Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / hw / intc / pnv_xive.c
blob5bacbce6a4639d63e4430d8d8dfcfd1251b96bfc
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2019, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/pnv.h"
20 #include "hw/ppc/pnv_chip.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
27 #include "trace.h"
29 #include <libfdt.h>
31 #include "pnv_xive_regs.h"
33 #undef XIVE_DEBUG
36 * Virtual structures table (VST)
38 #define SBE_PER_BYTE 4
40 typedef struct XiveVstInfo {
41 const char *name;
42 uint32_t size;
43 uint32_t max_blocks;
44 } XiveVstInfo;
46 static const XiveVstInfo vst_infos[] = {
47 [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 },
48 [VST_TSEL_SBE] = { "SBE", 1, 16 },
49 [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
50 [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
53 * Interrupt fifo backing store table (not modeled) :
55 * 0 - IPI,
56 * 1 - HWD,
57 * 2 - First escalate,
58 * 3 - Second escalate,
59 * 4 - Redistribution,
60 * 5 - IPI cascaded queue ?
62 [VST_TSEL_IRQ] = { "IRQ", 1, 6 },
65 #define xive_error(xive, fmt, ...) \
66 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
67 (xive)->chip->chip_id, ## __VA_ARGS__);
70 * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID
71 * field overrides the hardwired chip ID in the Powerbus operations
72 * and for CAM compares
74 static uint8_t pnv_xive_block_id(PnvXive *xive)
76 uint8_t blk = xive->chip->chip_id;
77 uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3];
79 if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) {
80 blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val);
83 return blk;
87 * VST accessors for SBE, EAT, ENDT, NVT
89 * Indirect VST tables are arrays of VSDs pointing to a page (of same
90 * size). Each page is a direct VST table.
93 #define XIVE_VSD_SIZE 8
95 /* Indirect page size can be 4K, 64K, 2M, 16M. */
96 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
98 return page_shift == 12 || page_shift == 16 ||
99 page_shift == 21 || page_shift == 24;
102 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
103 uint64_t vsd, uint32_t idx)
105 const XiveVstInfo *info = &vst_infos[type];
106 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
107 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
108 uint32_t idx_max;
110 idx_max = vst_tsize / info->size - 1;
111 if (idx > idx_max) {
112 #ifdef XIVE_DEBUG
113 xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
114 info->name, idx, idx_max);
115 #endif
116 return 0;
119 return vst_addr + idx * info->size;
122 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
123 uint64_t vsd, uint32_t idx)
125 const XiveVstInfo *info = &vst_infos[type];
126 uint64_t vsd_addr;
127 uint32_t vsd_idx;
128 uint32_t page_shift;
129 uint32_t vst_per_page;
131 /* Get the page size of the indirect table. */
132 vsd_addr = vsd & VSD_ADDRESS_MASK;
133 if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd,
134 MEMTXATTRS_UNSPECIFIED)) {
135 xive_error(xive, "VST: failed to access %s entry %x @0x%" PRIx64,
136 info->name, idx, vsd_addr);
137 return 0;
140 if (!(vsd & VSD_ADDRESS_MASK)) {
141 #ifdef XIVE_DEBUG
142 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
143 #endif
144 return 0;
147 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
149 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
150 xive_error(xive, "VST: invalid %s page shift %d", info->name,
151 page_shift);
152 return 0;
155 vst_per_page = (1ull << page_shift) / info->size;
156 vsd_idx = idx / vst_per_page;
158 /* Load the VSD we are looking for, if not already done */
159 if (vsd_idx) {
160 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
161 if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd,
162 MEMTXATTRS_UNSPECIFIED)) {
163 xive_error(xive, "VST: failed to access %s entry %x @0x%"
164 PRIx64, info->name, vsd_idx, vsd_addr);
165 return 0;
168 if (!(vsd & VSD_ADDRESS_MASK)) {
169 #ifdef XIVE_DEBUG
170 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
171 #endif
172 return 0;
176 * Check that the pages have a consistent size across the
177 * indirect table
179 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
180 xive_error(xive, "VST: %s entry %x indirect page size differ !?",
181 info->name, idx);
182 return 0;
186 return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
190 * This is a simplified model of operation forwarding on a remote IC.
192 * A PC MMIO address is built to identify the NVT structure. The load
193 * on the remote IC will return the address of the structure in RAM,
194 * which will then be used by pnv_xive_vst_write/read to perform the
195 * RAM operation.
197 static uint64_t pnv_xive_vst_addr_remote(PnvXive *xive, uint32_t type,
198 uint64_t vsd, uint8_t blk,
199 uint32_t idx)
201 const XiveVstInfo *info = &vst_infos[type];
202 uint64_t remote_addr = vsd & VSD_ADDRESS_MASK;
203 uint64_t vst_addr;
204 MemTxResult result;
206 if (type != VST_TSEL_VPDT) {
207 xive_error(xive, "VST: invalid access on remote VST %s %x/%x !?",
208 info->name, blk, idx);
209 return 0;
212 remote_addr |= ((uint64_t)idx) << xive->pc_shift;
214 vst_addr = address_space_ldq_be(&address_space_memory, remote_addr,
215 MEMTXATTRS_UNSPECIFIED, &result);
216 if (result != MEMTX_OK) {
217 xive_error(xive, "VST: read failed at @0x%" HWADDR_PRIx
218 " for NVT %x/%x\n", remote_addr, blk, idx);
219 return 0;
222 return vst_addr;
225 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
226 uint32_t idx)
228 const XiveVstInfo *info = &vst_infos[type];
229 uint64_t vsd;
231 if (blk >= info->max_blocks) {
232 xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
233 blk, info->name, idx);
234 return 0;
237 vsd = xive->vsds[type][blk];
239 /* Remote VST access */
240 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
241 return pnv_xive_vst_addr_remote(xive, type, vsd, blk, idx);
244 if (VSD_INDIRECT & vsd) {
245 return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
248 return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
251 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
252 uint32_t idx, void *data)
254 const XiveVstInfo *info = &vst_infos[type];
255 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
256 MemTxResult result;
258 if (!addr) {
259 return -1;
262 result = address_space_read(&address_space_memory, addr,
263 MEMTXATTRS_UNSPECIFIED, data,
264 info->size);
265 if (result != MEMTX_OK) {
266 xive_error(xive, "VST: read failed at @0x%" HWADDR_PRIx
267 " for VST %s %x/%x\n", addr, info->name, blk, idx);
268 return -1;
270 return 0;
273 #define XIVE_VST_WORD_ALL -1
275 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
276 uint32_t idx, void *data, uint32_t word_number)
278 const XiveVstInfo *info = &vst_infos[type];
279 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
280 MemTxResult result;
282 if (!addr) {
283 return -1;
286 if (word_number == XIVE_VST_WORD_ALL) {
287 result = address_space_write(&address_space_memory, addr,
288 MEMTXATTRS_UNSPECIFIED, data,
289 info->size);
290 } else {
291 result = address_space_write(&address_space_memory,
292 addr + word_number * 4,
293 MEMTXATTRS_UNSPECIFIED,
294 data + word_number * 4, 4);
297 if (result != MEMTX_OK) {
298 xive_error(xive, "VST: write failed at @0x%" HWADDR_PRIx
299 "for VST %s %x/%x\n", addr, info->name, blk, idx);
300 return -1;
302 return 0;
305 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
306 XiveEND *end)
308 PnvXive *xive = PNV_XIVE(xrtr);
310 if (pnv_xive_block_id(xive) != blk) {
