 qdev_prop_set_uint32(DEVICE(fpgaio
), "num-leds", mmc
->fpgaio_num_leds
);
494 qdev_prop_set_bit(DEVICE(fpgaio
), "has-switches", mmc
->fpgaio_has_switches
);
495 qdev_prop_set_bit(DEVICE(fpgaio
), "has-dbgctrl", mmc
->fpgaio_has_dbgctrl
);
496 sysbus_realize(SYS_BUS_DEVICE(fpgaio
), &error_fatal
);
497 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio
), 0);
500 static MemoryRegion
*make_eth_dev(MPS2TZMachineState
*mms
, void *opaque
,
501 const char *name
, hwaddr size
,
503 const PPCExtraData
*extradata
)
507 /* In hardware this is a LAN9220; the LAN9118 is software compatible
508 * except that it doesn't support the checksum-offload feature.
510 mms
->lan9118
= qdev_new(TYPE_LAN9118
);
511 qemu_configure_nic_device(mms
->lan9118
, true, NULL
);
513 s
= SYS_BUS_DEVICE(mms
->lan9118
);
514 sysbus_realize_and_unref(s
, &error_fatal
);
515 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
516 return sysbus_mmio_get_region(s
, 0);
519 static MemoryRegion
*make_eth_usb(MPS2TZMachineState
*mms
, void *opaque
,
520 const char *name
, hwaddr size
,
522 const PPCExtraData
*extradata
)
525 * The AN524 makes the ethernet and USB share a PPC port.
526 * irqs[] is the ethernet IRQ.
530 memory_region_init(&mms
->eth_usb_container
, OBJECT(mms
),
531 "mps2-tz-eth-usb-container", 0x200000);
534 * In hardware this is a LAN9220; the LAN9118 is software compatible
535 * except that it doesn't support the checksum-offload feature.
537 mms
->lan9118
= qdev_new(TYPE_LAN9118
);
538 qemu_configure_nic_device(mms
->lan9118
, true, NULL
);
540 s
= SYS_BUS_DEVICE(mms
->lan9118
);
541 sysbus_realize_and_unref(s
, &error_fatal
);
542 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
544 memory_region_add_subregion(&mms
->eth_usb_container
,
545 0, sysbus_mmio_get_region(s
, 0));
547 /* The USB OTG controller is an ISP1763; we don't have a model of it. */
548 object_initialize_child(OBJECT(mms
), "usb-otg",
549 &mms
->usb
, TYPE_UNIMPLEMENTED_DEVICE
);
550 qdev_prop_set_string(DEVICE(&mms
->usb
), "name", "usb-otg");
551 qdev_prop_set_uint64(DEVICE(&mms
->usb
), "size", 0x100000);
552 s
= SYS_BUS_DEVICE(&mms
->usb
);
553 sysbus_realize(s
, &error_fatal
);
555 memory_region_add_subregion(&mms
->eth_usb_container
,
556 0x100000, sysbus_mmio_get_region(s
, 0));
558 return &mms
->eth_usb_container
;
561 static MemoryRegion
*make_mpc(MPS2TZMachineState
*mms
, void *opaque
,
562 const char *name
, hwaddr size
,
563 const int *irqs
, const PPCExtraData
*extradata
)
566 int i
= mpc
- &mms
->mpc
[0];
567 MemoryRegion
*upstream
;
568 const RAMInfo
*raminfo
= find_raminfo_for_mpc(mms
, i
);
569 MemoryRegion
*ram
= mr_for_raminfo(mms
, raminfo
);
571 object_initialize_child(OBJECT(mms
), name
, mpc
, TYPE_TZ_MPC
);
572 object_property_set_link(OBJECT(mpc
), "downstream", OBJECT(ram
),
574 sysbus_realize(SYS_BUS_DEVICE(mpc
), &error_fatal
);
575 /* Map the upstream end of the MPC into system memory */
576 upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 1);
577 memory_region_add_subregion(get_system_memory(), raminfo
->base
, upstream
);
578 /* and connect its interrupt to the IoTKit */
579 qdev_connect_gpio_out_named(DEVICE(mpc
), "irq", 0,
580 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
581 "mpcexp_status", i
));
583 /* Return the register interface MR for our caller to map behind the PPC */
584 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 0);
587 static hwaddr
boot_mem_base(MPS2TZMachineState
*mms
)
590 * Return the canonical address of the block which will be mapped
591 * at address 0x0 (i.e. where the vector table is).
592 * This is usually 0, but if the AN524 alternate memory map is
593 * enabled it will be the base address of the QSPI block.
595 return mms
->remap
? 0x28000000 : 0;
598 static void remap_memory(MPS2TZMachineState
*mms
, int map
)
601 * Remap the memory for the AN524. 'map' is the value of
602 * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
603 * for the "option 1" mapping where QSPI is at address 0.
