Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / hw / i386 / intel_iommu.c
blob08fe218935b91616ab144bfbc7cfaf6c49421a92
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
54 * PCI bus number (or SID) is not reliable since the device is usaully
55 * initialized before guest can configure the PCI bridge
56 * (SECONDARY_BUS_NUMBER).
58 struct vtd_as_key {
59 PCIBus *bus;
60 uint8_t devfn;
61 uint32_t pasid;
64 /* bus/devfn is PCI device's real BDF not the aliased one */
65 struct vtd_hiod_key {
66 PCIBus *bus;
67 uint8_t devfn;
70 struct vtd_iotlb_key {
71 uint64_t gfn;
72 uint32_t pasid;
73 uint16_t sid;
74 uint8_t level;
77 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
78 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
80 static void vtd_panic_require_caching_mode(void)
82 error_report("We need to set caching-mode=on for intel-iommu to enable "
83 "device assignment with IOMMU protection.");
84 exit(1);
87 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
88 uint64_t wmask, uint64_t w1cmask)
90 stq_le_p(&s->csr[addr], val);
91 stq_le_p(&s->wmask[addr], wmask);
92 stq_le_p(&s->w1cmask[addr], w1cmask);
95 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
97 stq_le_p(&s->womask[addr], mask);
100 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
101 uint32_t wmask, uint32_t w1cmask)
103 stl_le_p(&s->csr[addr], val);
104 stl_le_p(&s->wmask[addr], wmask);
105 stl_le_p(&s->w1cmask[addr], w1cmask);
108 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
110 stl_le_p(&s->womask[addr], mask);
113 /* "External" get/set operations */
114 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
116 uint64_t oldval = ldq_le_p(&s->csr[addr]);
117 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
118 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
119 stq_le_p(&s->csr[addr],
120 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
123 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
125 uint32_t oldval = ldl_le_p(&s->csr[addr]);
126 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
127 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
128 stl_le_p(&s->csr[addr],
129 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
132 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
134 uint64_t val = ldq_le_p(&s->csr[addr]);
135 uint64_t womask = ldq_le_p(&s->womask[addr]);
136 return val & ~womask;
139 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
141 uint32_t val = ldl_le_p(&s->csr[addr]);
142 uint32_t womask = ldl_le_p(&s->womask[addr]);
143 return val & ~womask;
146 /* "Internal" get/set operations */
147 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
149 return ldq_le_p(&s->csr[addr]);
152 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
154 return ldl_le_p(&s->csr[addr]);
157 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
159 stq_le_p(&s->csr[addr], val);
162 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
163 uint32_t clear, uint32_t mask)
165 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
166 stl_le_p(&s->csr[addr], new_val);
167 return new_val;
170 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
171 uint64_t clear, uint64_t mask)
173 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
174 stq_le_p(&s->csr[addr], new_val);
175 return new_val;
178 static inline void vtd_iommu_lock(IntelIOMMUState *s)
180 qemu_mutex_lock(&s->iommu_lock);
183 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
185 qemu_mutex_unlock(&s->iommu_lock);
188 static void vtd_update_scalable_state(IntelIOMMUState *s)
190 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
192 if (s->scalable_mode) {
193 s->root_scalable = val & VTD_RTADDR_SMT;
197 static void vtd_update_iq_dw(IntelIOMMUState *s)
199 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
201 if (s->ecap & VTD_ECAP_SMTS &&
202 val & VTD_IQA_DW_MASK) {
203 s->iq_dw = true;
204 } else {
205 s->iq_dw = false;
209 /* Whether the address space needs to notify new mappings */
210 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
212 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
215 /* GHashTable functions */
216 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
218 const struct vtd_iotlb_key *key1 = v1;
219 const struct vtd_iotlb_key *key2 = v2;
221 return key1->sid == key2->sid &&
222 key1->pasid == key2->pasid &&
223 key1->level == key2->level &&
224 key1->gfn == key2->gfn;
227 static guint vtd_iotlb_hash(gconstpointer v)
229 const struct vtd_iotlb_key *key = v;
230 uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
231 (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
232 (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
234 return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
237 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
239 const struct vtd_as_key *key1 = v1;
240 const struct vtd_as_key *key2 = v2;
242 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
243 (key1->pasid == key2->pasid);
247 * Note that we use pointer to PCIBus as the key, so hashing/shifting
248 * based on the pointer value is intended. Note that we deal with
249 * collisions through vtd_as_equal().
251 static guint vtd_as_hash(gconstpointer v)
253 const struct vtd_as_key *key = v;
254 guint value = (guint)(uintptr_t)key->bus;
256 return (guint)(value << 8 | key->devfn);
259 /* Same implementation as vtd_as_hash() */
260 static guint vtd_hiod_hash(gconstpointer v)
262 return vtd_as_hash(v);
265 static gboolean vtd_hiod_equal(gconstpointer v1, gconstpointer v2)
267 const struct vtd_hiod_key *key1 = v1;
268 const struct vtd_hiod_key *key2 = v2;
270 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn);
273 static void vtd_hiod_destroy(gpointer v)
275 object_unref(v);
278 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
279 gpointer user_data)
281 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
282 uint16_t domain_id = *(uint16_t *)user_data;
283 return entry->domain_id == domain_id;
286 /* The shift of an addr for a certain level of paging structure */
287 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
289 assert(level != 0);
290 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
293 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
295 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
298 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
299 gpointer user_data)
301 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
302 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
303 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
304 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
305 return (entry->domain_id == info->domain_id) &&
306 (((entry->gfn & info->mask) == gfn) ||
307 (entry->gfn == gfn_tlb));
310 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
311 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
313 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
315 VTDAddressSpace *vtd_as;
316 GHashTableIter as_it;
318 trace_vtd_context_cache_reset();
320 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
322 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
323 vtd_as->context_cache_entry.context_cache_gen = 0;
325 s->context_cache_gen = 1;
328 /* Must be called with IOMMU lock held. */
329 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
331 assert(s->iotlb);
332 g_hash_table_remove_all(s->iotlb);
335 static void vtd_reset_iotlb(IntelIOMMUState *s)
337 vtd_iommu_lock(s);
338 vtd_reset_iotlb_locked(s);
339 vtd_iommu_unlock(s);
342 static void vtd_reset_caches(IntelIOMMUState *s)
344 vtd_iommu_lock(s);
345 vtd_reset_iotlb_locked(s);
346 vtd_reset_context_cache_locked(s);
347 vtd_iommu_unlock(s);
350 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
352 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
355 /* Must be called with IOMMU lock held */
356 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
357 uint32_t pasid, hwaddr addr)
359 struct vtd_iotlb_key key;
360 VTDIOTLBEntry *entry;
361 unsigned level;
363 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
364 key.gfn = vtd_get_iotlb_gfn(addr, level);
365 key.level = level;
366 key.sid = source_id;
367 key.pasid = pasid;
368 entry = g_hash_table_lookup(s->iotlb, &key);
369 if (entry) {
370 goto out;
374 out:
375 return entry;
378 /* Must be with IOMMU lock held */
379 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
380 uint16_t domain_id, hwaddr addr, uint64_t slpte,
381 uint8_t access_flags, uint32_t level,
382 uint32_t pasid)
384 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
385 struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
386 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
388 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
389 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
390 trace_vtd_iotlb_reset("iotlb exceeds size limit");
391 vtd_reset_iotlb_locked(s);
394 entry->gfn = gfn;
395 entry->domain_id = domain_id;
396 entry->slpte = slpte;
397 entry->access_flags = access_flags;
398 entry->mask = vtd_slpt_level_page_mask(level);
399 entry->pasid = pasid;
401 key->gfn = gfn;
402 key->sid = source_id;
403 key->level = level;
404 key->pasid = pasid;
406 g_hash_table_replace(s->iotlb, key, entry);
409 /* Given the reg addr of both the message data and address, generate an
410 * interrupt via MSI.
412 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
413 hwaddr mesg_data_reg)
415 MSIMessage msi;
417 assert(mesg_data_reg < DMAR_REG_SIZE);
418 assert(mesg_addr_reg < DMAR_REG_SIZE);
420 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
421 msi.data = vtd_get_long_raw(s, mesg_data_reg);
423 trace_vtd_irq_generate(msi.address, msi.data);
425 apic_get_class(NULL)->send_msi(&msi);
428 /* Generate a fault event to software via MSI if conditions are met.
429 * Notice that the value of FSTS_REG being passed to it should be the one
430 * before any update.
432 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
434 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
435 pre_fsts & VTD_FSTS_IQE) {
436 error_report_once("There are previous interrupt conditions "
437 "to be serviced by software, fault event "
438 "is not generated");
439 return;
441 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
442 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
443 error_report_once("Interrupt Mask set, irq is not generated");
444 } else {
445 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
446 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
450 /* Check if the Fault (F) field of the Fault Recording Register referenced by
451 * @index is Set.
453 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
455 /* Each reg is 128-bit */
456 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
457 addr += 8; /* Access the high 64-bit half */
459 assert(index < DMAR_FRCD_REG_NR);
461 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
464 /* Update the PPF field of Fault Status Register.
465 * Should be called whenever change the F field of any fault recording
466 * registers.
468 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
470 uint32_t i;
471 uint32_t ppf_mask = 0;
473 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
474 if (vtd_is_frcd_set(s, i)) {
475 ppf_mask = VTD_FSTS_PPF;
476 break;
479 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
480 trace_vtd_fsts_ppf(!!ppf_mask);
483 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
485 /* Each reg is 128-bit */
486 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
487 addr += 8; /* Access the high 64-bit half */
489 assert(index < DMAR_FRCD_REG_NR);
491 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
492 vtd_update_fsts_ppf(s);
495 /* Must not update F field now, should be done later */
496 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
497 uint64_t hi, uint64_t lo)
499 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
501 assert(index < DMAR_FRCD_REG_NR);
503 vtd_set_quad_raw(s, frcd_reg_addr, lo);
504 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
506 trace_vtd_frr_new(index, hi, lo);
509 /* Try to collapse multiple pending faults from the same requester */
510 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
512 uint32_t i;
513 uint64_t frcd_reg;
514 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
516 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
517 frcd_reg = vtd_get_quad_raw(s, addr);
518 if ((frcd_reg & VTD_FRCD_F) &&
519 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
520 return true;
522 addr += 16; /* 128-bit for each */
524 return false;
527 /* Log and report an DMAR (address translation) fault to software */
528 static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id,
529 uint64_t hi, uint64_t lo)
531 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
533 if (fsts_reg & VTD_FSTS_PFO) {
534 error_report_once("New fault is not recorded due to "
535 "Primary Fault Overflow");
536 return;
539 if (vtd_try_collapse_fault(s, source_id)) {
540 error_report_once("New fault is not recorded due to "
541 "compression of faults");
542 return;
545 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
546 error_report_once("Next Fault Recording Reg is used, "
547 "new fault is not recorded, set PFO field");
548 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
549 return;
552 vtd_record_frcd(s, s->next_frcd_reg, hi, lo);
554 if (fsts_reg & VTD_FSTS_PPF) {
555 error_report_once("There are pending faults already, "
556 "fault event is not generated");
557 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
558 s->next_frcd_reg++;
559 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
560 s->next_frcd_reg = 0;
562 } else {
563 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
564 VTD_FSTS_FRI(s->next_frcd_reg));
565 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
566 s->next_frcd_reg++;
567 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
568 s->next_frcd_reg = 0;
570 /* This case actually cause the PPF to be Set.
571 * So generate fault event (interrupt).
573 vtd_generate_fault_event(s, fsts_reg);
577 /* Log and report an DMAR (address translation) fault to software */
578 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
579 hwaddr addr, VTDFaultReason fault,
580 bool is_write, bool is_pasid,
581 uint32_t pasid)
583 uint64_t hi, lo;
585 assert(fault < VTD_FR_MAX);
587 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
589 lo = VTD_FRCD_FI(addr);
590 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
591 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
592 if (!is_write) {
593 hi |= VTD_FRCD_T;
596 vtd_report_frcd_fault(s, source_id, hi, lo);
600 static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id,
601 VTDFaultReason fault, uint16_t index)
603 uint64_t hi, lo;
605 lo = VTD_FRCD_IR_IDX(index);
606 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
608 vtd_report_frcd_fault(s, source_id, hi, lo);
611 /* Handle Invalidation Queue Errors of queued invalidation interface error
612 * conditions.