311 xive_error(xive, "VST: END %x/%x is remote !?", blk, idx);
312 return -1;
315 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
318 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
319 XiveEND *end, uint8_t word_number)
321 PnvXive *xive = PNV_XIVE(xrtr);
323 if (pnv_xive_block_id(xive) != blk) {
324 xive_error(xive, "VST: END %x/%x is remote !?", blk, idx);
325 return -1;
328 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
329 word_number);
332 static int pnv_xive_end_update(PnvXive *xive)
334 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
335 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
336 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
337 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
338 int i;
339 uint64_t eqc_watch[4];
341 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
342 eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
345 return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
346 XIVE_VST_WORD_ALL);
349 static void pnv_xive_end_cache_load(PnvXive *xive)
351 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
352 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
353 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
354 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
355 uint64_t eqc_watch[4] = { 0 };
356 int i;
358 if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
359 xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
362 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
363 xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
367 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
368 XiveNVT *nvt)
370 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
373 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
374 XiveNVT *nvt, uint8_t word_number)
376 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
377 word_number);
380 static int pnv_xive_nvt_update(PnvXive *xive)
382 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
383 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
384 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
385 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
386 int i;
387 uint64_t vpc_watch[8];
389 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
390 vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
393 return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
394 XIVE_VST_WORD_ALL);
397 static void pnv_xive_nvt_cache_load(PnvXive *xive)
399 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
400 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
401 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
402 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
403 uint64_t vpc_watch[8] = { 0 };
404 int i;
406 if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
407 xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
410 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
411 xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
415 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
416 XiveEAS *eas)
418 PnvXive *xive = PNV_XIVE(xrtr);
421 * EAT lookups should be local to the IC
423 if (pnv_xive_block_id(xive) != blk) {
424 xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
425 return -1;
428 return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
431 static int pnv_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
432 uint8_t *pq)
434 PnvXive *xive = PNV_XIVE(xrtr);
436 if (pnv_xive_block_id(xive) != blk) {
437 xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
438 return -1;
441 *pq = xive_source_esb_get(&xive->ipi_source, idx);
442 return 0;
445 static int pnv_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
446 uint8_t *pq)
448 PnvXive *xive = PNV_XIVE(xrtr);
450 if (pnv_xive_block_id(xive) != blk) {
451 xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
452 return -1;
455 *pq = xive_source_esb_set(&xive->ipi_source, idx, *pq);
456 return 0;
460 * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
461 * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
462 * second register covers cores 16-23 (normal) or 8-11 (fused).
464 static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
466 int pir = ppc_cpu_pir(cpu);
467 uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
468 uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
469 uint32_t bit = pir & 0x3f;
471 return xive->regs[reg >> 3] & PPC_BIT(bit);
474 static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
475 uint8_t nvt_blk, uint32_t nvt_idx,
476 bool cam_ignore, uint8_t priority,
477 uint32_t logic_serv, XiveTCTXMatch *match)
479 PnvXive *xive = PNV_XIVE(xptr);
480 PnvChip *chip = xive->chip;
481 int count = 0;
482 int i, j;
484 for (i = 0; i < chip->nr_cores; i++) {
485 PnvCore *pc = chip->cores[i];
486 CPUCore *cc = CPU_CORE(pc);
488 for (j = 0; j < cc->nr_threads; j++) {
489 PowerPCCPU *cpu = pc->threads[j];
490 XiveTCTX *tctx;
491 int ring;
493 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
494 continue;
497 tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
500 * Check the thread context CAM lines and record matches.
502 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
503 nvt_idx, cam_ignore, logic_serv);
505 * Save the context and follow on to catch duplicates, that we
506 * don't support yet.
508 if (ring != -1) {
509 if (match->tctx) {
510 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
511 "thread context NVT %x/%x\n",
512 nvt_blk, nvt_idx);
513 return -1;
516 match->ring = ring;
517 match->tctx = tctx;
518 count++;
523 return count;
526 static uint32_t pnv_xive_presenter_get_config(XivePresenter *xptr)
528 uint32_t cfg = 0;
530 /* TIMA GEN1 is all P9 knows */
531 cfg |= XIVE_PRESENTER_GEN1_TIMA_OS;
533 return cfg;
536 static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr)
538 return pnv_xive_block_id(PNV_XIVE(xrtr));
542 * The TIMA MMIO space is shared among the chips and to identify the
543 * chip from which the access is being done, we extract the chip id
544 * from the PIR.
546 static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
548 int pir = ppc_cpu_pir(cpu);
549 XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr;
550 PnvXive *xive = PNV_XIVE(xptr);
552 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
553 xive_error(xive, "IC: CPU %x is not enabled", pir);
555 return xive;
559 * The internal sources (IPIs) of the interrupt controller have no
560 * knowledge of the XIVE chip on which they reside. Encode the block
561 * id in the source interrupt number before forwarding the source
562 * event notification to the Router. This is required on a multichip
563 * system.
565 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno, bool pq_checked)
567 PnvXive *xive = PNV_XIVE(xn);
568 uint8_t blk = pnv_xive_block_id(xive);
570 xive_router_notify(xn, XIVE_EAS(blk, srcno), pq_checked);
574 * XIVE helpers
577 static uint64_t pnv_xive_vc_size(PnvXive *xive)
579 return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
582 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
584 return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
587 static uint64_t pnv_xive_pc_size(PnvXive *xive)
589 return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
592 static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
594 uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
595 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
597 return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
601 * Compute the number of entries per indirect subpage.