605 * Effectively we need to swap around the "upstream" ends of
608 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
611 if (mmc
->fpga_type
!= FPGA_AN524
) {
615 memory_region_transaction_begin();
616 for (i
= 0; i
< 2; i
++) {
617 TZMPC
*mpc
= &mms
->mpc
[i
];
618 MemoryRegion
*upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 1);
619 hwaddr addr
= (i
^ map
) ? 0x28000000 : 0;
621 memory_region_set_address(upstream
, addr
);
623 memory_region_transaction_commit();
626 static void remap_irq_fn(void *opaque
, int n
, int level
)
628 MPS2TZMachineState
*mms
= opaque
;
630 remap_memory(mms
, level
);
633 static MemoryRegion
*make_dma(MPS2TZMachineState
*mms
, void *opaque
,
634 const char *name
, hwaddr size
,
635 const int *irqs
, const PPCExtraData
*extradata
)
637 /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
638 PL080State
*dma
= opaque
;
639 int i
= dma
- &mms
->dma
[0];
641 char *mscname
= g_strdup_printf("%s-msc", name
);
642 TZMSC
*msc
= &mms
->msc
[i
];
643 DeviceState
*iotkitdev
= DEVICE(&mms
->iotkit
);
644 MemoryRegion
*msc_upstream
;
645 MemoryRegion
*msc_downstream
;
648 * Each DMA device is a PL081 whose transaction master interface
649 * is guarded by a Master Security Controller. The downstream end of
650 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
651 * DMA devices can see all devices and memory that the CPU does.
653 object_initialize_child(OBJECT(mms
), mscname
, msc
, TYPE_TZ_MSC
);
654 msc_downstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms
->iotkit
), 0);
655 object_property_set_link(OBJECT(msc
), "downstream",
656 OBJECT(msc_downstream
), &error_fatal
);
657 object_property_set_link(OBJECT(msc
), "idau", OBJECT(mms
), &error_fatal
);
658 sysbus_realize(SYS_BUS_DEVICE(msc
), &error_fatal
);
660 qdev_connect_gpio_out_named(DEVICE(msc
), "irq", 0,
661 qdev_get_gpio_in_named(iotkitdev
,
662 "mscexp_status", i
));
663 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_clear", i
,
664 qdev_get_gpio_in_named(DEVICE(msc
),
666 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_ns", i
,
667 qdev_get_gpio_in_named(DEVICE(msc
),
669 qdev_connect_gpio_out(DEVICE(&mms
->sec_resp_splitter
),
670 ARRAY_SIZE(mms
->ppc
) + i
,
671 qdev_get_gpio_in_named(DEVICE(msc
),
673 msc_upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(msc
), 0);
675 object_initialize_child(OBJECT(mms
), name
, dma
, TYPE_PL081
);
676 object_property_set_link(OBJECT(dma
), "downstream", OBJECT(msc_upstream
),
678 sysbus_realize(SYS_BUS_DEVICE(dma
), &error_fatal
);
680 s
= SYS_BUS_DEVICE(dma
);
681 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
682 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
683 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, irqs
[1]));
684 sysbus_connect_irq(s
, 2, get_sse_irq_in(mms
, irqs
[2]));
687 return sysbus_mmio_get_region(s
, 0);
690 static MemoryRegion
*make_spi(MPS2TZMachineState
*mms
, void *opaque
,
691 const char *name
, hwaddr size
,
692 const int *irqs
, const PPCExtraData
*extradata
)
695 * The AN505 has five PL022 SPI controllers.
696 * One of these should have the LCD controller behind it; the others
697 * are connected only to the FPGA's "general purpose SPI connector"
698 * or "shield" expansion connectors.
699 * Note that if we do implement devices behind SPI, the chip select
700 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
702 PL022State
*spi
= opaque
;
705 object_initialize_child(OBJECT(mms
), name
, spi
, TYPE_PL022
);
706 sysbus_realize(SYS_BUS_DEVICE(spi
), &error_fatal
);
707 s
= SYS_BUS_DEVICE(spi
);
708 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
709 return sysbus_mmio_get_region(s
, 0);
712 static MemoryRegion
*make_i2c(MPS2TZMachineState
*mms
, void *opaque
,
713 const char *name
, hwaddr size
,
714 const int *irqs
, const PPCExtraData
*extradata
)
716 ArmSbconI2CState
*i2c
= opaque
;
719 object_initialize_child(OBJECT(mms
), name
, i2c
, TYPE_ARM_SBCON_I2C
);
720 s
= SYS_BUS_DEVICE(i2c
);
721 sysbus_realize(s
, &error_fatal
);
724 * If this is an internal-use-only i2c bus, mark it full
725 * so that user-created i2c devices are not plugged into it.
726 * If we implement models of any on-board i2c devices that
727 * plug in to one of the internal-use-only buses, then we will
728 * need to create and plugging those in here before we mark the
731 if (extradata
->i2c_internal
) {
732 BusState
*qbus
= qdev_get_child_bus(DEVICE(i2c
), "i2c");
733 qbus_mark_full(qbus
);
736 return sysbus_mmio_get_region(s
, 0);
739 static MemoryRegion
*make_rtc(MPS2TZMachineState
*mms
, void *opaque
,
740 const char *name
, hwaddr size
,
741 const int *irqs
, const PPCExtraData
*extradata
)
743 PL031State
*pl031
= opaque
;
746 object_initialize_child(OBJECT(mms
), name
, pl031
, TYPE_PL031
);
747 s
= SYS_BUS_DEVICE(pl031
);
748 sysbus_realize(s
, &error_fatal
);
750 * The board docs don't give an IRQ number for the PL031, so
751 * presumably it is not connected.
753 return sysbus_mmio_get_region(s
, 0);
756 static void create_non_mpc_ram(MPS2TZMachineState
*mms
)
759 * Handle the RAMs which are either not behind MPCs or which are
760 * aliases to another MPC.