614 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
616 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
618 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
619 vtd_generate_fault_event(s, fsts_reg);
622 /* Set the IWC field and try to generate an invalidation completion interrupt */
623 static void vtd_generate_completion_event(IntelIOMMUState *s)
625 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
626 trace_vtd_inv_desc_wait_irq("One pending, skip current");
627 return;
629 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
630 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
631 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
632 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
633 "new event not generated");
634 return;
635 } else {
636 /* Generate the interrupt event */
637 trace_vtd_inv_desc_wait_irq("Generating complete event");
638 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
639 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
643 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
644 VTDRootEntry *re,
645 uint8_t devfn)
647 if (s->root_scalable && devfn > UINT8_MAX / 2) {
648 return re->hi & VTD_ROOT_ENTRY_P;
651 return re->lo & VTD_ROOT_ENTRY_P;
654 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
655 VTDRootEntry *re)
657 dma_addr_t addr;
659 addr = s->root + index * sizeof(*re);
660 if (dma_memory_read(&address_space_memory, addr,
661 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
662 re->lo = 0;
663 return -VTD_FR_ROOT_TABLE_INV;
665 re->lo = le64_to_cpu(re->lo);
666 re->hi = le64_to_cpu(re->hi);
667 return 0;
670 static inline bool vtd_ce_present(VTDContextEntry *context)
672 return context->lo & VTD_CONTEXT_ENTRY_P;
675 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
676 VTDRootEntry *re,
677 uint8_t index,
678 VTDContextEntry *ce)
680 dma_addr_t addr, ce_size;
682 /* we have checked that root entry is present */
683 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
684 VTD_CTX_ENTRY_LEGACY_SIZE;
686 if (s->root_scalable && index > UINT8_MAX / 2) {
687 index = index & (~VTD_DEVFN_CHECK_MASK);
688 addr = re->hi & VTD_ROOT_ENTRY_CTP;
689 } else {
690 addr = re->lo & VTD_ROOT_ENTRY_CTP;
693 addr = addr + index * ce_size;
694 if (dma_memory_read(&address_space_memory, addr,
695 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
696 return -VTD_FR_CONTEXT_TABLE_INV;
699 ce->lo = le64_to_cpu(ce->lo);
700 ce->hi = le64_to_cpu(ce->hi);
701 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
702 ce->val[2] = le64_to_cpu(ce->val[2]);
703 ce->val[3] = le64_to_cpu(ce->val[3]);
705 return 0;
708 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
710 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
713 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
715 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
718 /* Whether the pte indicates the address of the page frame */
719 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
721 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
724 /* Get the content of a spte located in @base_addr[@index] */
725 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
727 uint64_t slpte;
729 assert(index < VTD_SL_PT_ENTRY_NR);
731 if (dma_memory_read(&address_space_memory,
732 base_addr + index * sizeof(slpte),
733 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
734 slpte = (uint64_t)-1;
735 return slpte;
737 slpte = le64_to_cpu(slpte);
738 return slpte;
741 /* Given an iova and the level of paging structure, return the offset
742 * of current level.
744 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
746 return (iova >> vtd_slpt_level_shift(level)) &
747 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
750 /* Check Capability Register to see if the @level of page-table is supported */
751 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
753 return VTD_CAP_SAGAW_MASK & s->cap &
754 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
757 /* Return true if check passed, otherwise false */
758 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
759 VTDPASIDEntry *pe)
761 switch (VTD_PE_GET_TYPE(pe)) {
762 case VTD_SM_PASID_ENTRY_FLT:
763 case VTD_SM_PASID_ENTRY_SLT:
764 case VTD_SM_PASID_ENTRY_NESTED:
765 break;
766 case VTD_SM_PASID_ENTRY_PT:
767 if (!x86_iommu->pt_supported) {
768 return false;
770 break;
771 default:
772 /* Unknown type */
773 return false;
775 return true;
778 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
780 return pdire->val & 1;
784 * Caller of this function should check present bit if wants
785 * to use pdir entry for further usage except for fpd bit check.
787 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
788 uint32_t pasid,
789 VTDPASIDDirEntry *pdire)
791 uint32_t index;
792 dma_addr_t addr, entry_size;
794 index = VTD_PASID_DIR_INDEX(pasid);
795 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
796 addr = pasid_dir_base + index * entry_size;
797 if (dma_memory_read(&address_space_memory, addr,
798 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
799 return -VTD_FR_PASID_TABLE_INV;
802 pdire->val = le64_to_cpu(pdire->val);
804 return 0;
807 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
809 return pe->val[0] & VTD_PASID_ENTRY_P;
812 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
813 uint32_t pasid,
814 dma_addr_t addr,
815 VTDPASIDEntry *pe)
817 uint32_t index;
818 dma_addr_t entry_size;
819 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
821 index = VTD_PASID_TABLE_INDEX(pasid);
822 entry_size = VTD_PASID_ENTRY_SIZE;
823 addr = addr + index * entry_size;
824 if (dma_memory_read(&address_space_memory, addr,
825 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
826 return -VTD_FR_PASID_TABLE_INV;
828 for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
829 pe->val[i] = le64_to_cpu(pe->val[i]);
832 /* Do translation type check */
833 if (!vtd_pe_type_check(x86_iommu, pe)) {
834 return -VTD_FR_PASID_TABLE_INV;
837 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
838 return -VTD_FR_PASID_TABLE_INV;
841 return 0;
845 * Caller of this function should check present bit if wants
846 * to use pasid entry for further usage except for fpd bit check.
848 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
849 uint32_t pasid,
850 VTDPASIDDirEntry *pdire,
851 VTDPASIDEntry *pe)
853 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
855 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
859 * This function gets a pasid entry from a specified pasid
860 * table (includes dir and leaf table) with a specified pasid.
861 * Sanity check should be done to ensure return a present
862 * pasid entry to caller.
864 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
865 dma_addr_t pasid_dir_base,
866 uint32_t pasid,
867 VTDPASIDEntry *pe)
869 int ret;
870 VTDPASIDDirEntry pdire;
872 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
873 pasid, &pdire);
874 if (ret) {
875 return ret;
878 if (!vtd_pdire_present(&pdire)) {
879 return -VTD_FR_PASID_TABLE_INV;
882 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
883 if (ret) {
884 return ret;
887 if (!vtd_pe_present(pe)) {
888 return -VTD_FR_PASID_TABLE_INV;
891 return 0;
894 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
895 VTDContextEntry *ce,
896 VTDPASIDEntry *pe,
897 uint32_t pasid)
899 dma_addr_t pasid_dir_base;
900 int ret = 0;
902 if (pasid == PCI_NO_PASID) {
903 pasid = VTD_CE_GET_RID2PASID(ce);
905 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
906 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
908 return ret;
911 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
912 VTDContextEntry *ce,
913 bool *pe_fpd_set,
914 uint32_t pasid)
916 int ret;
917 dma_addr_t pasid_dir_base;
918 VTDPASIDDirEntry pdire;
919 VTDPASIDEntry pe;
921 if (pasid == PCI_NO_PASID) {
922 pasid = VTD_CE_GET_RID2PASID(ce);
924 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
927 * No present bit check since fpd is meaningful even
928 * if the present bit is clear.
930 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
931 if (ret) {
932 return ret;
935 if (pdire.val & VTD_PASID_DIR_FPD) {
936 *pe_fpd_set = true;
937 return 0;
940 if (!vtd_pdire_present(&pdire)) {
941 return -VTD_FR_PASID_TABLE_INV;
945 * No present bit check since fpd is meaningful even
946 * if the present bit is clear.
948 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
949 if (ret) {
950 return ret;
953 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
954 *pe_fpd_set = true;
957 return 0;
960 /* Get the page-table level that hardware should use for the second-level
961 * page-table walk from the Address Width field of context-entry.
963 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
965 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
968 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
969 VTDContextEntry *ce,
970 uint32_t pasid)
972 VTDPASIDEntry pe;
974 if (s->root_scalable) {
975 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
976 return VTD_PE_GET_LEVEL(&pe);
979 return vtd_ce_get_level(ce);
982 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
984 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
987 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
988 VTDContextEntry *ce,
989 uint32_t pasid)
991 VTDPASIDEntry pe;
993 if (s->root_scalable) {
994 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
995 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
998 return vtd_ce_get_agaw(ce);
1001 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
1003 return ce->lo & VTD_CONTEXT_ENTRY_TT;
1006 /* Only for Legacy Mode. Return true if check passed, otherwise false */
1007 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
1008 VTDContextEntry *ce)
1010 switch (vtd_ce_get_type(ce)) {
1011 case VTD_CONTEXT_TT_MULTI_LEVEL:
1012 /* Always supported */
1013 break;
1014 case VTD_CONTEXT_TT_DEV_IOTLB:
1015 if (!x86_iommu->dt_supported) {
1016 error_report_once("%s: DT specified but not supported", __func__);
1017 return false;
1019 break;
1020 case VTD_CONTEXT_TT_PASS_THROUGH:
1021 if (!x86_iommu->pt_supported) {
1022 error_report_once("%s: PT specified but not supported", __func__);
1023 return false;
1025 break;
1026 default:
1027 /* Unknown type */
1028 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
1029 vtd_ce_get_type(ce));
1030 return false;
1032 return true;
1035 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
1036 VTDContextEntry *ce, uint8_t aw,
1037 uint32_t pasid)
1039 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
1040 return 1ULL << MIN(ce_agaw, aw);
1043 /* Return true if IOVA passes range check, otherwise false. */
1044 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
1045 uint64_t iova, VTDContextEntry *ce,
1046 uint8_t aw, uint32_t pasid)
1049 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1050 * in CAP_REG and AW in context-entry.
1052 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1055 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1056 VTDContextEntry *ce,
1057 uint32_t pasid)
1059 VTDPASIDEntry pe;
1061 if (s->root_scalable) {
1062 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1063 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1066 return vtd_ce_get_slpt_base(ce);
1070 * Rsvd field masks for spte:
1071 * vtd_spte_rsvd 4k pages
1072 * vtd_spte_rsvd_large large pages
1074 * We support only 3-level and 4-level page tables (see vtd_init() which
1075 * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap).
1077 #define VTD_SPTE_RSVD_LEN 5
1078 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN];
1079 static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN];
1081 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1083 uint64_t rsvd_mask;
1086 * We should have caught a guest-mis-programmed level earlier,
1087 * via vtd_is_level_supported.
1089 assert(level < VTD_SPTE_RSVD_LEN);
1091 * Zero level doesn't exist. The smallest level is VTD_SL_PT_LEVEL=1 and
1092 * checked by vtd_is_last_slpte().
1094 assert(level);
1096 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1097 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1098 /* large page */
1099 rsvd_mask = vtd_spte_rsvd_large[level];
1100 } else {
1101 rsvd_mask = vtd_spte_rsvd[level];
1104 return slpte & rsvd_mask;
1107 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1108 * of the translation, can be used for deciding the size of large page.
1110 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1111 uint64_t iova, bool is_write,
1112 uint64_t *slptep, uint32_t *slpte_level,
1113 bool *reads, bool *writes, uint8_t aw_bits,
1114 uint32_t pasid)
1116 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1117 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1118 uint32_t offset;
1119 uint64_t slpte;
1120 uint64_t access_right_check;
1121 uint64_t xlat, size;
1123 if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1124 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1125 "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1126 return -VTD_FR_ADDR_BEYOND_MGAW;
1129 /* FIXME: what is the Atomics request here? */
1130 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1132 while (true) {
1133 offset = vtd_iova_level_offset(iova, level);
1134 slpte = vtd_get_slpte(addr, offset);
1136 if (slpte == (uint64_t)-1) {
1137 error_report_once("%s: detected read error on DMAR slpte "
1138 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1139 __func__, iova, pasid);
1140 if (level == vtd_get_iova_level(s, ce, pasid)) {
1141 /* Invalid programming of context-entry */
1142 return -VTD_FR_CONTEXT_ENTRY_INV;
1143 } else {
1144 return -VTD_FR_PAGING_ENTRY_INV;
1147 *reads = (*reads) && (slpte & VTD_SL_R);
1148 *writes = (*writes) && (slpte & VTD_SL_W);
1149 if (!(slpte & access_right_check)) {
1150 error_report_once("%s: detected slpte permission error "
1151 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1152 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1153 PRIx32 ")", __func__, iova, level,
1154 slpte, is_write, pasid);
1155 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1157 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1158 error_report_once("%s: detected splte reserve non-zero "
1159 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1160 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1161 __func__, iova, level, slpte, pasid);
1162 return -VTD_FR_PAGING_ENTRY_RSVD;
1165 if (vtd_is_last_slpte(slpte, level)) {
1166 *slptep = slpte;
1167 *slpte_level = level;
1168 break;
1170 addr = vtd_get_slpte_addr(slpte, aw_bits);
1171 level--;
1174 xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1175 size = ~vtd_slpt_level_page_mask(level) + 1;
1178 * From VT-d spec 3.14: Untranslated requests and translation
1179 * requests that result in an address in the interrupt range will be
1180 * blocked with condition code LGN.4 or SGN.8.
1182 if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1183 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1184 return 0;
1185 } else {
1186 error_report_once("%s: xlat address is in interrupt range "
1187 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1188 "slpte=0x%" PRIx64 ", write=%d, "
1189 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1190 "pasid=0x%" PRIx32 ")",
1191 __func__, iova, level, slpte, is_write,
1192 xlat, size, pasid);
1193 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1194 -VTD_FR_INTERRUPT_ADDR;
1198 typedef int (*vtd_page_walk_hook)(const IOMMUTLBEvent *event, void *private);
1201 * Constant information used during page walking
1203 * @hook_fn: hook func to be called when detected page
1204 * @private: private data to be passed into hook func
1205 * @notify_unmap: whether we should notify invalid entries
1206 * @as: VT-d address space of the device
1207 * @aw: maximum address width
1208 * @domain: domain ID of the page walk
1210 typedef struct {
1211 VTDAddressSpace *as;
1212 vtd_page_walk_hook hook_fn;
1213 void *private;
1214 bool notify_unmap;
1215 uint8_t aw;
1216 uint16_t domain_id;
1217 } vtd_page_walk_info;
1219 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1221 VTDAddressSpace *as = info->as;
1222 vtd_page_walk_hook hook_fn = info->hook_fn;
1223 void *private = info->private;
1224 IOMMUTLBEntry *entry = &event->entry;
1225 DMAMap target = {
1226 .iova = entry->iova,
1227 .size = entry->addr_mask,
1228 .translated_addr = entry->translated_addr,
1229 .perm = entry->perm,
1231 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1233 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1234 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1235 return 0;
1238 assert(hook_fn);
1240 /* Update local IOVA mapped ranges */
1241 if (event->type == IOMMU_NOTIFIER_MAP) {
1242 if (mapped) {
1243 /* If it's exactly the same translation, skip */
1244 if (!memcmp(mapped, &target, sizeof(target))) {
1245 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1246 entry->translated_addr);
1247 return 0;
1248 } else {
1250 * Translation changed. Normally this should not
1251 * happen, but it can happen when with buggy guest
1252 * OSes. Note that there will be a small window that
1253 * we don't have map at all. But that's the best
1254 * effort we can do. The ideal way to emulate this is
1255 * atomically modify the PTE to follow what has
1256 * changed, but we can't. One example is that vfio
1257 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1258 * interface to modify a mapping (meanwhile it seems
1259 * meaningless to even provide one). Anyway, let's
1260 * mark this as a TODO in case one day we'll have
1261 * a better solution.