603 static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type)
605 uint8_t blk = pnv_xive_block_id(xive);
606 uint64_t vsd = xive->vsds[type][blk];
607 const XiveVstInfo *info = &vst_infos[type];
608 uint64_t vsd_addr;
609 uint32_t page_shift;
611 /* For direct tables, fake a valid value */
612 if (!(VSD_INDIRECT & vsd)) {
613 return 1;
616 /* Get the page size of the indirect table. */
617 vsd_addr = vsd & VSD_ADDRESS_MASK;
618 if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd,
619 MEMTXATTRS_UNSPECIFIED)) {
620 xive_error(xive, "VST: failed to access %s entry @0x%" PRIx64,
621 info->name, vsd_addr);
622 return 0;
625 if (!(vsd & VSD_ADDRESS_MASK)) {
626 #ifdef XIVE_DEBUG
627 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
628 #endif
629 return 0;
632 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
634 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
635 xive_error(xive, "VST: invalid %s page shift %d", info->name,
636 page_shift);
637 return 0;
640 return (1ull << page_shift) / info->size;
644 * EDT Table
646 * The Virtualization Controller MMIO region containing the IPI ESB
647 * pages and END ESB pages is sub-divided into "sets" which map
648 * portions of the VC region to the different ESB pages. It is
649 * configured at runtime through the EDT "Domain Table" to let the
650 * firmware decide how to split the VC address space between IPI ESB
651 * pages and END ESB pages.
655 * Computes the overall size of the IPI or the END ESB pages
657 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
659 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
660 uint64_t size = 0;
661 int i;
663 for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
664 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
666 if (edt_type == type) {
667 size += edt_size;
671 return size;
675 * Maps an offset of the VC region in the IPI or END region using the
676 * layout defined by the EDT "Domaine Table"
678 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
679 uint64_t type)
681 int i;
682 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
683 uint64_t edt_offset = vc_offset;
685 for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
686 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
688 if (edt_type != type) {
689 edt_offset -= edt_size;
693 return edt_offset;
696 static void pnv_xive_edt_resize(PnvXive *xive)
698 uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
699 uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
701 memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
702 memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
704 memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
705 memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
709 * XIVE Table configuration. Only EDT is supported.
711 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
713 uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
714 uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
715 uint64_t *xive_table;
716 uint8_t max_index;
718 switch (tsel) {
719 case CQ_TAR_TSEL_BLK:
720 max_index = ARRAY_SIZE(xive->blk);
721 xive_table = xive->blk;
722 break;
723 case CQ_TAR_TSEL_MIG:
724 max_index = ARRAY_SIZE(xive->mig);
725 xive_table = xive->mig;
726 break;
727 case CQ_TAR_TSEL_EDT:
728 max_index = ARRAY_SIZE(xive->edt);
729 xive_table = xive->edt;
730 break;
731 case CQ_TAR_TSEL_VDT:
732 max_index = ARRAY_SIZE(xive->vdt);
733 xive_table = xive->vdt;
734 break;
735 default:
736 xive_error(xive, "IC: invalid table %d", (int) tsel);
737 return -1;
740 if (tsel_index >= max_index) {
741 xive_error(xive, "IC: invalid index %d", (int) tsel_index);
742 return -1;
745 xive_table[tsel_index] = val;
747 if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
748 xive->regs[CQ_TAR >> 3] =
749 SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
753 * EDT configuration is complete. Resize the MMIO windows exposing
754 * the IPI and the END ESBs in the VC region.
756 if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
757 pnv_xive_edt_resize(xive);
760 return 0;
764 * Virtual Structure Tables (VST) configuration
766 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
767 uint8_t blk, uint64_t vsd)
769 XiveENDSource *end_xsrc = &xive->end_source;
770 XiveSource *xsrc = &xive->ipi_source;
771 const XiveVstInfo *info = &vst_infos[type];
772 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
773 uint64_t vst_tsize = 1ull << page_shift;
774 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
776 /* Basic checks */
778 if (VSD_INDIRECT & vsd) {
779 if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
780 xive_error(xive, "VST: %s indirect tables are not enabled",
781 info->name);
782 return;
785 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
786 xive_error(xive, "VST: invalid %s page shift %d", info->name,
787 page_shift);
788 return;
792 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
793 xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
794 " page shift %d", info->name, vst_addr, page_shift);
795 return;
798 /* Record the table configuration (in SRAM on HW) */
799 xive->vsds[type][blk] = vsd;
801 /* Now tune the models with the configuration provided by the FW */
803 switch (type) {
804 case VST_TSEL_IVT: /* Nothing to be done */
805 break;
807 case VST_TSEL_EQDT:
809 * Backing store pages for the END.
811 * If the table is direct, we can compute the number of PQ
812 * entries provisioned by FW (such as skiboot) and resize the
813 * END ESB window accordingly.
815 if (!(VSD_INDIRECT & vsd)) {
816 memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
817 * (1ull << xsrc->esb_shift));
819 memory_region_add_subregion(&xive->end_edt_mmio, 0,
820 &end_xsrc->esb_mmio);
821 break;
823 case VST_TSEL_SBE:
825 * Backing store pages for the source PQ bits. The model does
826 * not use these PQ bits backed in RAM because the XiveSource
827 * model has its own.
829 * If the table is direct, we can compute the number of PQ
830 * entries provisioned by FW (such as skiboot) and resize the
831 * ESB window accordingly.
833 if (!(VSD_INDIRECT & vsd)) {
834 memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
835 * (1ull << xsrc->esb_shift));
837 memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
838 break;
840 case VST_TSEL_VPDT: /* Not modeled */
841 case VST_TSEL_IRQ: /* Not modeled */
843 * These tables contains the backing store pages for the
844 * interrupt fifos of the VC sub-engine in case of overflow.
846 break;
848 default:
849 g_assert_not_reached();
854 * Both PC and VC sub-engines are configured as each use the Virtual
855 * Structure Tables : SBE, EAS, END and NVT.