763 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
765 for (p
= mmc
->raminfo
; p
->name
; p
++) {
766 if (p
->flags
& IS_ALIAS
) {
767 SysBusDevice
*mpc_sbd
= SYS_BUS_DEVICE(&mms
->mpc
[p
->mpc
]);
768 MemoryRegion
*upstream
= sysbus_mmio_get_region(mpc_sbd
, 1);
769 make_ram_alias(&mms
->ram
[p
->mrindex
], p
->name
, upstream
, p
->base
);
770 } else if (p
->mpc
== -1) {
771 /* RAM not behind an MPC */
772 MemoryRegion
*mr
= mr_for_raminfo(mms
, p
);
773 memory_region_add_subregion(get_system_memory(), p
->base
, mr
);
778 static uint32_t boot_ram_size(MPS2TZMachineState
*mms
)
780 /* Return the size of the RAM block at guest address zero */
782 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
785 * Use a per-board specification (for when the boot RAM is in
786 * the SSE and so doesn't have a RAMInfo list entry)
788 if (mmc
->boot_ram_size
) {
789 return mmc
->boot_ram_size
;
792 for (p
= mmc
->raminfo
; p
->name
; p
++) {
793 if (p
->base
== boot_mem_base(mms
)) {
797 g_assert_not_reached();
800 static void mps2tz_common_init(MachineState
*machine
)
802 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(machine
);
803 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
804 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
805 MemoryRegion
*system_memory
= get_system_memory();
806 DeviceState
*iotkitdev
;
807 DeviceState
*dev_splitter
;
812 if (machine
->ram_size
!= mc
->default_ram_size
) {
813 char *sz
= size_to_str(mc
->default_ram_size
);
814 error_report("Invalid RAM size, should be %s", sz
);
819 /* These clocks don't need migration because they are fixed-frequency */
820 mms
->sysclk
= clock_new(OBJECT(machine
), "SYSCLK");
821 clock_set_hz(mms
->sysclk
, mmc
->sysclk_frq
);
822 mms
->s32kclk
= clock_new(OBJECT(machine
), "S32KCLK");
823 clock_set_hz(mms
->s32kclk
, S32KCLK_FRQ
);
825 object_initialize_child(OBJECT(machine
), TYPE_IOTKIT
, &mms
->iotkit
,
827 iotkitdev
= DEVICE(&mms
->iotkit
);
828 object_property_set_link(OBJECT(&mms
->iotkit
), "memory",
829 OBJECT(system_memory
), &error_abort
);
830 qdev_prop_set_uint32(iotkitdev
, "EXP_NUMIRQ", mmc
->numirq
);
831 qdev_prop_set_uint32(iotkitdev
, "init-svtor", mmc
->init_svtor
);
832 if (mmc
->cpu0_mpu_ns
!= MPU_REGION_DEFAULT
) {
833 qdev_prop_set_uint32(iotkitdev
, "CPU0_MPU_NS", mmc
->cpu0_mpu_ns
);
835 if (mmc
->cpu0_mpu_s
!= MPU_REGION_DEFAULT
) {
836 qdev_prop_set_uint32(iotkitdev
, "CPU0_MPU_S", mmc
->cpu0_mpu_s
);
838 if (object_property_find(OBJECT(iotkitdev
), "CPU1_MPU_NS")) {
839 if (mmc
->cpu1_mpu_ns
!= MPU_REGION_DEFAULT
) {
840 qdev_prop_set_uint32(iotkitdev
, "CPU1_MPU_NS", mmc
->cpu1_mpu_ns
);
842 if (mmc
->cpu1_mpu_s
!= MPU_REGION_DEFAULT
) {
843 qdev_prop_set_uint32(iotkitdev
, "CPU1_MPU_S", mmc
->cpu1_mpu_s
);
846 qdev_prop_set_uint32(iotkitdev
, "SRAM_ADDR_WIDTH", mmc
->sram_addr_width
);
847 qdev_connect_clock_in(iotkitdev
, "MAINCLK", mms
->sysclk
);
848 qdev_connect_clock_in(iotkitdev
, "S32KCLK", mms
->s32kclk
);
849 sysbus_realize(SYS_BUS_DEVICE(&mms
->iotkit
), &error_fatal
);
852 * If this board has more than one CPU, then we need to create splitters
853 * to feed the IRQ inputs for each CPU in the SSE from each device in the
854 * board. If there is only one CPU, we can just wire the device IRQ
855 * directly to the SSE's IRQ input.
857 assert(mmc
->numirq
<= MPS2TZ_NUMIRQ_MAX
);
858 if (mc
->max_cpus
> 1) {
859 for (i
= 0; i
< mmc
->numirq
; i
++) {
860 char *name
= g_strdup_printf("mps2-irq-splitter%d", i
);
861 SplitIRQ
*splitter
= &mms
->cpu_irq_splitter
[i
];
863 object_initialize_child_with_props(OBJECT(machine
), name
,
864 splitter
, sizeof(*splitter
),
865 TYPE_SPLIT_IRQ
, &error_fatal
,
869 object_property_set_int(OBJECT(splitter
), "num-lines", 2,
871 qdev_realize(DEVICE(splitter
), NULL
, &error_fatal
);
872 qdev_connect_gpio_out(DEVICE(splitter
), 0,
873 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
875 qdev_connect_gpio_out(DEVICE(splitter
), 1,
876 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
881 /* The sec_resp_cfg output from the IoTKit must be split into multiple
882 * lines, one for each of the PPCs we create here, plus one per MSC.