1263 IOMMUAccessFlags cache_perm = entry->perm;
1264 int ret;
1266 /* Emulate an UNMAP */
1267 event->type = IOMMU_NOTIFIER_UNMAP;
1268 entry->perm = IOMMU_NONE;
1269 trace_vtd_page_walk_one(info->domain_id,
1270 entry->iova,
1271 entry->translated_addr,
1272 entry->addr_mask,
1273 entry->perm);
1274 ret = hook_fn(event, private);
1275 if (ret) {
1276 return ret;
1278 /* Drop any existing mapping */
1279 iova_tree_remove(as->iova_tree, target);
1280 /* Recover the correct type */
1281 event->type = IOMMU_NOTIFIER_MAP;
1282 entry->perm = cache_perm;
1285 iova_tree_insert(as->iova_tree, &target);
1286 } else {
1287 if (!mapped) {
1288 /* Skip since we didn't map this range at all */
1289 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1290 return 0;
1292 iova_tree_remove(as->iova_tree, target);
1295 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1296 entry->translated_addr, entry->addr_mask,
1297 entry->perm);
1298 return hook_fn(event, private);
1302 * vtd_page_walk_level - walk over specific level for IOVA range
1304 * @addr: base GPA addr to start the walk
1305 * @start: IOVA range start address
1306 * @end: IOVA range end address (start <= addr < end)
1307 * @read: whether parent level has read permission
1308 * @write: whether parent level has write permission
1309 * @info: constant information for the page walk
1311 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1312 uint64_t end, uint32_t level, bool read,
1313 bool write, vtd_page_walk_info *info)
1315 bool read_cur, write_cur, entry_valid;
1316 uint32_t offset;
1317 uint64_t slpte;
1318 uint64_t subpage_size, subpage_mask;
1319 IOMMUTLBEvent event;
1320 uint64_t iova = start;
1321 uint64_t iova_next;
1322 int ret = 0;
1324 trace_vtd_page_walk_level(addr, level, start, end);
1326 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1327 subpage_mask = vtd_slpt_level_page_mask(level);
1329 while (iova < end) {
1330 iova_next = (iova & subpage_mask) + subpage_size;
1332 offset = vtd_iova_level_offset(iova, level);
1333 slpte = vtd_get_slpte(addr, offset);
1335 if (slpte == (uint64_t)-1) {
1336 trace_vtd_page_walk_skip_read(iova, iova_next);
1337 goto next;
1340 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1341 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1342 goto next;
1345 /* Permissions are stacked with parents' */
1346 read_cur = read && (slpte & VTD_SL_R);
1347 write_cur = write && (slpte & VTD_SL_W);
1350 * As long as we have either read/write permission, this is a
1351 * valid entry. The rule works for both page entries and page
1352 * table entries.
1354 entry_valid = read_cur | write_cur;
1356 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1358 * This is a valid PDE (or even bigger than PDE). We need
1359 * to walk one further level.
1361 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1362 iova, MIN(iova_next, end), level - 1,
1363 read_cur, write_cur, info);
1364 } else {
1366 * This means we are either:
1368 * (1) the real page entry (either 4K page, or huge page)
1369 * (2) the whole range is invalid
1371 * In either case, we send an IOTLB notification down.
1373 event.entry.target_as = &address_space_memory;
1374 event.entry.iova = iova & subpage_mask;
1375 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1376 event.entry.addr_mask = ~subpage_mask;
1377 /* NOTE: this is only meaningful if entry_valid == true */
1378 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1379 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1380 IOMMU_NOTIFIER_UNMAP;
1381 ret = vtd_page_walk_one(&event, info);
1384 if (ret < 0) {
1385 return ret;
1388 next:
1389 iova = iova_next;
1392 return 0;
1396 * vtd_page_walk - walk specific IOVA range, and call the hook
1398 * @s: intel iommu state
1399 * @ce: context entry to walk upon
1400 * @start: IOVA address to start the walk
1401 * @end: IOVA range end address (start <= addr < end)
1402 * @info: page walking information struct
1404 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1405 uint64_t start, uint64_t end,
1406 vtd_page_walk_info *info,
1407 uint32_t pasid)
1409 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1410 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1412 if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1413 return -VTD_FR_ADDR_BEYOND_MGAW;
1416 if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1417 /* Fix end so that it reaches the maximum */
1418 end = vtd_iova_limit(s, ce, info->aw, pasid);
1421 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1424 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1425 VTDRootEntry *re)
1427 /* Legacy Mode reserved bits check */
1428 if (!s->root_scalable &&
1429 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1430 goto rsvd_err;
1432 /* Scalable Mode reserved bits check */
1433 if (s->root_scalable &&
1434 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1435 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1436 goto rsvd_err;
1438 return 0;
1440 rsvd_err:
1441 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1442 ", lo=0x%"PRIx64,
1443 __func__, re->hi, re->lo);
1444 return -VTD_FR_ROOT_ENTRY_RSVD;
1447 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1448 VTDContextEntry *ce)
1450 if (!s->root_scalable &&
1451 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1452 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1453 error_report_once("%s: invalid context entry: hi=%"PRIx64
1454 ", lo=%"PRIx64" (reserved nonzero)",
1455 __func__, ce->hi, ce->lo);
1456 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1459 if (s->root_scalable &&
1460 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1461 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1462 ce->val[2] ||
1463 ce->val[3])) {
1464 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1465 ", val[2]=%"PRIx64
1466 ", val[1]=%"PRIx64
1467 ", val[0]=%"PRIx64" (reserved nonzero)",
1468 __func__, ce->val[3], ce->val[2],
1469 ce->val[1], ce->val[0]);
1470 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1473 return 0;
1476 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1477 VTDContextEntry *ce)
1479 VTDPASIDEntry pe;
1482 * Make sure in Scalable Mode, a present context entry
1483 * has valid rid2pasid setting, which includes valid
1484 * rid2pasid field and corresponding pasid entry setting
1486 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1489 /* Map a device to its corresponding domain (context-entry) */
1490 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1491 uint8_t devfn, VTDContextEntry *ce)
1493 VTDRootEntry re;
1494 int ret_fr;
1495 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1497 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1498 if (ret_fr) {
1499 return ret_fr;
1502 if (!vtd_root_entry_present(s, &re, devfn)) {
1503 /* Not error - it's okay we don't have root entry. */
1504 trace_vtd_re_not_present(bus_num);
1505 return -VTD_FR_ROOT_ENTRY_P;
1508 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1509 if (ret_fr) {
1510 return ret_fr;
1513 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1514 if (ret_fr) {
1515 return ret_fr;
1518 if (!vtd_ce_present(ce)) {
1519 /* Not error - it's okay we don't have context entry. */
1520 trace_vtd_ce_not_present(bus_num, devfn);
1521 return -VTD_FR_CONTEXT_ENTRY_P;
1524 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1525 if (ret_fr) {
1526 return ret_fr;
1529 /* Check if the programming of context-entry is valid */
1530 if (!s->root_scalable &&
1531 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1532 error_report_once("%s: invalid context entry: hi=%"PRIx64
1533 ", lo=%"PRIx64" (level %d not supported)",
1534 __func__, ce->hi, ce->lo,
1535 vtd_ce_get_level(ce));
1536 return -VTD_FR_CONTEXT_ENTRY_INV;
1539 if (!s->root_scalable) {
1540 /* Do translation type check */
1541 if (!vtd_ce_type_check(x86_iommu, ce)) {
1542 /* Errors dumped in vtd_ce_type_check() */
1543 return -VTD_FR_CONTEXT_ENTRY_INV;
1545 } else {
1547 * Check if the programming of context-entry.rid2pasid
1548 * and corresponding pasid setting is valid, and thus
1549 * avoids to check pasid entry fetching result in future
1550 * helper function calling.
1552 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1553 if (ret_fr) {
1554 return ret_fr;
1558 return 0;
1561 static int vtd_sync_shadow_page_hook(const IOMMUTLBEvent *event,
1562 void *private)
1564 memory_region_notify_iommu(private, 0, *event);
1565 return 0;
1568 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1569 VTDContextEntry *ce,
1570 uint32_t pasid)
1572 VTDPASIDEntry pe;
1574 if (s->root_scalable) {
1575 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1576 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1579 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1582 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1583 VTDContextEntry *ce,
1584 hwaddr addr, hwaddr size)
1586 IntelIOMMUState *s = vtd_as->iommu_state;
1587 vtd_page_walk_info info = {
1588 .hook_fn = vtd_sync_shadow_page_hook,
1589 .private = (void *)&vtd_as->iommu,
1590 .notify_unmap = true,
1591 .aw = s->aw_bits,
1592 .as = vtd_as,
1593 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1596 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1599 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1601 int ret;
1602 VTDContextEntry ce;
1603 IOMMUNotifier *n;
1605 /* If no MAP notifier registered, we simply invalidate all the cache */
1606 if (!vtd_as_has_map_notifier(vtd_as)) {
1607 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1608 memory_region_unmap_iommu_notifier_range(n);
1610 return 0;
1613 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1614 pci_bus_num(vtd_as->bus),
1615 vtd_as->devfn, &ce);
1616 if (ret) {
1617 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1619 * It's a valid scenario to have a context entry that is
1620 * not present. For example, when a device is removed
1621 * from an existing domain then the context entry will be
1622 * zeroed by the guest before it was put into another
1623 * domain. When this happens, instead of synchronizing
1624 * the shadow pages we should invalidate all existing
1625 * mappings and notify the backends.
1627 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1628 vtd_address_space_unmap(vtd_as, n);
1630 ret = 0;
1632 return ret;
1635 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1639 * Check if specific device is configured to bypass address
1640 * translation for DMA requests. In Scalable Mode, bypass
1641 * 1st-level translation or 2nd-level translation, it depends
1642 * on PGTT setting.
1644 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1645 uint32_t pasid)
1647 VTDPASIDEntry pe;
1648 int ret;
1650 if (s->root_scalable) {
1651 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1652 if (ret) {
1654 * This error is guest triggerable. We should assumt PT
1655 * not enabled for safety.
1657 return false;
1659 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1662 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1666 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1668 IntelIOMMUState *s;
1669 VTDContextEntry ce;
1671 assert(as);
1673 s = as->iommu_state;
1674 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1675 &ce)) {
1677 * Possibly failed to parse the context entry for some reason
1678 * (e.g., during init, or any guest configuration errors on
1679 * context entries). We should assume PT not enabled for
1680 * safety.
1682 return false;
1685 return vtd_dev_pt_enabled(s, &ce, as->pasid);
1688 /* Return whether the device is using IOMMU translation. */
1689 static bool vtd_switch_address_space(VTDAddressSpace *as)
1691 bool use_iommu, pt;
1692 /* Whether we need to take the BQL on our own */
1693 bool take_bql = !bql_locked();
1695 assert(as);
1697 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1698 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1700 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1701 VTD_PCI_SLOT(as->devfn),
1702 VTD_PCI_FUNC(as->devfn),
1703 use_iommu);
1706 * It's possible that we reach here without BQL, e.g., when called
1707 * from vtd_pt_enable_fast_path(). However the memory APIs need
1708 * it. We'd better make sure we have had it already, or, take it.
1710 if (take_bql) {
1711 bql_lock();
1714 /* Turn off first then on the other */
1715 if (use_iommu) {
1716 memory_region_set_enabled(&as->nodmar, false);
1717 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1719 * vt-d spec v3.4 3.14:
1721 * """
1722 * Requests-with-PASID with input address in range 0xFEEx_xxxx
1723 * are translated normally like any other request-with-PASID
1724 * through DMA-remapping hardware.
1725 * """
1727 * Need to disable ir for as with PASID.
1729 if (as->pasid != PCI_NO_PASID) {
1730 memory_region_set_enabled(&as->iommu_ir, false);
1731 } else {
1732 memory_region_set_enabled(&as->iommu_ir, true);
1734 } else {
1735 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1736 memory_region_set_enabled(&as->nodmar, true);
1740 * vtd-spec v3.4 3.14:
1742 * """
1743 * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1744 * translated normally like any other request-with-PASID through
1745 * DMA-remapping hardware. However, if such a request is processed
1746 * using pass-through translation, it will be blocked as described
1747 * in the paragraph below.
1749 * Software must not program paging-structure entries to remap any
1750 * address to the interrupt address range. Untranslated requests
1751 * and translation requests that result in an address in the
1752 * interrupt range will be blocked with condition code LGN.4 or
1753 * SGN.8.
1754 * """
1756 * We enable per as memory region (iommu_ir_fault) for catching
1757 * the translation for interrupt range through PASID + PT.