857 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
859 uint8_t mode = GETFIELD(VSD_MODE, vsd);
860 uint8_t type = GETFIELD(VST_TABLE_SELECT,
861 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
862 uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
863 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
864 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
866 if (type > VST_TSEL_IRQ) {
867 xive_error(xive, "VST: invalid table type %d", type);
868 return;
871 if (blk >= vst_infos[type].max_blocks) {
872 xive_error(xive, "VST: invalid block id %d for"
873 " %s table", blk, vst_infos[type].name);
874 return;
878 * Only take the VC sub-engine configuration into account because
879 * the XiveRouter model combines both VC and PC sub-engines
881 if (pc_engine) {
882 return;
885 if (!vst_addr) {
886 xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
887 return;
890 switch (mode) {
891 case VSD_MODE_FORWARD:
892 xive->vsds[type][blk] = vsd;
893 break;
895 case VSD_MODE_EXCLUSIVE:
896 pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
897 break;
899 default:
900 xive_error(xive, "VST: unsupported table mode %d", mode);
901 return;
906 * Interrupt controller MMIO region. The layout is compatible between
907 * 4K and 64K pages :
909 * Page 0 sub-engine BARs
910 * 0x000 - 0x3FF IC registers
911 * 0x400 - 0x7FF PC registers
912 * 0x800 - 0xFFF VC registers
914 * Page 1 Notify page (writes only)
915 * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB)
916 * 0x800 - 0xFFF forwards and syncs
918 * Page 2 LSI Trigger page (writes only) (not modeled)
919 * Page 3 LSI SB EOI page (reads only) (not modeled)
921 * Page 4-7 indirect TIMA
925 * IC - registers MMIO
927 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
928 uint64_t val, unsigned size)
930 PnvXive *xive = PNV_XIVE(opaque);
931 MemoryRegion *sysmem = get_system_memory();
932 uint32_t reg = offset >> 3;
933 bool is_chip0 = xive->chip->chip_id == 0;
935 switch (offset) {
938 * XIVE CQ (PowerBus bridge) settings
940 case CQ_MSGSND: /* msgsnd for doorbells */
941 case CQ_FIRMASK_OR: /* FIR error reporting */
942 break;
943 case CQ_PBI_CTL:
944 if (val & CQ_PBI_PC_64K) {
945 xive->pc_shift = 16;
947 if (val & CQ_PBI_VC_64K) {
948 xive->vc_shift = 16;
950 break;
951 case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
953 * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
955 break;
958 * XIVE Virtualization Controller settings
960 case VC_GLOBAL_CONFIG:
961 break;
964 * XIVE Presenter Controller settings
966 case PC_GLOBAL_CONFIG:
968 * PC_GCONF_CHIPID_OVR
969 * Overrides Int command Chip ID with the Chip ID field (DEBUG)
971 break;
972 case PC_TCTXT_CFG:
974 * TODO: block group support
976 break;
977 case PC_TCTXT_TRACK:
979 * PC_TCTXT_TRACK_EN:
980 * enable block tracking and exchange of block ownership
981 * information between Interrupt controllers
983 break;
986 * Misc settings
988 case VC_SBC_CONFIG: /* Store EOI configuration */
990 * Configure store EOI if required by firmware (skiboot has removed
991 * support recently though)
993 if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
994 xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
996 break;
998 case VC_EQC_CONFIG: /* TODO: silent escalation */
999 case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
1000 break;
1003 * XIVE BAR settings (XSCOM only)
1005 case CQ_RST_CTL:
1006 /* bit4: resets all BAR registers */
1007 break;
1009 case CQ_IC_BAR: /* IC BAR. 8 pages */
1010 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
1011 if (!(val & CQ_IC_BAR_VALID)) {
1012 xive->ic_base = 0;
1013 if (xive->regs[reg] & CQ_IC_BAR_VALID) {
1014 memory_region_del_subregion(&xive->ic_mmio,
1015 &xive->ic_reg_mmio);
1016 memory_region_del_subregion(&xive->ic_mmio,
1017 &xive->ic_notify_mmio);
1018 memory_region_del_subregion(&xive->ic_mmio,
1019 &xive->ic_lsi_mmio);
1020 memory_region_del_subregion(&xive->ic_mmio,
1021 &xive->tm_indirect_mmio);
1023 memory_region_del_subregion(sysmem, &xive->ic_mmio);
1025 } else {
1026 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
1027 if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
1028 memory_region_add_subregion(sysmem, xive->ic_base,
1029 &xive->ic_mmio);
1031 memory_region_add_subregion(&xive->ic_mmio, 0,
1032 &xive->ic_reg_mmio);
1033 memory_region_add_subregion(&xive->ic_mmio,
1034 1ul << xive->ic_shift,
1035 &xive->ic_notify_mmio);
1036 memory_region_add_subregion(&xive->ic_mmio,
1037 2ul << xive->ic_shift,
1038 &xive->ic_lsi_mmio);
1039 memory_region_add_subregion(&xive->ic_mmio,
1040 4ull << xive->ic_shift,
1041 &xive->tm_indirect_mmio);
1044 break;
1046 case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
1047 case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
1048 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
1049 if (!(val & CQ_TM_BAR_VALID)) {
1050 xive->tm_base = 0;
1051 if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
1052 memory_region_del_subregion(sysmem, &xive->tm_mmio);
1054 } else {
1055 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
1056 if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
1057 memory_region_add_subregion(sysmem, xive->tm_base,
1058 &xive->tm_mmio);
1061 break;
1063 case CQ_PC_BARM:
1064 xive->regs[reg] = val;
1065 memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
1066 break;
1067 case CQ_PC_BAR: /* From 32M to 512G */
1068 if (!(val & CQ_PC_BAR_VALID)) {
1069 xive->pc_base = 0;
1070 if (xive->regs[reg] & CQ_PC_BAR_VALID) {
1071 memory_region_del_subregion(sysmem, &xive->pc_mmio);
1073 } else {
1074 xive->pc_base = val & ~(CQ_PC_BAR_VALID);
1075 if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
1076 memory_region_add_subregion(sysmem, xive->pc_base,
1077 &xive->pc_mmio);
1080 break;
1082 case CQ_VC_BARM:
1083 xive->regs[reg] = val;
1084 memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
1085 break;
1086 case CQ_VC_BAR: /* From 64M to 4TB */
1087 if (!(val & CQ_VC_BAR_VALID)) {
1088 xive->vc_base = 0;
1089 if (xive->regs[reg] & CQ_VC_BAR_VALID) {
1090 memory_region_del_subregion(sysmem, &xive->vc_mmio);
1092 } else {
1093 xive->vc_base = val & ~(CQ_VC_BAR_VALID);
1094 if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
1095 memory_region_add_subregion(sysmem, xive->vc_base,
1096 &xive->vc_mmio);
1099 break;
1102 * XIVE Table settings.
1104 case CQ_TAR: /* Table Address */
1105 break;
1106 case CQ_TDR: /* Table Data */
1107 pnv_xive_table_set_data(xive, val);
1108 break;
1111 * XIVE VC & PC Virtual Structure Table settings
1113 case VC_VSD_TABLE_ADDR:
1114 case PC_VSD_TABLE_ADDR: /* Virtual table selector */
1115 break;
1116 case VC_VSD_TABLE_DATA: /* Virtual table setting */
1117 case PC_VSD_TABLE_DATA:
1118 pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1119 break;
1122 * Interrupt fifo overflow in memory backing store (Not modeled)
1124 case VC_IRQ_CONFIG_IPI:
1125 case VC_IRQ_CONFIG_HW:
1126 case VC_IRQ_CONFIG_CASCADE1:
1127 case VC_IRQ_CONFIG_CASCADE2:
1128 case VC_IRQ_CONFIG_REDIST:
1129 case VC_IRQ_CONFIG_IPI_CASC:
1130 break;
1133 * XIVE hardware thread enablement
1135 case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1136 case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1137 break;
1139 case PC_THREAD_EN_REG0_SET:
1140 xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1141 break;
1142 case PC_THREAD_EN_REG1_SET:
1143 xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1144 break;
1145 case PC_THREAD_EN_REG0_CLR:
1146 xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1147 break;
1148 case PC_THREAD_EN_REG1_CLR:
1149 xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1150 break;
1153 * Indirect TIMA access set up. Defines the PIR of the HW thread
1154 * to use.