884 object_initialize_child(OBJECT(machine
), "sec-resp-splitter",
885 &mms
->sec_resp_splitter
, TYPE_SPLIT_IRQ
);
886 object_property_set_int(OBJECT(&mms
->sec_resp_splitter
), "num-lines",
887 ARRAY_SIZE(mms
->ppc
) + ARRAY_SIZE(mms
->msc
),
889 qdev_realize(DEVICE(&mms
->sec_resp_splitter
), NULL
, &error_fatal
);
890 dev_splitter
= DEVICE(&mms
->sec_resp_splitter
);
891 qdev_connect_gpio_out_named(iotkitdev
, "sec_resp_cfg", 0,
892 qdev_get_gpio_in(dev_splitter
, 0));
895 * The IoTKit sets up much of the memory layout, including
896 * the aliases between secure and non-secure regions in the
897 * address space, and also most of the devices in the system.
898 * The FPGA itself contains various RAMs and some additional devices.
899 * The FPGA images have an odd combination of different RAMs,
900 * because in hardware they are different implementations and
901 * connected to different buses, giving varying performance/size
902 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
903 * call the largest lump our "system memory".
907 * The overflow IRQs for all UARTs are ORed together.
908 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
909 * Create the OR gate for this: it has one input for the TX overflow
910 * and one for the RX overflow for each UART we might have.
911 * (If the board has fewer than the maximum possible number of UARTs
912 * those inputs are never wired up and are treated as always-zero.)
914 object_initialize_child(OBJECT(mms
), "uart-irq-orgate",
915 &mms
->uart_irq_orgate
, TYPE_OR_IRQ
);
916 object_property_set_int(OBJECT(&mms
->uart_irq_orgate
), "num-lines",
917 2 * ARRAY_SIZE(mms
->uart
),
919 qdev_realize(DEVICE(&mms
->uart_irq_orgate
), NULL
, &error_fatal
);
920 qdev_connect_gpio_out(DEVICE(&mms
->uart_irq_orgate
), 0,
921 get_sse_irq_in(mms
, mmc
->uart_overflow_irq
));
923 /* Most of the devices in the FPGA are behind Peripheral Protection
924 * Controllers. The required order for initializing things is:
925 * + initialize the PPC
926 * + initialize, configure and realize downstream devices
927 * + connect downstream device MemoryRegions to the PPC
929 * + map the PPC's MemoryRegions to the places in the address map
930 * where the downstream devices should appear
931 * + wire up the PPC's control lines to the IoTKit object
934 const PPCInfo an505_ppcs
[] = { {
935 .name
= "apb_ppcexp0",
937 { "ssram-0-mpc", make_mpc
, &mms
->mpc
[0], 0x58007000, 0x1000 },
938 { "ssram-1-mpc", make_mpc
, &mms
->mpc
[1], 0x58008000, 0x1000 },
939 { "ssram-2-mpc", make_mpc
, &mms
->mpc
[2], 0x58009000, 0x1000 },
942 .name
= "apb_ppcexp1",
944 { "spi0", make_spi
, &mms
->spi
[0], 0x40205000, 0x1000, { 51 } },
945 { "spi1", make_spi
, &mms
->spi
[1], 0x40206000, 0x1000, { 52 } },
946 { "spi2", make_spi
, &mms
->spi
[2], 0x40209000, 0x1000, { 53 } },
947 { "spi3", make_spi
, &mms
->spi
[3], 0x4020a000, 0x1000, { 54 } },
948 { "spi4", make_spi
, &mms
->spi
[4], 0x4020b000, 0x1000, { 55 } },
949 { "uart0", make_uart
, &mms
->uart
[0], 0x40200000, 0x1000, { 32, 33, 42 } },
950 { "uart1", make_uart
, &mms
->uart
[1], 0x40201000, 0x1000, { 34, 35, 43 } },
951 { "uart2", make_uart
, &mms
->uart
[2], 0x40202000, 0x1000, { 36, 37, 44 } },
952 { "uart3", make_uart
, &mms
->uart
[3], 0x40203000, 0x1000, { 38, 39, 45 } },
953 { "uart4", make_uart
, &mms
->uart
[4], 0x40204000, 0x1000, { 40, 41, 46 } },
954 { "i2c0", make_i2c
, &mms
->i2c
[0], 0x40207000, 0x1000, {},
955 { .i2c_internal
= true /* touchscreen */ } },
956 { "i2c1", make_i2c
, &mms
->i2c
[1], 0x40208000, 0x1000, {},
957 { .i2c_internal
= true /* audio conf */ } },
958 { "i2c2", make_i2c
, &mms
->i2c
[2], 0x4020c000, 0x1000, {},
959 { .i2c_internal
= false /* shield 0 */ } },
960 { "i2c3", make_i2c
, &mms
->i2c
[3], 0x4020d000, 0x1000, {},
961 { .i2c_internal
= false /* shield 1 */ } },
964 .name
= "apb_ppcexp2",
966 { "scc", make_scc
, &mms
->scc
, 0x40300000, 0x1000 },
967 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
,
968 0x40301000, 0x1000 },
969 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x40302000, 0x1000 },
972 .name
= "ahb_ppcexp0",
974 { "gfx", make_unimp_dev
, &mms
->gfx
, 0x41000000, 0x140000 },
975 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x40100000, 0x1000 },
976 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x40101000, 0x1000 },
977 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x40102000, 0x1000 },
978 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x40103000, 0x1000 },
979 { "eth", make_eth_dev
, NULL
, 0x42000000, 0x100000, { 48 } },
982 .name
= "ahb_ppcexp1",
984 { "dma0", make_dma
, &mms
->dma
[0], 0x40110000, 0x1000, { 58, 56, 57 } },
985 { "dma1", make_dma
, &mms
->dma