1759 if (pt && as->pasid != PCI_NO_PASID) {
1760 memory_region_set_enabled(&as->iommu_ir_fault, true);
1761 } else {
1762 memory_region_set_enabled(&as->iommu_ir_fault, false);
1765 if (take_bql) {
1766 bql_unlock();
1769 return use_iommu;
1772 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1774 VTDAddressSpace *vtd_as;
1775 GHashTableIter iter;
1777 g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1778 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1779 vtd_switch_address_space(vtd_as);
1783 static const bool vtd_qualified_faults[] = {
1784 [VTD_FR_RESERVED] = false,
1785 [VTD_FR_ROOT_ENTRY_P] = false,
1786 [VTD_FR_CONTEXT_ENTRY_P] = true,
1787 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1788 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1789 [VTD_FR_WRITE] = true,
1790 [VTD_FR_READ] = true,
1791 [VTD_FR_PAGING_ENTRY_INV] = true,
1792 [VTD_FR_ROOT_TABLE_INV] = false,
1793 [VTD_FR_CONTEXT_TABLE_INV] = false,
1794 [VTD_FR_INTERRUPT_ADDR] = true,
1795 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1796 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1797 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1798 [VTD_FR_PASID_TABLE_INV] = false,
1799 [VTD_FR_SM_INTERRUPT_ADDR] = true,
1800 [VTD_FR_MAX] = false,
1803 /* To see if a fault condition is "qualified", which is reported to software
1804 * only if the FPD field in the context-entry used to process the faulting
1805 * request is 0.
1807 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1809 return vtd_qualified_faults[fault];
1812 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1814 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1817 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1818 gpointer user_data)
1820 struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1821 uint16_t target_sid = *(uint16_t *)user_data;
1822 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1823 return sid == target_sid;
1826 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1828 uint8_t bus_num = PCI_BUS_NUM(sid);
1829 VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1831 if (vtd_as &&
1832 (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1833 return vtd_as;
1836 vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1837 s->vtd_as_cache[bus_num] = vtd_as;
1839 return vtd_as;
1842 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1844 VTDAddressSpace *vtd_as;
1845 bool success = false;
1847 vtd_as = vtd_get_as_by_sid(s, source_id);
1848 if (!vtd_as) {
1849 goto out;
1852 if (vtd_switch_address_space(vtd_as) == false) {
1853 /* We switched off IOMMU region successfully. */
1854 success = true;
1857 out:
1858 trace_vtd_pt_enable_fast_path(source_id, success);
1861 static void vtd_report_fault(IntelIOMMUState *s,
1862 int err, bool is_fpd_set,
1863 uint16_t source_id,
1864 hwaddr addr,
1865 bool is_write,
1866 bool is_pasid,
1867 uint32_t pasid)
1869 if (is_fpd_set && vtd_is_qualified_fault(err)) {
1870 trace_vtd_fault_disabled();
1871 } else {
1872 vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1873 is_pasid, pasid);
1877 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1878 * translation.
1880 * Called from RCU critical section.
1882 * @bus_num: The bus number
1883 * @devfn: The devfn, which is the combined of device and function number
1884 * @is_write: The access is a write operation
1885 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1887 * Returns true if translation is successful, otherwise false.
1889 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1890 uint8_t devfn, hwaddr addr, bool is_write,
1891 IOMMUTLBEntry *entry)
1893 IntelIOMMUState *s = vtd_as->iommu_state;
1894 VTDContextEntry ce;
1895 uint8_t bus_num = pci_bus_num(bus);
1896 VTDContextCacheEntry *cc_entry;
1897 uint64_t slpte, page_mask;
1898 uint32_t level, pasid = vtd_as->pasid;
1899 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1900 int ret_fr;
1901 bool is_fpd_set = false;
1902 bool reads = true;
1903 bool writes = true;
1904 uint8_t access_flags;
1905 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1906 VTDIOTLBEntry *iotlb_entry;
1909 * We have standalone memory region for interrupt addresses, we
1910 * should never receive translation requests in this region.
1912 assert(!vtd_is_interrupt_addr(addr));
1914 vtd_iommu_lock(s);
1916 cc_entry = &vtd_as->context_cache_entry;
1918 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1919 if (!rid2pasid) {
1920 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1921 if (iotlb_entry) {
1922 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1923 iotlb_entry->domain_id);
1924 slpte = iotlb_entry->slpte;
1925 access_flags = iotlb_entry->access_flags;
1926 page_mask = iotlb_entry->mask;
1927 goto out;
1931 /* Try to fetch context-entry from cache first */
1932 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1933 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1934 cc_entry->context_entry.lo,
1935 cc_entry->context_cache_gen);
1936 ce = cc_entry->context_entry;
1937 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1938 if (!is_fpd_set && s->root_scalable) {
1939 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1940 if (ret_fr) {
1941 vtd_report_fault(s, -ret_fr, is_fpd_set,
1942 source_id, addr, is_write,
1943 false, 0);
1944 goto error;
1947 } else {
1948 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1949 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1950 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1951 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1953 if (ret_fr) {
1954 vtd_report_fault(s, -ret_fr, is_fpd_set,
1955 source_id, addr, is_write,
1956 false, 0);
1957 goto error;
1959 /* Update context-cache */
1960 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1961 cc_entry->context_cache_gen,
1962 s->context_cache_gen);
1963 cc_entry->context_entry = ce;
1964 cc_entry->context_cache_gen = s->context_cache_gen;
1967 if (rid2pasid) {
1968 pasid = VTD_CE_GET_RID2PASID(&ce);
1972 * We don't need to translate for pass-through context entries.
1973 * Also, let's ignore IOTLB caching as well for PT devices.
1975 if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1976 entry->iova = addr & VTD_PAGE_MASK_4K;
1977 entry->translated_addr = entry->iova;
1978 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1979 entry->perm = IOMMU_RW;
1980 trace_vtd_translate_pt(source_id, entry->iova);
1983 * When this happens, it means firstly caching-mode is not
1984 * enabled, and this is the first passthrough translation for
1985 * the device. Let's enable the fast path for passthrough.
1987 * When passthrough is disabled again for the device, we can
1988 * capture it via the context entry invalidation, then the
1989 * IOMMU region can be swapped back.
1991 vtd_pt_enable_fast_path(s, source_id);
1992 vtd_iommu_unlock(s);
1993 return true;
1996 /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1997 if (rid2pasid) {
1998 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1999 if (iotlb_entry) {
2000 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
2001 iotlb_entry->domain_id);
2002 slpte = iotlb_entry->slpte;
2003 access_flags = iotlb_entry->access_flags;
2004 page_mask = iotlb_entry->mask;
2005 goto out;
2009 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
2010 &reads, &writes, s->aw_bits, pasid);
2011 if (ret_fr) {
2012 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
2013 addr, is_write, pasid != PCI_NO_PASID, pasid);
2014 goto error;
2017 page_mask = vtd_slpt_level_page_mask(level);
2018 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
2019 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
2020 addr, slpte, access_flags, level, pasid);
2021 out:
2022 vtd_iommu_unlock(s);
2023 entry->iova = addr & page_mask;
2024 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
2025 entry->addr_mask = ~page_mask;
2026 entry->perm = access_flags;
2027 return true;
2029 error:
2030 vtd_iommu_unlock(s);
2031 entry->iova = 0;
2032 entry->translated_addr = 0;
2033 entry->addr_mask = 0;
2034 entry->perm = IOMMU_NONE;
2035 return false;
2038 static void vtd_root_table_setup(IntelIOMMUState *s)
2040 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2041 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
2043 vtd_update_scalable_state(s);
2045 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
2048 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
2049 uint32_t index, uint32_t mask)
2051 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
2054 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
2056 uint64_t value = 0;
2057 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
2058 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
2059 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
2060 s->intr_eime = value & VTD_IRTA_EIME;
2062 /* Notify global invalidation */
2063 vtd_iec_notify_all(s, true, 0, 0);
2065 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2068 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2070 VTDAddressSpace *vtd_as;
2072 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2073 vtd_address_space_sync(vtd_as);
2077 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2079 trace_vtd_inv_desc_cc_global();
2080 /* Protects context cache */
2081 vtd_iommu_lock(s);
2082 s->context_cache_gen++;
2083 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2084 vtd_reset_context_cache_locked(s);
2086 vtd_iommu_unlock(s);
2087 vtd_address_space_refresh_all(s);
2089 * From VT-d spec 6.5.2.1, a global context entry invalidation
2090 * should be followed by a IOTLB global invalidation, so we should
2091 * be safe even without this. Hoewever, let's replay the region as
2092 * well to be safer, and go back here when we need finer tunes for
2093 * VT-d emulation codes.
2095 vtd_iommu_replay_all(s);
2098 /* Do a context-cache device-selective invalidation.
2099 * @func_mask: FM field after shifting
2101 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2102 uint16_t source_id,
2103 uint16_t func_mask)
2105 GHashTableIter as_it;
2106 uint16_t mask;
2107 VTDAddressSpace *vtd_as;
2108 uint8_t bus_n, devfn;
2110 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2112 switch (func_mask & 3) {
2113 case 0:
2114 mask = 0; /* No bits in the SID field masked */
2115 break;
2116 case 1:
2117 mask = 4; /* Mask bit 2 in the SID field */
2118 break;
2119 case 2:
2120 mask = 6; /* Mask bit 2:1 in the SID field */
2121 break;
2122 case 3:
2123 mask = 7; /* Mask bit 2:0 in the SID field */
2124 break;
2125 default:
2126 g_assert_not_reached();
2128 mask = ~mask;
2130 bus_n = VTD_SID_TO_BUS(source_id);
2131 devfn = VTD_SID_TO_DEVFN(source_id);
2133 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2134 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2135 if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2136 (vtd_as->devfn & mask) == (devfn & mask)) {
2137 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2138 VTD_PCI_FUNC(vtd_as->devfn));
2139 vtd_iommu_lock(s);
2140 vtd_as->context_cache_entry.context_cache_gen = 0;
2141 vtd_iommu_unlock(s);
2143 * Do switch address space when needed, in case if the
2144 * device passthrough bit is switched.
2146 vtd_switch_address_space(vtd_as);
2148 * So a device is moving out of (or moving into) a
2149 * domain, resync the shadow page table.
2150 * This won't bring bad even if we have no such
2151 * notifier registered - the IOMMU notification
2152 * framework will skip MAP notifications if that
2153 * happened.
2155 vtd_address_space_sync(vtd_as);
2160 /* Context-cache invalidation
2161 * Returns the Context Actual Invalidation Granularity.
2162 * @val: the content of the CCMD_REG
2164 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2166 uint64_t caig;
2167 uint64_t type = val & VTD_CCMD_CIRG_MASK;
2169 switch (type) {
2170 case VTD_CCMD_DOMAIN_INVL:
2171 /* Fall through */
2172 case VTD_CCMD_GLOBAL_INVL:
2173 caig = VTD_CCMD_GLOBAL_INVL_A;
2174 vtd_context_global_invalidate(s);
2175 break;
2177 case VTD_CCMD_DEVICE_INVL:
2178 caig = VTD_CCMD_DEVICE_INVL_A;
2179 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2180 break;
2182 default:
2183 error_report_once("%s: invalid context: 0x%" PRIx64,
2184 __func__, val);
2185 caig = 0;
2187 return caig;
2190 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2192 trace_vtd_inv_desc_iotlb_global();
2193 vtd_reset_iotlb(s);
2194 vtd_iommu_replay_all(s);
2197 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2199 VTDContextEntry ce;
2200 VTDAddressSpace *vtd_as;
2202 trace_vtd_inv_desc_iotlb_domain(domain_id);
2204 vtd_iommu_lock(s);
2205 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2206 &domain_id);
2207 vtd_iommu_unlock(s);
2209 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2210 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2211 vtd_as->devfn, &ce) &&
2212 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2213 vtd_address_space_sync(vtd_as);
2218 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2219 uint16_t domain_id, hwaddr addr,
2220 uint8_t am, uint32_t pasid)
2222 VTDAddressSpace *vtd_as;
2223 VTDContextEntry ce;
2224 int ret;
2225 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2227 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2228 if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2229 continue;
2231 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2232 vtd_as->devfn, &ce);
2233 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2234 if (vtd_as_has_map_notifier(vtd_as)) {
2236 * As long as we have MAP notifications registered in
2237 * any of our IOMMU notifiers, we need to sync the
2238 * shadow page table.
2240 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2241 } else {
2243 * For UNMAP-only notifiers, we don't need to walk the
2244 * page tables. We just deliver the PSI down to
2245 * invalidate caches.
2247 const IOMMUTLBEvent event = {
2248 .type = IOMMU_NOTIFIER_UNMAP,
2249 .entry = {
2250 .target_as = &address_space_memory,
2251 .iova = addr,
2252 .translated_addr = 0,
2253 .addr_mask = size - 1,
2254 .perm = IOMMU_NONE,
2257 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2263 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2264 hwaddr addr, uint8_t am)
2266 VTDIOTLBPageInvInfo info;
2268 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2270 assert(am <= VTD_MAMV);
2271 info.domain_id = domain_id;
2272 info.addr = addr;
2273 info.mask = ~((1 << am) - 1);
2274 vtd_iommu_lock(s);
2275 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2276 vtd_iommu_unlock(s);
2277 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2280 /* Flush IOTLB
2281 * Returns the IOTLB Actual Invalidation Granularity.