1156 case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1157 break;
1160 * XIVE PC & VC cache updates for EAS, NVT and END
1162 case VC_IVC_SCRUB_MASK:
1163 case VC_IVC_SCRUB_TRIG:
1164 break;
1166 case VC_EQC_CWATCH_SPEC:
1167 val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1168 break;
1169 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1170 break;
1171 case VC_EQC_CWATCH_DAT0:
1172 /* writing to DATA0 triggers the cache write */
1173 xive->regs[reg] = val;
1174 pnv_xive_end_update(xive);
1175 break;
1176 case VC_EQC_SCRUB_MASK:
1177 case VC_EQC_SCRUB_TRIG:
1179 * The scrubbing registers flush the cache in RAM and can also
1180 * invalidate.
1182 break;
1184 case PC_VPC_CWATCH_SPEC:
1185 val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1186 break;
1187 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1188 break;
1189 case PC_VPC_CWATCH_DAT0:
1190 /* writing to DATA0 triggers the cache write */
1191 xive->regs[reg] = val;
1192 pnv_xive_nvt_update(xive);
1193 break;
1194 case PC_VPC_SCRUB_MASK:
1195 case PC_VPC_SCRUB_TRIG:
1197 * The scrubbing registers flush the cache in RAM and can also
1198 * invalidate.
1200 break;
1204 * XIVE PC & VC cache invalidation
1206 case PC_AT_KILL:
1207 break;
1208 case VC_AT_MACRO_KILL:
1209 break;
1210 case PC_AT_KILL_MASK:
1211 case VC_AT_MACRO_KILL_MASK:
1212 break;
1214 default:
1215 xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1216 return;
1219 xive->regs[reg] = val;
1222 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1224 PnvXive *xive = PNV_XIVE(opaque);
1225 uint64_t val = 0;
1226 uint32_t reg = offset >> 3;
1228 switch (offset) {
1229 case CQ_CFG_PB_GEN:
1230 case CQ_IC_BAR:
1231 case CQ_TM1_BAR:
1232 case CQ_TM2_BAR:
1233 case CQ_PC_BAR:
1234 case CQ_PC_BARM:
1235 case CQ_VC_BAR:
1236 case CQ_VC_BARM:
1237 case CQ_TAR:
1238 case CQ_TDR:
1239 case CQ_PBI_CTL:
1241 case PC_TCTXT_CFG:
1242 case PC_TCTXT_TRACK:
1243 case PC_TCTXT_INDIR0:
1244 case PC_TCTXT_INDIR1:
1245 case PC_TCTXT_INDIR2:
1246 case PC_TCTXT_INDIR3:
1247 case PC_GLOBAL_CONFIG:
1249 case PC_VPC_SCRUB_MASK:
1251 case VC_GLOBAL_CONFIG:
1252 case VC_AIB_TX_ORDER_TAG2:
1254 case VC_IRQ_CONFIG_IPI:
1255 case VC_IRQ_CONFIG_HW:
1256 case VC_IRQ_CONFIG_CASCADE1:
1257 case VC_IRQ_CONFIG_CASCADE2:
1258 case VC_IRQ_CONFIG_REDIST:
1259 case VC_IRQ_CONFIG_IPI_CASC:
1261 case VC_EQC_SCRUB_MASK:
1262 case VC_IVC_SCRUB_MASK:
1263 case VC_SBC_CONFIG:
1264 case VC_AT_MACRO_KILL_MASK:
1265 case VC_VSD_TABLE_ADDR:
1266 case PC_VSD_TABLE_ADDR:
1267 case VC_VSD_TABLE_DATA:
1268 case PC_VSD_TABLE_DATA:
1269 case PC_THREAD_EN_REG0:
1270 case PC_THREAD_EN_REG1:
1271 val = xive->regs[reg];
1272 break;
1275 * XIVE hardware thread enablement
1277 case PC_THREAD_EN_REG0_SET:
1278 case PC_THREAD_EN_REG0_CLR:
1279 val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1280 break;
1281 case PC_THREAD_EN_REG1_SET:
1282 case PC_THREAD_EN_REG1_CLR:
1283 val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1284 break;
1286 case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1287 val = 0xffffff0000000000;
1288 break;
1291 * XIVE PC & VC cache updates for EAS, NVT and END
1293 case VC_EQC_CWATCH_SPEC:
1294 xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1295 val = xive->regs[reg];
1296 break;
1297 case VC_EQC_CWATCH_DAT0:
1299 * Load DATA registers from cache with data requested by the
1300 * SPEC register
1302 pnv_xive_end_cache_load(xive);
1303 val = xive->regs[reg];
1304 break;
1305 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1306 val = xive->regs[reg];
1307 break;
1309 case PC_VPC_CWATCH_SPEC:
1310 xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1311 val = xive->regs[reg];
1312 break;
1313 case PC_VPC_CWATCH_DAT0:
1315 * Load DATA registers from cache with data requested by the
1316 * SPEC register
1318 pnv_xive_nvt_cache_load(xive);
1319 val = xive->regs[reg];
1320 break;
1321 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1322 val = xive->regs[reg];
1323 break;
1325 case PC_VPC_SCRUB_TRIG:
1326 case VC_IVC_SCRUB_TRIG:
1327 case VC_EQC_SCRUB_TRIG:
1328 xive->regs[reg] &= ~VC_SCRUB_VALID;
1329 val = xive->regs[reg];
1330 break;
1333 * XIVE PC & VC cache invalidation
1335 case PC_AT_KILL:
1336 xive->regs[reg] &= ~PC_AT_KILL_VALID;
1337 val = xive->regs[reg];
1338 break;
1339 case VC_AT_MACRO_KILL:
1340 xive->regs[reg] &= ~VC_KILL_VALID;
1341 val = xive->regs[reg];
1342 break;
1345 * XIVE synchronisation
1347 case VC_EQC_CONFIG:
1348 val = VC_EQC_SYNC_MASK;
1349 break;
1351 default:
1352 xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1355 return val;
1358 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1359 .read = pnv_xive_ic_reg_read,
1360 .write = pnv_xive_ic_reg_write,
1361 .endianness = DEVICE_BIG_ENDIAN,
1362 .valid = {
1363 .min_access_size = 8,
1364 .max_access_size = 8,
1366 .impl = {
1367 .min_access_size = 8,
1368 .max_access_size = 8,
1373 * IC - Notify MMIO port page (write only)
1375 #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */
1376 #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */
1377 #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */
1378 #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */
1379 #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */
1380 #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */
1381 #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */
1382 #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */
1384 /* VC synchronisation */
1385 #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */
1386 #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */
1387 #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */
1388 #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */
1389 #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */
1391 /* PC synchronisation */
1392 #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */
1393 #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */
1394 #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */
1396 static void pnv_xive_end_notify(XiveRouter *xrtr, XiveEAS *eas)
1398 PnvXive *xive = PNV_XIVE(xrtr);
1399 uint8_t end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
1400 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
1401 uint32_t end_data = xive_get_field64(EAS_END_DATA, eas->w);
1402 uint64_t end_vsd = xive->vsds[VST_TSEL_EQDT][end_blk];
1404 switch (GETFIELD(VSD_MODE, end_vsd)) {
1405 case VSD_MODE_EXCLUSIVE:
1406 /* Perform the END notification on the local IC. */
1407 xive_router_end_notify(xrtr, eas);
1408 break;
1410 case VSD_MODE_FORWARD: {
1411 MemTxResult result;
1412 uint64_t notif_port = end_vsd & VSD_ADDRESS_MASK;
1413 uint64_t data = XIVE_TRIGGER_END | XIVE_TRIGGER_PQ |
1414 be64_to_cpu(eas->w);
1416 /* Forward the store on the remote IC notify page. */
1417 address_space_stq_be(&address_space_memory, notif_port, data,
1418 MEMTXATTRS_UNSPECIFIED, &result);
1419 if (result != MEMTX_OK) {
1420 xive_error(xive, "IC: Forward notif END %x/%x [%x] failed @%"
1421 HWADDR_PRIx, end_blk, end_idx, end_data, notif_port);
1422 return;
1424 break;
1427 case VSD_MODE_INVALID:
1428 default:
1429 /* Set FIR */
1430 xive_error(xive, "IC: Invalid END VSD for block %x", end_blk);
1431 return;
1436 * The notify page can either be used to receive trigger events from
1437 * the HW controllers (PHB, PSI) or to reroute interrupts between
1438 * Interrupt controllers.