[1], 0x40111000, 0x1000, { 61, 59, 60 } },
986 { "dma2", make_dma
, &mms
->dma
[2], 0x40112000, 0x1000, { 64, 62, 63 } },
987 { "dma3", make_dma
, &mms
->dma
[3], 0x40113000, 0x1000, { 67, 65, 66 } },
992 const PPCInfo an524_ppcs
[] = { {
993 .name
= "apb_ppcexp0",
995 { "bram-mpc", make_mpc
, &mms
->mpc
[0], 0x58007000, 0x1000 },
996 { "qspi-mpc", make_mpc
, &mms
->mpc
[1], 0x58008000, 0x1000 },
997 { "ddr-mpc", make_mpc
, &mms
->mpc
[2], 0x58009000, 0x1000 },
1000 .name
= "apb_ppcexp1",
1002 { "i2c0", make_i2c
, &mms
->i2c
[0], 0x41200000, 0x1000, {},
1003 { .i2c_internal
= true /* touchscreen */ } },
1004 { "i2c1", make_i2c
, &mms
->i2c
[1], 0x41201000, 0x1000, {},
1005 { .i2c_internal
= true /* audio conf */ } },
1006 { "spi0", make_spi
, &mms
->spi
[0], 0x41202000, 0x1000, { 52 } },
1007 { "spi1", make_spi
, &mms
->spi
[1], 0x41203000, 0x1000, { 53 } },
1008 { "spi2", make_spi
, &mms
->spi
[2], 0x41204000, 0x1000, { 54 } },
1009 { "i2c2", make_i2c
, &mms
->i2c
[2], 0x41205000, 0x1000, {},
1010 { .i2c_internal
= false /* shield 0 */ } },
1011 { "i2c3", make_i2c
, &mms
->i2c
[3], 0x41206000, 0x1000, {},
1012 { .i2c_internal
= false /* shield 1 */ } },
1013 { /* port 7 reserved */ },
1014 { "i2c4", make_i2c
, &mms
->i2c
[4], 0x41208000, 0x1000, {},
1015 { .i2c_internal
= true /* DDR4 EEPROM */ } },
1018 .name
= "apb_ppcexp2",
1020 { "scc", make_scc
, &mms
->scc
, 0x41300000, 0x1000 },
1021 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
,
1022 0x41301000, 0x1000 },
1023 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x41302000, 0x1000 },
1024 { "uart0", make_uart
, &mms
->uart
[0], 0x41303000, 0x1000, { 32, 33, 42 } },
1025 { "uart1", make_uart
, &mms
->uart
[1], 0x41304000, 0x1000, { 34, 35, 43 } },
1026 { "uart2", make_uart
, &mms
->uart
[2], 0x41305000, 0x1000, { 36, 37, 44 } },
1027 { "uart3", make_uart
, &mms
->uart
[3], 0x41306000, 0x1000, { 38, 39, 45 } },
1028 { "uart4", make_uart
, &mms
->uart
[4], 0x41307000, 0x1000, { 40, 41, 46 } },
1029 { "uart5", make_uart
, &mms
->uart
[5], 0x41308000, 0x1000, { 124, 125, 126 } },
1031 { /* port 9 reserved */ },
1032 { "clcd", make_unimp_dev
, &mms
->cldc
, 0x4130a000, 0x1000 },
1033 { "rtc", make_rtc
, &mms
->rtc
, 0x4130b000, 0x1000 },
1036 .name
= "ahb_ppcexp0",
1038 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x41100000, 0x1000 },
1039 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x41101000, 0x1000 },
1040 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x41102000, 0x1000 },
1041 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x41103000, 0x1000 },
1042 { "eth-usb", make_eth_usb
, NULL
, 0x41400000, 0x200000, { 48 } },
1047 const PPCInfo an547_ppcs
[] = { {
1048 .name
= "apb_ppcexp0",
1050 { "ssram-mpc", make_mpc
, &mms
->mpc
[0], 0x57000000, 0x1000 },
1051 { "qspi-mpc", make_mpc
, &mms
->mpc
[1], 0x57001000, 0x1000 },
1052 { "ddr-mpc", make_mpc
, &mms
->mpc
[2], 0x57002000, 0x1000 },
1055 .name
= "apb_ppcexp1",
1057 { "i2c0", make_i2c
, &mms
->i2c
[0], 0x49200000, 0x1000, {},
1058 { .i2c_internal
= true /* touchscreen */ } },
1059 { "i2c1", make_i2c
, &mms
->i2c
[1], 0x49201000, 0x1000, {},
1060 { .i2c_internal
= true /* audio conf */ } },
1061 { "spi0", make_spi
, &mms
->spi
[0], 0x49202000, 0x1000, { 53 } },
1062 { "spi1", make_spi
, &mms
->spi
[1], 0x49203000, 0x1000, { 54 } },
1063 { "spi2", make_spi
, &mms
->spi
[2], 0x49204000, 0x1000, { 55 } },
1064 { "i2c2", make_i2c
, &mms
->i2c
[2], 0x49205000, 0x1000, {},
1065 { .i2c_internal
= false /* shield 0 */ } },
1066 { "i2c3", make_i2c
, &mms
->i2c
[3], 0x49206000, 0x1000, {},
1067 { .i2c_internal
= false /* shield 1 */ } },
1068 { /* port 7 reserved */ },
1069 { "i2c4", make_i2c
, &mms
->i2c
[4], 0x49208000, 0x1000, {},
1070 { .i2c_internal
= true /* DDR4 EEPROM */ } },
1073 .name
= "apb_ppcexp2",
1075 { "scc", make_scc
, &mms
->scc
, 0x49300000, 0x1000 },
1076 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
, 0x49301000, 0x1000 },
1077 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x49302000, 0x1000 },
1078 { "uart0", make_uart
, &mms
->uart
[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1079 { "uart1", make_uart
, &mms
->uart
[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1080 { "uart2", make_uart
, &mms
->uart
[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1081 { "uart3", make_uart
, &mms
->uart
[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1082 { "uart4", make_uart
, &mms
->uart
[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1083 { "uart5", make_uart
, &mms
->uart
[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1085 { /* port 9 reserved */ },
1086 { "clcd", make_unimp_dev
, &mms
->cldc
, 0x4930a000, 0x1000 },
1087 { "rtc", make_rtc