2282 * @val: the content of the IOTLB_REG
2284 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2286 uint64_t iaig;
2287 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2288 uint16_t domain_id;
2289 hwaddr addr;
2290 uint8_t am;
2292 switch (type) {
2293 case VTD_TLB_GLOBAL_FLUSH:
2294 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2295 vtd_iotlb_global_invalidate(s);
2296 break;
2298 case VTD_TLB_DSI_FLUSH:
2299 domain_id = VTD_TLB_DID(val);
2300 iaig = VTD_TLB_DSI_FLUSH_A;
2301 vtd_iotlb_domain_invalidate(s, domain_id);
2302 break;
2304 case VTD_TLB_PSI_FLUSH:
2305 domain_id = VTD_TLB_DID(val);
2306 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2307 am = VTD_IVA_AM(addr);
2308 addr = VTD_IVA_ADDR(addr);
2309 if (am > VTD_MAMV) {
2310 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2311 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2312 iaig = 0;
2313 break;
2315 iaig = VTD_TLB_PSI_FLUSH_A;
2316 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2317 break;
2319 default:
2320 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2321 __func__, val);
2322 iaig = 0;
2324 return iaig;
2327 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2329 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2331 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2332 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2335 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2337 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2339 trace_vtd_inv_qi_enable(en);
2341 if (en) {
2342 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2343 /* 2^(x+8) entries */
2344 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2345 s->qi_enabled = true;
2346 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2347 /* Ok - report back to driver */
2348 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2350 if (s->iq_tail != 0) {
2352 * This is a spec violation but Windows guests are known to set up
2353 * Queued Invalidation this way so we allow the write and process
2354 * Invalidation Descriptors right away.
2356 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2357 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2358 vtd_fetch_inv_desc(s);
2361 } else {
2362 if (vtd_queued_inv_disable_check(s)) {
2363 /* disable Queued Invalidation */
2364 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2365 s->iq_head = 0;
2366 s->qi_enabled = false;
2367 /* Ok - report back to driver */
2368 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2369 } else {
2370 error_report_once("%s: detected improper state when disable QI "
2371 "(head=0x%x, tail=0x%x, last_type=%d)",
2372 __func__,
2373 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2378 /* Set Root Table Pointer */
2379 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2381 vtd_root_table_setup(s);
2382 /* Ok - report back to driver */
2383 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2384 vtd_reset_caches(s);
2385 vtd_address_space_refresh_all(s);
2388 /* Set Interrupt Remap Table Pointer */
2389 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2391 vtd_interrupt_remap_table_setup(s);
2392 /* Ok - report back to driver */
2393 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2396 /* Handle Translation Enable/Disable */
2397 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2399 if (s->dmar_enabled == en) {
2400 return;
2403 trace_vtd_dmar_enable(en);
2405 if (en) {
2406 s->dmar_enabled = true;
2407 /* Ok - report back to driver */
2408 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2409 } else {
2410 s->dmar_enabled = false;
2412 /* Clear the index of Fault Recording Register */
2413 s->next_frcd_reg = 0;
2414 /* Ok - report back to driver */
2415 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2418 vtd_reset_caches(s);
2419 vtd_address_space_refresh_all(s);
2422 /* Handle Interrupt Remap Enable/Disable */
2423 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2425 trace_vtd_ir_enable(en);
2427 if (en) {
2428 s->intr_enabled = true;
2429 /* Ok - report back to driver */
2430 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2431 } else {
2432 s->intr_enabled = false;
2433 /* Ok - report back to driver */
2434 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2438 /* Handle write to Global Command Register */
2439 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2441 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2442 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2443 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2444 uint32_t changed = status ^ val;
2446 trace_vtd_reg_write_gcmd(status, val);
2447 if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2448 /* Translation enable/disable */
2449 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2451 if (val & VTD_GCMD_SRTP) {
2452 /* Set/update the root-table pointer */
2453 vtd_handle_gcmd_srtp(s);
2455 if (changed & VTD_GCMD_QIE) {
2456 /* Queued Invalidation Enable */
2457 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2459 if (val & VTD_GCMD_SIRTP) {
2460 /* Set/update the interrupt remapping root-table pointer */
2461 vtd_handle_gcmd_sirtp(s);
2463 if ((changed & VTD_GCMD_IRE) &&
2464 x86_iommu_ir_supported(x86_iommu)) {
2465 /* Interrupt remap enable/disable */
2466 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2470 /* Handle write to Context Command Register */
2471 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2473 uint64_t ret;
2474 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2476 /* Context-cache invalidation request */
2477 if (val & VTD_CCMD_ICC) {
2478 if (s->qi_enabled) {
2479 error_report_once("Queued Invalidation enabled, "
2480 "should not use register-based invalidation");
2481 return;
2483 ret = vtd_context_cache_invalidate(s, val);
2484 /* Invalidation completed. Change something to show */
2485 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2486 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2487 ret);
2491 /* Handle write to IOTLB Invalidation Register */
2492 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2494 uint64_t ret;
2495 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2497 /* IOTLB invalidation request */
2498 if (val & VTD_TLB_IVT) {
2499 if (s->qi_enabled) {
2500 error_report_once("Queued Invalidation enabled, "
2501 "should not use register-based invalidation");
2502 return;
2504 ret = vtd_iotlb_flush(s, val);
2505 /* Invalidation completed. Change something to show */
2506 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2507 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2508 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2512 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2513 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2514 VTDInvDesc *inv_desc)
2516 dma_addr_t base_addr = s->iq;
2517 uint32_t offset = s->iq_head;
2518 uint32_t dw = s->iq_dw ? 32 : 16;
2519 dma_addr_t addr = base_addr + offset * dw;
2521 if (dma_memory_read(&address_space_memory, addr,
2522 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2523 error_report_once("Read INV DESC failed.");
2524 return false;
2526 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2527 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2528 if (dw == 32) {
2529 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2530 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2532 return true;
2535 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2537 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2538 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2539 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2540 " (reserved nonzero)", __func__, inv_desc->hi,
2541 inv_desc->lo);
2542 return false;
2544 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2545 /* Status Write */
2546 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2547 VTD_INV_DESC_WAIT_DATA_SHIFT);
2549 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2551 /* FIXME: need to be masked with HAW? */
2552 dma_addr_t status_addr = inv_desc->hi;
2553 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2554 status_data = cpu_to_le32(status_data);
2555 if (dma_memory_write(&address_space_memory, status_addr,
2556 &status_data, sizeof(status_data),
2557 MEMTXATTRS_UNSPECIFIED)) {
2558 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2559 return false;
2561 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2562 /* Interrupt flag */
2563 vtd_generate_completion_event(s);
2564 } else {
2565 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2566 " (unknown type)", __func__, inv_desc->hi,
2567 inv_desc->lo);
2568 return false;
2570 return true;
2573 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2574 VTDInvDesc *inv_desc)
2576 uint16_t sid, fmask;
2578 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2579 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2580 " (reserved nonzero)", __func__, inv_desc->hi,
2581 inv_desc->lo);
2582 return false;
2584 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2585 case VTD_INV_DESC_CC_DOMAIN:
2586 trace_vtd_inv_desc_cc_domain(
2587 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2588 /* Fall through */
2589 case VTD_INV_DESC_CC_GLOBAL:
2590 vtd_context_global_invalidate(s);
2591 break;
2593 case VTD_INV_DESC_CC_DEVICE:
2594 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2595 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2596 vtd_context_device_invalidate(s, sid, fmask);
2597 break;
2599 default:
2600 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2601 " (invalid type)", __func__, inv_desc->hi,
2602 inv_desc->lo);
2603 return false;
2605 return true;
2608 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2610 uint16_t domain_id;
2611 uint8_t am;
2612 hwaddr addr;
2614 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2615 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2616 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2617 ", lo=0x%"PRIx64" (reserved bits unzero)",
2618 __func__, inv_desc->hi, inv_desc->lo);
2619 return false;
2622 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2623 case VTD_INV_DESC_IOTLB_GLOBAL:
2624 vtd_iotlb_global_invalidate(s);
2625 break;
2627 case VTD_INV_DESC_IOTLB_DOMAIN:
2628 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2629 vtd_iotlb_domain_invalidate(s, domain_id);
2630 break;
2632 case VTD_INV_DESC_IOTLB_PAGE:
2633 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2634 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2635 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2636 if (am > VTD_MAMV) {
2637 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2638 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2639 __func__, inv_desc->hi, inv_desc->lo,
2640 am, (unsigned)VTD_MAMV);
2641 return false;
2643 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2644 break;
2646 default:
2647 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2648 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2649 __func__, inv_desc->hi, inv_desc->lo,
2650 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2651 return false;
2653 return true;
2656 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2657 VTDInvDesc *inv_desc)
2659 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2660 inv_desc->iec.index,
2661 inv_desc->iec.index_mask);
2663 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2664 inv_desc->iec.index,
2665 inv_desc->iec.index_mask);
2666 return true;
2669 static void do_invalidate_device_tlb(VTDAddressSpace *vtd_dev_as,
2670 bool size, hwaddr addr)
2673 * According to ATS spec table 2.4:
2674 * S = 0, bits 15:12 = xxxx range size: 4K
2675 * S = 1, bits 15:12 = xxx0 range size: 8K
2676 * S = 1, bits 15:12 = xx01 range size: 16K
2677 * S = 1, bits 15:12 = x011 range size: 32K
2678 * S = 1, bits 15:12 = 0111 range size: 64K
2679 * ...
2682 IOMMUTLBEvent event;
2683 uint64_t sz;
2685 if (size) {
2686 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2687 addr &= ~(sz - 1);
2688 } else {
2689 sz = VTD_PAGE_SIZE;
2692 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2693 event.entry.target_as = &vtd_dev_as->as;
2694 event.entry.addr_mask = sz - 1;
2695 event.entry.iova = addr;
2696 event.entry.perm = IOMMU_NONE;
2697 event.entry.translated_addr = 0;
2698 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2701 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2702 VTDInvDesc *inv_desc)
2704 VTDAddressSpace *vtd_dev_as;
2705 hwaddr addr;
2706 uint16_t sid;
2707 bool size;
2709 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2710 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2711 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2713 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2714 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2715 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2716 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2717 inv_desc->hi, inv_desc->lo);
2718 return false;
2722 * Using sid is OK since the guest should have finished the
2723 * initialization of both the bus and device.
2725 vtd_dev_as = vtd_get_as_by_sid(s, sid);
2726 if (!vtd_dev_as) {
2727 goto done;
2730 do_invalidate_device_tlb(vtd_dev_as, size, addr);
2732 done:
2733 return true;
2736 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2738 VTDInvDesc inv_desc;
2739 uint8_t desc_type;
2741 trace_vtd_inv_qi_head(s->iq_head);
2742 if (!vtd_get_inv_desc(s, &inv_desc)) {
2743 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2744 return false;
2747 desc_type = VTD_INV_DESC_TYPE(inv_desc.lo);
2748 /* FIXME: should update at first or at last? */
2749 s->iq_last_desc_type = desc_type;
2751 switch (desc_type) {
2752 case VTD_INV_DESC_CC:
2753 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2754 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2755 return false;
2757 break;
2759 case VTD_INV_DESC_IOTLB:
2760 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2761 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2762 return false;
2764 break;
2766 case VTD_INV_DESC_WAIT:
2767 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2768 if (!vtd_process_wait_desc(s, &inv_desc)) {
2769 return false;
2771 break;
2773 case VTD_INV_DESC_IEC:
2774 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2775 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2776 return false;
2778 break;
2780 case VTD_INV_DESC_DEVICE:
2781 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2782 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2783 return false;
2785 break;
2788 * TODO: the entity of below two cases will be implemented in future series.
2789 * To make guest (which integrates scalable mode support patch set in
2790 * iommu driver) work, just return true is enough so far.
2792 case VTD_INV_DESC_PC:
2793 case VTD_INV_DESC_PIOTLB:
2794 if (s->scalable_mode) {
2795 break;
2797 /* fallthrough */
2798 default:
2799 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2800 " (unknown type)", __func__, inv_desc.hi,
2801 inv_desc.lo);
2802 return false;
2804 s->iq_head++;
2805 if (s->iq_head == s->iq_size) {
2806 s->iq_head = 0;
2808 return true;
2811 /* Try to fetch and process more Invalidation Descriptors */
2812 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2814 int qi_shift;
2816 /* Refer to 10.4.23 of VT-d spec 3.0 */
2817 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2819 trace_vtd_inv_qi_fetch();
2821 if (s->iq_tail >= s->iq_size) {
2822 /* Detects an invalid Tail pointer */
2823 error_report_once("%s: detected invalid QI tail "
2824 "(tail=0x%x, size=0x%x)",
2825 __func__, s->iq_tail, s->iq_size);
2826 vtd_handle_inv_queue_error(s);
2827 return;
2829 while (s->iq_head != s->iq_tail) {
2830 if (!vtd_process_inv_desc(s)) {
2831 /* Invalidation Queue Errors */
2832 vtd_handle_inv_queue_error(s);
2833 break;
2835 /* Must update the IQH_REG in time */
2836 vtd_set_quad_raw(s, DMAR_IQH_REG,
2837 (((uint64_t)(s->iq_head)) << qi_shift) &
2838 VTD_IQH_QH_MASK);
2842 /* Handle write to Invalidation Queue Tail Register */
2843 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2845 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2847 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2848 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2849 __func__, val);
2850 return;
2852 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2853 trace_vtd_inv_qi_tail(s->iq_tail);
2855 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2856 /* Process Invalidation Queue here */
2857 vtd_fetch_inv_desc(s);
2861 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2863 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2864 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2865 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2867 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2868 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2869 trace_vtd_fsts_clear_ip();
2871 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2872 * Descriptors if there are any when Queued Invalidation is enabled?