1440 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1442 uint8_t blk;
1443 uint32_t idx;
1445 trace_pnv_xive_ic_hw_trigger(addr, val);
1447 if (val & XIVE_TRIGGER_END) {
1448 val = cpu_to_be64(val);
1449 pnv_xive_end_notify(XIVE_ROUTER(xive), (XiveEAS *) &val);
1450 return;
1454 * Forward the source event notification directly to the Router.
1455 * The source interrupt number should already be correctly encoded
1456 * with the chip block id by the sending device (PHB, PSI).
1458 blk = XIVE_EAS_BLOCK(val);
1459 idx = XIVE_EAS_INDEX(val);
1461 xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx),
1462 !!(val & XIVE_TRIGGER_PQ));
1465 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1466 unsigned size)
1468 PnvXive *xive = PNV_XIVE(opaque);
1470 /* VC: HW triggers */
1471 switch (addr) {
1472 case 0x000 ... 0x7FF:
1473 pnv_xive_ic_hw_trigger(opaque, addr, val);
1474 break;
1476 /* VC: Forwarded IRQs */
1477 case PNV_XIVE_FORWARD_IPI:
1478 case PNV_XIVE_FORWARD_HW:
1479 case PNV_XIVE_FORWARD_OS_ESC:
1480 case PNV_XIVE_FORWARD_HW_ESC:
1481 case PNV_XIVE_FORWARD_REDIS:
1482 /* TODO: forwarded IRQs. Should be like HW triggers */
1483 xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1484 addr, val);
1485 break;
1487 /* VC syncs */
1488 case PNV_XIVE_SYNC_IPI:
1489 case PNV_XIVE_SYNC_HW:
1490 case PNV_XIVE_SYNC_OS_ESC:
1491 case PNV_XIVE_SYNC_HW_ESC:
1492 case PNV_XIVE_SYNC_REDIS:
1493 break;
1495 /* PC syncs */
1496 case PNV_XIVE_SYNC_PULL:
1497 case PNV_XIVE_SYNC_PUSH:
1498 case PNV_XIVE_SYNC_VPC:
1499 break;
1501 default:
1502 xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1506 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1507 unsigned size)
1509 PnvXive *xive = PNV_XIVE(opaque);
1511 /* loads are invalid */
1512 xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1513 return -1;
1516 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1517 .read = pnv_xive_ic_notify_read,
1518 .write = pnv_xive_ic_notify_write,
1519 .endianness = DEVICE_BIG_ENDIAN,
1520 .valid = {
1521 .min_access_size = 8,
1522 .max_access_size = 8,
1524 .impl = {
1525 .min_access_size = 8,
1526 .max_access_size = 8,
1531 * IC - LSI MMIO handlers (not modeled)
1534 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1535 uint64_t val, unsigned size)
1537 PnvXive *xive = PNV_XIVE(opaque);
1539 xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1542 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1544 PnvXive *xive = PNV_XIVE(opaque);
1546 xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1547 return -1;
1550 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1551 .read = pnv_xive_ic_lsi_read,
1552 .write = pnv_xive_ic_lsi_write,
1553 .endianness = DEVICE_BIG_ENDIAN,
1554 .valid = {
1555 .min_access_size = 8,
1556 .max_access_size = 8,
1558 .impl = {
1559 .min_access_size = 8,
1560 .max_access_size = 8,
1565 * IC - Indirect TIMA MMIO handlers
1569 * When the TIMA is accessed from the indirect page, the thread id of
1570 * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1571 * use. This is used for resets and for debug purpose also.
1573 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1575 PnvChip *chip = xive->chip;
1576 uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1577 PowerPCCPU *cpu = NULL;
1578 int pir;
1580 if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1581 xive_error(xive, "IC: no indirect TIMA access in progress");
1582 return NULL;
1585 pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1586 cpu = pnv_chip_find_cpu(chip, pir);
1587 if (!cpu) {
1588 xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1589 return NULL;
1592 /* Check that HW thread is XIVE enabled */
1593 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1594 xive_error(xive, "IC: CPU %x is not enabled", pir);
1597 return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1600 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1601 uint64_t value, unsigned size)
1603 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1605 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
1608 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1609 unsigned size)
1611 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1613 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
1616 static const MemoryRegionOps xive_tm_indirect_ops = {
1617 .read = xive_tm_indirect_read,
1618 .write = xive_tm_indirect_write,
1619 .endianness = DEVICE_BIG_ENDIAN,
1620 .valid = {
1621 .min_access_size = 1,
1622 .max_access_size = 8,
1624 .impl = {
1625 .min_access_size = 1,
1626 .max_access_size = 8,
1630 static void pnv_xive_tm_write(void *opaque, hwaddr offset,
1631 uint64_t value, unsigned size)
1633 PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1634 PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1635 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1637 xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
1640 static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
1642 PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1643 PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1644 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1646 return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
1649 const MemoryRegionOps pnv_xive_tm_ops = {
1650 .read = pnv_xive_tm_read,
1651 .write = pnv_xive_tm_write,
1652 .endianness = DEVICE_BIG_ENDIAN,
1653 .valid = {
1654 .min_access_size = 1,
1655 .max_access_size = 8,
1657 .impl = {
1658 .min_access_size = 1,
1659 .max_access_size = 8,
1664 * Interrupt controller XSCOM region.