, &mms
->rtc
, 0x4930b000, 0x1000 },
1090 .name
= "ahb_ppcexp0",
1092 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x41100000, 0x1000 },
1093 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x41101000, 0x1000 },
1094 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x41102000, 0x1000 },
1095 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x41103000, 0x1000 },
1096 { /* port 4 USER AHB interface 0 */ },
1097 { /* port 5 USER AHB interface 1 */ },
1098 { /* port 6 USER AHB interface 2 */ },
1099 { /* port 7 USER AHB interface 3 */ },
1100 { "eth-usb", make_eth_usb
, NULL
, 0x41400000, 0x200000, { 49 } },
1105 switch (mmc
->fpga_type
) {
1109 num_ppcs
= ARRAY_SIZE(an505_ppcs
);
1113 num_ppcs
= ARRAY_SIZE(an524_ppcs
);
1117 num_ppcs
= ARRAY_SIZE(an547_ppcs
);
1120 g_assert_not_reached();
1123 for (i
= 0; i
< num_ppcs
; i
++) {
1124 const PPCInfo
*ppcinfo
= &ppcs
[i
];
1125 TZPPC
*ppc
= &mms
->ppc
[i
];
1126 DeviceState
*ppcdev
;
1130 object_initialize_child(OBJECT(machine
), ppcinfo
->name
, ppc
,
1132 ppcdev
= DEVICE(ppc
);
1134 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
1135 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
1139 if (!pinfo
->devfn
) {
1143 mr
= pinfo
->devfn(mms
, pinfo
->opaque
, pinfo
->name
, pinfo
->size
,
1144 pinfo
->irqs
, &pinfo
->extradata
);
1145 portname
= g_strdup_printf("port[%d]", port
);
1146 object_property_set_link(OBJECT(ppc
), portname
, OBJECT(mr
),
1151 sysbus_realize(SYS_BUS_DEVICE(ppc
), &error_fatal
);
1153 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
1154 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
1156 if (!pinfo
->devfn
) {
1159 sysbus_mmio_map(SYS_BUS_DEVICE(ppc
), port
, pinfo
->addr
);
1161 gpioname
= g_strdup_printf("%s_nonsec", ppcinfo
->name
);
1162 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
1163 qdev_get_gpio_in_named(ppcdev
,
1167 gpioname
= g_strdup_printf("%s_ap", ppcinfo
->name
);
1168 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
1169 qdev_get_gpio_in_named(ppcdev
,
1174 gpioname
= g_strdup_printf("%s_irq_enable", ppcinfo
->name
);
1175 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
1176 qdev_get_gpio_in_named(ppcdev
,
1179 gpioname
= g_strdup_printf("%s_irq_clear", ppcinfo
->name
);
1180 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
1181 qdev_get_gpio_in_named(ppcdev
,
1184 gpioname
= g_strdup_printf("%s_irq_status", ppcinfo
->name
);
1185 qdev_connect_gpio_out_named(ppcdev
, "irq", 0,
1186 qdev_get_gpio_in_named(iotkitdev
,
1190 qdev_connect_gpio_out(dev_splitter
, i
,
1191 qdev_get_gpio_in_named(ppcdev
,
1192 "cfg_sec_resp", 0));
1195 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1197 if (mmc
->fpga_type
== FPGA_AN547
) {
1198 create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1199 create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1202 create_non_mpc_ram(mms
);
1204 if (mmc
->fpga_type
== FPGA_AN524
) {
1206 * Connect the line from the SCC so that we can remap when the
1207 * guest updates that register.
1209 mms
->remap_irq
= qemu_allocate_irq(remap_irq_fn
, mms
, 0);
1210 qdev_connect_gpio_out_named(DEVICE(&mms
->scc
), "remap", 0,
1214 armv7m_load_kernel(ARM_CPU(first_cpu
), machine
->kernel_filename
,
1215 0, boot_ram_size(mms
));
1218 static void mps2_tz_idau_check(IDAUInterface
*ii
, uint32_t address
,
1219 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1222 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1223 * the Master Security Controllers. These have the same logic as
1224 * is used by the IoTKit for the IDAU connected to the CPU, except
1225 * that MSCs don't care about the NSC attribute.
1227 int region
= extract32(address
, 28, 4);
1229 *ns
= !(region
& 1);
1231 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1232 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1236 static char *mps2_get_remap(Object
*obj
, Error
**errp
)
1238 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(obj
);
1239 const char *val
= mms
->remap
? "QSPI" : "BRAM";
1240 return g_strdup(val
);
1243 static void mps2_set_remap(Object
*obj
, const char *value
, Error
**errp
)
1245 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(obj
);
1247 if (!strcmp(value
, "BRAM")) {
1249 } else if (!strcmp(value
, "QSPI")) {
1252 error_setg(errp
, "Invalid remap value");
1253 error_append_hint(errp
, "Valid values are BRAM and QSPI.\n");
1257 static void mps2_machine_reset(MachineState
*machine
, ResetType type
)
1259 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(machine
);
1262 * Set the initial memory mapping before triggering the reset of
1263 * the rest of the system, so that the guest image loader and CPU
1264 * reset see the correct mapping.