2876 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2878 uint32_t fectl_reg;
2879 /* FIXME: when software clears the IM field, check the IP field. But do we
2880 * need to compare the old value and the new value to conclude that
2881 * software clears the IM field? Or just check if the IM field is zero?
2883 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2885 trace_vtd_reg_write_fectl(fectl_reg);
2887 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2888 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2889 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2893 static void vtd_handle_ics_write(IntelIOMMUState *s)
2895 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2896 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2898 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2899 trace_vtd_reg_ics_clear_ip();
2900 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2904 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2906 uint32_t iectl_reg;
2907 /* FIXME: when software clears the IM field, check the IP field. But do we
2908 * need to compare the old value and the new value to conclude that
2909 * software clears the IM field? Or just check if the IM field is zero?
2911 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2913 trace_vtd_reg_write_iectl(iectl_reg);
2915 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2916 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2917 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2921 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2923 IntelIOMMUState *s = opaque;
2924 uint64_t val;
2926 trace_vtd_reg_read(addr, size);
2928 if (addr + size > DMAR_REG_SIZE) {
2929 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2930 " size=0x%x", __func__, addr, size);
2931 return (uint64_t)-1;
2934 switch (addr) {
2935 /* Root Table Address Register, 64-bit */
2936 case DMAR_RTADDR_REG:
2937 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2938 if (size == 4) {
2939 val = val & ((1ULL << 32) - 1);
2941 break;
2943 case DMAR_RTADDR_REG_HI:
2944 assert(size == 4);
2945 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2946 break;
2948 /* Invalidation Queue Address Register, 64-bit */
2949 case DMAR_IQA_REG:
2950 val = s->iq |
2951 (vtd_get_quad(s, DMAR_IQA_REG) &
2952 (VTD_IQA_QS | VTD_IQA_DW_MASK));
2953 if (size == 4) {
2954 val = val & ((1ULL << 32) - 1);
2956 break;
2958 case DMAR_IQA_REG_HI:
2959 assert(size == 4);
2960 val = s->iq >> 32;
2961 break;
2963 default:
2964 if (size == 4) {
2965 val = vtd_get_long(s, addr);
2966 } else {
2967 val = vtd_get_quad(s, addr);
2971 return val;
2974 static void vtd_mem_write(void *opaque, hwaddr addr,
2975 uint64_t val, unsigned size)
2977 IntelIOMMUState *s = opaque;
2979 trace_vtd_reg_write(addr, size, val);
2981 if (addr + size > DMAR_REG_SIZE) {
2982 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2983 " size=0x%x", __func__, addr, size);
2984 return;
2987 switch (addr) {
2988 /* Global Command Register, 32-bit */
2989 case DMAR_GCMD_REG:
2990 vtd_set_long(s, addr, val);
2991 vtd_handle_gcmd_write(s);
2992 break;
2994 /* Context Command Register, 64-bit */
2995 case DMAR_CCMD_REG:
2996 if (size == 4) {
2997 vtd_set_long(s, addr, val);
2998 } else {
2999 vtd_set_quad(s, addr, val);
3000 vtd_handle_ccmd_write(s);
3002 break;
3004 case DMAR_CCMD_REG_HI:
3005 assert(size == 4);
3006 vtd_set_long(s, addr, val);
3007 vtd_handle_ccmd_write(s);
3008 break;
3010 /* IOTLB Invalidation Register, 64-bit */
3011 case DMAR_IOTLB_REG:
3012 if (size == 4) {
3013 vtd_set_long(s, addr, val);
3014 } else {
3015 vtd_set_quad(s, addr, val);
3016 vtd_handle_iotlb_write(s);
3018 break;
3020 case DMAR_IOTLB_REG_HI:
3021 assert(size == 4);
3022 vtd_set_long(s, addr, val);
3023 vtd_handle_iotlb_write(s);
3024 break;
3026 /* Invalidate Address Register, 64-bit */
3027 case DMAR_IVA_REG:
3028 if (size == 4) {
3029 vtd_set_long(s, addr, val);
3030 } else {
3031 vtd_set_quad(s, addr, val);
3033 break;
3035 case DMAR_IVA_REG_HI:
3036 assert(size == 4);
3037 vtd_set_long(s, addr, val);
3038 break;
3040 /* Fault Status Register, 32-bit */
3041 case DMAR_FSTS_REG:
3042 assert(size == 4);
3043 vtd_set_long(s, addr, val);
3044 vtd_handle_fsts_write(s);
3045 break;
3047 /* Fault Event Control Register, 32-bit */
3048 case DMAR_FECTL_REG:
3049 assert(size == 4);
3050 vtd_set_long(s, addr, val);
3051 vtd_handle_fectl_write(s);
3052 break;
3054 /* Fault Event Data Register, 32-bit */
3055 case DMAR_FEDATA_REG:
3056 assert(size == 4);
3057 vtd_set_long(s, addr, val);
3058 break;
3060 /* Fault Event Address Register, 32-bit */
3061 case DMAR_FEADDR_REG:
3062 if (size == 4) {
3063 vtd_set_long(s, addr, val);
3064 } else {
3066 * While the register is 32-bit only, some guests (Xen...) write to
3067 * it with 64-bit.
3069 vtd_set_quad(s, addr, val);
3071 break;
3073 /* Fault Event Upper Address Register, 32-bit */
3074 case DMAR_FEUADDR_REG:
3075 assert(size == 4);
3076 vtd_set_long(s, addr, val);
3077 break;
3079 /* Protected Memory Enable Register, 32-bit */
3080 case DMAR_PMEN_REG:
3081 assert(size == 4);
3082 vtd_set_long(s, addr, val);
3083 break;
3085 /* Root Table Address Register, 64-bit */
3086 case DMAR_RTADDR_REG:
3087 if (size == 4) {
3088 vtd_set_long(s, addr, val);
3089 } else {
3090 vtd_set_quad(s, addr, val);
3092 break;
3094 case DMAR_RTADDR_REG_HI:
3095 assert(size == 4);
3096 vtd_set_long(s, addr, val);
3097 break;
3099 /* Invalidation Queue Tail Register, 64-bit */
3100 case DMAR_IQT_REG:
3101 if (size == 4) {
3102 vtd_set_long(s, addr, val);
3103 } else {
3104 vtd_set_quad(s, addr, val);
3106 vtd_handle_iqt_write(s);
3107 break;
3109 case DMAR_IQT_REG_HI:
3110 assert(size == 4);
3111 vtd_set_long(s, addr, val);
3112 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3113 break;
3115 /* Invalidation Queue Address Register, 64-bit */
3116 case DMAR_IQA_REG:
3117 if (size == 4) {
3118 vtd_set_long(s, addr, val);
3119 } else {
3120 vtd_set_quad(s, addr, val);
3122 vtd_update_iq_dw(s);
3123 break;
3125 case DMAR_IQA_REG_HI:
3126 assert(size == 4);
3127 vtd_set_long(s, addr, val);
3128 break;
3130 /* Invalidation Completion Status Register, 32-bit */
3131 case DMAR_ICS_REG:
3132 assert(size == 4);
3133 vtd_set_long(s, addr, val);
3134 vtd_handle_ics_write(s);
3135 break;
3137 /* Invalidation Event Control Register, 32-bit */
3138 case DMAR_IECTL_REG:
3139 assert(size == 4);
3140 vtd_set_long(s, addr, val);
3141 vtd_handle_iectl_write(s);
3142 break;
3144 /* Invalidation Event Data Register, 32-bit */
3145 case DMAR_IEDATA_REG:
3146 assert(size == 4);
3147 vtd_set_long(s, addr, val);
3148 break;
3150 /* Invalidation Event Address Register, 32-bit */
3151 case DMAR_IEADDR_REG:
3152 assert(size == 4);
3153 vtd_set_long(s, addr, val);
3154 break;
3156 /* Invalidation Event Upper Address Register, 32-bit */
3157 case DMAR_IEUADDR_REG:
3158 assert(size == 4);
3159 vtd_set_long(s, addr, val);
3160 break;
3162 /* Fault Recording Registers, 128-bit */
3163 case DMAR_FRCD_REG_0_0:
3164 if (size == 4) {
3165 vtd_set_long(s, addr, val);
3166 } else {
3167 vtd_set_quad(s, addr, val);
3169 break;
3171 case DMAR_FRCD_REG_0_1:
3172 assert(size == 4);
3173 vtd_set_long(s, addr, val);
3174 break;
3176 case DMAR_FRCD_REG_0_2:
3177 if (size == 4) {
3178 vtd_set_long(s, addr, val);
3179 } else {
3180 vtd_set_quad(s, addr, val);
3181 /* May clear bit 127 (Fault), update PPF */
3182 vtd_update_fsts_ppf(s);
3184 break;
3186 case DMAR_FRCD_REG_0_3:
3187 assert(size == 4);
3188 vtd_set_long(s, addr, val);
3189 /* May clear bit 127 (Fault), update PPF */
3190 vtd_update_fsts_ppf(s);
3191 break;
3193 case DMAR_IRTA_REG:
3194 if (size == 4) {
3195 vtd_set_long(s, addr, val);
3196 } else {
3197 vtd_set_quad(s, addr, val);
3199 break;
3201 case DMAR_IRTA_REG_HI:
3202 assert(size == 4);
3203 vtd_set_long(s, addr, val);
3204 break;
3206 default:
3207 if (size == 4) {
3208 vtd_set_long(s, addr, val);
3209 } else {
3210 vtd_set_quad(s, addr, val);
3215 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3216 IOMMUAccessFlags flag, int iommu_idx)
3218 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3219 IntelIOMMUState *s = vtd_as->iommu_state;
3220 IOMMUTLBEntry iotlb = {
3221 /* We'll fill in the rest later. */
3222 .target_as = &address_space_memory,
3224 bool success;
3226 if (likely(s->dmar_enabled)) {
3227 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3228 addr, flag & IOMMU_WO, &iotlb);
3229 } else {
3230 /* DMAR disabled, passthrough, use 4k-page*/
3231 iotlb.iova = addr & VTD_PAGE_MASK_4K;
3232 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3233 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3234 iotlb.perm = IOMMU_RW;
3235 success = true;
3238 if (likely(success)) {
3239 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3240 VTD_PCI_SLOT(vtd_as->devfn),
3241 VTD_PCI_FUNC(vtd_as->devfn),
3242 iotlb.iova, iotlb.translated_addr,
3243 iotlb.addr_mask);
3244 } else {
3245 error_report_once("%s: detected translation failure "
3246 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3247 __func__, pci_bus_num(vtd_as->bus),
3248 VTD_PCI_SLOT(vtd_as->devfn),
3249 VTD_PCI_FUNC(vtd_as->devfn),
3250 addr);
3253 return iotlb;
3256 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3257 IOMMUNotifierFlag old,
3258 IOMMUNotifierFlag new,
3259 Error **errp)
3261 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3262 IntelIOMMUState *s = vtd_as->iommu_state;
3263 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3265 /* TODO: add support for VFIO and vhost users */
3266 if (s->snoop_control) {
3267 error_setg_errno(errp, ENOTSUP,
3268 "Snoop Control with vhost or VFIO is not supported");
3269 return -ENOTSUP;
3271 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3272 error_setg_errno(errp, ENOTSUP,
3273 "device %02x.%02x.%x requires caching mode",
3274 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3275 PCI_FUNC(vtd_as->devfn));
3276 return -ENOTSUP;
3278 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3279 error_setg_errno(errp, ENOTSUP,
3280 "device %02x.%02x.%x requires device IOTLB mode",
3281 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3282 PCI_FUNC(vtd_as->devfn));
3283 return -ENOTSUP;
3286 /* Update per-address-space notifier flags */
3287 vtd_as->notifier_flags = new;
3289 if (old == IOMMU_NOTIFIER_NONE) {
3290 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3291 } else if (new == IOMMU_NOTIFIER_NONE) {
3292 QLIST_REMOVE(vtd_as, next);
3294 return 0;
3297 static int vtd_post_load(void *opaque, int version_id)
3299 IntelIOMMUState *iommu = opaque;
3302 * We don't need to migrate the root_scalable because we can
3303 * simply do the calculation after the loading is complete. We
3304 * can actually do similar things with root, dmar_enabled, etc.
3305 * however since we've had them already so we'd better keep them
3306 * for compatibility of migration.
3308 vtd_update_scalable_state(iommu);
3310 vtd_update_iq_dw(iommu);
3313 * Memory regions are dynamically turned on/off depending on
3314 * context entry configurations from the guest. After migration,
3315 * we need to make sure the memory regions are still correct.