1666 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1668 switch (addr >> 3) {
1669 case X_VC_EQC_CONFIG:
1670 /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1671 return VC_EQC_SYNC_MASK;
1672 default:
1673 return pnv_xive_ic_reg_read(opaque, addr, size);
1677 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1678 uint64_t val, unsigned size)
1680 pnv_xive_ic_reg_write(opaque, addr, val, size);
1683 static const MemoryRegionOps pnv_xive_xscom_ops = {
1684 .read = pnv_xive_xscom_read,
1685 .write = pnv_xive_xscom_write,
1686 .endianness = DEVICE_BIG_ENDIAN,
1687 .valid = {
1688 .min_access_size = 8,
1689 .max_access_size = 8,
1691 .impl = {
1692 .min_access_size = 8,
1693 .max_access_size = 8,
1698 * Virtualization Controller MMIO region containing the IPI and END ESB pages
1700 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1701 unsigned size)
1703 PnvXive *xive = PNV_XIVE(opaque);
1704 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1705 uint64_t edt_type = 0;
1706 uint64_t edt_offset;
1707 MemTxResult result;
1708 AddressSpace *edt_as = NULL;
1709 uint64_t ret = -1;
1711 if (edt_index < XIVE_TABLE_EDT_MAX) {
1712 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1715 switch (edt_type) {
1716 case CQ_TDR_EDT_IPI:
1717 edt_as = &xive->ipi_as;
1718 break;
1719 case CQ_TDR_EDT_EQ:
1720 edt_as = &xive->end_as;
1721 break;
1722 default:
1723 xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1724 return -1;
1727 /* Remap the offset for the targeted address space */
1728 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1730 ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1731 &result);
1733 if (result != MEMTX_OK) {
1734 xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1735 HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1736 offset, edt_offset);
1737 return -1;
1740 return ret;
1743 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1744 uint64_t val, unsigned size)
1746 PnvXive *xive = PNV_XIVE(opaque);
1747 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1748 uint64_t edt_type = 0;
1749 uint64_t edt_offset;
1750 MemTxResult result;
1751 AddressSpace *edt_as = NULL;
1753 if (edt_index < XIVE_TABLE_EDT_MAX) {
1754 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1757 switch (edt_type) {
1758 case CQ_TDR_EDT_IPI:
1759 edt_as = &xive->ipi_as;
1760 break;
1761 case CQ_TDR_EDT_EQ:
1762 edt_as = &xive->end_as;
1763 break;
1764 default:
1765 xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1766 offset);
1767 return;
1770 /* Remap the offset for the targeted address space */
1771 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1773 address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1774 if (result != MEMTX_OK) {
1775 xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1779 static const MemoryRegionOps pnv_xive_vc_ops = {
1780 .read = pnv_xive_vc_read,
1781 .write = pnv_xive_vc_write,
1782 .endianness = DEVICE_BIG_ENDIAN,
1783 .valid = {
1784 .min_access_size = 8,
1785 .max_access_size = 8,
1787 .impl = {
1788 .min_access_size = 8,
1789 .max_access_size = 8,
1794 * Presenter Controller MMIO region. Points to the NVT sets.
1796 * HW implements all possible mem ops to the underlying NVT structure
1797 * but QEMU does not need to be so precise. The model implementation
1798 * simply returns the RAM address of the NVT structure which is then
1799 * used by pnv_xive_vst_write/read to perform the RAM operation.
1801 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr offset, unsigned size)
1803 PnvXive *xive = PNV_XIVE(opaque);
1804 uint32_t nvt_idx = offset >> xive->pc_shift;
1805 uint8_t blk = pnv_xive_block_id(xive); /* TODO: VDT -> block xlate */
1807 return pnv_xive_vst_addr(xive, VST_TSEL_VPDT, blk, nvt_idx);
1810 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1811 uint64_t value, unsigned size)
1813 PnvXive *xive = PNV_XIVE(opaque);
1815 xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1818 static const MemoryRegionOps pnv_xive_pc_ops = {
1819 .read = pnv_xive_pc_read,
1820 .write = pnv_xive_pc_write,
1821 .endianness = DEVICE_BIG_ENDIAN,
1822 .valid = {
1823 .min_access_size = 8,
1824 .max_access_size = 8,
1826 .impl = {
1827 .min_access_size = 8,
1828 .max_access_size = 8,
1832 static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx,
1833 GString *buf)
1835 uint8_t eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1);
1836 uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1);
1838 if (!xive_nvt_is_valid(nvt)) {
1839 return;
1842 g_string_append_printf(buf, " %08x end:%02x/%04x IPB:%02x\n",
1843 nvt_idx, eq_blk, eq_idx,
1844 xive_get_field32(NVT_W4_IPB, nvt->w4));
1847 void pnv_xive_pic_print_info(PnvXive *xive, GString *buf)
1849 XiveRouter *xrtr = XIVE_ROUTER(xive);
1850 uint8_t blk = pnv_xive_block_id(xive);
1851 uint8_t chip_id = xive->chip->chip_id;
1852 uint32_t srcno0 = XIVE_EAS(blk, 0);
1853 uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1854 XiveEAS eas;
1855 XiveEND end;
1856 XiveNVT nvt;
1857 int i;
1858 uint64_t xive_nvt_per_subpage;
1860 g_string_append_printf(buf, "XIVE[%x] #%d Source %08x .. %08x\n",
1861 chip_id, blk, srcno0, srcno0 + nr_ipis - 1);
1862 xive_source_pic_print_info(&xive->ipi_source, srcno0, buf);
1864 g_string_append_printf(buf, "XIVE[%x] #%d EAT %08x .. %08x\n",
1865 chip_id, blk, srcno0, srcno0 + nr_ipis - 1);
1866 for (i = 0; i < nr_ipis; i++) {
1867 if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1868 break;
1870 if (!xive_eas_is_masked(&eas)) {
1871 xive_eas_pic_print_info(&eas, i, buf);
1875 g_string_append_printf(buf, "XIVE[%x] #%d ENDT\n", chip_id, blk);
1876 i = 0;
1877 while (!xive_router_get_end(xrtr, blk, i, &end)) {
1878 xive_end_pic_print_info(&end, i++, buf);
1881 g_string_append_printf(buf, "XIVE[%x] #%d END Escalation EAT\n",
1882 chip_id, blk);
1883 i = 0;
1884 while (!xive_router_get_end(xrtr, blk, i, &end)) {
1885 xive_end_eas_pic_print_info(&end, i++, buf);
1888 g_string_append_printf(buf, "XIVE[%x] #%d NVTT %08x .. %08x\n",
1889 chip_id, blk, 0, XIVE_NVT_COUNT - 1);
1890 xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT);
1891 for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) {
1892 while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) {
1893 xive_nvt_pic_print_info(&nvt, i++, buf);
1898 static void pnv_xive_reset(void *dev)
1900 PnvXive *xive = PNV_XIVE(dev);
1901 XiveSource *xsrc = &xive->ipi_source;
1902 XiveENDSource *end_xsrc = &xive->end_source;
1904 /* Default page size (Should be changed at runtime to 64k) */
1905 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1907 /* Clear subregions */
1908 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1909 memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1912 if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1913 memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1916 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1917 memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1920 if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1921 memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1925 static void pnv_xive_init(Object *obj)
1927 PnvXive *xive = PNV_XIVE(obj);
1929 object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1930 TYPE_XIVE_SOURCE);
1931 object_initialize_child(obj, "end_source", &xive->end_source,
1932 TYPE_XIVE_END_SOURCE);
1936 * Maximum number of IRQs and ENDs supported by HW
1938 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1939 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1941 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1943 PnvXive *xive = PNV_XIVE(dev);
1944 PnvXiveClass *pxc = PNV_XIVE_GET_CLASS(dev);
1945 XiveSource *xsrc = &xive->ipi_source;
1946 XiveENDSource *end_xsrc = &xive->end_source;
1947 Error *local_err = NULL;
1949 pxc->parent_realize(dev, &local_err);
1950 if (local_err) {
1951 error_propagate(errp, local_err);
1952 return;
1955 assert(xive->chip);
1958 * The XiveSource and XiveENDSource objects are realized with the
1959 * maximum allowed HW configuration. The ESB MMIO regions will be
1960 * resized dynamically when the controller is configured by the FW
1961 * to limit accesses to resources not provisioned.