1266 remap_memory(mms
, mms
->remap
);
1267 qemu_devices_reset(type
);
1270 static void mps2tz_class_init(ObjectClass
*oc
, void *data
)
1272 MachineClass
*mc
= MACHINE_CLASS(oc
);
1273 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(oc
);
1274 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1276 mc
->init
= mps2tz_common_init
;
1277 mc
->reset
= mps2_machine_reset
;
1278 iic
->check
= mps2_tz_idau_check
;
1280 /* Most machines leave these at the SSE defaults */
1281 mmc
->cpu0_mpu_ns
= MPU_REGION_DEFAULT
;
1282 mmc
->cpu0_mpu_s
= MPU_REGION_DEFAULT
;
1283 mmc
->cpu1_mpu_ns
= MPU_REGION_DEFAULT
;
1284 mmc
->cpu1_mpu_s
= MPU_REGION_DEFAULT
;
1287 static void mps2tz_set_default_ram_info(MPS2TZMachineClass
*mmc
)
1290 * Set mc->default_ram_size and default_ram_id from the
1291 * information in mmc->raminfo.
1293 MachineClass
*mc
= MACHINE_CLASS(mmc
);
1296 for (p
= mmc
->raminfo
; p
->name
; p
++) {
1297 if (p
->mrindex
< 0) {
1298 /* Found the entry for "system memory" */
1299 mc
->default_ram_size
= p
->size
;
1300 mc
->default_ram_id
= p
->name
;
1304 g_assert_not_reached();
1307 static void mps2tz_an505_class_init(ObjectClass
*oc
, void *data
)
1309 MachineClass
*mc
= MACHINE_CLASS(oc
);
1310 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1311 static const char * const valid_cpu_types
[] = {
1312 ARM_CPU_TYPE_NAME("cortex-m33"),
1316 mc
->desc
= "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1317 mc
->default_cpus
= 1;
1318 mc
->min_cpus
= mc
->default_cpus
;
1319 mc
->max_cpus
= mc
->default_cpus
;
1320 mmc
->fpga_type
= FPGA_AN505
;
1321 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
1322 mc
->valid_cpu_types
= valid_cpu_types
;
1323 mmc
->scc_id
= 0x41045050;
1324 mmc
->sysclk_frq
= 20 * 1000 * 1000; /* 20MHz */
1325 mmc
->apb_periph_frq
= mmc
->sysclk_frq
;
1326 mmc
->oscclk
= an505_oscclk
;
1327 mmc
->len_oscclk
= ARRAY_SIZE(an505_oscclk
);
1328 mmc
->fpgaio_num_leds
= 2;
1329 mmc
->fpgaio_has_switches
= false;
1330 mmc
->fpgaio_has_dbgctrl
= false;
1332 mmc
->uart_overflow_irq
= 47;
1333 mmc
->init_svtor
= 0x10000000;
1334 mmc
->sram_addr_width
= 15;
1335 mmc
->raminfo
= an505_raminfo
;
1336 mmc
->armsse_type
= TYPE_IOTKIT
;
1337 mmc
->boot_ram_size
= 0;
1338 mps2tz_set_default_ram_info(mmc
);
1341 static void mps2tz_an521_class_init(ObjectClass
*oc
, void *data
)
1343 MachineClass
*mc
= MACHINE_CLASS(oc
);
1344 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1345 static const char * const valid_cpu_types
[] = {
1346 ARM_CPU_TYPE_NAME("cortex-m33"),
1350 mc
->desc
= "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1351 mc
->default_cpus
= 2;
1352 mc
->min_cpus
= mc
->default_cpus
;
1353 mc
->max_cpus
= mc
->default_cpus
;
1354 mmc
->fpga_type
= FPGA_AN521
;
1355 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
1356 mc
->valid_cpu_types
= valid_cpu_types
;
1357 mmc
->scc_id
= 0x41045210;
1358 mmc
->sysclk_frq
= 20 * 1000 * 1000; /* 20MHz */
1359 mmc
->apb_periph_frq
= mmc
->sysclk_frq
;
1360 mmc
->oscclk
= an505_oscclk
; /* AN521 is the same as AN505 here */
1361 mmc
->len_oscclk
= ARRAY_SIZE(an505_oscclk
);
1362 mmc
->fpgaio_num_leds
= 2;
1363 mmc
->fpgaio_has_switches
= false;
1364 mmc
->fpgaio_has_dbgctrl
= false;
1366 mmc
->uart_overflow_irq
= 47;
1367 mmc
->init_svtor
= 0x10000000;
1368 mmc
->sram_addr_width
= 15;
1369 mmc
->raminfo
= an505_raminfo
; /* AN521 is the same as AN505 here */
1370 mmc
->armsse_type
= TYPE_SSE200
;
1371 mmc
->boot_ram_size
= 0;
1372 mps2tz_set_default_ram_info(mmc
);
1375 static void mps3tz_an524_class_init(ObjectClass
*oc
, void *data
)
1377 MachineClass
*mc
= MACHINE_CLASS(oc
);
1378 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1379 static const char * const valid_cpu_types
[] = {