3317 vtd_switch_address_space_all(iommu);
3319 return 0;
3322 static const VMStateDescription vtd_vmstate = {
3323 .name = "iommu-intel",
3324 .version_id = 1,
3325 .minimum_version_id = 1,
3326 .priority = MIG_PRI_IOMMU,
3327 .post_load = vtd_post_load,
3328 .fields = (const VMStateField[]) {
3329 VMSTATE_UINT64(root, IntelIOMMUState),
3330 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3331 VMSTATE_UINT64(iq, IntelIOMMUState),
3332 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3333 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3334 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3335 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3336 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3337 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3338 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3339 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3340 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3341 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3342 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3343 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3344 VMSTATE_END_OF_LIST()
3348 static const MemoryRegionOps vtd_mem_ops = {
3349 .read = vtd_mem_read,
3350 .write = vtd_mem_write,
3351 .endianness = DEVICE_LITTLE_ENDIAN,
3352 .impl = {
3353 .min_access_size = 4,
3354 .max_access_size = 8,
3356 .valid = {
3357 .min_access_size = 4,
3358 .max_access_size = 8,
3362 static Property vtd_properties[] = {
3363 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3364 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3365 ON_OFF_AUTO_AUTO),
3366 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3367 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3368 VTD_HOST_ADDRESS_WIDTH),
3369 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3370 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3371 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3372 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3373 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3374 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3375 DEFINE_PROP_END_OF_LIST(),
3378 /* Read IRTE entry with specific index */
3379 static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3380 VTD_IR_TableEntry *entry, uint16_t sid,
3381 bool do_fault)
3383 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3384 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3385 dma_addr_t addr = 0x00;
3386 uint16_t mask, source_id;
3387 uint8_t bus, bus_max, bus_min;
3389 if (index >= iommu->intr_size) {
3390 error_report_once("%s: index too large: ind=0x%x",
3391 __func__, index);
3392 if (do_fault) {
3393 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index);
3395 return false;
3398 addr = iommu->intr_root + index * sizeof(*entry);
3399 if (dma_memory_read(&address_space_memory, addr,
3400 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3401 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3402 __func__, index, addr);
3403 if (do_fault) {
3404 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index);
3406 return false;
3409 entry->data[0] = le64_to_cpu(entry->data[0]);
3410 entry->data[1] = le64_to_cpu(entry->data[1]);
3412 trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]);
3415 * The remaining potential fault conditions are "qualified" by the
3416 * Fault Processing Disable bit in the IRTE. Even "not present".
3417 * So just clear the do_fault flag if PFD is set, which will
3418 * prevent faults being raised.
3420 if (entry->irte.fault_disable) {
3421 do_fault = false;
3424 if (!entry->irte.present) {
3425 error_report_once("%s: detected non-present IRTE "
3426 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3427 __func__, index, entry->data[1], entry->data[0]);
3428 if (do_fault) {
3429 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index);
3431 return false;
3434 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3435 entry->irte.__reserved_2) {
3436 error_report_once("%s: detected non-zero reserved IRTE "
3437 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3438 __func__, index, entry->data[1], entry->data[0]);
3439 if (do_fault) {
3440 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index);
3442 return false;
3445 if (sid != X86_IOMMU_SID_INVALID) {
3446 /* Validate IRTE SID */
3447 source_id = entry->irte.source_id;
3448 switch (entry->irte.sid_vtype) {
3449 case VTD_SVT_NONE:
3450 break;
3452 case VTD_SVT_ALL:
3453 mask = vtd_svt_mask[entry->irte.sid_q];
3454 if ((source_id & mask) != (sid & mask)) {
3455 error_report_once("%s: invalid IRTE SID "
3456 "(index=%u, sid=%u, source_id=%u)",
3457 __func__, index, sid, source_id);
3458 if (do_fault) {
3459 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3461 return false;
3463 break;
3465 case VTD_SVT_BUS:
3466 bus_max = source_id >> 8;
3467 bus_min = source_id & 0xff;
3468 bus = sid >> 8;
3469 if (bus > bus_max || bus < bus_min) {
3470 error_report_once("%s: invalid SVT_BUS "
3471 "(index=%u, bus=%u, min=%u, max=%u)",
3472 __func__, index, bus, bus_min, bus_max);
3473 if (do_fault) {
3474 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3476 return false;
3478 break;
3480 default:
3481 error_report_once("%s: detected invalid IRTE SVT "
3482 "(index=%u, type=%d)", __func__,
3483 index, entry->irte.sid_vtype);
3484 /* Take this as verification failure. */
3485 if (do_fault) {
3486 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3488 return false;
3492 return true;
3495 /* Fetch IRQ information of specific IR index */
3496 static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3497 X86IOMMUIrq *irq, uint16_t sid, bool do_fault)
3499 VTD_IR_TableEntry irte = {};
3501 if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) {
3502 return false;
3505 irq->trigger_mode = irte.irte.trigger_mode;
3506 irq->vector = irte.irte.vector;
3507 irq->delivery_mode = irte.irte.delivery_mode;
3508 irq->dest = irte.irte.dest_id;
3509 if (!iommu->intr_eime) {
3510 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3511 #define VTD_IR_APIC_DEST_SHIFT (8)
3512 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3513 VTD_IR_APIC_DEST_SHIFT;
3515 irq->dest_mode = irte.irte.dest_mode;
3516 irq->redir_hint = irte.irte.redir_hint;
3518 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3519 irq->delivery_mode, irq->dest, irq->dest_mode);
3521 return true;
3524 /* Interrupt remapping for MSI/MSI-X entry */
3525 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3526 MSIMessage *origin,
3527 MSIMessage *translated,
3528 uint16_t sid, bool do_fault)
3530 VTD_IR_MSIAddress addr;
3531 uint16_t index;
3532 X86IOMMUIrq irq = {};
3534 assert(origin && translated);
3536 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3538 if (!iommu || !iommu->intr_enabled) {
3539 memcpy(translated, origin, sizeof(*origin));
3540 goto out;
3543 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3544 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3545 "address=0x%" PRIx64, __func__, origin->address);
3546 if (do_fault) {
3547 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3549 return -EINVAL;
3552 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3553 if (addr.addr.__head != 0xfee) {
3554 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3555 __func__, addr.data);
3556 if (do_fault) {
3557 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3559 return -EINVAL;
3562 /* This is compatible mode. */
3563 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3564 memcpy(translated, origin, sizeof(*origin));
3565 goto out;
3568 index = addr.addr.index_h << 15 | addr.addr.index_l;
3570 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3571 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3573 if (addr.addr.sub_valid) {
3574 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3575 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3578 if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) {
3579 return -EINVAL;
3582 if (addr.addr.sub_valid) {
3583 trace_vtd_ir_remap_type("MSI");
3584 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3585 error_report_once("%s: invalid IR MSI "
3586 "(sid=%u, address=0x%" PRIx64
3587 ", data=0x%" PRIx32 ")",
3588 __func__, sid, origin->address, origin->data);
3589 if (do_fault) {
3590 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3592 return -EINVAL;
3594 } else {
3595 uint8_t vector = origin->data & 0xff;
3596 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3598 trace_vtd_ir_remap_type("IOAPIC");
3599 /* IOAPIC entry vector should be aligned with IRTE vector
3600 * (see vt-d spec 5.1.5.1). */
3601 if (vector != irq.vector) {
3602 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3605 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3606 * (see vt-d spec 5.1.5.1). */
3607 if (trigger_mode != irq.trigger_mode) {
3608 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3609 irq.trigger_mode);
3614 * We'd better keep the last two bits, assuming that guest OS
3615 * might modify it. Keep it does not hurt after all.
3617 irq.msi_addr_last_bits = addr.addr.__not_care;
3619 /* Translate X86IOMMUIrq to MSI message */
3620 x86_iommu_irq_to_msi_message(&irq, translated);
3622 out:
3623 trace_vtd_ir_remap_msi(origin->address, origin->data,
3624 translated->address, translated->data);
3625 return 0;
3628 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3629 MSIMessage *dst, uint16_t sid)
3631 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3632 src, dst, sid, false);
3635 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3636 uint64_t *data, unsigned size,
3637 MemTxAttrs attrs)
3639 return MEMTX_OK;
3642 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3643 uint64_t value, unsigned size,
3644 MemTxAttrs attrs)
3646 int ret = 0;
3647 MSIMessage from = {}, to = {};
3648 uint16_t sid = X86_IOMMU_SID_INVALID;
3650 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3651 from.data = (uint32_t) value;
3653 if (!attrs.unspecified) {
3654 /* We have explicit Source ID */
3655 sid = attrs.requester_id;
3658 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true);
3659 if (ret) {
3660 /* Drop this interrupt */
3661 return MEMTX_ERROR;
3664 apic_get_class(NULL)->send_msi(&to);
3666 return MEMTX_OK;
3669 static const MemoryRegionOps vtd_mem_ir_ops = {
3670 .read_with_attrs = vtd_mem_ir_read,
3671 .write_with_attrs = vtd_mem_ir_write,
3672 .endianness = DEVICE_LITTLE_ENDIAN,
3673 .impl = {
3674 .min_access_size = 4,
3675 .max_access_size = 4,
3677 .valid = {
3678 .min_access_size = 4,
3679 .max_access_size = 4,
3683 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3684 hwaddr addr, bool is_write)
3686 IntelIOMMUState *s = vtd_as->iommu_state;
3687 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3688 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3689 bool is_fpd_set = false;
3690 VTDContextEntry ce;
3692 assert(vtd_as->pasid != PCI_NO_PASID);
3694 /* Try out best to fetch FPD, we can't do anything more */
3695 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3696 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3697 if (!is_fpd_set && s->root_scalable) {
3698 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3702 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3703 is_fpd_set, sid, addr, is_write,
3704 true, vtd_as->pasid);
3707 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3708 uint64_t *data, unsigned size,
3709 MemTxAttrs attrs)
3711 vtd_report_ir_illegal_access(opaque, addr, false);
3713 return MEMTX_ERROR;
3716 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3717 uint64_t value, unsigned size,
3718 MemTxAttrs attrs)
3720 vtd_report_ir_illegal_access(opaque, addr, true);
3722 return MEMTX_ERROR;
3725 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3726 .read_with_attrs = vtd_mem_ir_fault_read,
3727 .write_with_attrs = vtd_mem_ir_fault_write,
3728 .endianness = DEVICE_LITTLE_ENDIAN,
3729 .impl = {
3730 .min_access_size = 1,
3731 .max_access_size = 8,
3733 .valid = {
3734 .min_access_size = 1,
3735 .max_access_size = 8,
3739 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3740 int devfn, unsigned int pasid)
3743 * We can't simply use sid here since the bus number might not be
3744 * initialized by the guest.
3746 struct vtd_as_key key = {
3747 .bus = bus,
3748 .devfn = devfn,
3749 .pasid = pasid,
3751 VTDAddressSpace *vtd_dev_as;
3752 char name[128];
3754 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3755 if (!vtd_dev_as) {
3756 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3758 new_key->bus = bus;
3759 new_key->devfn = devfn;
3760 new_key->pasid = pasid;
3762 if (pasid == PCI_NO_PASID) {
3763 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3764 PCI_FUNC(devfn));
3765 } else {
3766 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3767 PCI_FUNC(devfn), pasid);
3770 vtd_dev_as = g_new0(VTDAddressSpace, 1);
3772 vtd_dev_as->bus = bus;
3773 vtd_dev_as->devfn = (uint8_t)devfn;
3774 vtd_dev_as->pasid = pasid;
3775 vtd_dev_as->iommu_state = s;
3776 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3777 vtd_dev_as->iova_tree = iova_tree_new();
3779 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3780 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3783 * Build the DMAR-disabled container with aliases to the
3784 * shared MRs. Note that aliasing to a shared memory region
3785 * could help the memory API to detect same FlatViews so we
3786 * can have devices to share the same FlatView when DMAR is
3787 * disabled (either by not providing "intel_iommu=on" or with
3788 * "iommu=pt"). It will greatly reduce the total number of
3789 * FlatViews of the system hence VM runs faster.
3791 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3792 "vtd-nodmar", &s->mr_nodmar, 0,
3793 memory_region_size(&s->mr_nodmar));
3796 * Build the per-device DMAR-enabled container.
3798 * TODO: currently we have per-device IOMMU memory region only
3799 * because we have per-device IOMMU notifiers for devices. If
3800 * one day we can abstract the IOMMU notifiers out of the
3801 * memory regions then we can also share the same memory
3802 * region here just like what we've done above with the nodmar
3803 * region.
3805 strcat(name, "-dmar");
3806 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3807 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3808 name, UINT64_MAX);
3809 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3810 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3811 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3812 VTD_INTERRUPT_ADDR_FIRST,
3813 &vtd_dev_as->iommu_ir, 1);
3816 * This region is used for catching fault to access interrupt
3817 * range via passthrough + PASID. See also
3818 * vtd_switch_address_space(). We can't use alias since we
3819 * need to know the sid which is valid for MSI who uses
3820 * bus_master_as (see msi_send_message()).
3822 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3823 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3824 VTD_INTERRUPT_ADDR_SIZE);
3826 * Hook to root since when PT is enabled vtd_dev_as->iommu
3827 * will be disabled.