1963 object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE_NR_IRQS,
1964 &error_fatal);
1965 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
1966 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1967 return;
1970 object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE_NR_ENDS,
1971 &error_fatal);
1972 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1973 &error_abort);
1974 if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
1975 return;
1978 /* Default page size. Generally changed at runtime to 64k */
1979 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1981 /* XSCOM region, used for initial configuration of the BARs */
1982 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1983 xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1985 /* Interrupt controller MMIO regions */
1986 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1987 PNV9_XIVE_IC_SIZE);
1989 memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1990 xive, "xive-ic-reg", 1 << xive->ic_shift);
1991 memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1992 &pnv_xive_ic_notify_ops,
1993 xive, "xive-ic-notify", 1 << xive->ic_shift);
1994 xive->ic_notify_mmio.disable_reentrancy_guard = true;
1996 /* The Pervasive LSI trigger and EOI pages (not modeled) */
1997 memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1998 xive, "xive-ic-lsi", 2 << xive->ic_shift);
2000 /* Thread Interrupt Management Area (Indirect) */
2001 memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
2002 &xive_tm_indirect_ops,
2003 xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
2005 * Overall Virtualization Controller MMIO region containing the
2006 * IPI ESB pages and END ESB pages. The layout is defined by the
2007 * EDT "Domain table" and the accesses are dispatched using
2008 * address spaces for each.
2010 memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
2011 "xive-vc", PNV9_XIVE_VC_SIZE);
2013 memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
2014 PNV9_XIVE_VC_SIZE);
2015 address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
2016 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
2017 PNV9_XIVE_VC_SIZE);
2018 address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
2021 * The MMIO windows exposing the IPI ESBs and the END ESBs in the
2022 * VC region. Their size is configured by the FW in the EDT table.
2024 memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
2025 memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
2027 /* Presenter Controller MMIO region (not modeled) */
2028 memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
2029 "xive-pc", PNV9_XIVE_PC_SIZE);
2030 xive->pc_mmio.disable_reentrancy_guard = true;
2032 /* Thread Interrupt Management Area (Direct) */
2033 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops,
2034 xive, "xive-tima", PNV9_XIVE_TM_SIZE);
2036 qemu_register_reset(pnv_xive_reset, dev);
2039 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
2040 int xscom_offset)
2042 const char compat[] = "ibm,power9-xive-x";
2043 char *name;
2044 int offset;
2045 uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
2046 uint32_t reg[] = {
2047 cpu_to_be32(lpc_pcba),
2048 cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
2051 name = g_strdup_printf("xive@%x", lpc_pcba);
2052 offset = fdt_add_subnode(fdt, xscom_offset, name);
2053 _FDT(offset);
2054 g_free(name);
2056 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
2057 _FDT((fdt_setprop(fdt, offset, "compatible", compat,
2058 sizeof(compat))));
2059 return 0;
2062 static Property pnv_xive_properties[] = {
2063 DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
2064 DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
2065 DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
2066 DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
2067 /* The PnvChip id identifies the XIVE interrupt controller. */
2068 DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
2069 DEFINE_PROP_END_OF_LIST(),
2072 static void pnv_xive_class_init(ObjectClass *klass, void *data)
2074 DeviceClass *dc = DEVICE_CLASS(klass);
2075 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
2076 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
2077 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
2078 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
2079 PnvXiveClass *pxc = PNV_XIVE_CLASS(klass);
2081 xdc->dt_xscom = pnv_xive_dt_xscom;
2083 dc->desc = "PowerNV XIVE Interrupt Controller";
2084 device_class_set_parent_realize(dc, pnv_xive_realize, &pxc->parent_realize);
2085 dc->realize = pnv_xive_realize;
2086 device_class_set_props(dc, pnv_xive_properties);
2088 xrc->get_eas = pnv_xive_get_eas;
2089 xrc->get_pq = pnv_xive_get_pq;
2090 xrc->set_pq = pnv_xive_set_pq;
2091 xrc->get_end = pnv_xive_get_end;
2092 xrc->write_end = pnv_xive_write_end;
2093 xrc->get_nvt = pnv_xive_get_nvt;
2094 xrc->write_nvt = pnv_xive_write_nvt;
2095 xrc->get_block_id = pnv_xive_get_block_id;
2096 xrc->end_notify = pnv_xive_end_notify;
2098 xnc->notify = pnv_xive_notify;
2099 xpc->match_nvt = pnv_xive_match_nvt;
2100 xpc->get_config = pnv_xive_presenter_get_config;
2103 static const TypeInfo pnv_xive_info = {
2104 .name = TYPE_PNV_XIVE,
2105 .parent = TYPE_XIVE_ROUTER,
2106 .instance_init = pnv_xive_init,
2107 .instance_size = sizeof(PnvXive),
2108 .class_init = pnv_xive_class_init,
2109 .class_size = sizeof(PnvXiveClass),
2110 .interfaces = (InterfaceInfo[]) {
2111 { TYPE_PNV_XSCOM_INTERFACE },
2116 static void pnv_xive_register_types(void)
2118 type_register_static(&pnv_xive_info);
2121 type_init(pnv_xive_register_types)