1380 ARM_CPU_TYPE_NAME("cortex-m33"),
1384 mc
->desc
= "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1385 mc
->default_cpus
= 2;
1386 mc
->min_cpus
= mc
->default_cpus
;
1387 mc
->max_cpus
= mc
->default_cpus
;
1388 mmc
->fpga_type
= FPGA_AN524
;
1389 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
1390 mc
->valid_cpu_types
= valid_cpu_types
;
1391 mmc
->scc_id
= 0x41045240;
1392 mmc
->sysclk_frq
= 32 * 1000 * 1000; /* 32MHz */
1393 mmc
->apb_periph_frq
= mmc
->sysclk_frq
;
1394 mmc
->oscclk
= an524_oscclk
;
1395 mmc
->len_oscclk
= ARRAY_SIZE(an524_oscclk
);
1396 mmc
->fpgaio_num_leds
= 10;
1397 mmc
->fpgaio_has_switches
= true;
1398 mmc
->fpgaio_has_dbgctrl
= false;
1400 mmc
->uart_overflow_irq
= 47;
1401 mmc
->init_svtor
= 0x10000000;
1402 mmc
->sram_addr_width
= 15;
1403 mmc
->raminfo
= an524_raminfo
;
1404 mmc
->armsse_type
= TYPE_SSE200
;
1405 mmc
->boot_ram_size
= 0;
1406 mps2tz_set_default_ram_info(mmc
);
1408 object_class_property_add_str(oc
, "remap", mps2_get_remap
, mps2_set_remap
);
1409 object_class_property_set_description(oc
, "remap",
1410 "Set memory mapping. Valid values "
1411 "are BRAM (default) and QSPI.");
1414 static void mps3tz_an547_class_init(ObjectClass
*oc
, void *data
)
1416 MachineClass
*mc
= MACHINE_CLASS(oc
);
1417 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1418 static const char * const valid_cpu_types
[] = {
1419 ARM_CPU_TYPE_NAME("cortex-m55"),
1423 mc
->desc
= "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1424 mc
->default_cpus
= 1;
1425 mc
->min_cpus
= mc
->default_cpus
;
1426 mc
->max_cpus
= mc
->default_cpus
;
1427 mmc
->fpga_type
= FPGA_AN547
;
1428 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m55");
1429 mc
->valid_cpu_types
= valid_cpu_types
;
1430 mmc
->scc_id
= 0x41055470;
1431 mmc
->sysclk_frq
= 32 * 1000 * 1000; /* 32MHz */
1432 mmc
->apb_periph_frq
= 25 * 1000 * 1000; /* 25MHz */
1433 mmc
->oscclk
= an524_oscclk
; /* same as AN524 */
1434 mmc
->len_oscclk
= ARRAY_SIZE(an524_oscclk
);
1435 mmc
->fpgaio_num_leds
= 10;
1436 mmc
->fpgaio_has_switches
= true;
1437 mmc
->fpgaio_has_dbgctrl
= true;
1439 mmc
->uart_overflow_irq
= 48;
1440 mmc
->init_svtor
= 0x00000000;
1441 mmc
->cpu0_mpu_s
= mmc
->cpu0_mpu_ns
= 16;
1442 mmc
->sram_addr_width
= 21;
1443 mmc
->raminfo
= an547_raminfo
;
1444 mmc
->armsse_type
= TYPE_SSE300
;
1445 mmc
->boot_ram_size
= 512 * KiB
;
1446 mps2tz_set_default_ram_info(mmc
);
1449 static const TypeInfo mps2tz_info
= {
1450 .name
= TYPE_MPS2TZ_MACHINE
,
1451 .parent
= TYPE_MACHINE
,
1453 .instance_size
= sizeof(MPS2TZMachineState
),
1454 .class_size
= sizeof(MPS2TZMachineClass
),
1455 .class_init
= mps2tz_class_init
,
1456 .interfaces
= (InterfaceInfo
[]) {
1457 { TYPE_IDAU_INTERFACE
},
1462 static const TypeInfo mps2tz_an505_info
= {
1463 .name
= TYPE_MPS2TZ_AN505_MACHINE
,
1464 .parent
= TYPE_MPS2TZ_MACHINE
,
1465 .class_init
= mps2tz_an505_class_init
,
1468 static const TypeInfo mps2tz_an521_info
= {
1469 .name
= TYPE_MPS2TZ_AN521_MACHINE
,
1470 .parent
= TYPE_MPS2TZ_MACHINE
,
1471 .class_init
= mps2tz_an521_class_init
,
1474 static const TypeInfo mps3tz_an524_info
= {
1475 .name
= TYPE_MPS3TZ_AN524_MACHINE
,
1476 .parent
= TYPE_MPS2TZ_MACHINE
,
1477 .class_init
= mps3tz_an524_class_init
,
1480 static const TypeInfo mps3tz_an547_info
= {
1481 .name
= TYPE_MPS3TZ_AN547_MACHINE
,
1482 .parent
= TYPE_MPS2TZ_MACHINE
,
1483 .class_init
= mps3tz_an547_class_init
,
1486 static void mps2tz_machine_init(void)
1488 type_register_static(&mps2tz_info
);
1489 type_register_static(&mps2tz_an505_info
);
1490 type_register_static(&mps2tz_an521_info
);
1491 type_register_static(&mps3tz_an524_info
);
1492 type_register_static(&mps3tz_an547_info
);
1495 type_init(mps2tz_machine_init
);