3829 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3830 VTD_INTERRUPT_ADDR_FIRST,
3831 &vtd_dev_as->iommu_ir_fault, 2);
3834 * Hook both the containers under the root container, we
3835 * switch between DMAR & noDMAR by enable/disable
3836 * corresponding sub-containers
3838 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3839 MEMORY_REGION(&vtd_dev_as->iommu),
3841 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3842 &vtd_dev_as->nodmar, 0);
3844 vtd_switch_address_space(vtd_dev_as);
3846 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3848 return vtd_dev_as;
3851 static bool vtd_check_hiod(IntelIOMMUState *s, HostIOMMUDevice *hiod,
3852 Error **errp)
3854 HostIOMMUDeviceClass *hiodc = HOST_IOMMU_DEVICE_GET_CLASS(hiod);
3855 int ret;
3857 if (!hiodc->get_cap) {
3858 error_setg(errp, ".get_cap() not implemented");
3859 return false;
3862 /* Common checks */
3863 ret = hiodc->get_cap(hiod, HOST_IOMMU_DEVICE_CAP_AW_BITS, errp);
3864 if (ret < 0) {
3865 return false;
3867 if (s->aw_bits > ret) {
3868 error_setg(errp, "aw-bits %d > host aw-bits %d", s->aw_bits, ret);
3869 return false;
3872 return true;
3875 static bool vtd_dev_set_iommu_device(PCIBus *bus, void *opaque, int devfn,
3876 HostIOMMUDevice *hiod, Error **errp)
3878 IntelIOMMUState *s = opaque;
3879 struct vtd_as_key key = {
3880 .bus = bus,
3881 .devfn = devfn,
3883 struct vtd_as_key *new_key;
3885 assert(hiod);
3887 vtd_iommu_lock(s);
3889 if (g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
3890 error_setg(errp, "Host IOMMU device already exist");
3891 vtd_iommu_unlock(s);
3892 return false;
3895 if (!vtd_check_hiod(s, hiod, errp)) {
3896 vtd_iommu_unlock(s);
3897 return false;
3900 new_key = g_malloc(sizeof(*new_key));
3901 new_key->bus = bus;
3902 new_key->devfn = devfn;
3904 object_ref(hiod);
3905 g_hash_table_insert(s->vtd_host_iommu_dev, new_key, hiod);
3907 vtd_iommu_unlock(s);
3909 return true;
3912 static void vtd_dev_unset_iommu_device(PCIBus *bus, void *opaque, int devfn)
3914 IntelIOMMUState *s = opaque;
3915 struct vtd_as_key key = {
3916 .bus = bus,
3917 .devfn = devfn,
3920 vtd_iommu_lock(s);
3922 if (!g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
3923 vtd_iommu_unlock(s);
3924 return;
3927 g_hash_table_remove(s->vtd_host_iommu_dev, &key);
3929 vtd_iommu_unlock(s);
3932 /* Unmap the whole range in the notifier's scope. */
3933 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3935 hwaddr total, remain;
3936 hwaddr start = n->start;
3937 hwaddr end = n->end;
3938 IntelIOMMUState *s = as->iommu_state;
3939 DMAMap map;
3942 * Note: all the codes in this function has a assumption that IOVA
3943 * bits are no more than VTD_MGAW bits (which is restricted by
3944 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3947 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3949 * Don't need to unmap regions that is bigger than the whole
3950 * VT-d supported address space size
3952 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3955 assert(start <= end);
3956 total = remain = end - start + 1;
3958 while (remain >= VTD_PAGE_SIZE) {
3959 IOMMUTLBEvent event;
3960 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3961 uint64_t size = mask + 1;
3963 assert(size);
3965 event.type = IOMMU_NOTIFIER_UNMAP;
3966 event.entry.iova = start;
3967 event.entry.addr_mask = mask;
3968 event.entry.target_as = &address_space_memory;
3969 event.entry.perm = IOMMU_NONE;
3970 /* This field is meaningless for unmap */
3971 event.entry.translated_addr = 0;
3973 memory_region_notify_iommu_one(n, &event);
3975 start += size;
3976 remain -= size;
3979 assert(!remain);
3981 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3982 VTD_PCI_SLOT(as->devfn),
3983 VTD_PCI_FUNC(as->devfn),
3984 n->start, total);
3986 map.iova = n->start;
3987 map.size = total - 1; /* Inclusive */
3988 iova_tree_remove(as->iova_tree, map);
3991 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3993 VTDAddressSpace *vtd_as;
3994 IOMMUNotifier *n;
3996 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3997 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3998 vtd_address_space_unmap(vtd_as, n);
4003 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
4005 vtd_address_space_unmap_all(s);
4006 vtd_switch_address_space_all(s);
4009 static int vtd_replay_hook(const IOMMUTLBEvent *event, void *private)
4011 memory_region_notify_iommu_one(private, event);
4012 return 0;
4015 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
4017 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
4018 IntelIOMMUState *s = vtd_as->iommu_state;
4019 uint8_t bus_n = pci_bus_num(vtd_as->bus);
4020 VTDContextEntry ce;
4021 DMAMap map = { .iova = 0, .size = HWADDR_MAX };
4023 /* replay is protected by BQL, page walk will re-setup it safely */
4024 iova_tree_remove(vtd_as->iova_tree, map);
4026 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
4027 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
4028 "legacy mode",
4029 bus_n, PCI_SLOT(vtd_as->devfn),
4030 PCI_FUNC(vtd_as->devfn),
4031 vtd_get_domain_id(s, &ce, vtd_as->pasid),
4032 ce.hi, ce.lo);
4033 if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
4034 /* This is required only for MAP typed notifiers */
4035 vtd_page_walk_info info = {
4036 .hook_fn = vtd_replay_hook,
4037 .private = (void *)n,
4038 .notify_unmap = false,
4039 .aw = s->aw_bits,
4040 .as = vtd_as,
4041 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
4044 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
4046 } else {
4047 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
4048 PCI_FUNC(vtd_as->devfn));
4051 return;
4054 static void vtd_cap_init(IntelIOMMUState *s)
4056 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4058 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
4059 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
4060 VTD_CAP_MGAW(s->aw_bits);
4061 if (s->dma_drain) {
4062 s->cap |= VTD_CAP_DRAIN;
4064 if (s->dma_translation) {
4065 if (s->aw_bits >= VTD_HOST_AW_39BIT) {
4066 s->cap |= VTD_CAP_SAGAW_39bit;
4068 if (s->aw_bits >= VTD_HOST_AW_48BIT) {
4069 s->cap |= VTD_CAP_SAGAW_48bit;
4072 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
4074 if (x86_iommu_ir_supported(x86_iommu)) {
4075 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
4076 if (s->intr_eim == ON_OFF_AUTO_ON) {
4077 s->ecap |= VTD_ECAP_EIM;
4079 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
4082 if (x86_iommu->dt_supported) {
4083 s->ecap |= VTD_ECAP_DT;
4086 if (x86_iommu->pt_supported) {
4087 s->ecap |= VTD_ECAP_PT;
4090 if (s->caching_mode) {
4091 s->cap |= VTD_CAP_CM;
4094 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
4095 if (s->scalable_mode) {
4096 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
4099 if (s->snoop_control) {
4100 s->ecap |= VTD_ECAP_SC;
4103 if (s->pasid) {
4104 s->ecap |= VTD_ECAP_PASID;
4109 * Do the initialization. It will also be called when reset, so pay
4110 * attention when adding new initialization stuff.
4112 static void vtd_init(IntelIOMMUState *s)
4114 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4116 memset(s->csr, 0, DMAR_REG_SIZE);
4117 memset(s->wmask, 0, DMAR_REG_SIZE);
4118 memset(s->w1cmask, 0, DMAR_REG_SIZE);
4119 memset(s->womask, 0, DMAR_REG_SIZE);
4121 s->root = 0;
4122 s->root_scalable = false;
4123 s->dmar_enabled = false;
4124 s->intr_enabled = false;
4125 s->iq_head = 0;
4126 s->iq_tail = 0;
4127 s->iq = 0;
4128 s->iq_size = 0;
4129 s->qi_enabled = false;
4130 s->iq_last_desc_type = VTD_INV_DESC_NONE;
4131 s->iq_dw = false;
4132 s->next_frcd_reg = 0;
4134 vtd_cap_init(s);
4137 * Rsvd field masks for spte
4139 vtd_spte_rsvd[0] = ~0ULL;
4140 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
4141 x86_iommu->dt_supported);
4142 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
4143 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
4144 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
4146 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
4147 x86_iommu->dt_supported);
4148 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
4149 x86_iommu->dt_supported);
4151 if (s->scalable_mode || s->snoop_control) {
4152 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
4153 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
4154 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
4157 vtd_reset_caches(s);
4159 /* Define registers with default values and bit semantics */
4160 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
4161 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
4162 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
4163 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
4164 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
4165 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
4166 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
4167 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
4168 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
4170 /* Advanced Fault Logging not supported */
4171 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
4172 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4173 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
4174 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
4176 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
4177 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
4179 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
4181 /* Treated as RO for implementations that PLMR and PHMR fields reported
4182 * as Clear in the CAP_REG.
4183 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
4185 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
4187 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
4188 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
4189 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
4190 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
4191 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4192 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
4193 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
4194 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
4195 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
4197 /* IOTLB registers */
4198 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
4199 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4200 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4202 /* Fault Recording Registers, 128-bit */
4203 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4204 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4207 * Interrupt remapping registers.
4209 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4212 /* Should not reset address_spaces when reset because devices will still use
4213 * the address space they got at first (won't ask the bus again).
4215 static void vtd_reset(DeviceState *dev)
4217 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4219 vtd_init(s);
4220 vtd_address_space_refresh_all(s);
4223 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4225 IntelIOMMUState *s = opaque;
4226 VTDAddressSpace *vtd_as;
4228 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4230 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4231 return &vtd_as->as;
4234 static PCIIOMMUOps vtd_iommu_ops = {
4235 .get_address_space = vtd_host_dma_iommu,
4236 .set_iommu_device = vtd_dev_set_iommu_device,
4237 .unset_iommu_device = vtd_dev_unset_iommu_device,
4240 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4242 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4244 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4245 error_setg(errp, "eim=on cannot be selected without intremap=on");
4246 return false;
4249 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4250 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4251 && x86_iommu_ir_supported(x86_iommu) ?
4252 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4254 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4255 if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) {
4256 error_setg(errp, "eim=on requires support on the KVM side"
4257 "(X2APIC_API, first shipped in v4.7)");
4258 return false;
4262 /* Currently only address widths supported are 39 and 48 bits */
4263 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4264 (s->aw_bits != VTD_HOST_AW_48BIT)) {
4265 error_setg(errp, "Supported values for aw-bits are: %d, %d",
4266 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4267 return false;
4270 if (s->scalable_mode && !s->dma_drain) {
4271 error_setg(errp, "Need to set dma_drain for scalable mode");
4272 return false;
4275 if (s->pasid && !s->scalable_mode) {
4276 error_setg(errp, "Need to set scalable mode for PASID");
4277 return false;
4280 return true;
4283 static int vtd_machine_done_notify_one(Object *child, void *unused)
4285 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4288 * We hard-coded here because vfio-pci is the only special case
4289 * here. Let's be more elegant in the future when we can, but so
4290 * far there seems to be no better way.
4292 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4293 vtd_panic_require_caching_mode();
4296 return 0;
4299 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4301 object_child_foreach_recursive(object_get_root(),
4302 vtd_machine_done_notify_one, NULL);
4305 static Notifier vtd_machine_done_notify = {
4306 .notify = vtd_machine_done_hook,
4309 static void vtd_realize(DeviceState *dev, Error **errp)
4311 MachineState *ms = MACHINE(qdev_get_machine());
4312 PCMachineState *pcms = PC_MACHINE(ms);
4313 X86MachineState *x86ms = X86_MACHINE(ms);
4314 PCIBus *bus = pcms->pcibus;
4315 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4316 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4318 if (s->pasid && x86_iommu->dt_supported) {
4320 * PASID-based-Device-TLB Invalidate Descriptor is not
4321 * implemented and it requires support from vhost layer which
4322 * needs to be implemented in the future.
4324 error_setg(errp, "PASID based device IOTLB is not supported");
4325 return;
4328 if (!vtd_decide_config(s, errp)) {
4329 return;
4332 QLIST_INIT(&s->vtd_as_with_notifiers);
4333 qemu_mutex_init(&s->iommu_lock);
4334 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4335 "intel_iommu", DMAR_REG_SIZE);
4336 memory_region_add_subregion(get_system_memory(),
4337 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem);
4339 /* Create the shared memory regions by all devices */
4340 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4341 UINT64_MAX);
4342 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4343 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4344 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4345 "vtd-sys-alias", get_system_memory(), 0,
4346 memory_region_size(get_system_memory()));
4347 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4348 &s->mr_sys_alias, 0);
4349 memory_region_add_subregion_overlap(&s->mr_nodmar,
4350 VTD_INTERRUPT_ADDR_FIRST,
4351 &s->mr_ir, 1);
4352 /* No corresponding destroy */
4353 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4354 g_free, g_free);
4355 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4356 g_free, g_free);
4357 s->vtd_host_iommu_dev = g_hash_table_new_full(vtd_hiod_hash, vtd_hiod_equal,
4358 g_free, vtd_hiod_destroy);
4359 vtd_init(s);
4360 pci_setup_iommu(bus, &vtd_iommu_ops, dev);
4361 /* Pseudo address space under root PCI bus. */
4362 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4363 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4366 static void vtd_class_init(ObjectClass *klass, void *data)
4368 DeviceClass *dc = DEVICE_CLASS(klass);
4369 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4371 device_class_set_legacy_reset(dc, vtd_reset);
4372 dc->vmsd = &vtd_vmstate;
4373 device_class_set_props(dc, vtd_properties);
4374 dc->hotpluggable = false;
4375 x86_class->realize = vtd_realize;
4376 x86_class->int_remap = vtd_int_remap;
4377 /* Supported by the pc-q35-* machine types */
4378 dc->user_creatable = true;
4379 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4380 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4383 static const TypeInfo vtd_info = {
4384 .name = TYPE_INTEL_IOMMU_DEVICE,
4385 .parent = TYPE_X86_IOMMU_DEVICE,
4386 .instance_size = sizeof(IntelIOMMUState),
4387 .class_init = vtd_class_init,
4390 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4391 void *data)
4393 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4395 imrc->translate = vtd_iommu_translate;
4396 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4397 imrc->replay = vtd_iommu_replay;
4400 static const TypeInfo vtd_iommu_memory_region_info = {
4401 .parent = TYPE_IOMMU_MEMORY_REGION,
4402 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4403 .class_init = vtd_iommu_memory_region_class_init,
4406 static void vtd_register_types(void)
4408 type_register_static(&vtd_info);
4409 type_register_static(&vtd_iommu_memory_region_info);
4412 type_init(vtd_register_types)